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Abstract
Let � ⊂ R

d be a C1 domain or, more generally, a Lipschitz domain with small Lipschitz
constant and A(x) be a d×d uniformly elliptic, symmetricmatrix with Lipschitz coefficients.
Assume u is harmonic in�, or with greater generality u solves div(A(x)∇u) = 0 in�, and u
vanishes on � = ∂�∩ B for some ball B. We study the dimension of the singular set of u in
�, in particular we show that there is a countable family of open balls (Bi )i such that u|Bi∩�

does not change sign and K\⋃i Bi has Minkowski dimension smaller than d−1−ε for any
compact K ⊂ �. We also find upper bounds for the (d− 1)-dimensional Hausdorff measure
of the zero set of u in balls intersecting � in terms of the frequency. As a consequence, we
prove a new unique continuation principle at the boundary for this class of functions and
show that the order of vanishing at all points of � is bounded except for a set of Hausdorff
dimension at most d − 1− ε.

Mathematics Subject Classification 31B05 · 31B20 · 35J25

1 Introduction

In this paper, we study the size of the zero set of solutions u of a certain class of elliptic PDEs
(see Sect. 2.1) near the boundary of a Lipschitz domain. Assume � ⊂ R

d is a Lipschitz
domain with small Lipschitz constant and � is an open set of the boundary ∂� where u
vanishes.We investigate the dimension of the setS ′

�(u) = {x ∈ � | u−1({0})∩B(x, r)∩� �=
∅, ∀r > 0}, the set where u changes sign in every neighborhood.
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In a more regular setting, for example in the case � is a C1,Dini domain (see [2, 9, 19, 21,
22] for the definition) and u is harmonic, S ′

�(u) coincides with the usual singular set at the
boundary of u: S�(u) = {x ∈ � | |∇u(x)| = 0} (see Proposition 1.9). Note that all C1,α

domains (for any α > 0) are C1,Dini and all C1,Dini domains are C1, but the converse is not
true. Nonetheless, in the case where � is a Lipschitz domain, ∇u(x) (or ∂νu) only exists in
� in a weaker sense (see “Appendix A”) as far as we know, which anticipates that we will not
be able to find fine estimates of the size and dimension of S�(u) (see Sect. 9). The situation
is different for S ′

�(u), for which we prove the following Minkowski dimension estimate:

Theorem 1.1 Let � ⊂ R
d be a Lipschitz domain, and let A(x) be a uniformly elliptic

symmetric matrix with Lipschitz coefficients defined on �. Let B be a ball centered in ∂�

and suppose that � = B ∩ ∂� is a Lipschitz graph with slope τ < τ0, where τ0 is some
positive constant depending only on d and the ellipticity of A(x). Let u �≡ 0 be a solution of
div(A(x)∇u(x)) = 0 in �, continuous in � that vanishes in �. Then there exists some small
constant ε1(d) > 0 and a family of open balls (Bi )i , i ∈ N centered on � such that

(1) u|Bi∩� is either strictly positive or negative, for all i ∈ N,
(2) K\⋃i Bi has Minkowski dimension at most d − 1− ε1 for any compact K ⊂ �.

Moreover, in the planar setting (d = 2), the set K\⋃i Bi is finite for any compact K ⊂ �.

Recall that the upper Minkowski dimension of a set E ⊂ R
d−1 can be defined as

dimM E = lim sup
j→∞

log(#{dyadic cubes Q of side length 2− j that satisfy Q ∩ E �= ∅})
j log 2

.

(1.1)

The previous result gives the following corollary:

Corollary 1.2 Assume � ⊂ R
d , �, A(x), τ < τ0, and u �≡ 0 as in the statement of Theo-

rem 1.1. Then, there exists a constant ε1(d) > 0 such that

dimM
(S ′

�(u) ∩ K
) ≤ d − 1− ε1

for any compact set K ⊂ �.

Remark 1.3 We remark that Theorem 1.1 and Corollary 1.2

• are new even in the harmonic case as the set S ′
�(u) has not been well studied before (as

far as I know),
• are valid for harmonic functions in Riemannian manifolds with Lipschitz boundary (with

small Lipschitz constant depending on the metric),
• include the case when � is a C1 domain, situation where not too much is known either,
• give Hausdorff dimension estimates for the set S ′

�(u) by taking an exhaustion of �

by compact sets. Note that Hausdorff dimension estimates are weaker than Minkowski
dimension estimates but these were not known either.

Remark 1.4 Some of the results of the present paper suggest that the set S ′
�(u) might be

a natural substitute of the usual singular set S�(u) in the case of Lipschitz domains (and
rougher). These results are the fact that S�(u) = S ′

�(u) in the case � is a C1,Dini domain
(Proposition 1.9), the existence of an example of a Lipschitz domain where dimH S�(u) =
d − 1 and no better (see Sect. 9), and Corollary 1.2 showing that better dimension estimates
are true for S ′

�(u).
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Moreover, we show an upper bound estimate on the size of the zero set of u on balls centered
at � in terms of the frequency function N (x, r) (see Definition 3.3):

Theorem 1.5 Assume�,�, A(x), τ < τ0, and u �≡ 0 as in the statement of Theorem 1.1. Let
x ∈ � and 0 < r < r0 with r0 depending on dist(x, ∂�\�), the Lipschitz constant L A and
the ellipticity	A of A(x), and d. There exists x̃ ∈ � such that |x−x̃ | ≈	A dist(x̃, ∂�) ≈	A r
and

Hd−1({u = 0} ∩ B(x, r) ∩ �) ≤ Crd−1(N (x̃, Sr) + 1)α

for some large S depending on L A,	A and d, and some α ≥ 1 depending on d.

The precise x̃ appearing in the statement of Theorem 1.5 is the center of a certain dyadic
cube related to a Whitney cube decomposition of � but we have freedom in choosing it. For
more details see Sect. 4.1 and Remark 6.5. This result is analogous to Theorem 2 in [28]
for a more general class of functions but with a worse exponent. Further, we briefly discuss
the application of this theorem to the study of the zero set of Dirichlet eigenfunctions of
the operator div(A∇·) in � in Sect. 6.6. See [28] for more background on this result and its
applications in the harmonic case.

Let us give some historical background for the results of this paper. L. Bers asked the
following question. Consider a harmonic function u in the upper half-plane R

d+, C1 up to
the boundary such that there exists E ∈ ∂R

d+ = R
d−1 where u = |∇u| = 0 on E . Does

measured−1(E) > 0 imply u ≡ 0? This question has positive answer in the plane, thanks
to the subharmonicity of log |∇u|. But in R

d+, d ≥ 3, there are examples constructed by
Bourgain and Wolff [6] which give a negative response in general.

A related conjecture by Lin [23] which is still open is the following:

Conjecture Let � ⊂ R
d be a Lipschitz domain and � = B ∩ ∂� for some ball B centered

in ∂�. Let u be a harmonic function in � and continuous up to the boundary that vanishes
in �. If the set where ∂νu = 0 in � has positive surface measure, then u must be identically
zero.

This conjecture was proved in the C1,1 case in [23], where it was also shown that S�(u)

is a (d − 2)-dimensional set (see also [7] for more quantitative estimates). V. Adolfsson,
L. Escauriaza and C. Kenig also gave a positive answer to the conjecture in [3] in the case
� is a convex Lipschitz domain. Their work was followed by Kukavica and Nyström [19],
and Adolfsson and Escauriaza [2] where the conjecture is solved in the case � is C1,Dini.
Moreover, in [2] it is also proved that S�(u) has Hausdorff dimension at most d − 2.

In the interior of the domain, the singular and critical sets ofu have been extensively studied
too. In particular, the recent results from Naber and Valtorta [30] are remarkable: they find
(d−2)-dimensionalMinkowski content bounds and prove they are (d−2)-rectifiablewith the
introduction of a new quantitative stratification. Some of their techniques have been adapted
to study the Minkowski content of the singular set at the boundary in the convex Lipschitz
case byMcCurdy [29] and in theC1,Dini by Kenig and Zhao [21]. Unfortunately, the methods
relying on pointwise monotonicity that have been commonly used to study this problem are
no longer useful in general Lipschitz domains, and new ideas are needed in this case. The
conjecture of F.-H. Lin saw no further progress until X. Tolsa proved the result for harmonic
functions in Lipschitz domains with small Lipschitz constants in [33]. His proof uses the new
powerful methods developed by A. Logunov and E. Malinnikova (see [24, 25, 27]) to study
zero sets of Laplace eigenfunctions in compact Riemannian manifolds. These techniques are
used on the boundary of the domain � with the trade-off of restricting its Lipschitz constant.
This idea from [33] has also been successfully used by Logunov et al. [28] to study the zero
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set of Dirichlet Laplace eigenfunctions in Lipschitz domains with small Lipschitz constant.
In [28], the authors also develop novel methods to control the zero set near the boundary that
will be relevant in the present paper.

The main tool used in this paper is Almgren’s frequency function (see Definition 3.3),
a quantity that controls the doubling properties of the L2 averages of u in spheres. This
function was also used in most of the works mentioned in this introduction. Our proof of
Theorem 1.1 requires two technical lemmas. One is Lemma 4.1, an adaptation of Lemma
3.1 - Key lemma from [33] and it controls the behavior of the frequency function at points
in � near the boundary (see also Lemma 7 from [28]). The other is Lemma 5.1, inspired
by Lemma 8 - Second hyperplane lemma: cubes without zeros from [28] and it controls the
size of balls centered at the boundary that contain no zeros of u. Both results were originally
proved only for harmonic functions, hence we first extend them for solutions of second order
linear elliptic PDEs in divergence form. Afterwards, we combine both lemmas in a new
combinatorial argument that controls the size of the zero set of u near the boundary. We
remark that the extension of Lemma 8 from [28] to the elliptic case presents many difficulties
and it might be interesting on its own.

Theorem 1.1 allows us to prove an analogous unique continuation at the boundary result
to the one in [33] for more general elliptic PDEs in divergence form:

Corollary 1.6 Assume �, �, A(x), τ < τ0, and u �≡ 0 as in the statement of Theorem 1.1.
The set {x ∈ � | ∂νu(x) = 0} has (d − 1)-Hausdorff measure 0.

Observe that the assumption that u vanishes continuously in � implies that ∇u exists σ -a.e.
as a non-tangential limit in �, and ∇u = (∂νu)ν ∈ L2

loc(σ ). Here σ stands for the surface
measure restricted to � and ν is the outer unit normal (see Remark 3.7 and “Appendix A”).

The proof of Corollary 1.6 uses that the elliptic measure ωA associated to the elliptic
operator div(A∇·) is an A∞ Muckenhoupt weight with respect to σ (see Definiton 7.1) and
that, since |u| is locally comparable to a Green function near most points of � (thanks to not
changing sign in a neighborhood), ∂νu is comparable to dωA/dσ .

Theorem 1.1 also has a second corollary that controls the vanishing order of the zeros in
the set where u does not change sign nearby.

Definition 1.7 The vanishing order of the zero at a point x ∈ � is defined as the supremum
of the α > 0 such that there exist Cα > 0 finite and r0 > 0 satisfying

−
ˆ
B(x,r)∩�

|u|dy ≤ Cαr
α, 0 < r ≤ r0.

Corollary 1.8 Assume �, �, A(x), τ < τ0, and u �≡ 0 as in the statement of Theorem 1.1.
There exists some small constant ε2 > 0 depending on d, the Lipschitz constant τ of �,
and the ellipticity 	A of the matrix A(x) such that for all x ∈ � outside a set of Hausdorff
dimension d − 1− ε1, the vanishing order of u at x is smaller than 1+ ε2. Moreover, for all
x ∈ �, the vanishing order of u at x is greater than 1− ε2.

This corollary is proved by comparing u locally (in the neighborhoods where it does not
change sign) with the Green function of a certain cone with angular opening related to the
Lipschitz constant τ of �.

In Sect. 9 we provide an example showing that Corollary 1.6 cannot be improved in
the sense of Hausdorff dimension estimates. This contrasts with the higher regularity case
(C1,Dini) where the set S�(u) is known to be (d−2)-rectifiable and, a fortiori, has Hausdorff
dimension at most d − 2 (see [21]). Finally, in Sect. 10, we prove the following proposition
relating S�(u) and S ′

�(u) in the smooth case.
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Proposition 1.9 Let � ⊂ R
d be a C1,Dini domain, B be a ball centered in ∂�, and � =

B∩∂�. Let u be a harmonic function defined in�, continuous in� that vanishes in�. Then
S�(u) coincides with S ′

�(u).

The proof of the proposition follows from a local expansion of u as the sum of a homogeneous
harmonic polynomial and an error term of higher degree proved in [22].

1.1 Further questions

We present some open questions related to the previous results:

• Is it true that dimM S ′
�(u)∩ K is at most d−2 for any compact K ⊂ � (ε1 ≡ 1)? What

about the (slightly) easier case where � is a C1 domain?
• Is the set S ′

�(u) (d − 2)-rectifiable?
• Do these estimates hold for general Lipschitz domains? For the moment, even the con-

jecture of Lin is still open.
• Can there exist points with vanishing order ∞ in � in the Lipschitz case? Thanks to the

results of [2, 19, 21, 22] we know this cannot happen in the C1,Dini case.

1.2 Outline of the paper

In Sects. 2 and 3, we present some notation, tools and ideas that will be used throughout
the paper (often without reference). The main aim of Sect. 4 is the proof of Lemma 4.1,
although in Sect. 4.1 we construct a Whitney cube structure to � that will be used during the
sections following after. Section 5 is devoted to Lemma 5.1. Both lemmas are then combined
in a combinatorial argument in Sect. 6 to prove Theorems 1.1 and 1.5. In Sect. 6, we also
briefly discuss the application of Theorem 1.5 to the study of the zero set of certain class
of eigenfunctions. The rest of the paper is spent on the proofs of Corollaries 1.6, 1.8, the
example of a Lipschitz domain and harmonic function u with “large" S�(u), and the equality
S�(u) = S ′

�(u) in theC1,Dini case. This last part does not require theWhitney cube structure
or Lemmas 4.1 and 5.1. In “Appendix A”, we discuss the existence of the non-tangential limit
of ∇u in �.

2 Lipschitz domains with small constant and some properties of elliptic
PDEs

Notation: the letters C, c, c′, c̃ are used to denote positive constants that depend on the
dimension d and whose values may change on different proofs. The constants cH and CN

retain their values. The notation A � B is equivalent to A ≤ CB, and A ∼ B is equivalent
to A � B � A. Sometimes, we will also use the notation A(x) = B(x) + O(x) to denote
that |A(x) − B(x)| � |x |.

In the whole paper, we assume that �, �, and u �≡ 0 are as in Theorem 1.1. Moreover, we
assume that � is a Lipschitz graph with Lipschitz constant τ with respect to the hyperplane
H0 := {xd = 0} and that locally � lies above �.

Remark 2.1 Note that a C1 domain is a Lipschitz domain with local Lipschitz constant as
small as we need. In particular, Theorems 1.1 and 1.5, and its corollaries are valid for C1

domains.
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Remark 2.2 The Lipschitz constant of � is invariant by rescalings. If we consider a more
general (anisotropic) scaling given by multiplication by a positive definite symmetric matrix
with ellipticity 	̃, then the Lipschitz constant of � changes by a factor of at most 	̃2.

2.1 Divergence form elliptic PDEs with Lipschitz coefficients

The function u we study solves div(A(x)∇u(x)) = 0 weakly in � where the matrix A(x)
satisfies that

• A(x) is symmetric.
• There exists 	A > 1 such that 	−1

A |y|2 ≤ (A(x)y, y) ≤ 	A|y|2 for all x ∈ �, y ∈ R
d

(uniform ellipticity).
• There exists a Lipschitz constant L A > 0 such that |Ai j (x) − Ai j (y)| ≤ L A|x − y|

(Lipschitz coefficients).

By standard elliptic PDE theory (see [13, 16] for example), we know that u ∈ C1,α in any
ball with closure inside � for any 0 < α < 1. Also u ∈ W 1,2(�) and u ∈ W 2,2(�′) for any
compactly embedded subdomain �′ ⊂⊂ �.

We extend the function u by 0 outside of � so that it is continuous through �. We also
extend thematrix A(x) in away that it preserves the ellipticity	A and Lipschitz L A constants
up to a constant factor (the particular extension we choose will not matter). In particular, note
that the absolute value of the extended function |u| is a subsolution in balls B such that
B ∩ ∂� ⊂ �. This means thatˆ

B
(A∇|u|,∇φ) dx ≤ 0, ∀φ ∈ C1

c (B).

2.2 Modifying the domain and A(x)

Remark 2.3 Throughout this paper,wewill require at different points the constantsmax(	A−
1, 1 − 	−1

A ) and L A to be very small. We can obtain this by exploiting the fact that our
considerations are local. Indeed, we can cover our initial domain � by a finite family of
“small" domains and prove the results on the introduction on each one separately.

By “zooming" on a small domain, we decrease the Lipschitz constant L A of the matrix.
By rescaling the domain by multiplication with an adequate matrix, we can force A(x) = I
at a particular point x . This, in addition to the small Lipschitz constant L A of the new matrix,
implies small ellipticity 	A (we will show this below). Note, though, that this last operation
changes the Lipschitz constant τ of �. For this reason, in the statement of Theorem 1.1,
τ0 depends on the ellipticity of A(x). Intuitively, we use the Lipschitz regularity of A(x) to
exploit that, in small scales, A(x) is very close to a constant matrix.

Let us show the effects of “zooming" and rescaling the domain when the domain is a ball.
Suppose u solves weakly div(A∇u) = 0 in a ball BR for some R < 1, that is, for all
φ ∈ C1

c (BR) we have ˆ
BR

(A(x)∇u(x),∇φ(x)) dx = 0.

If we “zoom" in on the origin by considering the function ũ(y) = u(Ry) defined on B1, we
can show it satisfiesˆ

B1
( Ã(y)∇ũ(y),∇φ̃(y)) dy = 0, ∀φ̃ ∈ C1

c (B1),
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where Ã(y) = A(Ry). Notice that Ã(y) has improved Lipschitz constant R · L A < L A.
Now suppose that A(0) �= I and we want to change the function, the domain and the

equation so that “A(0) = I " for the solution of the new equation.
Consider ũ(x) = u(S̃x) defined in S̃−1BR where S̃ is the symmetric positive definite

square root of A(0) and BR is a ball centered at the origin of radius R > 0. Then, for all
φ̃(x) ∈ C∞

c (S̃−1BR), we have
ˆ
S̃−1BR

(S̃−1A(S̃x)S̃−1∇ũ(x),∇φ̃(x))dx =
ˆ
S̃−1BR

(A(S̃x)S̃−1∇ũ(x), S̃−1∇φ̃(x))dx

=
ˆ
S̃−1BR

(A(S̃x)∇u(S̃x),∇φ(S̃x))dx

= (det S̃)−1
ˆ
BR

(A(y)∇u(y),∇φ(y))dy

= 0

where φ(S̃x) = φ̃(x). This implies that ũ is a weak solution of the equation div(AS̃(x)∇ũ) =
0 in S̃−1BR where AS̃(x) := S̃−1A(S̃x)S̃−1.
Properties of the new matrix AS̃(x):

• Observe that AS̃(0) = S̃−1A(0)S̃−1 = I .
• The coefficients of AS̃(x) are also Lipschitz with constant L AS̃

and the ratio between the
Lipschitz constants of AS̃ and A can be bounded above and below by positive constants
depending only on d and 	A.

