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Abstract
For s ∈ (0, 1), N > 2s, and a bounded open set � ⊂ R

N with C2 boundary, we study the
fractional Brezis–Nirenberg type minimization problem of finding

S(a) := inf

∫
RN |(−�)s/2u|2 + ∫

�
au2

(∫
�
u

2N
N−2s

) N−2s
N

,

where the infimum is taken over all functions u ∈ Hs(RN ) that vanish outside �. The
function a is assumed to be critical in the sense of Hebey and Vaugon. For low dimensions
N ∈ (2 s, 4 s), we prove that the Robin function φa satisfies inf x∈� φa(x) = 0, which
extends a result obtained by Druet for s = 1. In dimensions N ∈ (8s/3, 4s), we then study
the asymptotics of the fractional Brezis–Nirenberg energy S(a + εV ) for some V ∈ L∞(�)

as ε → 0+. We give a precise description of the blow-up profile of (almost) minimizing
sequences and characterize the concentration speed and the location of concentration points.

Mathematics Subject Classification 35R11 · 35A01 · 35A15 · 35S15 · 47G20 · 35A01

1 Introduction andmain results

Let N ∈ N and 0 < 2s < N , for some s ∈ (0, 1), and let � ⊂ R
N be a bounded open

set with C2 boundary. The goal of the present paper is to analyze the variational problem of
minimizing, for a given a ∈ C(�), the quotient functional
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Sa[u] :=
∫
RN |(−�)s/2u|2 dy + ∫

�
a(y)u(y)2 dy

‖u‖2
L

2N
N−2s (�)

(1.1)

over functions in the space

H̃ s(�) :=
{
u ∈ Hs(RN ) : u ≡ 0 on R

N \ �
}

, (1.2)

where u ∈ Hs(RN ) iff

‖u‖L2(RN ) +
(∫

RN
|(−�)s/2u|2 dy

)1/2

< ∞, (1.3)

and the fractional Laplacian operator (−�)su is defined for any u ∈ Hs(RN ) through the
Fourier representation

(−�)su = F−1(|ξ |2sFu). (1.4)

We also recall the singular integral representation of the fractional Laplacian (see [12, 26]):

(−�)su(x) := CN ,s P.V .

∫

RN

u(x) − u(y)

|x − y|N+2s dy, (1.5)

where

CN ,s := s22s�
( N+2s

2

)

πN/2�(1 − s)
. (1.6)

The associated infimum,

S(a) := inf
{
Sa[u] : u ∈ H̃ s(�)

}
, (1.7)

is to be compared with the number S := SN ,s := S(0), which is equal to the best constant in
the fractional Sobolev embedding

∫

RN
|(−�)s/2u|2 dy ≥ S‖u‖2

L
2N

N−2s (RN )
, (1.8)

given by

SN ,s := 22sπ s �
( N+2s

2

)

�
( N−2s

2

)

(
�(N/2)

�(N )

)2s/N

, (1.9)

where �(x) := ∫∞
0 t x−1e−t dt denotes the Euler Gamma function.

We note that the embedding H̃ s(�) ↪→ L p+1(�) and the associated best constant are
in fact independent of � and equal to the best full-space Sobolev constant SN ,s . This fol-
lows, e.g., from the computations in [42]. An alternative proof of this fact is provided by
Theorem 2.1 below.

In the classical case s = 1, problem (1.7) has been first studied in the famous paper [10] by
Brezis and Nirenberg, who were interested in obtaining positive solutions to the associated
elliptic equation. One of the main findings in that paper is that the behavior of (1.7) depends
on the space dimension N in a rather striking way. Indeed, when N ≥ 4, then S(a) < S if and
only if a(x) < 0 for some x ∈ �. On the other hand, when N = 3, then S(a) = S whenever
‖a‖∞ is small enough, leaving open the question of characterizing the cases S(a) < S in
terms of a. In [20], Druet proved that, for N = 3, the following equivalence holds:

S(a) < S ⇐⇒ φa(x) < 0 for some x ∈ �, (1.10)
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where φa(x) denotes the Robin function associated to a (see (1.11) below). This answered
positively a conjecture previously formulated by Brezis in [9].

For a fractional power s ∈ (0, 1) and assuming a = −λ for some constant λ > 0,
Brezis–Nirenberg type results have been obtained by Servadei and Valdinoci:

(i) In [42], they proved that, for N ≥ 4s, S(−λ) < S whenever λ > 0;
(ii) In [40], they proved that, for 2s < N < 4s, there is λs ∈ (0, λ1,s) (where λ1,s is the first

Dirichlet eigenvalue of (−�)s) such that for every λ ∈ (λs, λ1,s), one has S(−λ) < S.

In this paper, we shall exclusively be concerned with the low-dimensional range 2s <

N < 4s. This is the natural replacement of the classical case N = 3, s = 1, as indicated by
the results above. One may also notice that when 2s < N , the Green’s function for (−�)s on
R

N behaves like G(x, y) ∼ |x − y|−N+2s near the diagonal and thus fails to be in L2
loc(R

N )

precisely if N ≤ 4s, compare [31].
A central notion to what follows is that of a critical function a, which was introduced by

Hebey and Vaugon in [30] for s = 1 and readily generalizes to the fractional setting. Indeed,
the following definition is naturally suggested by the behavior of S(a) just described.