• AS̃(x) is uniformly elliptic with ellipticity constant bounded by
min(	2

A, L AS̃
diam(S̃−1BR)d). Indeed, the largest and smallest eigenvalues λmax and

λmin of AS̃(z) at a point z ∈ S̃−1BR satisfy

max(λmax − 1, 1− λmin) = ‖AS̃(z) − I‖2 ≤ ‖AS̃(z) − I‖F =
√∑

i, j

|aS̃,i, j (z) − δi, j |2

≤ L AS̃
|z|d ≤ L AS̃

diam(S̃−1BR)d

where ‖ · ‖F is the Frobenius norm, ‖ · ‖2 is the spectral norm, and δi, j is the Kronecker
delta.

3 Frequency function for solutions of elliptic PDEs in divergence form

Let x ∈ � ∪ � such that A(x) = I . For r > 0 such that Br (x) ∩ ∂� ⊂ �, we denote
μx (y) := (A(y)(y − x), y − x)/|y − x |2 and

H(x, r) := r1−d
ˆ

∂Br (x)
μx (z)|u(z)|2dσ(z)

where dσ is the surface measure of the ball. Note that the quantity H(x, r) is nonnegative.
To simplify the notation we will assume from now on that x is the origin and we will write
H(r) := H(x, r) and μ(y) := μx (y).

Remark 3.1 Observe that 	−1
A ≤ μ(y) ≤ 	A and, since A has Lipschitz coefficients, we

have |μ(y) − 1| � L A|y|, ‖A(y) − I‖2 � L A|y|, and |trA(y) − d| � L A|y|.
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We also denote

I (x, r) := r1−d
ˆ
Br (x)∩�

(A∇u,∇u)dy.

Note that I (x, r) is also nonnegative since A is positive definite. Moreover, I (x, r) is finite
thanks to Caccioppoli’s inequality supposing Br (0) ∩ ∂� ⊂ �. As before, we will write
I (r) := I (x, r).

Proposition 3.2 Assume 0 ∈ � ∪ � and A(0) = I . For r > 0 such that Br ∩ ∂� ⊂ �, the
derivative of H(r) is

H ′(r) = 2I (r) + O(L AH(r)).

As a consequence there exists some constant c > 0 such that

H ′(r) ≥ −cL AH(r).

For the rest of this paper, we denote cH := cL A. In particular, H(r)ecHr is a nondecreasing
function of r . Note that in the harmonic case, cH = 0 and H is nondecreasing (which is also
a corollary of the subharmonicity of |u|2).

Note that the proof of Proposition 3.2 is quite simple in the case B(0, r) ∩ ∂� = ∅. But
in our setting we require some extra considerations to apply the divergence theorem in balls
touching the boundary since u only belongs in W 1,2(B(0, r) ∩ �). To address this problem,
we use “Appendix A” and follow the ideas of [33] in the harmonic case.

Proof First, using that u ∈ W 1,2(B(0, r)), we apply the divergence theorem to obtain

H(r) = r−d
ˆ
Br

div(|u|2A(x)x)dx .

Using Remark 3.1, we expand the term inside the integral as

div(|u|2A(x)x) = 2u(∇u, A(x)x) + |u|2 tr(A(x))
︸ ︷︷ ︸
d+O(LA |x |)

+|u|2
∑

i, j

(∂i ai j )x j

︸ ︷︷ ︸
O(LA |x |)

=: 2u(∇u, A(x)x) + d|u|2μ(x) + f (x)
︸︷︷︸

O(LA|x |)
|u|2.

We compute (formally) the derivative of H :

H ′(r) = −dr−1H(r) + r−d
ˆ

∂Br

(
2u(∇u, A(x)x) + d|u|2μ(x) + |u|2 f (x)) dσ(x)

= r−d
ˆ

∂Br

(
2u(∇u, A(x)x) + |u|2 f (x)) dσ(x).

Note that the only problematic term is r−d
´
∂Br

2u(∇u, A(x)x)dσ(x). Observe though, that´
∂Br

|∇u|dσ exists and is finite for almost every r since
´ b
0

´
∂Br

|∇u| dσ dr = ´
Br

|∇u|dx
is finite. Nonetheless, using the divergence theorem, we show that for all [a, b] ⊂
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[0, dist(0, ∂�\�)):
ˆ b

a
H ′(s)ds =

ˆ b

a
s−d

ˆ
∂Bs

(
2u(∇u, A(x)x) + |u|2 f (x)) dσ(x) ds

=
ˆ
A(0,a,b)

(
1

|x |d 2u(∇u, A(x)x) + 1

|x |d |u|
2 f (x)

)

dx

=
ˆ
A(0,a,b)

1

|x |d div(|u|2A(x)x)dx −
ˆ
A(0,a,b)

d

|x |d |u|
2μ(x) dx

=
ˆ
A(0,a,b)

div

(

|u|2A(x)
x

|x |d
)

dx

= H(b) − H(a).

where A(0, a, b) is the annulus B(0, b)\B(0, a) for 0 < a < b. Thus, we have the identity
for H ′(r) for almost every r .

Now we want to prove that

r−d
ˆ

∂Br
2u(∇u, A(x)x) dσ(x) = 2r1−d

ˆ
Br

(A∇u,∇u)dx = 2I (r).

We denote �ε = � + εed and �ε = � + εed for small ε > 0 where ed = (0, . . . , 0, 1) and
we have

r−d
ˆ

∂Br∩�

2u(∇u, A(x)x)dσ(x) = lim
ε→0

r−d
ˆ

∂(Br∩�ε)

2u(∇u, A(x)x)dσ(x)

from the fact that u vanishes continuously in � and ∇u converges as a non-tangential limit
in L2

loc(�), as shown in “Appendix A”.
Now, since u ∈ W 2,2(Br ∩ �ε), we may use divergence’s theorem and that u solves

div(A∇u) = 0 to obtain

r−d
ˆ

∂(Br∩�ε)

2u(∇u, A(x)x)dσ(x) = r−d
ˆ
Br∩�ε

2r div(uA(x)∇u)dx

= r−d
ˆ
Br∩�ε

2r(A(x)∇u,∇u)dx .

Finally, the limit as ε → 0 of the last term exists because u ∈ W 1,2(Br ).
Summing up, we have

H ′(r) = 2I (r) + r−d
ˆ

∂Br
|u|2 f (x)dσ(x)

with the second term being O(L AH(r)). ��
Definition 3.3 Assume x ∈ � ∪ � and A(x) = I . For r > 0 such that Br (x) ∩ ∂� ⊂ � we
define the Almgren’s frequency function as

N (x, r) := r
I (x, r)

H(x, r)
.

We will assume, as before, that x is the origin and we will write N (r) := N (x, r).
The following geometric lemma is essential to ensure good behavior for N (x, r) in balls

intersecting �.
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Lemma 3.4 Suppose that x ∈ � and A(x) = I . Assuming Br (x) ∩ ∂� ⊂ �, r is small
enough (depending on dist(x, �) and the Lipschitz constant L A of A(y)), and the Lipschitz
constant τ of the domain is also small enough (depending on dist(x, �)/r and L Ar), then

(ν(y), A(y)(y − x)) ≥ 0

for Hd−1-a.e. y ∈ � ∩ Br (x) where ν is the outer unit normal to ∂�. In particular, if x is
the origin, we have ˆ

Br∩∂�

μ(y)−1(ν, Ay)(Aν, ν)|∂νu|2dσ(y) ≥ 0.

Proof Without loss of generality, we assume x is the origin, denote T = dist(0, �) and
suppose T ≤ r . Otherwise, � ∩ Br = ∅.

First, note that ‖A(y) − I‖2 ≤ CLAr for all y ∈ Br ∩ ∂� by the Lipschitz continuity of
A. Using this, we obtain

(ν(y), A(y)y) = (ν(y), y) + (ν(y), (A − I )y)

≥ (ν(y), y) − |y|CLAr

= |y| cos(α) − |y|CLAr

where α is the angle between y and ν(y).
If the domain were flat (τ = 0 and � were an open subset of a hyperplane) then all the

points would have the same fixed normal vector ν̃ and we would have cosα ≥ T
r . Since

the domain is not flat (τ �= 0), we have that the normal vector ν makes at most an angle of
arctan(τ ) with ν̃. Using this we can bound from above α by arccos T

r + arctan τ .
Now, assuming r is small enough so that

T

r
> CLAr

and τ is also small enough so that

cos

(

arccos
T

r
+ arctan τ

)

≥ CLAr ,

we obtain the desired inequality. ��
Definition 3.5 We will say that the origin 0 ∈ � ∪ � (assuming A(0) = I ) and a radius r
are admissible if they satisfy the assumptions of the previous lemma. If A(0) �= I , we will
say that 0 ∈ � ∪ � and r are admissible if 0 and 	

1/2
A r are admissible for the transformed

domain S̃−1� and the matrix AS̃ (see Remark 2.3). We can extend this definition to a point
x �= 0 by translating the domain.

Remark 3.6 (1) If dist(x, �) > r , we have that Br ∩ ∂� = ∅ and the integral is 0. In this
case we also say that x and r are admissible.

(2) If x and r ′ are admissible, then x and r are admissible for all 0 ≤ r < r ′.
(3) In the case A(x) �= I , we can ensure admissibility if we impose

cos

(

arccos

(

	−1
A

dist(x, �)

r

)

+ arctan(	Aτ)

)

≥ CLA	
1/2
A r .

The reason is that, in the transformed domain, the Lipschitz constant τ increases at most
by a factor 	A and the distance from the point to � decreases at most by a factor 	

1/2
A .
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Remark 3.7 Since the outer unit normal vector ν is only defined σ -a.e. the derivative ∂νu
may not exist everywhere. Its existence, the non-tangential convergence, and the fact that
∇u = (∇u, ν)ν in L2(σ ) are proven in “Appendix A”.

We prove an almost monotonicity property for N (r) which was first observed in [14] in
the interior of the domain.

Proposition 3.8 Assume 0 and r ′ are admissible, A(0) = I , and the ellipticity constant 	A

of A(x) is smaller than 2. Then there exists CN > 0 depending on L A such that erCN N (r)
is nondecreasing in the interval (0, r ′).

For the proof of this proposition we will only keep track of the relation between the constant
CN and the Lipschitz constant L A. CN also depends on the ellipticity constant 	A but, by
assuming (for example)	A < 2, we can omit it. We may do so thanks to Remark 2.3. Notice
also that CN ≡ 0 in the harmonic case.

Our proof is an adaptation of the one in [26] butwith the inclusion of the case Br∩∂� �= ∅.
We need special care when Br ∩ ∂� �= ∅ as with the proof of Proposition 3.2. Again, we
use “Appendix A” and follow the ideas of [33] in the harmonic case to circumvent these
problems.

Proof Fix a compact interval I ⊂ (0, r ′). We will show that the derivative of N (r) is positive
a.e. r ∈ I .

Since

I (r) = r1−d
ˆ r

0

ˆ
∂Bs

(A∇u,∇u) dσds

and r is bounded away from 0, we have that I is absolutely continuous. Also note that we
are only considering the case 0 ∈ � (since we ask for admissibility). For this reason, H is of
class C1 and bounded away from 0 and N is also absolutely continuous. The derivative is

N ′(r) = (I (r) + r I ′(r))H(r) − r I (r)H ′(r)
H(r)2

.

Let’s compute

I ′(r) = (1− d)r−1 I (r) + r1−d
ˆ

∂Br∩�

(A∇u,∇u)dσ

︸ ︷︷ ︸

A

.

The previous identity is true for a.e. r ∈ I .
Let w(y) := μ(y)−1A(y)y be a vector field in �. Observe that (w(y), y) = |y|2 and that

y/r = ν, the normal vector in ∂Br . We can rewrite A as

A = 1

r

ˆ
∂Br∩�

(A∇u,∇u)(ν(y), w(y))dσ(y)

= 1

r

ˆ
∂(Br∩�)

(A∇u,∇u)(ν(y), w(y))dσ

︸ ︷︷ ︸

B

−1

r

ˆ
Br∩∂�

(A∇u,∇u)(ν(y), w(y))dσ

︸ ︷︷ ︸

C

.

To study C we can use that Br ∩ ∂� ⊂ � and, thus, ∇u = (∇u, ν)ν on � (in the sense of
non-tangential limits, see “Appendix A”).

123
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Then, we have that

C =
ˆ
Br∩∂�

(Aν, ν)|∂νu|2(ν(y), w(y))dσ(y).

This term is a bit problematic and we will treat it later with the help of Lemma 3.4.
Let’s use the divergence theorem on B (we do this in Br ∩�ε and then let ε → 0, as in

the proof of Proposition 3.2), obtaining

B =
ˆ
Br∩�

div(w(x)(A∇u,∇u))dx .

We have that

div(w(x)(A∇u,∇u)) = div(w)(A∇u,∇u) + (w,∇(A∇u,∇u))

= div(w)(A∇u,∇u) + 2(w,Hess(u)(A∇u)) + (AD,w∇u,∇u)

(3.1)

where AD,w = {∑k(∂kai j )wk}i j . Furthermore, Hess(u) is symmetric and

Hess(u)(w) = ∇(∇u, w) − (Dw)∇u.

Let’s compute the integrals with all these terms in (3.1) one by one. First, we obtainˆ
Br∩�ε

(Hess(u)w, A∇u)dx =
ˆ
Br∩�ε

((∇(∇u, w), A∇u) − ((Dw)∇u, A∇u)) dx .

Using that u satisfies div(A∇u) = 0 in �, we getˆ
Br∩�ε

(Hess(u)w, A∇u)dx =
ˆ
Br∩�ε

(div((∇u, w)A∇u) − ((Dw)∇u, A∇u)) dx

=
ˆ

∂(Br∩�ε)

(∇u, w)(A∇u, ν)dσ

︸ ︷︷ ︸

D

−
ˆ
Br∩�ε

((Dw)∇u, A∇u)dx

︸ ︷︷ ︸

E

.

We can rewrite the previous equation using the divergence theorem:

D =
ˆ

∂Br∩�ε

(∇u, w)(A∇u, ν)dσ +
ˆ
Br∩∂�ε

(∇u, w)(A∇u, ν)dσ

Using that ∇u|�ε converges to (∇u, ν)ν on � in L2
loc(σ ) as ε → 0+ (see “Appendix A”),

we get

lim
ε→0

D =
ˆ

∂Br∩�

(∇u, w)(A∇u, ν)dσ +
ˆ
Br∩∂�

(ν,w)(Aν, ν)|∂νu|2dσ
︸ ︷︷ ︸

C

where the last term on the right hand side coincides with C defined previously.
Remember that w(x) = μ(x)−1A(x)x . Thus, we have the approximations Dw = I +

O(L A|x |), and div(w) = d+O(L A|x |) for some a > 0. We can use these estimates to show
that

lim
ε→0

E = rd−1 I (r) + O(L Ar
d I (r)).
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One of the terms we missed in (3.1) behaves asˆ
Br∩�

div(w)(A∇u,∇u)dx = drd−1 I (r) + O(L Ar
d I (r))

and the other asˆ
Br∩�

(AD,w∇u,∇u)dx � L A

ˆ
Br∩�

r |∇u|2 = O(L Ar
d I (r)).

Summing everything up,

I ′(r) = −r−1 I (r) + O(L A I (r)) + 2r1−d
ˆ

∂Br∩�

μ(y)−1(A∇u, ν)2dσ + r−d C

and we obtain

N ′(r)N (r)−1 = (r I ′(r) + I (r))(r I (r))−1 − H ′(r)(H(r))−1

=
(

2r1−d
ˆ

∂Br∩�

μ(y)−1(A∇u, ν)2dσ + r−d C

)

I (r)−1 − 2r−1N (r) + O(LA)

=
(

2r1−d H(r)
ˆ

∂Br∩�

μ(y)−1(A∇u, ν)2dσ + r−d H(r) C − 2I (r)2
)

(H(r)I (r))−1

+ O(LA).

Since C ≥ 0 thanks to the fact that 0 and r ′ are admissible, and Lemma 3.4, we can use
Cauchy–Schwarz inequality to show that the whole first term is positive. Indeed, note that
from the proof of Proposition 3.2, we have

I (r) = r1−d
ˆ

∂Br∩�

u(∇u, A(x)ν) dσ(x).

Thus, using Cauchy-Schwarz, we obtain

I (r)2 ≤ r2−2d
ˆ

∂Br∩�

μ|u|2 dσ
ˆ

∂Br∩�

μ(y)−1(A∇u, ν)2dσ

= r1−d H(r)
ˆ

∂Br∩�

μ(y)−1(A∇u, ν)2dσ.

Therefore, there exists C ≥ 0 such that

N ′(r) ≥ −CLAN (r)

and we denote CN := CLA. ��

3.1 Frequency function centered at arbitrary points

We have only considered H(x, r) and N (x, r) centered at points x ∈ �∪� where A(x) = I .
We can treat general points by making a change of variables such as the one in Sect. 2.2.

Assume A(0) �= I . Let S̃ be the symmetric positive definite square root of A(0),
ũ(x) = u(S̃x), and AS̃ = S̃−1A(S̃x)S̃−1. For the transformed equation div(AS̃∇ũ) = 0
with AS̃(0) = I , we can compute

H(r) = r−1−d
ˆ

∂Br
(AS̃(x)x, x)|ũ(x)|2dσ(x).
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After some computations and a change of variables, we can check that it is equal (in the
original domain) to

H(r) = (det S̃)−1r−d
ˆ

∂(S̃Br )
|u(y)|2|A(0)−1y|(A(y)ν(y), ν(y))dσ(y).

Remark 3.9 Note that det S̃, (A(y)ν(y), ν(y)) and r−1|A(0)−1y| can be upper and lower
bounded by a constant depending only on the ellipticity constant 	A.

In particular, by assuming 	A bounded, we have

H(r) ≈ r1−d
ˆ

∂(S̃Br )
|u(y)|2dσ(y).

On the other hand, we have

I (r) = r1−d−
ˆ
Br

(AS̃(x)∇ũ,∇ũ)dx

which, in the original domain, is equal to

I (r) = (det S̃)−1r1−d
ˆ
S̃Br

(A(y)∇u(y),∇u(y))dy ≈ r1−d
ˆ
S̃Br

|∇u|2dy.

This allows us to compute N (x, r) for general points x . Beware that AS̃ may have different
Lipschitz and ellipticity constants but this is not a problem since the change can be controlled
as discussed in Sect. 2.2.

3.2 Auxiliar lemmas on the behavior of H(r) and N(r)

First, we will present a lemma that controls the growth of H(r) using N (r).

Lemma 3.10 Suppose 0 ∈ � ∪ �, A(0) = I , and α > 1. Then
ˆ αρ

ρ

(

2
N (r)

r
− cH

)

dr ≤ log

(
H(αρ)

H(ρ)

)

≤
ˆ αρ

ρ

(

2
N (r)

r
+ cH

)

dr .