Definition 1.1 (Critical function) Let a ∈ C(�). We say that a is critical if S(a) = S and
S(ã) < S(a) for every ã ∈ C(�) with ã ≤ a and ã 
≡ a.

When N ≥ 4s, the result of [42] implies that the only critical potential is a ≡ 0. For this
case, or more generally for N > 2s with a ≡ 0, the recent literature is rather rich in refined
results going beyond [42]. Notably, in [15, 16], the authors proved the fractional counterpart
of some conjectures by Brezis and Peletier [11] concerning the blow-up asymptotics of
minimizers to the problem S(−ε) and a related problem with subcritical exponent p − ε

as ε → 0. For the fractional subcritical problem, we also mention the result on Gamma
convergence from [36]. In the classical case s = 1, such results are due to Han [29] and Rey
[37, 38]. Corresponding existence results, also for non-minimizing multi-bubble solutions,
are also given in [15, 16], as well as in [18, 28].

In contrast to this, in the more challenging setting of dimension 2s < N < 4s, critical
functions can have all possible shapes and are necessarily non-zero, compare [20] and Corol-
lary 1.3 below. In this setting, and notably in the presence of a critical function, results of
Han–Rey type as just discussed are much more scarce in the literature. Even in the local case
s = 1 and N = 3, the conjecture of Brezis and Peletier (see [11, Conjecture 3.(ii)]) which
involves a (constant) critical function has only been proved recently in [24]. The purpose of
the present paper is to treat the analogous question for low dimensions 2s < N < 4s in the
fractional setting.

1.1 Main results

For all of our results, a crucial role is played by the Green’s function of (−�)s + a, which
we introduce now. For a function a ∈ C(�) such that (−�)s + a is coercive, i.e.

∫

RN
|(−�)s/2v|2 dy +

∫

�

av2 dy ≥ c
∫

RN
|(−�)s/2v|2 dy

for some c > 0, we define Ga : � × R
N → R as the unique function such that for every

fixed x ∈ �
{

((−�)s + a)Ga(x, ·) = γN ,sδx in �,

Ga(x, ·) = 0 on RN \ �.
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Here, we set γN ,s = 22 sπN/2�(s)
�( N−2 s

2 )
, so that (−�)s |y|−N+2 s = γN ,sδ0 onRN . Thus, this choice

of γN ,s ensures that we can writeGa as a sum of its singular part and its regular part Ha(x, y)
as follows:

Ga(x, y) = 1

|x − y|N−2s − Ha(x, y).

The function Ha is continuous up to the diagonal, see e.g. Lemma A.3. Therefore, we may
define the Robin function

φa(x) := Ha(x, x), x ∈ �. (1.11)

We prove several properties of the Green’s functions Ga in Appendix A.
Our first main result is the following extension of Druet’s theorem from [20] to the

fractional case.

Theorem 1.2 (Characterization of criticality) Let 2s < N < 4s and let a ∈ C(�) be such
that (−�)s + a is coercive. The following properties are equivalent.

(i) There is x ∈ � such that φa(x) < 0.
(ii) S(a) < S.
(iii) S(a) is achieved by some function u ∈ H̃ s(�).

As an immediate corollary, we can characterize critical functions in terms of their Robin
function.

Corollary 1.3 Let a be critical. Then inf x∈� φa(x) = 0.

The implications (i) ⇒ (i i) and (i i) ⇒ (i i i) in Theorem 1.2 are well-known: indeed,
(i) ⇒ (i i) easily follows by the proper choice of test functions thanks to Theorem 2.1 below;
the implication (i i) ⇒ (i i i) is the fractional version of the seminal observation in [10] (see
[42, Theorem 2]).

Our proof of (i i i) ⇒ (i i) is the content of Proposition 3.1 below and follows [20, Step
1]. The most involved proof is that of the implication (i i) ⇒ (i), which we give in Sect. 4.
We adapt the strategy developed by Esposito in [22], who gave an alternative proof of that
implication for s = 1. His approach is based on an expansion of the energy functional
Sa−ε[uε] as ε → 0, where a is critical as in Definition 1.1 and uε is a minimizer of S(a− ε).

In fact, by using the techniques applied in the recent work [25] for s = 1, we are even able
to push this expansion of Sa−ε[uε] further by one order of ε and derive precise asymptotics
of the energy S(a − ε) and of the sequence (uε).

To give a precise statement of our results, let us fix some more assumptions and notations.
We denote the zero set of the Robin function φa by

Na := {x ∈ � : φa(x) = 0}.
It follows from Theorem 1.2 that inf� φa(x) = 0 if and only if a is critical. In particular,Na

is not empty if a is critical.
We will consider perturbations of a of the form a + εV , with non-constant V ∈ L∞(�).