Moreover, if 0 and αρ are admissible, we have

2N (ρ)(logα)e−CN (α−1)ρ − cH (α − 1)ρ ≤
log

(
H(αρ)

H(ρ)

)

≤ 2N (αρ)(logα)eCN (α−1)ρ + cH (α − 1)ρ.

Proof Using Propositions 3.2 and 3.8 on the interval [ρ, αρ], we can control
H ′(r) ≤ 2I (r) + cH H(r) = (2r−1N (r) + cH )H(r) ≤ (2r−1N (αρ)eCN (αρ−r) + cH )H(r).

Analogously,

H ′(r) ≥ 2I (r) − cH H(r) ≥ (2r−1N (ρ)eCN (ρ−r) − cH )H(r).

Now we simply integrate H ′/H in the interval [ρ, αρ]. ��
The next lemma bounds L2 norms in annuli by H(r). We denote an annulus centered at x of
outer radius r2 and inner radius r1 by A(x, r1, r2) := B(x, r2)\B(x, r1).
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Lemma 3.11 Suppose 0 ∈ � ∪ �, r , δ ≥ 0, B(0, r + δ) ∩ ∂� ⊂ � and A(0) = I . Then we
have

ecHr H(r)
1

d|B1| ≤ −
ˆ
A(0,r ,r+δ)

ecH |x |μ(x)|u(x)|2dx ≤ ecH (r+δ)H(r + δ)
1

d|B1| . (3.2)

Proof Using polar coordinates, write
ˆ
A(0,r ,r+δ)

ecH |x |μ(x)|u(x)|2dx =
ˆ r+δ

r
sd−1ecH s H(s)ds,

and use that ecH r H(r) is nondecreasing (Proposition 3.2), and |A(0, r , r + δ)| = |B1|((r +
δ)d − rd). ��

In a similar fashion, if A(x0) �= I and we assume 	A bounded we obtain the following
result.

Lemma 3.12 Suppose x0 ∈ � ∪ � and B(x0,	
1/2
A r) ∩ ∂� ⊂ �. Then we have

−
ˆ
B(x0,r)

|u|2dx � ecH	
1/2
A r H(x0,	

1/2
A r).

Proof Make a change of variables so that A(x0) = I . The ball B(x0, r) is sent to an ellipsoide
contained in the ball B(x0,	

1/2
A r). Proceed as in the previous lemma by using that μ ≈ 1. ��

The next lemma is a perturbation result for H(z, r): it shows that we can bound H(0, r)
byCH(z, r ′) if 0 and z are close compared to r . Moreover, it does not assume that A(z) = I .

Lemma 3.13 Assume that 0 ∈ � ∪ �, A(0) = I , 	A − 1 is small, z ∈ � such that |z| ≤ γ r
with γ ∈ (0, 1) and B100r (z) ∩ ∂� ⊂ �. Then for any δ ∈ (0, 10), we have

H(0, r) ≤ C(γ, δ, d, r , L A)H(z,	1/2
A r(1+ γ + δ))

for some constant C > 0 depending on γ, δ, d, r , and L A.

We omit the dependence of C on 	A in this lemma.

Proof Let δ ∈ (0, 10), then using Lemma 3.11, we get

ecHr H(0, r) ≤ d|B1|
|A(0, r , r(1+ δ))|

ˆ
A(0,r ,r(1+δ))

ecH |x |μ(x)|u(x)|2dx .

Let S̃ := √
A(z), λmin be the minimum eigenvalue of S̃, λmax be the maximum eigenvalue

of S̃, A0 := A(0, r , r(1+ δ)), and Az = A(0, λ−1
max(1− γ )r , λ−1

min(1+ δ + γ )r). These two
annuli are defined so that A0 ⊂ {z} + S̃Az .

Moreover, we have the following estimates

λmin ≥ max(	−1/2
A , 1− O(L Aγ r))

and

λmax ≤ min(	1/2
A , 1+ O(L Aγ r))

which will be useful in the proof of the next lemma.
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Now we can bound

|A0|
d|B1|e

cHr H(0, r)

≤
ˆ
A0

ecH |x |μ(x)|u(x)|2dx ≤ (1+ O(L Aγ r) + O(cHr(1+ δ))

ˆ
A0

|u|2dx

≤ (1+ O(L Ar(1+ δ)))

ˆ
{z}+S̃Az

|u|2dx

where we have used that A0 ⊂ {z} + S̃Az and ecH |x | = 1+ O(L A|x |).
We make the change of variables x = S̃ y, dx = (det S̃)dy = (1 + O(L Aγ r)) dy and

integrate in polar coordinates to get
ˆ
{z}+S̃Az

|u|2dx = (1+ O(L Aγ r))
ˆ
{z}+Az

|u(S̃ y)|2dy

≤ (1+ O(L Aγ r))
ˆ λ−1

min(1+γ+δ)r

λ−1
max(1−γ )r

sd−1H(z, s)ds.

Finally, we use that ecHr H(r) is increasing to see that

ˆ λ−1
min(1+γ+δ)r

λ−1
max(1−γ )r

sd−1H(z, s)ds ≤(1+ O(L Ar(1+ δ)))H(z, λ−1
min(1+ γ + δ)r)

rd [((λ−1
min(1+ δ))d − (λ−1

max(1− γ ))d ]
d

.

Summing up, we obtain

H(0, r) ≤ (1+ O(L Ar(1+ δ)))

[((λ−1
min(1+ γ + δ))d − (λ−1

max(1− γ ))d ]
(1+ δ)d − 1

H(z, λ−1
min(1+ γ + δ)r).

��
Finally, we prove a perturbation result for the frequency function N .

Lemma 3.14 Let r > 0 and z ∈ � with |z| ≤ γ r for γ > 0 small enough. Assume L Ar is
small enough, 0 ∈ �, A(0) = I , the ellipticity 	A of A(x) is small enough, and the point z
and distance 4r are admissible. Then we have the following bound

N (0, r) ≤ O(
√
L Ar) + O(

√
γ ) + N (z, 4r)

(
1+ O(

√
L Ar) + O(

√
γ )

)
.

If γ merely satisfies 0 < γ < (	A + 1)−1, we obtain

N (0, r) ≤ C + CN (z, 4r)

for some constant C > 0.

Proof Let δ ∈ (0, 1) to be chosen later. Using Lemma 3.11 we get the following upper and
lower bounds

ecH r H(0, 2r) ≤ d|B1|
|A(0, 2r , r(2+ δ))|

ˆ
A(0,2r ,r(2+δ))

ecH |x |μ(x)|u(x)|2dx
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and

ecHr H(0, r) ≥ d|B1|
|A(0, r(1− δ), r)|

ˆ
A(0,r(1−δ),r)

ecH |x |μ(x)|u(x)|2dx .

By Lemma 3.10, we have

2N (0, r)(log 2)e−CNr − cHr ≤ log
H(0, 2r)

H(0, r)
.

We aim to upper bound this quantity by something of the form log(H(z, r1)/H(z, r2)). To
do this we will proceed as in Lemma 3.13.

Since A(0) = I , we have λmax(A(z)) = 1+ O(L Aγ r) and λmin(A(z)) = 1− O(L Aγ r)
(maximum and minimum eigenvalues of A(z)). Let S̃z be the positive definite symmetric
square root of A(z). From now on, we will denote λmax(S̃z) =: λmax and λmin(S̃z) =: λmin,
both depending on z.

We want to find an ellipsoidal annulus (with shape given by S̃z) centered at z that contains

A2
0 := A(0, 2r , r(2+ δ))

and another one that is contained in

A1
0 := A(0, r(1− δ), r).

If we take an annulus A(0, r1, r2) and deform it by S̃z , we get an “ellipsoidal annulus"
S̃zA(0, r1, r2) such that

A(0, λmaxr1, λminr2) ⊂ S̃zA(0, r1, r2) ⊂ A(0, λminr1, λmaxr2).

Using this, we can choose the following annuli

A2
0 ⊂ {z} + S̃zA(0, λ−1

max(2− γ )r , λ−1
min(2+ δ + γ )r) =: {z} + S̃zA2

z

and this other one (recall |z| ≤ γ r )

A1
0 ⊃ {z} + S̃zA(0, λ−1

min(1− δ + γ )r , λ−1
max(1− γ )r) =: {z} + S̃zA1

z .

For this last annulus to be well defined, we need

λ−1
min(1− δ + γ ) < λ−1

max(1− γ ) ⇐⇒ δ > (1+ γ ) −
(

λmax

λmin

)−1

(1− γ ).

We also require

γ ≤ 1
λmax
λmin

+ 1
<

1

2

so that δ can satisfy δ ≤ 1.
Now we can proceed in the exact same way as in Lemma 3.13 to get

H(0, 2r) ≤ (1+ O(L Ar(1+ δ)))
|A2

z |
|A2

0|
H(z, λ−1

min(2+ γ + δ)r).

In an analogous way, we can lower bound

H(0, r) ≥ (1+ O(L Ar(1+ δ)))
|A1

z |
|A1

0|
H(z, λ−1

min(1− δ + γ )r).
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Putting both expressions together

log

(
H(0, 2r)

H(0, r)

)

≤ (1+ O(L Ar(1+ δ))) + log

(
|A2

z ||A1
0|

|A1
z ||A2

0|

)

+ log

(
H(z, λ−1

min(2+ γ + δ)r)

H(z, λ−1
min(1− δ + γ )r)

)

.

(3.3)

Using Lemma 3.10 again, we can upper bound log H(z,r1)
H(z,r2)

in terms of N as

log

(
H(z, λ−1

min(2+ γ + δ)r)

H(z, λ−1
min(1− δ + γ )r)

)

≤ 2N (z, λ−1
min(2+ γ + δ)r) log

(
2+ γ + δ

1− δ + γ

)

(1+ O(L Ar(1+ δ))) + O(L Ar(1+ δ)). (3.4)

Now we need to choose δ. Remember that δ has to satisfy

1 > δ > (1+ γ ) −
(

λmin

λmax

)

(1− γ ) = 2γ + O(L Ar)(1− γ ). (3.5)

We will choose δ equal to the geometric mean of the left hand side and the right hand side
of inequality (3.5), that is

δ =
√

(1+ γ ) −
(

λmin

λmax

)

(1− γ ).

On the other hand, γ has to satisfy

0 < γ <
1

λmax
λmin

+ 1
= 1

2+ O(L Ar)
= 1

2
− O(L Ar).

Notation: From now on, for this proof, we will write 1− ε := λmin
λmax

. Thus ε = O(L Ar).
Notice that

√
γ + ε ≤ δ = √

2γ + ε − εγ ≤ √
2γ + ε ≤ O(

√
γ ) + O(

√
L Ar)

for ε small enough (L Ar small enough). Now let’s bound every term that has appeared before
on Equations (3.3) and (3.4). First we bound

log

(
2+ γ + δ

1− δ + γ

)

= log

(
2+ √

(2− ε) γ + ε + γ

1− √
(2− ε) γ + ε + γ

)

≤ log

(
2+ √

(2− ε) γ + ε

1− √
(2− ε) γ + ε

)

≤ log

(
2+ √

2γ + ε

1− √
2γ + ε

)

= log(2) + O(
√

γ + ε) ≤ log(2) + O(
√

γ ) + O(
√
L Ar).

To bound

log

(
|A1

0||A2
z |

|A2
0||A1

z |

)

= log

(
(1− (1− δ)d)((λ−1

min(2+ δ + γ ))d − (λ−1
max(2− γ ))d)

((2+ δ)d − 2d)((λ−1
max(1− γ ))d − (λ−1

min(1− δ + γ ))d)

)

we separate it in two terms,

log A = log

(
1− (1− δ)d

((1− ε)(1− γ ))d − (1− δ + γ )d

)
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and

log B = log

(
(2+ δ + γ )d − ((1− ε)(2− γ ))d

(2+ δ)d − 2d

)

.

Let’s write the first order expansion of the terms in δ:

• (1− δ)d = 1− dδ + O(δ2)

• (1− ε)d = 1− O(L Ar)
• (1− γ )d ≥ 1− O(δ2)

• (1− δ + γ )d = (1− δ)d + O(γ ) = 1− dδ + O(δ2)

Now we can use this in the first term

A = dδ + O(δ2)

(1− O(L Ar))(1− O(γ )) − (1− dδ + O(δ2))

≤ dδ + O(δ2)

(1− O(L Ar))(1− O(δ2)) − (1− dδ + O(δ2))

= dδ + O(δ2)

dδ − O(L Ar) − O(δ2)

= 1+ O(L Ar/δ) + O(δ)

≤ 1+ O(
√
L Ar) + O(

√
γ ).

As for the other term, we proceed similarly

B = (2+ δ)d + O(γ ) − (1− O(L Ar))(2d − O(γ ))

d2d−1δ + O(δ2)

= d2d−1δ + O(δ2) + O(γ ) + O(L Ar)

d2d−1δ + O(δ2)

= 1+ O(δ) + O(γ /δ) + O(L Ar/δ)

≤ 1+ O(
√
L Ar) + O(

√
γ ).

Using all the bounds obtained in the last paragraphs together with Eqs. (3.3) and (3.4), we
get

N (0, r) ≤ O(
√
L Ar) + O(

√
γ ) + Ñ (z, λ−1

min(2+ γ + δ)r)
(
1+ O(

√
L Ar) + O(

√
γ )

)

for L Ar and γ small enough.
Finally, we can bound

λ−1
min(2+ γ + δ)r ≤ 4r

and use that eCNr N (r) is increasing to get a simpler expression.

Remark 3.15 To prove the second part of the lemma (γ not necessarily small), we just need
to choose δ as the arithmetic mean of the left hand side and the right hand side of inequality
(3.5). The rest of the proof is straightforward.

��
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4 Behavior of the frequency function on cubes near the boundary

The aim of this section is to prove the first technical lemma concerning the behavior of N
near the boundary. For an analogous proof in the harmonic case, see Section 3 of [33] or
Sections 4.1 and 4.2 of [28].

4.1 Whitney cube structure onÄ

We will consider the same Whitney cube structure in � as [33].
Let H0 be the horizontal hyperplane through the origin, and B0 be a ball centered in �

such that MB0 ∩ ∂� ⊂ � for some very large M . We also assume that MB0 ∩ ∂� is a
Lipschitz graph with slope τ small enough with respect to H0.

We consider the following Whitney decomposition of �: a family W of dyadic cubes in
R
d with disjoint interiors and constants W > 20 and D0 ≥ 1 such that

(1)
⋃

Q∈W Q = �,
(2) 10Q ⊂ �, ∀Q ∈ W ,
(3) WQ ∩ ∂� �= ∅, ∀Q ∈ W ,
(4) there are at most D0 cubes Q′ ∈ W such that 10Q ∩ 10Q′ �= ∅, ∀Q ∈ W . Further, for

such cubes Q′ we have 1
2�(Q

′) ≤ �(Q) ≤ 2�(Q′).
We will denote by �(Q) the side length of Q and by xQ the center of the cube Q. From these
properties it is clear that dist(Q, ∂�) ≈ �(Q). Also we consider the cubes small enough so
that diam(Q) < 1

20 dist(Q, ∂�).
Now we will introduce a “tree" structure of parents, children and generations to this

Whitney cube decomposition.
Let � denote the orthogonal projection on H0 and choose R0 ∈ W such that R0 ⊂ M

2 B0.
It will be the root of the tree and we define D0

W (R0) = {R0} (that is the set of cubes of
generation 0 of the rooted tree). To characterize the generations Dk

W (R0) for k ≥ 1, we
define first

J (R0) = {�(Q) : Q ∈ W such that �(Q) ⊂ �(R0) and Q is below R0}.
Wehave that J (R0) is a family of d−1 dimensional dyadic cubes in H0, all of them contained
in �(R0). Let Jk(R0) ⊂ J (R0) be the subfamily of (d − 1)-dimensional dyadic cubes in H0

with side length equal to 2−k�(R0). To each Q′ ∈ Jk(R0) we assign some Q ∈ W such that
�(Q) = Q′ and such that Q is below R0 (notice that there may be more than one choice
for Q but the choice is irrelevant), see [33, Lemma B.2], and we write s(Q′) = Q. Then we
define

Dk
W (R0) := {s(Q′) : Q′ ∈ Jk(R0)}

and

DW (R0) =
⋃

k≥0

Dk
W (R0).

Finally, for each R ∈ Dk
W (R0) and j ≥ 1, we denote

D j
W (R) =

{
Q ∈ Dk+ j

W (R0) : �(Q) ⊂ �(R)
}

.

By the properties of the Whitney cubes, we can observe that

Q ∈ DW (R0) ⇒ dist(Q, �) = dist(Q, ∂�) ≈ �(Q).
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Further, for any Q ∈ W , we denote its center by xQ , its associated cylinder by

C(Q) := �−1(�(Q)),

and the (d−1)-dimensional Lebesgue measure on the hyperplane H0 bymd−1. In Appendix
B of [33] one can find more details about the construction of this Whitney cube structure and
its projections.

4.2 Lemma on the behavior of the frequency in theWhitney tree

Now we can present the first main lemma required in the proofs of Theorems 1.1 and 1.5.
This lemma controls probabilistically the behavior of the frequency function in the tree of
Whitney cubes defined in the last section. See [33, Lemma 3.1] for a version of this lemma
for harmonic functions. Our proof is very similar. The reader only needs to consider that the
properties of the frequency function for elliptic PDEs are slightly worse than those of the
frequency function for harmonic functions, and that A(x) is a perturbation of the identity
matrix. Also this Lemma should be compared with the (interior) Hyperplane lemma of [24]
and [28, Lemma 7]. Note that, in what follows, we refer to the frequency function N of a
solution of div(A∇u) = 0 in � as in the statement of Theorem 1.1.

Lemma 4.1 Let N0 > 1 be big enough. There exists some absolute constant δ0 > 0 such that
for all S � 1 big enough the following holds, assuming also the Lipschitz constant τ of � is
small enough. Let R be a cube in DW (R0) with �(R) small enough depending on S and L A

that satisfies N (xR, S�(R)) ≥ N0. Then, there exists some positive integer K = K (S) big
enough such that if we let

GK (R) =
{

Q ∈ DK
W (R) : N (xQ, S�(Q)) ≤ 1

2
N (xR, S�(R))

}

then:

(1) md−1

(⋃
Q∈GK (R) �(Q)

)
≥ δ0md−1(�(R)),

(2) for Q ∈ DK
W (R), it holds

N (xQ, S�(Q)) ≤ (1+ CS−1/2)N (xR, S�(R)).

Note that (2) does not require N (xR, S�(R)) ≥ N0.

It is important that δ0 does not depend on S. Other constants such as M , K , and the upper
bound on τ do depend on S. Finally, N0 only depends on the dimension d .

Remark 4.2 Fix S, T > 0 and R ∈ DW (R0) with �(R) small enough depending on L A and
T . If x ∈ � satisfies

dist(x, R) ≤ T �(R) and dist(x, ∂�) ≥ T−1�(R),

then x and S�(R) are admissible, assuming M � T , M � S, and that τ is small enough.
The proof is analogous to the proof of [33, Remark 3.3].

An important tool for the proof of the Lemma 4.1 is the following quantitative Cauchy
uniqueness theorem.

Theorem 4.3 (Quantitative Cauchy uniqueness) Let u be a solution of div(A(x)∇u(x)) = 0
in the half ball

B+ =
{
y = (

y′, y′′
) ∈ R

d−1 × R | ∣∣y′∣∣2 + |y′′|2 < 1, y′′ > 0
}

123



  113 Page 22 of 52 J. M. Gallegos

and suppose u is C1 smooth up to the boundary and A(x) is as discussed in Sect. 2.1. Let

� := {x ∈ R
d | xd = 0, |x | ≤ 3/4}

Suppose that ‖u‖L2(B+) ≤ 1 and ‖u‖W 1,∞(�) ≤ ε for some ε ∈ (0, 1). Then

sup
B((0,...,0,1/2),1/4)

|u| ≤ Cεα and sup
1
4 B+

|u| ≤ C ′εα′

where C,C ′, α, and α′ are positive constants depending only on the ellipticity and the
Lipschitz constant of the matrix A(x) and the dimension d.

This result is proved in great generality in [5, Theorem 1.7]. It will also be useful for the
proof of Lemma 5.1. Before starting the proof of Lemma 4.1, we note that we will require
both 	A − 1 and L A very small in what follows (see again Remark 2.3 to see why we can
do so).

Proof of Lemma 4.1 Let S � 1 and then choose R ∈ DW (R0) with �(R) small enough
depending on S and L A. For some j � 1 independent of S that will be fixed below, consider
the hyperplane L parallel to H0 (and above H0) such that

dist(L, � ∩ C(R)) = 2− j�(R).

From now on, we will denote by J the family of cubes fromW that intersect L ∩ C( 12 R). By
our construction of the Whitney cubes, we have �(Q) ≈ 2− j�(R) and �(Q) ⊂ �(R) for
all Q ∈ J . Notice that if τ is small enough (depeding on j), then

dist(x, � ∩ C(10R)) ≈ 2− j�(R) for x ∈ L ∩ C(10R).

Denote by Adm(2WQ) the set of points x ∈ � ∩ 2WQ such that the interval
(0, diam(25WQ)) is admissible for x . We assume that the Lipschitz constant of the domain
τ is small enough so that 3Q ⊂ Adm(2WQ) (using Remark 4.2). Then by Lemma 3.14, for
Q small enough

sup
x∈Adm(2WQ)

N (x, diam(5WQ)) ≤ C0N (xQ, diam(20WQ)) + C0 (4.1)

where C0 is an absolute constant. Note that |x − xQ | ≤ diam(WQ) < 1
4 diam(5WQ) since

x ∈ 2WQ, hence it satisfies the conditions required byLemma3.14 (we use that the ellipticity
constant is small enough).

Claim There exists some Q ∈ J such that

N (xQ, diam(20WQ)) ≤ N (xR, S�(R))

4C0
(4.2)

if j is big enough (but independent of S) and we assume that τ0 is small enough depending
on j , and also N0 is big enough.

Proof of the claim From now on, we denote N = N (xR, S�(R)). Our aim is to prove the
claim using Theorem 4.3 in a small half-ball centered at zR , the projection of xR onto the
hyperplane L . Set

B+ := {x ∈ B(zR, �(R)/4) | xd > (zR)d} ⊂ �.

Also, let z̃ R := zR + (0, . . . , 0, �(R)/8) ∈ B+. Note that, rescaling B+, z̃ R corresponds to
the point (0, . . . , 0, 1/2) in the statement of Theorem 4.3.
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We aim for a contradiction, so we assume that N (xQ, diam(20WQ)) > N/(4C0) for all
Q ∈ J , where N = N (xR, S�(R)). For each Q ∈ J , we have

sup
2Q

|u|2�−
ˆ
B(xQ ,diam(3Q))

|u|2dx

by standard properties of solutions of elliptic PDEs. Then, by Lemma 3.12, we obtain

−
ˆ
B(xQ ,diam(3Q))

|u|2dx � H(xQ, diam(20WQ))ecH diam(20WQ)

where cH is the constant from Lemma 3.10. Note that ecH diam(20WQ) = 1 + O(L A�(Q)),
omiting the dependence on	A (which wemay assume is very close to 1). Using Lemma 3.10
we obtain the following bound using the frequency function:

H(xQ, diam(20WQ))

≤ H(xQ, �(R))

(
diam(20WQ)

�(R)

)2N (xQ ,diam(20WQ))(1+O(LA�(Q)))

(1+ O(L A�(Q))).

Note that for the previous step we need τ small enough depending on j . At other points of
the proof we will require τ small enough but without further reference.

Now we estimate H(xQ, �(R)) as follows

H(xQ, �(R)) ≈ �(R)1−d
ˆ

∂B(�(R))

|u(xQ + A(xQ)1/2y)|2dσ(y)

� (1+ O(L A�(R)))

|A(xQ, �(R), 2�(R))|
ˆ
A(0,�(R),2�(R))

|u(xQ + A(xQ)1/2y)|2ecH |y|dy

� (1+ O(L A�(R)))

|B(z̃ R,C1�(R))|
ˆ
B(0,C1�(R))

|u(z̃ R + A(z̃ R)1/2y)|2ecH |y|dy

where we have used Remark 3.9, and that for some fixed C1 > 0 we have that
A(xQ)1/2A(xQ, �(R), 2�(R)) ⊂ A(z̃ R)1/2B(z̃ R,C1�(R)). Finally, using Lemma 3.11 we
can bound

H(xQ, �(R)) � (1+ O(L A�(R)))H(z̃ R,C1�(R)).

Moreover, using again Lemma 3.10, we can further bound as follows

H(z̃ R,C1�(R)) ≤ H(z̃ R, �(R)/16)(16C1)
2N (z̃ R ,C1�(R))(1+O(LA�(R)))(1+ O(L A�(R)))

� (1+ O(L A�(R)))

|B(z̃ R, �(R)/8)|
ˆ
B(0,�(R)/8)

ecH |y||u(z̃ R + A(z̃ R)1/2y)|2dy

(16C1)
2N (z̃ R ,C1�(R))(1+O(LA�(R)))

and recalling that B(z̃ R, �(R)/8) ⊂ B+ even after considering the reescaling by A(z̃ R)1/2,
we obtain

H(z̃ R,C1�(R)) � (1+ O(L A�(R)))

|B+|
ˆ
B+

|u|2dy · (16C1)
2Ñ (z̃ R ,C1�(R))(1+O(LA�(R))).

Now, using that L A�(R) is very small, we can bound all the terms O(L A�(R)) by 1, for
example. Thus, summing up all the computations we have done, we can write

sup
2Q

|u|2 �
(
diam(20WQ)

�(R)

)N (xQ ,diam(20WQ))

(16C1)
4N (z̃ R ,C1�(R))−

ˆ
B+

|u|2dy. (4.3)
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By Lemma 3.14, we have

N (z̃ R,C1�(R)) ≤ CN (xR, S�(R)) + C ≤ C ′N (4.4)

for a suitable constant C > 2C1 if S is large enough, and N0 too.
Recalling that we assumed for all Q ∈ J that N (xQ, diam(20WQ)) > N

4C0
, we get

sup
2Q

|u|2 � (16C1)
C ′N

(
diam(20WQ)

�(R)

)N/4C0

−
ˆ
B+

|u|2dy

= 2− jC ′′N+C ′′′N−
ˆ
B+

|u|2dy

for some positive constantsC ′′ andC ′′′.We have used that diam(20WQ) < �(R) by choosing
j large enough.

Using interior estimates for solutions of elliptic PDEs

sup
3
2 Q

|∇u|2 �
sup2Q |u|2

�(Q)2
� 22 j

�(R)2
2− jC ′′N+C ′′′N−

ˆ
B+

|u|2dy.

From the last two estimates we deduce that if j is big enough (depending on the absolute
constants C ′′ and C ′′′) and N0 (and thus also N ) is big enough too, then there exists some
c′ > 0 such that

sup
3
2 Q

(|u|2 + �(R)2|∇u|2) � 2− jc′N−
ˆ
B+

|u|2dy.

Since the cubes 3
2Q with Q ∈ J cover the flat part of the boundary of B+, we can apply a

rescaled version of Theorem 4.3 to B+ to get

sup
B(z̃ R ,�(R)/16)

|u|2 � 2− jc′Nα−
ˆ
B+

|u|2dy (4.5)

for some α > 0. Observe that we can lower bound

sup
B(z̃ R ,�(R)/16)

|u|2 � H(z̃ R, �(R)/16)

and upper bound

2− jc′Nα−
ˆ
B+

|u|2dy � 2− jc′NαH(z̃ R, �(R)).

Using these bounds in (4.5) we obtain

H(z̃ R, �(R)/16) � 2− jc′NαH(z̃ R, �(R)).

By Lemma 3.10, this implies

2N (z̃ R, �(R))(log 16)(1+ O(LA�(R))) + O(LA�(R)) ≥ log

(
H(z̃ R, �(R))

H(z̃ R, �(R)/16)

)

� c′ j Nα

for some fixed c′ > 0. But for j big enough this contradicts the fact that N (z̃ R, �(R)) � N
by (4.4). Observe though that j “big enough" does not depend on the election of S. ��
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Now we may introduce the set GK (R). Fix Q0 ∈ J such that (4.2) holds for Q0. Notice that,
by (4.1)

sup
x∈Adm(2WQ0)

N (x, diam(5WQ0)) ≤ C0N (xQ0 , diam(20WQ0)) + C0 ≤ N

2
·
(
10

11

)2

(4.6)

since N ≥ N0 and we assume N0 big enough. The precise value of the constant
( 10
11

)2
is not

important. Finally, we can define

GK (R) = {Q ∈ D j+k
W (R) : �(Q) ⊂ �(Q0)}

with k = �log2 S�. Thus, we have GK (R) ⊂ DK
W (R) with K = j + k and it holds �(Q) =

2−k�(Q0) for every Q ∈ GK (R).
The property (1) follows from (4.6). Indeed if P ∈ GK (R), then taking into account that

xP ∈ Adm(2WQ0) for τ small enough (depending on S) and using Proposition 3.8 we get

N (xP , S�(P)) ≤ 11

10
N (xP , �(Q0)) ≤

(
11

10

)2

N (xP ,W�(Q0)) ≤ N

2

where we have bounded the terms 1+ O(L A�(Q0)) by 11/10. Notice also that

md−1

⎛

⎝
⋃

Q∈GK (R)

�(Q)

⎞

⎠ = l (Q0)
d−1 ≈

(
2− j�(R)

)d−1

and recall that j is independent of S. So (1) holds with δ0 ≈ 2− j(d−1).
The property (2) is a consequence of Lemma 3.14. Indeed for any P ∈ DK

W (R), since
|xP − xR | � �(R), taking γ ≈ S−1 in the Lemma 3.14, we deduce

N (xP , S�(P)) ≤ (1+ O(LAS�(R)))N (xP , S�(R)/3)

≤ (1+ O(LAS�(R)))
[
O(

√
LAS�(R)) + O(

√
S−1/2)

]

+ (1+ O(LAS�(R)))N (xR, S�(R))
[
1+ O(

√
LAS�(R)) + O(

√
S−1/2))

]
.

Assuming that �(R) � S−2 and N0 large enough, we obtain

N (xP , S�(P)) ≤ (1+ CS−1/2)N (xR, S�(R))

for certain constant C . ��

5 Balls without zeros near the boundary

In this section we will prove the second main lemma concerning the behavior of N near
the boundary. This lemma shows that if we have a ball near the boundary with bounded
frequency, then we can find a smaller ball centered at the boundary where u does not change
sign. The following lemma should be compared with [28, Lemma 8] that treats the harmonic
case. Note that, in what follows, we refer to the frequency function N (x, r) of a solution of
div(A∇u) = 0 in � as in the statement of Theorem 1.1. Moreover, we consider � with the
Whitney structure defined in Sect. 4.1.
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Lemma 5.1 For any N > 0 and S � 1 large enough there exist positive constants τ0(N , S)

and ρ(N , S) such that the following statement holds. Suppose the Lipschitz constant τ of �
is smaller than τ0 and Q is a cube in DW (R) such that N (xQ, S�(Q)) ≤ N. Then there
exists a ball B centered in�∩C(Q) with radius ρ�(Q) such that u does not vanish in B∩�.

First, we will prove a “toy" version of this lemma on the half ball B+ for harmonic func-
tions. The following lemma is essentially [28, Lemma 9] but formulated using the frequency
function instead of the doubling index (a closely related quantity used in [28]).

Lemma 5.2 Let B be the unit ball in R
d and let B+ be the half ball,

B+ =
{
y = (

y′, y′′
) ∈ R

d−1 × R | |y′|2 + |y′′|2 < 1, y′′ > 0
}

.

Let u be a function harmonic in B+ such that u ∈ C(B+), u = 0 on � := ∂B+ ∩ {
y′′ = 0

}
,

and

sup
1
4 B+

|u| = 1.

For any N > 0 and 0 < r0 < 1/16, there exist ρ = ρ(N , r0) > 0 and c0 = c0(N , r0) > 0
such that if N (0, 1/2) ≤ N, then there is x ′ ∈ R

d−1 with
∣
∣x ′

∣
∣ < r0 such that

|u(y)| ≥ c0y
′′, for any y = (y′, y′′) ∈ B((x ′, 0), ρ) ∩ B+.

In particular, u does not vanish in B
((
x ′, 0

)
, ρ

) ∩ B+.

The notation 1
n B+ used in the previous statement stands for {y ∈ R

d | ny ∈ B+}.
Proof Let B− be the reflection of the half-ball B+ with respect to� = {y′′ = 0}∩∂B+. Since
u vanishes on �, u can be extended to a harmonic function in B by the Schwarz reflection
principle. We also denote this extension by u.

Using Cauchy estimates we can uniformly bound every partial derivative of u inside
B(0, 1/8) obtaining

sup
x∈B(0,1/8)

|∇u(x)| � sup
B(0,1/4)

|u| = 1.

Let δ := maxx ′∈Rd−1,
|x ′|≤r0

|∇u(x ′, 0)|. Then, Theorem 4.3 applied to r0B+ implies that

sup
B(0,r0/4)

|u| ≤ Cδγ

for some positive C and γ ∈ (0, 1). Then −́
∂B(0,r0/4)

u2dσ ≤ Cδ2γ and by subharmonicity

−́
∂B(0,1/2) u

2dσ ≥ c supB(0,1/4) u
2 = c.

By the monotonicity of N in the harmonic case, we also have

log2/r0
−́
∂B(0,1/2) u

2dσ

−́
∂B(0,r0/4)

u2dσ
= log2/r0

H(0, 1/2)

H(0, r0/4)
≤ N (0, 1/2) ≤ N .

We can conclude that

log2/r0
c

Cδ2γ
≤ N �⇒ δ ≥ c′

(
2

r0

)− N
2γ

.

Now, choose x ′∗ ∈ R
d−1, |x ′∗| ≤ r0 such that |∇u(x ′∗, 0)| = δ. Clearly, at this point,

|∇u(x ′∗, 0)| = |∂du(x ′∗, 0)| (the derivative in the direction normal to �). Without loss of
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generality, assume that ∂du(x ′∗, 0) = δ. Observe that the second derivatives of u are uniformly
bounded in B(0, 1/8) using Cauchy estimates (as we have done before). Thus, we have

∂du(y) > δ/2 when dist(y, (x ′∗, 0)) < ρ = min{c0δ, r0}
where c0 only depends on the bound on the second derivatives, and thus is an absolute
constant. Using this, we finally get

u(y) ≥ δ

2
y′′ ≥ c′′

(
2

r0

)− N
2γ

y′′,

for y = (
y′, y′′

) ∈ B
((
x ′∗, 0

)
, ρ

) ∩ B+. ��
Now we will prove an elliptic extension of the previous lemma. Unfortunately, the proof

presents some complications since we do not have an adequate substitute to Schwarz’s
reflection principle. To overcome this, we assume that our function u is a solution of
div(A(x)∇u) = 0 where A(x) is a small (Lipschitz) perturbation of the identity matrix,
and we show that there is a harmonic function v very close to u in C1 norm for which the
previous lemma holds. Then, we obtain that there is a smaller ball where u does not vanish
either.

Lemma 5.3 Let u be a solution of div(A∇u) = 0 in B+ such that u ∈ C(B+), u = 0 on
� := ∂B+ ∩ {

y′′ = 0
}
, and

sup
1
4 B+

|u| = 1

where 1
4 B+ = ( 1

4 B
)
+. For any N > 0 and 0 < r0 < 1/32, there exist ρ = ρ(N , r0) > 0

and c0 = c0(N , r0) > 0 such that if N (0, 1/2) ≤ N, then there is x ′ ∈ R
d−1 with

∣
∣x ′

∣
∣ < r0

such that

|u(y)| ≥ c0y
′′, for any y = (

y′, y′′
) ∈ B

((
x ′, 0

)
, ρ

) ∩ B+

assuming that L A and 	A − 1 are small enough depending on N and r0 (where L A and 	A

are the Lipschitz and ellipticity constants of A(x), respectively). In particular, u does not
have zeros in B

((
x ′, 0

)
, ρ

) ∩ B+.

Proof Let v be the harmonic extension of u|∂( 12 B+) defined in 1
2 B+. We intend to use

Lemma 5.2 to find a ball B such that |v(y′, y′′)| � y′′ for (y′, y′′) ∈ B ∩ �. Afterwards, we
will see that if L A and 	A −1 are small enough, then the difference v−u is arbitrarily small
in W 1,∞(B ∩ �) which will prove the lemma (for a smaller concentric ball).

First, we bound the frequency (associated to �) of v as follows

N v(0, 1/2) = 1

2

´
1
2 B+ |∇v|2dx´
∂ 1
2 B+ v2dσ

�
´

1
2 B+ |∇u|2dx´
∂ 1
2 B+ u2dσ

using that v is the minimizer of the Dirichlet energy for the boundary condition u|∂(B+/2).
We also have that

1

2

´
1
2 B+ |∇u|2dx´
∂ 1
2 B+ u2dσ

≈ 1

2

´
1
2 B+(A(x)∇u,∇u)dx´

∂ 1
2 B+ μu2dσ

= Nu(0, 1/2),
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obtaining an upper bound for N v(0, 1/2). Analogously, we may also obtain a lower bound
for N v(0, 1/2) in terms of Nu(0, 1/2) using that u minimizes a weighted Dirichlet energy.

Consider the function h = v − u defined in 1
2 B+. Note that h is a solution of

{
div(A∇h) = div((A − I )∇v), in 1

2 B+,

h = 0, on ∂ 1
2 B+.