For such V , following [25], we let

QV (x) :=
∫

�

V (y)Ga(x, y)
2 dy

and

Na(V ) := {x ∈ Na : QV (x) < 0}.
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Finally, we shall assume that � has C2 boundary and that

a ∈ C(�̄) ∩ C1(�), a(x) < 0 for all x ∈ Na . (1.12)

By Corollary 2.2, we have a priori that a(x) ≤ 0 on Na . Also, (1.12) is clearly satisfied
for the canonical case of a being constant, since a critical forces a < 0 in that case. In this
sense we may say that assumption (1.12) is not severe. The C2 assumption on � ensures
that the concentration point x0 of uε does not lie on the boundary; see Proposition 3.6 and
Lemma A.1 below.

We point out that with our methods we are able to prove the following theorems only
for the restricted dimensional range 8

3 s < N < 4s, which enters in Sect. 5. We discuss this
assumption in some more detail after the statement of Theorem 1.6 below.

The following theorem describes the asymptotics of the perturbed minimal energy S(a +
εV ) as ε → 0+. It shows, in particular, the non-obvious fact that the condition Na(V ) 
= ∅
is sufficient to have S(a + εV ) < S.

Theorem 1.4 (Energy asymptotics) Let 83 s < N < 4s. Let us assume thatNa(V ) 
= ∅. Then,
S(a + εV ) < S for all ε > 0 and

lim
ε→0+

S(a + εV ) − S

ε
2s

4s−N

= σN ,s sup
x∈Na(V )

|QV (x)| 2s
4s−N

|a(x)| N−2s
4s−N

,

where σN ,s > 0 is a dimensional constant given explicitly by

σN ,s = A
− N−2s

N
N ,s

(
αN ,s + cN ,sdN ,sbN ,s

)− N−2s
4s−N

(
N − 2s

2s

) 2s
4s−N 4s − N

N − 2s
.

The constants AN ,s , αN ,s , cN ,s , dN ,s , and bN ,s are given explicitly in Lemma B.5 below.

On the other hand, whenNa(V ) = ∅, the next theorem shows that the asymptotics become
trivial provided QV > 0 onNa . Only in the case when minNa QV = 0 we do not obtain the
precise leading term of S(a + εV ) − S.

Theorem 1.5 (Energy asymptotics, degenerate case) Let 8
3 s < N < 4 s. Let us assume that

Na(V ) = ∅. Then S(a + εV ) = S + o(ε2) as ε → 0+. If, in addition, QV (x) > 0 for all
x ∈ Na then S(a + εV ) = S for sufficiently small ε > 0.

For a potential V such that Na(V ) 
= ∅, and thus S(a + εV ) < S by Theorem 1.4, a
minimizer uε of S(a + εV ) exists by Theorem 1.2. We now turn to studying the asymptotic
behavior of the sequence (uε). In fact, since our methods are purely variational, we do not
need to require that the uε satisfy a corresponding equation and we can equally well treat a
sequence of almost minimizers in the sense of (1.17) below.

Since the functional Sa is merely a perturbation of the standard Sobolev quotient func-
tional, it is not surprising that, to leading order, the sequence uε approaches the family of
functions

Ux,λ(y) =
(

λ

1 + λ2|x − y|2
) N−2s

2

, x ∈ R
N , λ > 0. (1.13)

The Ux,λ are precisely the optimizers of the fractional Sobolev inequality on RN

‖(−�)s/2u‖2L2(RN )
≥ SN ,s‖u‖2

L
2N

N−2s (RN )
. (1.14)

123



  114 Page 6 of 52 N. De Nitti, T. König

and satisfy the equation

(−�)sUx,λ(y) = cN ,sUx,λ(y)
N+2s
N−2s (1.15)

with cN ,s > 0 given explicitly in Lemma B.5.
Since we are working on the bounded set �, the first refinement of the approximation

consists in ‘projecting’ the functionsUx,λ to H̃ s(�). That is, we consider the unique function
PUx,λ ∈ H̃ s(�) satisfying

{
(−�)s PUx,λ = (−�)sUx,λ in �,

PUx,λ = 0 on RN \ �
(1.16)

in the weak sense, that is,
∫

RN
(−�)s/2PUx,λ(−�)s/2η dy =

∫

RN
(−�)sUx,λη dy = cN ,s

∫

�

U
N+2s
N−2s
x,λ η dy

for every η ∈ H̃ s(�).
Finally, we introduce the space

Tx,λ = span
{
PUx,λ, ∂λPUx,λ, {∂xi PUx,λ}Ni=1

}
⊂ H̃ s(�)

and denote by T⊥
x,λ ⊂ H̃ s(�) its orthogonal complement in H̃ s(�) with respect to the scalar

product (u, v) := ∫
RN (−�)s/2u(−�)s/2v dy. Moreover, let us denote by �x,λ and �⊥

x,λ

the projections onto Tx,λ and T⊥
x,λ respectively.

Then we have the following result.