We aim to bound h(x) and ∇h(x) in 1
16 B+ in terms of N , L A, and 	A. Using the Green’s

function GA(x, y) for the elliptic operator div(A(x)∇·) in 1
2 B+, we can represent h(x) as

h(x) = −
ˆ

1
2 B+

(∇yGA(x, y), (A − I )(y)∇v(y))dy

for x ∈ B+/16. We split this integral in two parts and take absolute values:

|h(x)| ≤
ˆ

1
8 B+

|∇yGA(x, y)||(A − I )(y)||∇v(y)|dy

+
ˆ

1
2 B+\ 1

8 B+
|∇yGA(x, y)||(A − I )(y)||∇v(y)|dy.

In both integrals we bound |A − I | by 	A − 1. Also, in the first integral, we are going to
bound |∇v(y)| � 2cN for some c > 0 using Cauchy estimates. To this end, we consider v

extended to 1
2 B using Schwarz reflection principle, and then, for y ∈ 1

8 B, we obtain

|∇v(y)|2 �
ˆ

∂ 1
4 B

v2dσ ≈ Hv(0, 1/4) ≤ Hv(0, 1/2) ≈ Hu(0, 1/2) � Hu(0, 1/4) 2cN � 1 · 2cN

where we have also used Hu(0, 1/4) � sup 1
4 B+ |u|2 = 1. Remember that Hv(x, r) =

r1−d
´
∂Br (x)

|u(z)|2dσ(z), as v is harmonic.

Then, using that ∇yGA(x, ·) has weak L
d

d−1 norm bounded by a constant depending only
on 	A and d (see [17, estimate (1.6)] together with the symmetry of A), we getˆ

1
8 B+

|∇yGA(x, y)|dy ≤ C(d,	A).

Thus, we can bound the first integral byˆ
1
8 B+

|∇yGA(x, y)||(A − I )(y)||∇v(y)|dy � C ′(d,	A)2cN .

For the other integral, we use Cauchy–Schwarz to obtain

ˆ
1
2 B+\ 1

8 B+
|∇yGA(x, y)||∇v(y)|dy ≤

(ˆ
1
2 B+\ 1

8 B+
|∇yGA(x, y)|2dy

)1/2

︸ ︷︷ ︸

A

(ˆ
1
2 B+

|∇v(y)|2dy
)1/2

︸ ︷︷ ︸

B

.

Invoking [17, Theorem 3.3], we have that |∇yGA(x, y)| ≤ C |x − y|1−d � 1 for x ∈ 1
16 B+

and y ∈ 1
2 B+\ 1

8 B+, which allows us to bound A . We estimate B as follows:ˆ
1
2 B+

|∇v(y)|2dy = 2N v(0, 1/2)
ˆ

∂ 1
2 B+

v2dσ � 2N2cN ,
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where we have used that Hv(0, 1/2) � 2cN , as shown before.
Summing up all the previous estimates, we have obtained |h(x)| � C(N ,	A)(	A − 1)

for x ∈ 1
16 B+. Now, [16, Corollary 8.36] gives us

‖h‖C1,α( 1
32 B+) � ‖h‖L∞( 1

16 B+) + ‖(A − I )∇v‖C0,α( 1
16 B+)

for some α ∈ (0, 1). Using the product rule for derivatives, we get

‖(A − I )∇v‖C0,α ( 1
16 B+) � ‖(A − I )∇v‖C0,1( 1

16 B+) � LA‖∇v‖L∞( 1
16 B+) + (	A − 1)‖D2v‖L∞( 1

16 B+).

Finally, using interior Cauchy estimates to estimate ‖D2v‖L∞( 1
16 B+) and ‖∇v‖L∞( 1

16 B+) in
terms of N , we get

|∇h(x)| ≤ C(N ) (L A + (	A − 1)) , x ∈ 1

32
B+.

To end the proof, we apply Lemma 5.2 to v to get a ball where

|v(y)| ≥ c0y
′′, for any y = (

y′, y′′
) ∈ B

((
x ′, 0

)
, ρ

) ∩ B+

andwemake L A and	A−1 small so that ∂dh(x) ≤ c0/2 in 1
32 B+. This implies |h(y′, y′′)| ≤

c0
2 y′′ and, since |u| ≥ |v| − |h|, it finishes the proof. ��
We need to state a last lemma before proving Lemma 5.1.

Lemma 5.4 Let� ⊂ R
d be aLipschitz graphwith respect to the hyperplane H0 with Lipschitz

constant τ < 1/2, assume that 0 ∈ �, and let u be a solution of div(A∇u) = 0 in the domain
� = {x + red | x ∈ � ∩ B(0, 1), r ∈ (0, 1)}. Then, there exist positive constants M and δ

depending on the Lipschitz constant L A and the ellipticity constant 	A of A(x) such that
the following statement holds. If u ≥ −1 in � ∩ B(0, 1), u ≡ 0 on � and u ≥ M on
{x + red | x ∈ � ∩ B(0, 1), r ∈ (δ, 1)} ∩ B(0, 1), then u ≥ 0 in � ∩ B(0, 1/2).

The proof of this lemma is Step 1 of the proof of [11, Theorem 1.1]. For a simpler proof in
the harmonic case (in Lipschitz domains with small Lipschitz constant), see Appendix B in
[13].

In the following proof, we will assume again that L A and 	A − 1 are very small (see
Remark 2.3).

Proof of Lemma 5.1 Let S � 1 and Q be a cube of our Whitney cube structure such that xQ
(the center of Q) and S�(Q) are admissible and N (xQ, S�(Q)) ≤ N . Note that, to attain
this, we need the Lipschitz constant of the domain τ small enough depending on S. Further,
we assume that S�(Q) = 8 by rescaling the domain and the Whitney cube structure. This
rescaling changes the Lipschitz constant L A of the matrix A(x) corresponding to the elliptic
operator. But if the cube Q is small enough, the rescaling improves it, that is, makes L A

smaller.
Let x̃ be the projection (in the direction ed ) of x on �. Then, if S is big enough, we have

log
H(x̃, S�(Q)/2k)

H(x̃, S�(Q)/2k+1)
≤ log c + log

H(xQ, S�(Q)/2k−1)

H(xQ, S�(Q)/2k+2)

≤ log c + Nc′, ∀k ∈ {1, . . . , 5}. (5.1)

by Lemmas 3.10 and 3.13 (since we do not assume A(xQ) = I or A(x̃) = I , we use first
Remark 3.9). We need S large enough so that B(x̃,	AS�(Q)/2k) ⊂ B(xQ, S�(Q)/2k−1)
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Fig. 1 The domain �, the
Lipschitz graph �, and the half
ball B2,+

xQ

x̃

x1

Σ

B2,+ ∩ Ω

B2,+ ∩ Ωc

Γ0

and B(x̃, S�(Q)/2k+1) ⊃ B(xQ,	AS�(Q)/2k+2) (we are using that 	A is very close to 1)
for k = 1, . . . , 5. From now on, S is fixed.

We also fix the following normalization for u:

sup
B(x̃,3)∩�

|u| = 1 (5.2)

(remember that S�(Q) = 8).
Let x1 = x̃ − 3τed . Observe that

�0 = {x = (x ′, x ′′) ∈ B(x1, 2) : x ′′ = x ′′1 }

doesn’t intersect �. Also let B1 := B(x1, 1), B2 := B(x1, 2) and Bk,+ the upper half of Bk ,
k = 1, 2 (the half of Bk that intersects �), see Fig. 1.

Let g0 be the solution of div(A∇g0) = 0 on B2,+ such that g0 ≡ 1 on ∂B2,+\�0 and
g0 ≡ 0 on �0. By the maximum principle g0 ≥ 0 on B2,+ and g0 ≥ |u| on � ∩ B2 ⊂ B2,+
because of the normalization (5.2) of u. Notice that, moreover, we have the bound

g0(x) ≤ C1(x
′′ − x ′′1 )

for x ∈ B1,+ which gives us a bound for |u| in � ∩ B1. In the case A ≡ I , this follows from
reflection and interior Cauchy estimates for∇u. In the general case, we may use that g0(x) is
comparable to theGreen functionGA(x, y)of the domain B2,+ (with pole y = (0, . . . , 0, 1.5)
for example) by the boundary Harnack inequality inside B1,+. By [17, Theorem 3.3], since
B2,+ satisfies an exterior sphere condition, we have that G(x, y) � dist(x, ∂B2,+)|x −
y|1−d ≈ dist(x, ∂B2,+). Further, for x ∈ B1,+ we have that dist(x, ∂B2,+) = x ′′ − x ′′1 which
gives us the desired bound.

Let g be the solution of div(A∇g) = 0 in B1,+ with Dirichlet boundary conditions
g ≡ u on ∂B1,+ ∩ � and g ≡ 0 on ∂B1,+\�. Since |u| ≤ g0 in B2,+ ∩ �, we have
|g| ≤ g0 ≤ C1(x ′′ − x ′′1 ). Also,

|g − u| =
{
0, on � ∩ ∂B1,+,

|g| ≤ 4C1τ, on ∂� ∩ B1,+,
(5.3)

because of the bound of |g| ≤ g0 ≤ C1(x ′′ − x ′′1 ).
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By (5.1), Remark 3.9, Lemma 3.12, Lemma 3.11, Proposition 3.2, and (5.2), we have
ˆ

∂B(x̃, 18 )∩�

|u|2dσ � e−c′N
ˆ

∂B(x̃,4)∩�

|u|2dσ ≈ e−c′N H(x̃, 4) � e−c′N
ˆ
B(x̃,4)

|u|2dy

≥ e−c′N
ˆ
B(xsup ,1)

|u|2dy � e−c′N |u(xsup )|2 = e−c′N

where xsup is a point in ∂B(x̃, 3) where |u(xsup )| = 1. Assuming that τ is small enough, we
have B(x̃, 1

8 ) ∩ � ⊂ 1
4 B1,+. Using (5.3) and Lemma 3.13, we get

(ˆ
∂ 1
4 B1,+

g2dσ

)1/2

≥
(ˆ

∂ 1
4 B1,+

u2dσ

)1/2

− C2τ

≥
(

c̃
ˆ

∂B
(
x̃, 18

) u2dσ

)1/2

− C2τ.

If we assume that τ (depending on N ) is small enough, we conclude that

‖g‖
L2

(
∂
(
1
4 B1,+

)) ≥ c1e
−c′N/2. (5.4)

Now let’s estimate the doubling of Hg(x1, r) for g by using (5.2) and (5.4):

log

´
∂ 1
2 B1,+

g2dσ´
∂ 1
4 B1,+

g2dσ
≤ log

σ(∂ 1
2 B1)

c1e−c′N/2
= log c′′ + c′N/2 ≤ C(N + 1).

This gives us an upper bound for Ng(x1, 1/4), the frequency for g at x1. Also note that (5.4)
implies

sup
1
4 B1,+

|g| ≥ ce−c′N/2.

Then, by Lemma 5.3, there exists x∗ ∈ �0 ∩ B1/S , c2 = c2(C(N + 1), S) > 0, and
ρ = ρ(C(N + 1), S) such that

|g(x)| ≥ c2
(
x ′′ − x ′′1

)
for x = (

x ′, x ′′
) ∈ B (x∗, ρ) ∩ B1,+.

We may assume that g > 0 in B (x∗, ρ) ∩ B1,+, otherwise we consider −u and −g in place
of u and g. From (5.3), we obtain

u(x) ≥ g(x) − 4C1τ ≥ c2
(
x ′′ − x ′′1

)− 4C1τ in B (x∗, ρ) ∩ �. (5.5)

Note that ρ does not depend on τ and for τ small enough we have B
(
x∗, ρ

4

) ∩ ∂� �= ∅.

Our goal is to show that u > 0 on B(x∗, ρ
2 ) ∩ � and we will use Lemma 5.4 to this end

(from now on, constants δ and M come from the statement of Lemma 5.4). Restrict τ to be
small enough so that u > 0 in B(x∗, ρ) ∩ � ∩ {(x ′, x ′′)|x ′′ > x ′′∗ + δρ}, which we can do
thanks to (5.5). Now, we multiply the function u by a very large constant K so that Ku ≥ M
in the same set B(x∗, ρ) ∩ � ∩ {(x ′, x ′′)|x ′′ > x ′′∗ + δρ}. Finally, we make τ even smaller
so that Ku ≥ −1 in B(x∗, ρ) ∩ �, thanks again to (5.5). Now, by a rescaled version of
Lemma 5.4 to B(x∗, ρ)∩�, the function Ku restricted to B(x∗, ρ/2)∩� is positive, which
implies that u is positive too and ends the proof. ��
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6 Proof of Theorems 1.1 and 1.5

We will combine Lemmas 4.1 and 5.1 to prove Theorems 1.1 and 1.5.
Note that, in the present section, we refer to the frequency function N of a solution of

div(A∇u) = 0 in� as in the statement of Theorem 1.1. Without further mention, we will use
that the constants L A and 	A −1 from the matrix A(x) are very small thanks to Remark 2.3.
Moreover, we consider � with the Whitney structure defined in Sect. 4.1.

First, we give a corollary to Lemma 5.1 in a language closer to that of Lemma 4.1.

Corollary 6.1 For any N > 0 and S � 1 large enough there exist positive constants τ0(N , S)

and K (N , S) such that the following statement holds. Suppose� ⊂ R
d has Lipschitz constant

τ < τ0 and Q is a cube in DW (R) such that N (xQ, S�(Q)) ≤ N. Then, for all K̃ ≥ K,
there exist cubes Q′′

1, . . . , Q
′′
2(d−1)(K̃−K )

such that, for all j ,

(1) the center of Q′′
j lies in �,

(2) u|Q′′
j∩� does not have zeros,

(3) there exists Q′
j ∈ DK̃

W (Q) such that Q′′
j is a vertical translation of Q′

j .

In particular, there exists δ0(N , S) > 0 such that

md−1

(
⋃

i

�(Q′
i )

)

≥ δ0md−1(�(Q)).

These cubes Q′′
j are the cubes that are contained in the ball B given by Lemma 5.1 and are

vertical translation of cubes inDK̃
W (Q). From now on, given a cube Q ∈ DW (R), we denote

by t(Q) the unique cube Q′ such that its center lies on � and Q′ is a vertical translation of
Q.

Next, we present a modified frequency function for which we prove good behavior as a
consequence of Lemmas 4.1 and 5.1.

6.1 Modified frequency function

Let R be a cube in W such that it satisfies the conditions of Lemma 4.1 with S = S1 � 1
large enough so that CS−1/2

1 (also from the statement of Lemma 4.1) is small enough (we
will specify the precise relation later). The use of this lemma gives us constants K1 := K (S1)
and δ1 := δ0 (that does not depend on S1).

Consider also Corollary 6.1 with fixed N = 2N0 + 1 (where N0 is the constant of
Lemma 4.1) and S = S2 large enough but smaller than S1 (note that both constants are
independent). The use of this corollary gives us constants K2 := K (N , S2) and δ2 :=
δ0(N , S2). In particular, we may assume that K2 is smaller or equal than K1 and that CS−1/2

1
is small enough depending on min(δ1, δ2).

We remark that the use of Lemma 4.1 and Corollary 6.1 with constants S1 and S2 respec-
tively requires that the domain has small enough Lipschitz constant τ . For the rest of this
section, we will denote ε := CS−1/2

1 , K := K1, and δ0 = min(δ1, δ2) (in particular, δ0 and
S1 are independent constants).

Define

N (Q) := N (xQ, S1�(Q))
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for any Q ∈ D j K
W (R) for j ≥ 0. Notice that 1 + 2N (Q) ≥ N (xQ, S2�(Q)) thanks to

Proposition 3.8 (we assume xQ and S1�(Q) are admissible for all children Q of R in the
Whitney tree structure, thanks to τ being small enough).

We define the modified frequency function N ′(Q) for Q ∈ D j K
W (R), j ≥ 0, inductively.

For j = 0, we define N ′(R) = max(N (R), N0/2). Assume we have N ′(P) defined for all
cubes P ∈ Di K

W (R) for 0 ≤ i < j . Fix Q̂ ∈ D( j−1)K
W (R) and consider its vertical translation

t(Q̂) centered on �. Then:

(a) if u restricted to t(Q̂)∩� has no zeros, define N ′(Q) = N ′(Q̂)/2 for �δ0 ·card{DK
W (Q̂)}�

of the cubes Q in DK
W (Q̂) and N ′(Q) = (1+ ε)N ′(Q̂) for the rest of cubes in DK

W (Q̂)

(the particular choice is irrelevant),
(b) if u restricted to t(Q̂) ∩ � has zeros, choose Q ∈ DK

W (Q̂), and

1. if its vertical translation t(Q) satisfies that u restricted to t(Q) ∩ � has no zeros,
define N ′(Q) = N ′(Q̂)/2,

2. else define N ′(Q) = max(N (Q), N0/2).

Note that if a cube Q satisfies that u restricted to t(Q) ∩ � has no zeros, then all its descen-
dants in the Whitney cube structure will satisfy the same property and (a) applies to them.
Alternatively, if a cube Q satisfies that u restricted to t(Q) ∩ � changes sign, then all its
predecessors in the Whitney cube structure will satisfy the same and (b2) applies to them.

Now, a combination of Lemma 4.1 and Corollary 6.1 yields the following behavior for
N ′(Q) for Q ∈ D j K

W (R), j ≥ 0. Consider a cube Q̂ and its vertical translation t(Q̂). Then:

• If u restricted to t(Q̂) ∩ � has zeros and N (Q̂) ≥ N0, then Lemma 4.1 tells us that
at least �δ0 · card{DK

W (Q̂)}� cubes in DK
W (Q̂) satisfy N (Q) ≤ N (Q̂)/2. Moreover, in

this case, N ′(Q) = max(N (Q), N0/2) ≤ N (Q̂)/2 = N ′(Q̂)/2 where we have used
that N (Q̂) > N0 and that (b) applies. For the rest of the cubes Q in DK

W (Q̂), we have
N ′(Q) = max(N (Q), N0/2) ≤ (1 + ε)N (Q̂) = (1 + ε)N ′(Q̂) where we have used
again that N (Q̂) > N0 and (b) applies.

• If u restricted to t(Q̂)∩� has zeros and N (Q̂) < N0, thenCorollary 6.1 enters in play and
it tells us that at least �δ0 · card{DK

W (Q̂)}� cubes Q inDK
W (Q̂) satisfy that t(Q)∩� does

not contain zeros of u. For these cubes, N ′(Q) = N ′(Q̂)/2 = max(N (Q̂), N0/2)/2 <

N0/2. For the rest of the cubes Q in DK
W (Q̂), we have N ′(Q) = max(N (Q), N0/2) ≤

max((1+ ε)N (Q̂), N0/2) ≤ (1+ ε)N ′(Q̂).
• If u restricted to t(Q̂) ∩ � has no zeros, then we have defined N ′(Q) = N ′(Q̂)/2 for

�δ0 · card{DK
W (Q̂)}� cubes Q in DK

W (Q̂). We have defined N ′(Q) = (1+ ε)N ′(Q̂) for
the rest of cubes Q in DK

W (Q̂) .

Summing up, for Q̂ ∈ DW (R) and random Q ∈ DK
W (Q̂), we have

N ′(Q) ≤
{
N ′(Q̂)/2, with probability at least δ0,

N ′(Q̂)(1+ ε), with probability at most 1− δ0.

This is similar to the behavior of the frequency function N given by Lemma 4.1 but without
the restriction N ′(Q̂) ≥ N0.

Let’s summarize the dependence of the constants that have appeared in this section (omit-
ting its dependence on the dimension d and on L A and 	A by assuming we are in a setting
like the one described in Remark 2.3). On one hand, the constants K2 and δ2 given by Corol-
lary 6.1 are absolute since they depend on S2 and N = 2N0 + 1 which also are absolute
constants. We do require τ small enough to use Corollary 6.1. On the other hand, we have
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K1 depending on S1, ε = CS−1/2
1 , and an absolute constant δ1 given by Lemma 4.1. To use

Lemma 4.1, we require τ small enough depending on S1. For the arguments that follow, we
need ε small enough depending on δ0 = min(δ1, δ2). Though, since both constants (ε and
δ0) are independent, we can choose S1 large enough and, thus, we require τ small enough
(depending on S1) to use Lemma 4.1.

6.2 Proof of Theorem 1.1

The idea behind the proof is that Lemma 4.1 allows us to use thatmost cubes in any generation
of the Whitney tree satisfy N (xQ, S�(Q)) ≤ N0. Then, we can apply Lemma 5.1 to these
cubes, thus covering most of � by balls where u does not change sign.

Proof of Theorem 1.1 We will prove the result for the projection of a single cube �(R).
Afterwards, we can cover any compact in � by a finite union of such cubes which leaves
stable the Minkowski dimension estimate.

For x ∈ �(R), we denote by Q j (x) the unique cube Q j ∈ D j K
W (R) such that x ∈ �(Q j )

for some integer K large enough that will be fixed later. We will say that Q j (x) is a good
cube if N ′(Q j ) ≤ 1

2N
′(Q j−1) and that it is bad otherwise.

Remark 6.2 Note that, with the previous definitions, N ′(Q) < N0/2 implies that for all x ∈
t(Q)∩� there is a neighborhoodwhere u does not vanish in�. Thuswe only need to study the
Minkowski dimension of the set of points x ∈ �(R) such that they are not in�(Q) for some
Q ∈ DW (R) with N ′(Q) < N0/2. Also, notice that the map� : �∩�−1(�(R)) �→ �(R)

is biLipschitz and thus it preserves Minkowski dimensions.

We define the goodness frequency of a point x ∈ �(R) as

Fj (x) = 1

j
#{good cubes in Q1(x), . . . , Q j (x)}

for j ∈ N. We define F(x) = lim supn→∞ Fn(x). Let α(δ0) > 0 be such that

δ0

1− δ0

1− α

α
= 3

(in particular, α < δ0) and ε0(α) > 0 such that

α = log(1+ ε0)

log(1+ ε0) + log 2
.

Note that for any 0 < ε < ε0, we have
(
1

2

)α

(1+ ε)1−α < 1. (6.1)

For all j > 1, define

μ j = 1

j
log2

(
2N ′(R)

N0

)

≥ 0.

Claim For all j > 1, the following holds

Fj (x) ≥ α + μ j �⇒ N ′(Q j (x)) <
N0

2
.
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Proof of claim We have that

N ′(Q j (x)) ≤
(
1

2

) j(α+μ j )

(1+ ε) j(1−α−μ j )N ′(R) <

(
1

2

) jμ j

(1+ ε)− jμ j N ′(R) <
N0

2

by (6.1), and the definition of Fj (x) and μ j . ��
Now, thanks to the previous claim and Remark 6.2, we can reduce the problem to studying

the Minkowski dimension of the set of points

E = {x ∈ �(R) | Fj (x) < α + μ j , ∀ j ∈ N}.
If we consider a random sequence of cubes (Q j ) j with Q0 = R and Q j ∈ DK

W (Q j−1),
and let x ∈ ⋂

j≥0 �(Q j ), the probability that Fj (x) ≤ β j for j ∈ N and β j ∈ (0, 1) is
bounded above by

� jβ j  ∑

i=0

(
j

i

)

δi0(1− δ0)
j−i .

Note that choosing randomly such a sequence is equivalent to choosing a random x ∈ �(R)

uniformly. In what follows we will assume that β j satisfy 2 < δ0
1−δ0

1−β j
β j

< 4 for all j > 0,
in particular β < δ0. Let’s find an upper bound for the previous quantity for very large j :

A j :=
� jβ j  ∑

i=0

(
j

i

)

(1− δ0)
j−iδi0 = (1− δ0)

j
� jβ j  ∑

i=0

(
j

i

)(
δ0

1− δ0

)i

.

Observe that for β j < 1/2 we have
(

j

k − 1

)

<
β j

1− β j

(
j

k

)

, for 0 < k ≤ �β j j .

This is because
( j
k−1

)

( j
k

) = k!( j − k)!
(k − 1)!( j − k + 1)! = k

j − k + 1
<

β j

1− β j
.

Iterating this inequality, we obtain
(
j

i

)

<

(
β j

1− β j

)� jβ j  −i ( j

� jβ j 
)

, for i < � jβ j .

Using this observation we can bound A j by

(1− δ0)
j
� jβ j  ∑

i=0

(
j

i

)(
δ0

1− δ0

)i

≤ (1− δ0)
j
(

β j

1− β j

)� jβ j  ( j

� jβ j 
) � jβ j  ∑

i=0

(
δ0

1− δ0

1− β j

β j

)i

.

We use Stirling’s formula to approximate

(
j

� jβ j 
)

≈
√
2π j

(
j
e

) j

√
2πβ j j

(
β j j
e

)β j j √
2π(1− β j ) j

(
(1−β j ) j

e

)(1−β j ) j

= 1
√
2πβ j (1− β j ) j

⎛

⎝ 1

β
β j
j (1− β j )

1−β j

⎞

⎠

j

.
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We also estimate

(
β j

1− β j

)� jβ j  
≈

(
β j

1− β j

) jβ j

and

� jβ j  ∑

i=0

(
δ0

1− δ0

1− β j

β j

)i

≈
(

δ0

1− δ0

1− β j

β j

) jβ j

.

Observe that the comparability constants in the previous approximations depend on the upper
and lower bounds of β j but not on j for j large enough depending on δ0.

Summing everything up, we obtain

A j � 2
√
2πβ j (1− β j ) j

⎛

⎝ (1− δ0)
1−β j δ0

β j

β
β j
j (1− β j )

1−β j

⎞

⎠

j

︸ ︷︷ ︸
z(β j )

j

,

for j large enough. Observe that z(β j ) < 1 for β j < δ0.

Now, we will choose a suitable covering of the set E by projections of cubes in D j K
W (R).

First, pick ε < ε0 (equivalently S1 large enough, recall the discussion in Sect. 6.1). Observe
that by choosing ε we also fix K . For j ≥ 1, set

E j := {x ∈ �(R) | Fj (x) ≤ α + μ j },

so that E = ⋂
j E j . Let’s upper bound the (K -adic) Minkowski dimension of E by finding

a certain cover of E j by projections of cubes in D j K
W (R) (note that there are M = 2(d−1)K

cubes in DK
W (R)).

Using the previous asymptotics (setting β j = α + μ j ), we can cover E j (for j large
enough) with

CM j 2
√
2π(α + μ j )(1− α − μ j ) j

z(α + μ j )
j

projections of cubes in D j K
W (R) and each of those cubes has side length M− j/(d−1).

Now we are ready to upper bound the Minkowski dimension of the set E . We will use the
following definition of upper Minkowski dimension

dimM E = lim sup
j→∞

log #({K − adic cubes Q of side length K− j that satisfy Q ∩ E �= ∅})
j log K

.

which is equivalent to the dyadic one in (1.1). By covering a single set E j ⊃ E and making
j → ∞, we obtain the following upper Minkowski dimension estimate

dimM(E) ≤ lim
j→∞

j(lnM + ln z(α + μ j )) + ln

(
2√

2π(α+μ j )(1−α−μ j ) j

)

(d − 1)−1 j lnM

= (d − 1)
lnM + ln z(α)

lnM
< d − 1

since z(α) < 1. ��
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6.3 Planar case of Theorem 1.1

In the planar case, Theorem 1.1 asserts that we can cover any compact K ⊂ � by balls where
u does not change sign inside apart from a finite set of points. Moreover, this is valid for
general Lipschitz domains (and domains with worse boundary regularity).

Proof of Theorem 1.1 in the planar case Without loss of generality, suppose that � is simply
connected and bounded.

By [4, Theorem 16.1.4], there exists a K -quasiconformal map φ : C → C such that
u = w ◦ φ with w harmonic in φ(�). Since φ is biHölder continuous it is enough to prove
the desired result for harmonic functions in Jordan domains.

Now, consider a conformal mapping between φ(�) and the disk D which extends to a
homeomorphism up the boundary, and let v be the induced harmonic function in the disk.

Denote by �̃ the open set in ∂D where v vanishes and by Ẽ the set of points in �̃ such
that for every neighborhood v changes sign. Then Ẽ must be a discrete set. This is because
it coincides with the zero set of ∇v which is holomorphic (we can locally extend v to D

c by
reflection using the Kelvin transform near �̃). Thus, since it is a discrete set, it is countable
and finite inside any compact. Note that all maps we have considered are homeomorphisms,
thus the set where v changes sign in every neighborhood is transported to another countable
discrete set in � ⊂ �. ��

6.4 Estimates on themeasure of nodal sets in the interior of the domain

Theorem 6.1 in [24] estimates the (d−1)-dimensional Hausdorff measure of the nodal set in
a cube in terms of its doubling index, which is a quantity intimately related to the frequency
function used in this paper. We present the following reformulation of Logunov’s theorem
avoiding the use of doubling indices.

Theorem 6.3 There exist positive constants r , R,C depending on the Lipschitz constant L A

of A(x), ellipticity constant 	A of A(x), and dimension d such that the following statement
holds. Let u be a solution of div(A∇u) = 0 on B(0, R) ⊂ R

d . Then, for any cube Q ⊂
B(0, r), we have

Hd−1({u = 0} ∩ Q) ≤ C�(Q)d−1(N (xQ, 16 diam(Q)) + 1)α

for certain α = α(d) > 0 and where xQ is the center of Q.

Remark 6.4 If we assume N (xQ, 16 diam(Q)) > N0 for some N0 positive, we can rewrite
the previous theorem as

Hd−1({u = 0} ∩ Q) ≤ C�(Q)d−1(N (xQ, 16 diam(Q)))α

where now C depends also on N0 and α.

6.5 Proof of Theorem 1.5

ToproveTheorem1.5wewill follow the ideas of [28] but exchanging the use of theDonnelly–
Fefferman estimate for the size of nodal sets (see [10]) by Logunov’s estimate (Theorem 6.3).
This gives rise to a worse estimate (polynomial in the frequency) than the one of [28] (which
is linear in the frequency but only valid for harmonic functions).
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Proof of Theorem 1.5 Let Q be a small enough cube of the Whitney structure (so that we can
use the modified frequency function defined in Sect. 6.1). Again, we will use the notation
t(Q) for the unique cube Q′ with center on � such that Q′ is a vertical translation of Q.

Claim The following equation holds

Hd−1({u = 0} ∩ t(Q) ∩ K ) ≤ C0N
′(Q)α�(Q)d−1 (6.2)

for any K compact inside � with C0 and α independent of K .

Proof of claim Note that Eq. (6.2) holds for all cubes Q small enough, since t(Q) ∩ K = ∅

if Q is small enough. This is because dist(K , �) > 0. We will proceed to prove this estimate
by induction going from small cubes to large cubes.

Assume it holds for all small cubes with �(Q) < s . Now choose a larger cube P in the
Whitney cube structure with �(P) < 2K �(Q) (with K given by Lemma 4.1 as discussed in
Sect. 6.1). Given such a cube P , we can cover t(P)∩� with small cubes t(Qi ) (intersecting
the boundary) where Qi ∈ DK

W (P) and with small cubes Q′
i far from the boundary (small

enough so that we can apply Theorem 6.3 on them).
Using that the Lipschitz constant of ∂� is small, we can bound the number of small

cubes Q′
i necessary. Moreover, using Lemma 3.14, we can bound N (xQ′ , 16 diam(Q′)) <

2N (P)+ 1. Note that N (P) ≤ N ′(P) in the case that t(P)∩�∩ {u = 0} �= ∅. This allows
us to bound the size of the nodal set on

⋃
Q′

i ∩ � using Theorem 6.3 by
∑

Q′
i

Hd−1({u = 0} ∩ Q′
i ) ≤ C1N

′(P)�(P)d−1.

We still need to bound the size of the nodal set in the boundary cubes t(Qi ), which satisfy
N ′(Qi ) ≤ (1+ ε)N ′(P). Moreover, we know that at least for �δ0 card{DK

W (P)}� cubes Qi

we have N ′(Qi ) ≤ N ′(P)
2 . Now we can use the induction hypothesis

Hd−1({u = 0} ∩ K ∩
⋃

Qi

t(Qi )) ≤
∑

N ′(Qi )>N ′(P)/2

Hd−1({u = 0} ∩ K ∩ t(Qi ))

+
∑

N ′(Qi )≤N ′(P)/2

Hd−1({u = 0} ∩ K ∩ t(Qi ))

≤
∑

N ′(Qi )>N ′(P)/2

C0N
′(Qi )

α�(Qi )
d−1

+
∑

N ′(Qi )≤N ′(P)/2

C0N
′(Qi )

α�(Qi )
d−1

≤ C0N
′(P)α�(P)d−1

(

(1+ ε)α(1− δ0) + δ0

2α

)

.

We choose ε small enough (by increasing S1) so that

(1+ ε)α(1− δ0) + δ0

2α
< 1

noting that δ0 does not depend on S1 or ε. Finally, we choose C0 large enough so that it
absorbs all terms, that is,

C0

(

(1+ ε)α(1− δ0) + δ0

2α

)

+ C1 < C0.
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Note that the previous estimates do not depend on the compact K chosen and we prove the
claim. ��

To treat a general (small) ball B centered at �, we first cover it by a comparable cube Q
centered at �. Now, we choose a translate and dilation of the dyadic cube structure of R

d

such that Q = t(P) for some P in the Whitney cube structure and we apply the previous
claim. ��

Remark 6.5 In the statement of Theorem 1.5, the point x̃ that appears is the center of a
particular Whitney cube appearing in the proof. Nonetheless, Lemma 3.14 (and that the
Lipschitz constant τ of the boundary is small to preserve admissibility) gives us a lot of
freedom to choose x̃ .

6.6 (d − 1)-dimensional Hausdorff measure of Dirichlet eigenfunctions

Theorem 1.5 allows us to study the zero set of solutions of the Dirichlet eigenvalue problem

{
div(A∇uλ) = −λuλ, in �,

uλ = 0, on ∂�.

In fact, one can show that

Hd−1({uλ = 0}) ≤ C(�,	A, L A)λ
α
2 (6.3)

for bounded domains � with local Lipschitz constant small enough for some α = α(d) > 1.
For a detailed account of the proof in the harmonic case (and a sharper result), see Section
6 in [28]. We will only briefly sketch the main ideas behind its proof. Also note that this
problem is intimately related to Yau’s conjecture on nodal sets of Laplace eigenfunctions in
manifolds (see [10, 24, 25, 27]).

The first step consists in passing from eigenfunctions to solutions of div(A∇u) = 0.
Consider the function u(x, t) = uλ(x)e

√
λt in the cylinder domain � × R ⊂ R

d+1. Let

Ã(x) =
(
A(x) 0
0 1

)

,

then we have that u solves

div( Ã∇u) = div(A∇uλ)︸ ︷︷ ︸
−λuλ(x)

e
√

λt + λuλ(x)e
√

λt = 0.

Clearly, we have {u(x, t) = 0} = {uλ(x) = 0} × R. Thus, we can restrict us to the study of
the nodal set of u(x, t).

The next necessary step is theDonnelly–Fefferman frequency estimate [10]. For small balls
B contained in the domain, it is shown in [10, 26] that Nu(xB , r(B)) ≤ C(�,	A, L A)

√
λ.

The previous result is also true for balls intersecting the boundary (see Lemma 10 in [28] for
a proof in the harmonic case).

Finally, using the previous estimate together with Theorems 1.5 and 6.3, one obtains the
result in (6.3).
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7 Proof of Corollary 1.6

Theorem 1.1 tells us that we can decompose � in its intersection with a countable family of
balls (Bi )i and a set of Hausdorff dimension smaller than d − 1 by taking an exhaustion of
� by compacts. Thanks to countable additivity, we only need to prove that

Hd−1 ({x ∈ � | ∂νu(x) = 0} ∩ B) = 0

for any ball B ∈ (Bi )i given by the decomposition of Theorem 1.1.
Before starting the proof, we define the concept of A∞ weight.

Definition 7.1 We say that a measure ω ∈ A∞(σ ) if there exist 0 < γ1, γ2 < 1 such that for
all balls B and subsets E ⊂ B, σ(E) ≤ γ1σ(B) implies ω(E) ≤ γ2ω(B).

Proof of Corollary 1.6 Consider B centered on� such that u|B∩� does not change sign.With-
out loss of generality, we assume that u is positive.

By Dahlberg’s theorem [8], harmonic measure for the domain B ∩ � is an A∞ weight
with respect to surface measure. By [12], since the matrix A(x) is uniformly elliptic and has
Lipschitz coefficients, its associated elliptic measure ωA is anotherA∞ weight. In particular,
it is well known that this implies that the density dωA

dσ
can only vanish in a set of zero surface

measure.
On the other hand, the density of elliptic measure is comparable with (A∇g, ν) at the

boundary (where g is the Green function with pole outside 2B). By the boundary Harnack
inequality (see [11] for example), since u is positive in B ∩ �, we have that A∇u on � ∩ B
is comparable to A∇g. This finishes the proof. ��
Remark 7.2 There is also a different approach to proving Corollary 1.6, which is the one
adopted in [33] for harmonic functions. The ingredients are Lemma 4.1, [2, Lemma 0.2]
(which is also valid for the type of PDEs we consider, see the paragraph below the proof of
[2, Lemma 2.2], also [33, Lemma 4.3]), and a modification of [33, Lemma 4.1]. In particular,
the tools of Sects. 5 and 6 are not indispensable for this result.

8 Proof of Corollary 1.8

Definition 8.1 We define a non-truncated cone C̃τ with aperture τ ∈ R and vertex at 0 as

C̃τ (0) = {(y′, y′′) ∈ R
d−1 × R | y′′ > τ |y′|}.

Notice that when τ = 0, then C̃0 is a half space and when τ < 0, C̃τ is a non-convex cone.
A truncated cone Cτ,s is a non-truncated cone C̃τ intersected with the ball B(0, s).

First we will prove the result for harmonic functions.

Proof of Corollary 1.8 in the harmonic case Let x ∈ B ∩ � for some ball B where u does not
vanish given by Theorem 1.1. Assume without loss of generality that u|B∩� > 0.