Theorem 1.6 (Concentration of almost-minimizers) Let 8
3 s < N < 4 s. Suppose that (uε) ⊂

H̃ s(�) is a sequence such that

lim
ε→0

Sa+εV [uε] − S(a + εV )

S − S(a + εV )
= 0 and

∫

�

u p
ε dy =

∫

RN
U p
0,1 dy. (1.17)

Then there exist sequences (xε) ⊂ �, (λε) ⊂ (0,∞), (wε) ⊂ T⊥
xε,λε

, and (αε) ⊂ R such
that, up to extraction of a subsequence,

uε = αε

(
PUxε,λε + λ− N−2s

2 �⊥
xε,λε

(H0(xε, ·) − Ha(xε, ·)) + rε
)

. (1.18)

Moreover, as ε → 0, we have

xε → x0 for some x0 ∈ Na(V ) such that
|QV (x0)| 2s

4s−N

|a(x0)| N−2s
4s−N

= sup
y∈Na(V )

|QV (y)| 2s
4s−N

|a(y)| N−2s
4s−N

,

φa(xε) = o(ε),

lim
ε→0

ε
1

4s−N λε =
(
2s(αN ,s + cN ,sdN ,sbN ,s)|a(x0)|

(N − 2s)|QV (x0)|
) 1

4s−N

,

αε = ξ + O
(
ε

N−2s
4s−N

)
for some ξ ∈ {±1}.

Finally, rε ∈ T⊥
xε,λε

and ‖(−�)
s
2 r‖2

L2(RN )
= o

(
ε

2 s
4 s−N

)
.

The constants αN ,s , cN ,s , dN ,s , and bN ,s are given explicitly in Lemma B.5.
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Remark 1.7 Since a is critical and φa(x0) = 0, x0 is in particular a global minimum of φa .
Thus, we obtain the commonly found necessary condition ∇φa(x0) = 0, provided that φa

is differentiable. We strongly expect this to be the case for smooth enough a, with a proof
along the lines of Lemma A.3 (see also [24, Sect. B.2]), but prefer to not go into these details
here.

Theorem 1.6 should be seen as the low-dimensional counterpart of [16, Theorems 1.1
and 1.2], which concerns N > 4s. The decisive additional complication to be overcome in
our case is the presence of a non-zero critical function a. More concretely, the coefficient
φa(x) of the subleading term of the energy expansion vanishes due to criticality of a (compare
Theorem 2.1 and Lemma 5.5). As a consequence, it is only after further refining the expansion
that we are able to conclude the desired information about the concentration behavior of the
sequence uε.

In the same vein, the energy expansions from Theorem 1.4 are harder to obtain than their
analogues in higher dimensions N ≥ 4 s. Indeed, for N > 4s we have

S(εV ) = SN ,s − c̃N ,s sup
{x∈�: V (x)<0}

φ0(x)
− 2s

N−4s |V (x)| N−2s
N−4s ε

N−2s
N−4s + o

(
ε

N−2s
N−4s

)
, (1.19)

where c̃N ,s > 0 is some dimensional constant. In this case, a sharp upper bound on S(εV )

can already be derived from testing SεV against the family of functions PUx,λ. In contrast,
for 2s < N < 4s this family needs to be modified by a lower order term in order give the
sharp upper bound for Theorem 1.4 (see (2.1) and Theorem 2.1 below). For details of the
computations in case N ≥ 4s, we refer to the forthcoming work [19]. It is noteworthy that
the auxiliary minimization problem giving the subleading coefficient in (1.19) is local in V
in the sense that it only involves the pointwise value V (x), whereas that of Theorem 1.4
contains the non-local quantity QV .

Let us now describe in more detail the approach we use in the proofs of Theorems 1.4,
1.5 and 1.6, which are, in fact, intimately linked. Firstly, the family of functions ψx,λ defined
in (2.1) below yields an upper bound for S(a + εV ), which will turn out to be sharp. The
strategy we use to prove the corresponding lower bound on Sa+εV [uε], for a sequence (uε)

as in (1.17), can be traced back at least to work of Rey [37, 38] and Bahri–Coron [3] on
the classical Brezis–Nirenberg problem for s = 1; it was adapted to treat problems with
a critical potential a when s = 1, N = 3 in [22] and, more recently, in [24, 25]. This
strategy features two characteristic steps, namely (i) supplementing the initial asymptotic
expansion uε = αε(PUxε,λε + wε), obtained by a concentration-compactness argument, by
the orthogonality condition wε ∈ T⊥

xε,λε
and (ii) using a certain coercivity inequality, valid

for functions in T⊥
xε,λε

, to improve the bound on the remainder wε. The basic instance of this
strategy is carried out in Sect. 3. Indeed, after performing steps (i) and (ii), in Proposition 3.6
below we are able to exclude concentration near ∂� and obtain a quantitative bound on
wε = α−1

ε uε − PUxε,λε . As in and [23, 37], this piece of information is enough to arrive at
(1.19) and similar conclusions when N > 4s; see the forthcoming paper [19] for details.

On the other hand, when 2s < N < 4s, the bound that Proposition 3.6 provides for the
modified difference uε − ψxε,λε is still insufficient. For s = 1, it was however observed in
[25] that one can refine the expansion of uε by reiterating steps (i) and (ii). Here, we carry out
their strategy in a streamlined version (compare Remark 5.1) and for fractional s ∈ (0, 1).
That is, one writes wε = ψxε,λε − PUxε,λε + qε, decomposes qε = tε + rε with rε ∈ T⊥

xε,λε

and applies the coercivity inequality a second time. We are able to conclude as long as the
technical condition 8s/3 < N is met (which is equivalent to λ−3N+6s = o(λ−2s)). Indeed,
in that case the leading contributions of tε to the energy, which enter to orders λ−N+2s and

123
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λ−2N+4s , cancel precisely; see Lemma 5.8. If 8s/3 ≤ N , a plethora of additional terms in
tε , which contribute to orders λ−k(N−2 s) with 3 ≤ k ≤ 2 s

N−2 s , will become relevant, and we
were not able to treat those in a systemized way. It is natural to expect that the cancellation
phenomenon that occurs for k = 1, 2 still persists for k ≥ 3. This would allow to prove
Theorems 1.4, 1.5, and 1.6 for general N > 2s. For further details of the argument and the
difficulties just discussed, we refer to Sect. 5.

One may note that the method of proof just described makes no use of two common
techniques used to treat similar fractional-order problems. Firstly, we do not employ the
extension formulation for (−�)s due to either [14] for the restricted or to [13, 44] for the
spectral fractional Laplacian, differently from, e.g., [5, 15, 16, 18, 28]. Secondly, using the
properties of PUx,λ (as given in Lemma A.2) we avoid lengthy calculations with singular
integrals, appearing e.g. in [42], while at the same time optimizing the cutoff procedure
with respect to [42]. We do use the singular integral formulation of (−�)s in the proof of
Proposition 3.1, but not in the main line of the asymptotic analysis argument.

To conclude this introduction, let us mention that several works in the literature (see [5,
7, 45]) treat the problem corresponding to (1.7) for a different notion of Dirichlet boundary
conditions for (−�)s on �, namely the spectral fractional Laplacian, defined by classical
spectral theory using the L2(�)-ONB of Dirichlet eigenfunctions for−�. In contrast to this,
the notion of (−�)s we use in this paper, as defined in (1.4) or (1.5) on H̃ s(�) given by
(1.2), usually goes in the literature by the name of restricted fractional Laplacian. A nice
discussion of these two operators, as well as a method of unified treatment for both, can be
found in [18] (see also [41]).

1.2 Further perspectives

As far as we know, the role of the threshold configurations given by k(N − 2s) = 2s for
k ≥ 1 in the fractional Brezis–Nirenberg problem (1.7) has only been investigated in the
literature for k = 1 corresponding to N = 4s, below which the problem is known to behave
differently by the results quoted above. It would be exciting to exhibit some similar, possibly
refined, qualitative change in the behavior of (1.7) at one or each of the following thresholds
N = 3s, N = 8s/3, N = 10s/4, etc.

For the fractional Brezis-Nirenberg problem in general, and the low-dimensional range
2s < N < 4s, many intriguing questions around the blow-up analysis remain open. For
instance, one may consider PDE solutions (uε) which are not necessarily energy-minizing
and even possibly admit several concentration points, as done for s = 1 in [4, 32].

Another possible extension includes the case of higher-order derivatives s > 1, for which
themaximumprinciplemay fail and additional boundary conditions need to be supplemented.
For instance, to the best of our knowledge, even for s = 2 the analogue of Theorem 1.2 is
not known (we refer to [27, Chapters 7.5–7.9] for some polyharmonic problems with critical
growth). Finally, it could be of interest to study the limit case 2s = N corresponding to the
Moser–Trudinger inequality, see [21] for a very general blow-up result in this case when
s = 1.

1.3 Notation

We will often abbreviate the fractional critical Sobolev exponent by p := 2N
N−2s . For any

q ≥ 1, we abbreviate ‖ · ‖q := ‖ · ‖Lq (RN ). When q = 2, we sometimes write ‖ · ‖ := ‖ · ‖2.
Unless stated otherwise, we shall always assume s ∈ (0, 1) and N ∈ (2 s, 4 s).
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For x ∈ �, we use the shorthand d(x) = dist(x, ∂�).
For a set M and functions f , g : M → R+, we shall write f (m) � g(m) if there exists a

constantC > 0, independent ofm, such that f (m) ≤ Cg(m) for allm ∈ M , and accordingly
for �. If f � g and g � f , we write f ∼ g.

The various constants appearing throughout the paper and their numerical values are
collected in Lemma B.5 in the Appendix.

2 Proof of the upper bound

The following theorem gives the asymptotics of Sa+εV [ψx,λ], for the test function
ψx,λ(y) := PUx,λ(y) − λ− N−2s

2 (Ha(x, y) − H0(x, y)) (2.1)

as λ → ∞.

Theorem 2.1 (Expansion of Sa+εV [ψx,λ]) As λ → ∞, uniformly for x in compact subsets
of � and for ε ≥ 0,

‖(−�)s/2ψx,λ‖22 +
∫

�

(a + εV )ψ2
x,λ dy

= cN ,s AN ,s − cN ,saN ,sφa(x)λ
−N+2s

+ (cN ,sdN ,sbN ,s − αN ,s)a(x)λ−2s + ελ−N+2s QV (x) + o(λ−2s) + o(ελ−N+2s)

(2.2)

and
∫

�

ψ
p
x,λ dy = AN ,s − paN ,sφa(x)λ

−N+2s + T1(φa(x), λ) + pdN ,sbN ,sa(x)λ−2s + o(λ−2s).