Since � is Lipschitz with Lipschitz constant τ , we can find a small truncated cone Cτ,s

of aperture τ with vertex at x and contained in �.
Let g be the Green function (for the Laplacian) with pole at infinity of the non-truncated

cone C̃τ . Since u|Cτ,s is nonnegative up to the boundary, we can lower bound it by some
adequate multiple of g (that is u � g in Cτ,s) by boundary Harnack inequality. Notice
that g is of the form g(x) = gr (|x |)gθ (

x
|x | ) where gθ is the first Dirichlet eigenfunction
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of the Laplace-Beltrami operator � in the domain C̃τ ∩ ∂B(0, 1) with eigenvalue λτ and

gr (|x |) = |x |− d
2+1+

√
(d−2)2−4λτ

2 (see [1, Theorem 1.1]). Thus gr gives an upper bound on
the order of vanishing at the origin. Also notice that λ0 = 1 − d (when C̃0 is a half space)
and thus gr (|x |) = |x |. Since the Dirichlet eigenvalues λτ of C̃τ ∩ ∂B(0, 1) for the Laplace-
Beltrami operator vary continuously with the aperture τ of C̃τ , we can ensure that the order of
vanishing of g is close enough to 1 bymaking τ small enough. The continuity of the variation
of the eigenvalues with the aperture can be easily shown using the Rayleigh quotient.

For the lower bound on the order of the vanishing at the origin, consider a cone C̃−τ of
aperture−τ (concave cone) and its Green function gwith pole at the infinity. Now g|

�∩C̃ � u
and we can follow the same argument. ��
Next, we deal with the elliptic case, but first, we need several lemmas.

Lemma 8.2 Let u be a solution of div(A∇u) = 0 in � and x0 ∈ � ∪ �. Then the vanishing
order α of u at x0 satisfies

α(x0) = lim
r↓0 log2

√
H(x0, 2r)√
H(x0, r)

when the limit exists.

Proof The proof has two parts. First, we see that

−
ˆ
B(x0,r)

|u| dx ≤ Cαr
α ⇐⇒ √

H(x0, r) ≤ C ′
αr

α.

Notice that for r small enough, we have

−
ˆ
B(x0,	

−1
A r)

|u|dy ≤
(

−
ˆ
B(x0,	

−1
A r)

|u(y)|2dy
)1/2

�
√
H(x0, r)

thanks to Cauchy–Schwarz and Lemma 3.12. On the other hand, if we let x∗ ∈ B(x0, r) be
such that |u(x∗)| = supB(x0,r) |u|, then

√
H(x0, r) � sup

B(x0,r)
|u| � −

ˆ
B(x∗,	−1

A r)
|u|dy � −

ˆ
B(x0,2	

−1
A r)

|u|dy

using standard estimates for solutions of elliptic PDEs.
The second part consists in showing that

lim
r↓0 log2

√
H(x0, 2r)√
H(x0, r)

= α

implies

√
H(x0, r) ≤ Cγ r

γ , 0 < γ < α, and lim
r→0

√
H(x0, r)

rγ
= ∞, γ > α.

Fix γ < α. Then there exists some kγ > 0 such that for all k > kγ , we have

log2

√
H(x0, 2−k+1)
√
H(x0, 2−k)

> γ.
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Then, for all n large enough, we have

√
H(x0, 2−n) = √

H(x0, 1)
n∏

j=1

√
H(x0, 2− j )

√
H(x0, 2− j+1)

< C2−γ (n−kγ ) = C ′ (2−n)γ .

Now, fix γ > α. As before,there exists some kγ > 0 such that for all k > kγ , we have

log2

√
H(x0, 2−k+1)
√
H(x0, 2−k)

< γ − δ.

for some small δ > 0. Finally, for all n large enough, we obtain

√
H(x0, 2−n) = √

H(x0, 1)
n∏

j=1

√
H(x0, 2− j )

√
H(x0, 2− j+1)

> C2−(γ+δ)(n−kγ ) > C ′ (2−n)γ 2δn .

Since limn→∞ 2δn = ∞, this finishes the proof. ��
Lemma 8.3 Let u be a positive solution to div(A∇u) = 0 in a cone Cτ,s such that u = 0 on
∂Cτ,s ∩ B(0, s). Assume also that A(0) = I . Then, its frequency N (0, r) is bounded above
for 0 < r < s

2 .

Proof Remember that

N (0, r) = r

´
B(0,r)(A∇u,∇u)dy´

∂B(0,r) μu2dσ
≈ r

´
B(0,r) |∇u|2dy´
∂B(0,r) u

2dσ
.

Using that u extended by 0 outside of Cτ,s is a subsolution, by Caccioppoli’s inequality we
have ˆ

B(0,r)
|∇u|2dx � 1

r2

ˆ
B(0,2r)

u2dx .

By Remark 3 (page 953) in [2], we obtain the doubling propertyˆ
B(0,4r)

u2 dx �
ˆ
B(0,	−1

A r)
u2 dx .

uniformly for all r small enough. The remark is stated for convex domains, but the condition
needed is that the domain is star-shaped with respect to 0. In the case of cones, this is trivially
true. Using Lemma 3.12, we obtain that

−
ˆ
B(0,	−1

A r)
u2dx � −

ˆ
∂B(0,r)

u2dσ.

Summing up, we get

N (0, r) ≈ r

´
B(0,r) |∇u|2dx´
∂B(0,r) u

2dx
� 1

for all r small enough. ��
The following lemma shows that the blow-up of positive solutions in cones converges to
the Green function for the Laplacian in the domain C̃τ with pole at ∞ (see the proof of
Corollary 1.8 in the harmonic case).
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Lemma 8.4 Let u be a positive solution of div(A∇u) = 0 in a truncated cone Cτ,s that
vanishes on ∂Cτ,s ∩ B(0, s) and assume that A(0) = I . Consider any sequence of radii
rk ↓ 0 (such that r1 < |p|). Let

uk(x) := u(rk x)
(´

∂B1
|u(rk y)|2dσ(y)

)1/2 .

Then uk converges in W 1,2
loc (C̃τ ) and in C

1,α
loc

(
C̃τ\{0}

)
to a multiple of the Green function g

with pole at ∞ for the Laplacian in C̃τ for some exponent 0 < α < 1. In particular, u and
g have the same vanishing order at 0.

Proof Without loss of generality assume that s > 2 and r1 = 1. Clearly, u ∈ W 1,2(Cτ,1)

and uk ∈ W 1,2(Cτ,1/rk ) for all k > 0. Also notice that Nu(0, rk) = Nuk (0, 1) where
Nuk is the frequency for the new PDE. Moreover, each uk satisfies 1 ≈ Huk (0, 1) and
‖∇uk‖2L2(Cτ,1)

≈ Nuk (0, 1). Observe that we can also bound ‖∇uk‖L2(Cτ,1/r j )
and Huk (0, r j )

for any j ≤ k (with bound depending on r j ).

Thanks to Lemma 8.3, we have that the sequence (uk)k is bounded in Sobolev norm
in any bounded set. Moreover, by boundary Schauder estimates (see Lemma 6.18 in [16]),

uk ∈ C1,α(K ) for any compact K ⊂ C̃τ\{0} (for k large enough depending on K ). By
Arzelà-Ascoli, there is a subsequence (uk j ) j that converges in norm C1 to ũ in Cτ,1\B1/8.

Moreover, we can also assume that ũ is a weak limit in W 1,2
loc (C̃τ ). Thus, ũ is harmonic in

C̃τ . To see this, fix any compact K ⊂⊂ C̃τ . Then, for all φ ∈ C1
C (K ), we have

ˆ
K
(A(rk x)∇uk,∇φ)dx = 0, ∀k > 0.

On the other hand, since ũ is the weak limit of uk , we haveˆ
K
(∇ũ,∇φ)dx = lim

k→∞

ˆ
K
(∇uk,∇φ)dx

= lim
k→∞

ˆ
K
(A(rk x)∇uk,∇φ)dx

︸ ︷︷ ︸

A

−
ˆ
K
((A(rk x) − I )∇uk,∇φ)dx

︸ ︷︷ ︸

B

.

The term A is zero by the definition of weak solution and we can estimate B as

ˆ
K
((A(rk x) − I )∇uk,∇φ)dx � L Ark(dist(0, K )

+ diam(K ))‖∇uk‖L2(K )‖∇φ‖L2(K ) →k→∞ 0.

Summing up, we get that ũ is harmonic in K .

Claim The only functions which are positive and harmonic in C̃τ are the multiples of the
Green function g for the Laplacian in C̃τ with pole at ∞.

For the proof of the claim see [18, Lemma 3.7].
Since we have C1 convergence away from the pole and

´
∂B1

u2k dσ = 1 for all k > 0, the
multiple of the Green function in the claim is fixed. Thus, the convergence does not depend
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on the sequence rk chosen and is not up to subsequences. For this reason, we assume without
loss of generality that rk = 2−k+1.

We will see now that the limit

lim
r↓0 log2

√
Hu(x, 2r) − log2

√
Hu(x, r)

exists and by Lemma 8.2 this coincides with the order of vanishing at zero.
If r ∈ (1/2k, 1/2k−1), then

log2
√
Hu(0, 2r) − log2

√
Hu(0, r) = log2

√
Huk−1(0, 2k−1r)

√
Huk−1(0, 2k−2r)

.

Since r ∈ (1/2k, 1/2k−1), this happens in the region where uk converges to ũ in C1 norm.
Thus Huk (0, r) →k→∞ Hũ(0, r) for 1/8 < r < 1. By Lemma 8.2 this implies that both u
and ũ have the same vanishing order. ��

The general elliptic case is a direct consequence of the previous lemma following the
same proof as in the harmonic case.

9 Example with dimH({x ∈ 6 | limr↓0 !(B(x, r))r1−d = 0}) > d − 1 − �

The following example by Xavier Tolsa shows that in a Lipschitz domain� (even with small
Lipschitz constant) there is no hope for a (non-trivial) Hausdorff dimension bound of the set
of points of � where ∂νu(x) = 0.

Remark 9.1 We are interested in the normal derivative, but it may not exist at every point
x ∈ �. Nonetheless, since we are in a Lipschitz domain � for every point x ∈ � we can
consider a non-tangential cone Cτ (x) contained in the domain. Thus, we can consider a
non-tangential approach to the normal derivative. That is, for x ∈ �, we define

∇nt u(x) = lim sup
y→x

y∈Cτ (x)

|u(y) − u(x)|
|y − x | .

We will show that the set {x ∈ � | ∇nt u(x) = 0} can be very large (in terms of Hausdorff
dimension).

The following lemma shows that non-tangential derivatives for positive harmonic functions
are closely related with the density of harmonic measure.

Lemma 9.2 Assume u is positive and harmonic in � and vanishes in �. Then, for x ∈ �,
∇nt u(x) = 0 if and only if limr↓0 ω(B(x,r))

rd−1 = 0 where ω is the harmonic measure for the
Laplacian in �.

Proof of Remark 9.1 Fix a point p ∈ � far from � and consider the Green function g with
pole at p. Then, in a neighborhood of �, the boundary Harnack inequality (see [11]) implies
that the non-tangential derivative of u is 0 if and only if the non-tangential derivative of g
is 0 wherever one of the two exists (if one exists and is 0 the other exists too by boundary
Harnack inequality). This does not depend on the pole p chosen.

Now, the non-tangential derivative of g is 0 if and only if limr↓0 ω(B(x,r))
rd−1 = 0. This is a

consequence of [8, Lemma 1] which shows

rd−2g(x + Cred) ≈ ωp(B(x, r))

for some C depending on the dimension and the Lipschitz constant of the domain. ��
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Nowwe can start setting up an appropriate domain. Consider, for λ ∈ (0, 1), the λ-Cantor
set defined as

Cλ =
∞⋂

n=1

Eλ
n

where Eλ
0 = [0, 1] and Eλ

k = 1−λ
2 Eλ

k−1 ∪ ( 1+λ
2 + 1−λ

2 Eλ
k−1) for k ≥ 1. We will refer to the

intervals in [0, 1]\Eλ
k by gaps.

Remark 9.3 The set Cλ has Hausdorff dimension between 0 and 1 depending on λ, but by
making λ small enough we can obtain a set with dimension arbitrarily close to 1. From now,
on we will denote it by s = s(λ) = dimH Cλ.

Remark 9.4 If λ = 1/(2k + 1) for some k ∈ N, then the set Cλ coincides with the set of real
numbers in [0, 1] such that its decimal expansion in basis 2k + 1 does not contain the digit
k. Instead of choosing λ, we will choose k large enough so that the Hausdorff dimension s
of Cλ is as close as we want to 1.

Theorem 9.5 Let λ = 1/(2k + 1) for some k ∈ N, and s = s(λ) = dimH(Cλ). Then, Hs -
a.e. x ∈ Cλ satisfies that each possible digit {0, 1, . . . , k − 1, k + 1, . . . , 2k} in its decimal
representation in basis 2k + 1 appears with the same asymptotic frequency 1/(2k).

The proof of the theorem is analogous to the proof of Borel’s normal number theorem. Also,
we will say that the points x ∈ Cλ that satisfy this are Cλ-normal.

Fix a ∈ (0, 1) and let

�λ := B(0, 2) ∩
⋃

p∈Cλ

{Ca(p)} ⊂ R
2,

where Ca(p) are vertical open cones of aperture a with vertex at p. Thus, �λ is the union of
all the open cones with aperture a centered at a point of the Cantor set Cλ. The domain �λ

clearly has Lipschitz boundary and its Lipschitz constant can be made arbitrarily small as it
depends only on the aperture of the cones a.

Remark 9.6 Let the interval (ξ1, ξ2) be a gap in [0, 1]\Eλ
j . Then ∂ (Ca(ξ1) ∪ Ca(ξ2)) ∩

{(x, y) ∈ R
2 | x ∈ (ξ1, ξ2)} ⊂ ∂�λ. In other words, the boundary of ∂�λ looks like a

cone (pointing upwards) where the Cantor set Cλ has gaps.
Note that, if λ = 1/(2k + 1), the gaps correspond to subintervals of [0, 1] where all the

numbers have the digit k in the position j of the decimal expansion in base 2k + 1.

Now we will prove that every Cλ-normal point (x, 0) ∈ Cλ ⊂ R ∩ �λ satisfies that the
density of harmonic measure at (x, 0) is 0.

Proposition 9.7 Let �λ be the Lipschitz domain defined above. Let (x, 0) be a Cλ-normal
point in Cλ. Then limr↓0 ω(B(x,r))

rd−1 = 0 in (x, 0) where ω is the harmonic measure of �λ with
pole in (x, 1).

Proof Theorem 6.2. in [15, page 149] (called dx/θ(x) estimate) tells us

ω(B((x, 0), r)) ≤ 8

π
exp

(

−π

ˆ 1

r

ds

s�(s)

)

(9.1)
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for r small enough where s�(s) is the length of the connected arc in � ∩ ∂B((x, 0), s) that
separates (x, 0) and the pole (x, 1). We want to prove that

lim sup
r→0

ω(B((x, 0), r))

r
= 0

which is a consequence of

lim sup
r→0

−π

ˆ 1

r

(
1

�(s)
− 1

π

)
ds

s
→ −∞

by inequality (9.1).
Since the domain is contained in the upper half plane and x ∈ R we have that 0 < �(s) ≤

π . This implies that we can change the lim sup by a lim. Also we can rewrite the integral as

−π lim
n→∞

n∑

j=1

ˆ (2k+1)1− j

(2k+1)− j

(
1

�(s)
− 1

π

)
ds

s
.

Nowwe will use that x is Cλ-normal. This implies that, asymptotically, for a fixed proportion
of digits in the decimal expansion of x in basis 2k + 1 the digit is k − 1 or k + 1.

If the j-th digit in the decimal expansion of x in basis 2k+ 1 is either k− 1 or k+ 1, then
for s ∈ [2.1(2k + 1)− j , (2k + 1)1− j ] we have that �(s) < π − ε for some ε > 0 depending
only on the aperture of the cones a. This is because the arc of circumference centered at (x, 0)
with radius s meets with a cone Ca(p) corresponding to a gap in [0, 1]\Eλ

j (see Remark 9.6)
where p is the truncation to j digits of x in basis 2k + 1. Thus, �(s) < π − ε. Since x is
Cλ-normal, this happens for a positive proportion of digits, the integral tends to −∞, and
limr↓0 ω(B(x,r))

rd−1 = 0. ��
As a consequence of Proposition 9.7 and the previous claim, we can construct a domain

where limr↓0 ω(B(x,r))
rd−1 = 0 in a set of dimension s and s can be made as close to 1 as desired.

This implies that the non-tangential derivative of a harmonic function (the Green function
of the domain) can be 0 in a set of Hausdorff dimension arbitrarily close to 1. Moreover, we
can obtain a domain where this set has Hausdorff dimension 1 by concatenating domains of
the form �λ considered before.

10 S6(u) = S ′
6(u) in the C1,Dini case

Recall that for a harmonic function u in a Lipschitz domain that vanishes in a relatively open
subset of the boundary � ⊂ ∂�, we define

S�(u) = {x ∈ � | |∇u(x)| = 0}
and

S ′
�(u) = {x ∈ � | u−1({0}) ∩ B(x, r) ∩ � �= ∅, ∀r > 0}.

Remark 10.1 Note that S�(u) is well defined in theC1,Dini case since u ∈ C1(� ∪ �) thanks
to the results of [9].

The proof of Proposition 1.9 follows from a local expansion of u as the sumof a homogeneous
harmonic polynomial and an error term of higher degree (see [22, Theorem 1.1]).
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Proof of Proposition 1.9 By [22, Theorem 1.1], for every x ∈ � there exists a positive radius
R = R(x) and a positive integer N = N (x) such that

u(y) = PN (y − x) + ψ(y − x), in BR(x) ∩ �

where PN is a non-trivial homogeneous harmonic polynomial of degree N and the error term
ψ satisfies

lim
y→0

|ψ(y)||y|−N = 0 and lim
y→0

|∇ψ(y)||y|−N+1 = 0.

We will show that N (x) = 1 implies x /∈ S�(u) and x /∈ S ′
�(u) and that N (x) > 1

implies x ∈ S�(u) and x ∈ S ′
�(u).

Case N = 1: We have that ∇u(x) = ∇P1(0) + ∇ψ(0) = ∇P1(0) �= 0 since P1 is a non-
trivial linear function, thus x /∈ S�(u). Also, we know that u(y) = 0 for y ∈ ∂� ∩ BR(x).
Suppose there exist (zn)n ∈ � ∩ BR(x) tending to x such that u(zn) = 0. Then, by Rolle’s
theorem, we get a contradiction since the derivative of u in the direction ∇P1/|∇P1| does
not vanish in a neighborhood of x (because limy→0 |∇ψ(y)| = 0) but u vanishes on (zn)n
and on ∂� ∩ BR(x). Thus x /∈ S ′

�(u).
Case N > 1: Clearly, ∇PN (0) = 0 if N > 1 which implies that x ∈ S�(u). Assume that
x /∈ S ′

�(u) and, without loss of generality, u is positive near x . Then, by the generalized
Hopf principle of [31], we get that ∂νu(x) < 0 contradicting x ∈ S�(u). ��
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Appendix A. Existence of non-tangential limits for∇u

We will closely follow the ideas of Appendix A of [33] in order to prove the L2 convergence
of the non-tangential limits of ∇u in �.