(2.3)

In particular,

Sa+εV [ψx,λ] = S + A
− N−2s

N
N ,s

[
aN ,scN ,sφa(x)λ

−N+2s + T2(φa(x), λ)

− a(x)λ−2s(αN ,s + cN ,sdN ,sbN ,s)

+ ελ−N+2s QV (x)
]

+ o(λ−2s) + o(ελ−N+2s). (2.4)

Here, Ti (φ, λ) are (possibly empty) sums of the form

Ti (φ, λ) :=
K∑

k=2

γi (k)φ
kλ−k(N−2s) (2.5)

for suitable coefficients γi (k) ∈ R, where K = � 2 s
N−2 s � is the largest integer less than or

equal to 2s
N−2s .

Theorem 2.1 is valid irrespective of the criticality of a. The following corollary states two
consequences of Theorem 2.1, which concern in particular critical potentials.

Corollary 2.2 (Properties of critical potentials)

(i) If S(a) = S, then φa(x) ≥ 0 for all x ∈ �.
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(ii) If S(a) = S and φa(x) = 0 for some x ∈ �, then a(x) ≤ 0.

Proof Both statements follow from Theorem 2.1 applied with ε = 0. Indeed, suppose that
either φa(x) < 0 or φa(x) = 0 < a(x) for some x ∈ �. In both cases, (2.4) gives S(a) ≤
Sa[ψx,λ] < S for λ > 0 large enough, contradiction. ��

Based on Theorem 2.1, we can now derive the following upper bound for S(a + εV )

provided that Na(V ) is not empty.

Corollary 2.3 Suppose thatNa(V ) 
= ∅. Then S(a+εV ) < S for all ε > 0 and, as ε → 0+,

S(a + εV ) ≤ S − σN ,s sup
x∈Na(V )

|QV (x)| 2s
4s−N

|a(x)| N−2s
4s−N

ε
2s

4s−N + o
(
ε

2s
4s−N

)
, (2.6)

where

σN ,s = A
− N−2s

N
N ,s

(
αN ,s + cN ,sdN ,sbN ,s

)− N−2s
4s−N

(
N − 2s

2s

) 2s
4s−N 4s − N

N − 2s
. (2.7)

Proof Let us fix ε > 0 and x ∈ Na(V ). Then, by (2.4),

S(a + εV ) ≤ Sa+εV [ψx,λ] (2.8)

= S + A
− N−2s

N
N ,s

(−(a(x) + o(1))λ−2s(αN ,s + cN ,sdN ,sbN ,s)

+ελ−N+2s(QV (x) + o(1))
)

. (2.9)

Wefirst optimize the right side overλ > 0. Since Aε := (−a(x)+o(1))(αN ,s+cN ,sdN ,sbN ,s)

and Bε := −QV (x) + o(1), are strictly positive by our assumptions, we are in the situation

of Lemma B.6. Picking λ = λ0(ε) given by (B.5), we have o(λ−2s) = o(ε
2s

4s−N ). Thus, by
(B.6), we get, as ε → 0+,

S(a + εV ) ≤ S − ε
2s

4s−N
|QV (x)| 2s

4s−N

|a(x)| N−2s
4s−N

A
− N−2s

N
N ,s

(
αN ,s + cN ,sdN ,sbN ,s

)− N−2s
4s−N

(
N − 2s

2s

) 2s
4s−N 4s − N

N − 2s

+ o(ε
2s

4s−N ).

Optimizing over x ∈ Na(V ) completes the proof of (2.6). In particular, S(a + εV ) < S for
small enough ε > 0. Since S(a + εV ) is a concave function of ε (being the infimum over u
of functions Sa+εV [u] which are linear in ε) and S(a) = S, this implies that S(a + εV ) < S
for every ε > 0. ��
Proof of Theorem 2.1 Step 1: Expansion of the numerator.Since (−�)s Ha(x, ·) = aGa(x, ·),
the function ψx,λ satisfies

(−�)sψx,λ = cN ,sU
p−1
x,λ − λ− N−2s

2 aGa(x, ·).
Therefore, recalling Lemma A.2,

‖(−�)s/2ψx,λ‖22 =
∫

�

ψx,λ(y)(−�)sψx,λ(y) dy
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=
∫

�

(
Ux,λ − λ− N−2s

2 Ha(x, ·) − fx,λ
) (

cN ,sU
p−1
x,λ − λ− N−2s

2 aGa(x, ·)
)
dy

= cN ,s

∫

�

U p
x,λ dy − cN ,sλ

− N−2s
2

∫

�

U p−1
x,λ Ha(x, ·) dy

− λ− N−2s
2

∫

�

aGa(x, ·)
(
U − λ− N−2s

2 Ha(x, ·)
)
dy

−
∫

�

fx,λ
(
cN ,sU

p−1
x,λ − λ− N−2s

2 aGa(x, ·)
)
dy.

We now treat the four terms on the right side separately.
A simple computation shows that

∫
RN \Bd(x)(x)

U p
x,λ dy = O(λ−N ). Thus the first term is

given by

cN ,s

∫

�

U p
x,λ dy = cN ,s

(∫

RN
U p
0,1 dy

)

+ O(λ−N ) = cN ,s AN ,s + o(λ−2s).

The second term is, by Lemma A.4,

−cN ,sλ
− N−2s

2

∫

�

U p−1
x,λ Ha(x, ·) dy = −cN ,saN ,sφa(x)λ

−N+2s + cN ,sdN ,sbN ,sa(x)λ−2s + o(λ−2s).

The third term will be combined with a term coming from
∫
�
(a + εV )ψ2

x,λ dy, see below.

The fourth term can be bounded, by Lemma B.1 and recalling ‖ fx,λ‖∞ � λ− N+4−2s
2 from

Lemma A.2, by
∣
∣
∣
∣

∫

�

fx,λ
(
cN ,sU

p−1
x,λ − λ− N−2s

2 aGa(x, ·)
)
dy

∣
∣
∣
∣ � ‖ fx,λ‖∞

(
‖Ux,λ‖p−1

p−1 + λ− N−2s
2

)

� λ−N−2+2s = o(λ−2s).

Now we treat the potential term. We have
∫

�

(a + εV )ψ2
x,λ dy =

∫

�

(a + εV )
(
Ux,λ − λ− N−2s

2 Ha(x, ·) − fx,λ
)2

dy

=
∫

�

(a + εV )
(
Ux,λ − λ− N−2s

2 Ha(x, ·)
)2

dy

− 2
∫

�

(a + εV ) fx,λ
(
Ux,λ − λ− N−2s

2 Ha(x, ·)
)
dy +

∫

�

(a + εV ) f 2x,λ dy.

Similarly to the computations above, the terms containing fx,λ are bounded by
∣
∣
∣
∣

∫

�

(a + εV ) fx,λ
(
Ux,λ − λ− N−2s

2 Ha(x, ·)
)
dy

∣
∣
∣
∣ � ‖ fx,λ‖∞

(
‖Ux,λ‖1 − λ− N−2s

2

)

� λ−N−2+2s = o
(
λ−2s)

and
∣
∣
∣
∣

∫

�

(a + εV ) f 2x,λ dy

∣
∣
∣
∣ � ‖ fx,λ‖2∞ � λ−N−4+2s = o

(
λ−2s) .

Finally, we combine the main term with the third term in the expansion of ‖(−�)s/2ψx,λ‖22
from above. Recalling that

Ux,λ − λ− N−2s
2 Ha(x, ·) − λ− N−2s

2 Ga(x, ·) = Ux,λ − λ− N−2s
2 |x − y|−N+2s

= −λ
N−2s
2 h(λ(x − y)) (2.10)
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with h as in Lemma B.3, we get

− λ− N−2s
2

∫

�

aGa(x, ·)
(
Ux,λ − λ− N−2s

2 Ha(x, ·)
)
dy +

∫

�

(a + εV )
(
Ux,λ − λ− N−2s

2 Ha(x, ·)
)2

dy

= −
∫

�

a
(
Ux,λ − λ− N−2s

2 Ha(x, ·)
)

λ
N−2s
2 h(λ(x − y)) dy + ε

∫

�

V
(
Ux,λ − λ− N−2s

2 Ha(x, ·)
)2

dy.

Since
∫

�

aHa(x, ·)h(λ(x − y)) dy � λ−N‖h‖L1(RN ) = o(λ−2s),

by Lemma B.4, we have

−
∫

�

a
(
Ux,λ − λ− N−2s

2 Ha(x, ·)
)

λ
N−2s
2 h(λ(x − y)) dy = −αN ,sλ

−2sa(x) + o(λ−2s).

Moreover, again by (2.10), and using the fact that h ∈ L2(RN ) by Lemma B.3,

ε

∫

�

V
(
U − λ− N−2s

2 Ha(x, ·)
)2

= ελ−N+2s
∫

�

VGa(x, ·)2 dy − 2ε
∫

�

VGa(x, ·)h(λ(x − y)) dy

+ ελN−2s
∫

�

Vh(λ(x − y))2 dy

with

ε

∫

�

VGa(x, ·)h(λ(x − y)) dy � ελ−N/2‖Ga(x, ·)‖2‖h‖2 = o
(
ελ−N+2s

)

and

ελN−2s
∫

�

Vh(λ(x − y))2 dy � ελ−2s‖h‖22 = o
(
ελ−N+2s

)
.

This completes the proof of the claimed expansion (2.2).
Step 2: Expansion of the denominator. Recall p = 2N

N−2 s . Firstly, writing ψx,λ = Ux,λ −
λ− N−2s

2 Ha(x, ·) − fx,λ, we have
∫

�

ψ
p
x,λ dy =

∫

�

(
Ux,λ − λ− N−2s

2 Ha(x, ·)
)p

dy

+O
(
‖Ux,λ − λ− N−2s

2 Ha(x, ·)‖p−1
p−1‖ fx,λ‖∞ + ‖ fx,λ‖p∞

)
.