Let � ⊂ R
d be a Lipschitz domain, B a ball centered on ∂�, � = B ∩ ∂�, and σ denote

the surface measure on �. Without loss of generality, we assume � is locally above � in the
direction of ed = (0, . . . , 0, 1). For σ -a.e. x ∈ �, the outer unit normal vector ν(x) is well
defined. For a parameter a ∈ (0, 1) and x ∈ �, we consider the inner cone and outer cone

X+
a (x) = {y ∈ R

d |(x − y, ν(x)) > a|y − x |}, X−
a (x) = {y ∈ R

d | − (x − y, ν(x)) > a|y − x |},
respectively. For a function f defined on R

d\�, we define the non-tangential limits

f+,a(x) = lim
X+
a (x)$y→x

f (y), f−,a(x) = lim
X−
a (x)$y→x

f (y),
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when they exist.
We prove the following theorem about the convergence of the non-tangential limits of the

gradient of the solution of an elliptic PDE (of the type of Sect. 2.1).

Theorem A.1 Let � ⊂ R
d be a Lipschitz domain, B be an open ball centered in ∂�, and

� = B ∩ ∂� be a Lipschitz graph such that � ∩ B is above �. Let u be a solution of
div(A∇u) = 0 in � with A as in Sect. 2.1. Assume that u is continuous up to the boundary
and that it vanishes continuously on �. Then, for all a ∈ (0, 1) large enough, (∇u)+,a exists
σ -a.e. and belongs to L2

loc(σ ). Further, (∇u)+,a has vanishing tangential component. That
is, (∇u)+,a = (∇u, ν)ν. Further,

lim
ε→0

∇u (· + εen) → (∇u, ν) ν in L2
loc(σ ).

Proof We extend u by 0 out of � and denote u+ = max(u, 0), u− = max(−u, 0). Both u+
and u− are continuous and subsolutions (that is − div(A∇u±) ≤ 0 in B).

Claim In the sense of distributions, div(A∇u) = div(A∇u+) − div(A∇u−) restricted to B
is a signed Radon measure supported on �.

Proof of the claim To see this, take arbitrary φ ∈ C∞
c (B). For 0 < ε % r(B), denote

�ε = � + εed and �ε = � + εed , where ed = (0, . . . , 0, 1). Let ψδ be a bump function
in an δ-neighborhood of � such that ‖∇ψδ‖∞ � δ−1 and ‖∇2ψδ‖∞ � δ−2. Then, writing
φ = φψδ + φ(1− ψδ) for φ ∈ C∞

c (B), we get
∣
∣
∣
∣

ˆ
B∩�

A∇u∇φdx

∣
∣
∣
∣ ≤

∣
∣
∣
∣

ˆ
B∩�

A∇u∇(φψδ)dx

∣
∣
∣
∣

︸ ︷︷ ︸

A

+
∣
∣
∣
∣

ˆ
B∩�

A∇u∇(φ(1− ψδ))dx

∣
∣
∣
∣

︸ ︷︷ ︸

B

.

We directly obtain B = 0 since u is a weak solution of the PDE in �. We have, because
u ∈ W 1,2(B) and the divergence theorem, thatˆ

B∩�

A∇u∇(φψδ)dx = lim
ε→0

ˆ
B∩�ε

A∇u∇(φψδ)dx

= lim
ε→0

ˆ
∂�ε∩B

u(A∇(φψδ), ν)dσ

︸ ︷︷ ︸

C

−
ˆ

�ε∩B
u div(A∇(φψδ))dx

︸ ︷︷ ︸

D

The term C converges uniformly to 0 as ε → 0 as u is 0 in �. On the other hand,

| div(A∇(φψδ))| ≤| div(A∇ψδ)φ| + | div(A∇φ)ψδ| + |2(A∇φ,∇ψδ)|
� 1

δ2
‖φ‖L∞(suppψδ) + ‖∇2φ‖∞ + 1

δ
‖∇φ‖∞

with constants depending on the Lipschitz and ellipticity constants of A.

We can bound D as
∣
∣
∣
∣

ˆ
�∩B

u div(A∇(φψδ))dx

∣
∣
∣
∣

�
(

1

δ2
‖φ‖L∞(suppψδ) + ‖∇2φ‖∞ + 1

δ
‖∇φ‖∞

)ˆ
suppψδ∩�

|u|dx . (A.1)
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Using the boundary Harnack inequality (see [11], for example), we can boundˆ
suppψδ∩�

|u|dx �
ˆ
suppψδ∩�

g dx � δ2

where g is the Green function with fixed pole far from B. To prove the second inequality, we
cover suppψδ by a finite family of cubes Qi with side length �(Q) ≈ δ. We can do this with

approximately
(
r(B)

δ

)d−1
cubes. By standard estimates for elliptic measure, we have

g(x) � ω(4Q)

�(Q)n−2 ≈ ω(4Q)δ2−d for all x ∈ Q ∩ �.

where ω is the elliptic measure associated to div(A∇·) for � with respect to a fixed pole
p ∈ �\B.

Finally, we haveˆ
suppψδ∩�

g dx ≤
∑

Q

ˆ
Q∩�

g dx �
∑

Q

ω(4Q)δ2−d
ˆ
Q
dx ≈ δ2ω(�)

where we have used the doubling properties of elliptic measure.
Summing up, we take the limit as δ → 0 in Eq. (A.1) to obtain

((div(A∇u)), φ) ≤ C‖φ‖L∞(�)

where we have used that the suppψδ → � as δ → 0, Thus div(A∇u)|B is a Radon measure
supported on �. ��

Moreover, this Radon measure is absolutely continuous with respect to elliptic measure.

Claim In the sense of distributions, we have

div(A∇u)|B = ρω|�,

where ρ ∈ L∞
loc(�) and ω is the elliptic measure associated to div(A∇·) for � with respect

to a fixed pole p ∈ �\B.
We can assume that B is small enough so that �\2B �= ∅ and p ∈ �\2B.
Proof of the claim To prove the claim, let B ′ be an open ball concentric with B such that
B ′ ⊂ B. We will show that that there exists some constant C depending on B ′ and p such
that for any compact set K ⊂ � ∩ B ′, it holds

(div(A∇u), χK ) ≤ Cω(K ). (A.2)

By duality, this implies the claim.
Given ε ∈ (

0, 1
2 dist(K , R

d\B ′)
)
, let {Qi }i∈I be a lattice of cubes covering R

d such
that each Qi has diameter ε/2. Let {φi }i∈I be a partition of unity of R

n , so that each φi is
supported in 2Qi and satisfies ‖∇ jφi‖∞ � �(Qi )

− j , for j = 0, 1, 2. Then, we have

(div(A∇u), χK ) = (div(A∇u),
∑

i∈I ′
φi ) − (div(A∇u),

∑

i∈I ′
φi − χK ),

where I ′ is the collection of indices i ∈ I that satisfy 2Qi ∩ K �= ∅. By the regularity
properties of Radon measures, we obtain

|(div(A∇u),
∑

i∈I ′
φi − χK )| ≤ (| div(A∇u)|, χUε (K )\K

) → 0 as ε → 0,
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where Uε(K ) is the ε-neighborhood of K . For the other term, we have

|(div(A∇u),
∑

i∈I ′
φi )| ≤

∑

i∈I ′
|(u, div(A∇φi ))| �

∑

i∈I ′
1

�(Qi )2

ˆ
2Qi

|u|dm

using that A is elliptic and Lipschitz. Since |u| is a continuous subsolution in B that vanishes
in B\�, by the boundary Harnack inequality, we have again |u(x)| � g(x) for all x ∈ B ′ ∩�,
where g is the Green function of � for div(A∇·) with pole in �\B. The constant C depends
on u, p, 	A (the ellipticity constant of A), and B ′, but not on K . Thus, proceeding as in the
proof of the previous claim, we obtain

|(div(A∇u),
∑

i∈I ′
φi )| �

∑

i∈I ′
1

�(Qi )2

ˆ
2Qi

g(x)dx ≈
∑

i∈I ′
ω(4Qi ) = ω(U4ε(K )).

Letting ε → 0, we have ω(U4ε(K )) → ω(K ) from which Eq. (A.2) follows. ��
By the solvability of the Dirichlet problem with L2 data in Lipschitz domains for diver-

gence form elliptic equations with Hölder coeficients (see Remark 1.4 in [20]), we have that
ω is a B2 weight with respect to the surface measure σ . In particular, the density function dω

dσ

belongs to L2
loc(σ ). Therefore, in the sense of distributions,

div(A∇u)|B = hσ, for some h ∈ L2
loc(σ ).

Next, we will show that (∇u)+,a exists σ -a.e. and moreover (∇u)+,a = (∇u, ν)ν ∈
L2
loc(σ ). Consider an arbitrary open ball B̃ centered in � such that 4B̃ ⊂ B. Let φ be a C∞

function which equals 1 on 2B̃ is supported on 3B̃, and let v = φu. Observe that

v(x) =
ˆ

E(x, y) div(A∇v)(y)

=
ˆ

E(x, y)φ(y) div(A∇u)(y) +
ˆ

E(x, y)u(y) div(A∇φ)(y)

+ 2
ˆ

E(x, y)(A∇u(y),∇φ(y)), (A.3)

where E is the fundamental solution of div(A∇·) (we consider a Lipschitz, elliptic extension
of A defined in R

d ). Note that ∇u ∈ L2
loc(B), by Caccioppoli’s inequality.

For a finite Borel measure η, let Tη be the gradient of the single layer potential of η (in
the case A ≡ I it coincides with the (d − 1)-dimensional Riesz transform of η). That is,

Tη(x) =
ˆ

∇1E(x, y)dη(y),

in the sense of truncations. From identity (A.3), we obtain for x /∈ �,

∇v(x) = cd
(
T (φhσ |�)(x) + T (u div(A∇φ)m)(x) + 2T ((A∇u,∇φ)m

)
(x)

)

(where m is the Lebesgue measure in R
d ). Observe that T (u div(A∇φ)m)(x) and

T ((A∇u,∇φ)m
)
(x) are continuous functions in B̃. On the other hand, the non-tangential

limit T (φhσ |�)±,a(x) exists for σ -a.e. x ∈ ∂�, by the jump formulas for the gradients of
single layer potentials transforms (see [20, Theorem 4.4] or [32, Theorem 1] for the constant
coefficients case in rectifiable sets, for example). From the fact that∇v = ∇u in B̃, it follows
that (∇u)±,a(x) exists for σ -a.e. x ∈ � ∩ B̃. By the L2(σ ) boundedness of T on Lipschitz
graphs (see [20, Theorem 3.1]), we deduce that (∇u)±,a ∈ L2(σ |

�∩B̃).
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Since u ≡ 0 in �c, we have (∇u)−,a = 0 in � ∩ B̃. As the tangential component of
T (φhσ |�)(x) is continuous across ∂� for σ -a.e. x ∈ ∂�, again by the jump formulas for T (
[20, Theorem 4.4]), we deduce that the tangential component of (∇u)+,a coincides with the
tangential component of (∇u)−,a σ -a.e. in � ∩ B̃, and thus (∇u)+,a = (∇u, ν)ν in � ∩ B̃.

We will now prove that (div(A∇u))|B = −(A∇u, ν)σ |� in the sense of distributions.
Let ψ be a function in C∞

c (B̃) . Again, for 0 < ε % r(B̃), consider �ε = � + εed and
�ε = � + εed , where ed = (0, . . . , 0, 1). Then, we have

〈div(A∇u), ψ〉 =
ˆ
B̃∩�ε

u div(A∇ψ)dm = lim
ε→0

ˆ
B̃∩�ε

u div(A∇ψ)dm

= lim
ε→0

ˆ
B̃∩∂�ε

u(A∇ψ, ν)dσ − lim
ε→0

ˆ
B̃∩∂�ε

ψ(A∇u, ν)dσ

= 0−
ˆ

�

ψ(A∇u, ν)dσ. (A.4)

The last identity follows from the uniform convergence of u to 0 as �ε → � and that
∇u(· + εen) converges to (∇u)+,a in L2(σ |

�∩B̃) (this is proven by arguments analogous to
the ones above for the σ -a.e. existence of the limit (∇u)+,a(x) in�). From (A.4), we deduce
that div(A∇u) = −(A∇u, ν)σ in B̃, and thus also in B. ��

References

1. Ancona, A.: On positive harmonic functions in cones and cylinders. Rev. Mat. Iberoam. 28, 201–230
(2010)

2. Adolfsson, V., Escauriaza, L.: C1,α domains and unique continuation at the boundary. Commun. Pure
Appl. Math. 50(10), 935–969 (1997)

3. Adolfsson, V., Escauriaza, L., Kenig, C.E.: Convex domains and unique continuation at the boundary.
Rev. Mat. Iberoam. 11(3), 513–525 (1995)

4. Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings
in the Plane. (PMS-48) Princeton University Press, Princeton (2008)

5. Alessandrini, G., Rondi, L., Rosset, E., Vessella, S.: The stability for the Cauchy problem for elliptic
equations. Inverse Probl. 25(12), 123004 (2009)

6. Bourgain, J., Wolff, T.: A remark on gradients of harmonic functions in dimension ≥ 3. Colloq. Math.
60/61(1), 253–260 (1990)

7. Burq, N., Zuily, C.: A remark on quantitative unique continuation from subsets of the boundary of positive
measure (2021). arXiv:2110.14282

8. Dahlberg, B.: On estimates for harmonic measure. Arch. Ration. Mech. Anal. 65, 272–288 (1977)
9. Dong, H., Escauriaza, L., Kim, S.: OnC1,C2, and weak type-(1, 1) estimates for linear elliptic operators:

part II. Math. Ann. 370(1), 417–435 (2018)
10. Donnelly, H., Fefferman, C.: Nodal sets of eigenfunctions on Reimannian manifolds. Inventiones Math.

93 (1998)
11. De Silva, D., Savin, O.: A short proof of boundary Harnack inequality. J. Differ. Equ. 269, 2419–2429

(2020)
12. Fefferman, R.A., Kenig, C.E., Pipher, J.: The theory of weights and the Dirichlet problem for elliptic

equations. Ann. Math. (2) 134(1), 65–124 (1991)
13. Fernández-Real, X., Ros-Oton, X.: Regularity Theory for Elliptic PDE. Forthcoming book (2020)
14. Garofalo, N., Lin, F.-H.: Monotonicity properties of variational integrals, Ap weights and unique contin-

uation. Indiana Univ. Math. J. 35(2), 245–268 (1986)
15. Garnett, J., Marshall, D.: Harmonic Measure. (New Mathematical Monographs). Cambridge University

Press, Cambridge (2005)
16. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin

(1983)
17. Grüter, M., Widman, K.O.: The Green function for uniformly elliptic equations. Manuscr. Math. 37,

303–342 (1982)

123

http://arxiv.org/abs/2110.14282


  113 Page 52 of 52 J. M. Gallegos

18. Kenig, C.E., Toro, T.: Free boundary regularity for harmonic measures and Poisson kernels. Ann. Math.
150(2), 369–454 (1999)

19. Kukavica, I., Nyström, K.: Unique continuation on the boundary for Dini domains. Proc. Am. Math. Soc.
126(2), 441–446 (1998)

20. Kenig, C.E., Shen, Z.: Layer potential methods for elliptic homogenization problems. Commun. Pure
Appl. Math. 64(1), 1–44 (2011)

21. Kenig, C.E., Zhao, Z.: Boundary unique continuation on C1-Dini domains and the size of the singular
set. Arch. Ration. Mech. Anal. 245, 1–88 (2022)

22. Kenig, C.E., Zhao, Z.: Expansion of harmonic functions near the boundary of Dini domains (2021).
arXiv:2107.06324

23. Lin, F.-H.: Nodal sets of solutions of elliptic and parabolic equations. Commun. Pure Appl. Math. 44,
287–308 (1991)

24. Logunov, A.: Nodal sets of Laplace eigenfunctions: polynomial upper estimates of theHausdorffmeasure.
Ann. Math. (2) 187(1), 221–239 (2018)

25. Logunov, A.: Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower
bound in Yau’s conjecture. Ann. Math. (2) 187(1), 241–262 (2018)

26. Logunov, A., Malinnikova, E.: Lecture notes on quantitative unique continuation for solution of second
order elliptic equations (2019). arXiv:1903.10619

27. Logunov, A., Malinnikova, E.: Nodal sets of Laplace eigenfunctions: estimates of the Hausdorff measure
in dimension two and three. Oper. Theory Adv. Appl. 261, 333–344 (2018)

28. Logunov, A., Malinnikova, E., Nadirashvili, N., Nazarov, F.: The sharp upper bound for the area of the
nodal sets of Dirichlet Laplace eigenfunctions. Geom. Funct. Anal. 31(5), 1219–1244 (2021)

29. McCurdy, S.: (2019) Unique continuation on convex domains. arXiv:1907.02640
30. Naber, A., Valtorta, D.: Volume estimates on the critical sets of solutions to elliptic PDEs. Commun. Pure

Appl. Math. 70(10), 1835–1897 (2017)
31. Safonov, M.: Boundary estimates for positive solutions to second order elliptic equations. Compl. Var.

Elliptic Eq. (2008)
32. Tolsa, X.: Jump formulas for singular integrals and layer potentials on rectifiable sets. Proc. Am. Math.

Soc. 148(11), 4755–4767 (2020)
33. Tolsa, X.: Unique continuation at the boundary for harmonic functions in C1 domains and Lipschitz

domains with small constants. arXiv:2004.10721. To appear in Comm. Pure Appl. Math. (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/2107.06324
http://arxiv.org/abs/1903.10619
http://arxiv.org/abs/1907.02640
http://arxiv.org/abs/2004.10721

	Size of the zero set of solutions of elliptic PDEs near the boundary of Lipschitz domains with small Lipschitz constant
	Abstract
	1 Introduction
	1.1 Further questions
	1.2 Outline of the paper

	2 Lipschitz domains with small constant and some properties of elliptic PDEs
	2.1 Divergence form elliptic PDEs with Lipschitz coefficients
	2.2 Modifying the domain and A(x)

	3 Frequency function for solutions of elliptic PDEs in divergence form
	3.1 Frequency function centered at arbitrary points
	3.2 Auxiliar lemmas on the behavior of H(r) and N(r)

	4 Behavior of the frequency function on cubes near the boundary
	4.1 Whitney cube structure on Omega
	4.2 Lemma on the behavior of the frequency in the Whitney tree

	5 Balls without zeros near the boundary
	6 Proof of Theorems 1.1 and 1.5
	6.1 Modified frequency function
	6.2 Proof of Theorem 1.1
	6.3 Planar case of Theorem 1.1
	6.4 Estimates on the measure of nodal sets in the interior of the domain
	6.5 Proof of Theorem 1.5
	6.6 (d-1)-dimensional Hausdorff measure of Dirichlet eigenfunctions

	7 Proof of Corollary 1.6
	8 Proof of Corollary 1.8
	9 Example of domain with set of zero density of harmonic measure with small codimension
	10 Equality between S(u) and S'(u) in the Dini smooth case
	Acknowledgements
	Appendix A. Existence of non-tangential limits for nabla u
	References