Using Lemma B.1 and the bound ‖ fx,λ‖∞ � λ− N+4−2 s
2 , we deduce that the remainder term

is o(λ−2s). To evaluate the main term, from Taylor’s formula for t �→ t p , we have

(a + b)p = a p − pa p−1b +
K∑

k=2

(
p

k

)

a p−kbk + O
(
a p−K−1|b|K+1 + |b|p

)
.

Here,
(p
k

) := �(p+1)
�(p−k+1)�(k+1) is the generalized binomial coefficient and K = � 2 s

N−2 s � as in
the statement of the theorem. Applying this with a = Ux,λ(y) and b = −λ− N−2s

2 Ha(x, ·),
we find

∫

�

(Ux,λ − λ− N−2s
2 Ha(x, ·))p dy
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=
∫

�

U p
x,λ dy − pλ− N−2s

2

∫

�

U p−1
x,λ Ha(x, ·) dy

+ O
(

λ−N+2s
∫

�

U p−2
x,λ Ha(x, ·)2 dy

)

+ O
(

λ−N
∫

�

Ha(x, ·)p dy
)

.

By Lemma A.4, the claimed expansion (2.3) follows.
Step 3: Expansion of the quotient. For α = 2/p ∈ (0, 1), and fixed a > 0, we again use

the Taylor expansion

(a + b)−α = a−α − αa−α−1b +
K∑

k=2

(−α

k

)

a−α−kbk + O(bK+1).

ByStep 2, wemay apply this with a = AN ,s and b = −paN ,sφa(x)λ−N+2 s+T1(φa(x), λ)+
pdN ,sbN ,sa(x)λ−2 s + o(λ−2 s). Since b = O(λ−N+2 s) and K + 1 > 2 s

N−2 s , we have

O(bK+1) = o(λ−2s) and thus
(∫

�

ψ
p
x,λ dy

)−2/p

= A
− N−2s

N
N ,s + A

− 2(N−s)
N

N ,s

(
2aN ,sφa(x)λ

−N+2s − 2dN ,sbN ,sa(x)λ−2s
)

(2.11)

+ T3(φa(x), λ) + o(λ−2s) (2.12)

for some term T3(φ, λ) as in (2.5). Multiplying this expansion with (2.2), we obtain

Sa+εV [ψx,λ] = cn,s A
2s
N
N ,s + A

− N−2s
N

N ,s

[
aN ,scN ,sφa(x)λ

−N+2s + T2(φa(x), λ)

− a(x)λ−2s(αN ,s + cN ,sdN ,sbN ,s) + ελ−N+2s QV (x)
]

+ o(λ−2s) + o(ελ−N+2s).

By integrating the equation (−�)sU0,1 = cN ,sU
p−1
0,1 and using the fact that U0,1 mini-

mizes the Sobolev quotient on R
N (or by a computation on the numerical values of the

constants given in Lemma B.5), we have cN ,s A
2s
N
N ,s = S. Hence, this is the expansion claimed

in (2.4). ��

3 Proof of the lower bound I: a first expansion

3.1 Non-existence of aminimizer for S(a)

In this section, we prove that for a critical potential a, the infimum S(a) is not attained. As we
will see in Sect. 3.2, this implies the important basic fact that the minimizers for S(a + εV )

must blow up as ε → 0.
The following is the main result of this section.

Proposition 3.1 (Non-existence of a minimizer for S(a)) Suppose that a ∈ C(�) is a critical
potential. Then

S(a) = inf
u∈H̃ s (�),u 
≡0

∫
�

|(−�)s/2u|2 dy + ∫
�
au2 dy

‖u‖2 2N
N−2s

is not achieved.
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For s = 1, Proposition 3.1 was proved by Druet [20] and we follow his strategy. The
feature that makes the generalization of [20] to s ∈ (0, 1) not completely straightforward is
its use of the product rule for ordinary derivatives. Instead, we shall use the identity

(−�)s(uv) = u(−�)sv + v(−�)su − Is(u, v), (3.1)

where

Is(u, v)(x) := CN ,s P.V .

∫

RN

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s dy

with CN ,s as in (1.6). While the relation (3.1) can be verified by a simple computation (see
e.g. [26, Lemma 20.2]), it leads tomore complicated terms than those arising inDruet’s proof.
To be more precise, the term

∫
�
u2|∇ϕ|2 from [20] is replaced by the term I(ϕ) defined in

(3.6), which is more involved to evaluate for the right choice of ϕ.

Proof of Proposition 3.1 For the sake of finding a contradiction, we suppose that there exists
u which achieves S(a), normalized so that

∫

�

u
2N

N−2s dy = 1. (3.2)

Then u satisfies the equation

(−�)su + au = Su
N−2s
N−2s (3.3)

with Lagrange multiplier S = SN ,s equal to the Sobolev constant. Indeed, this value is
determined by integrating the equation against u and using (3.2).

Since S(a) = S, we have, for everyϕ ∈ C∞(RN ) and ε > 0, and abbreviating p = 2N
N−2s ,

S

(∫

�

(u(1 + εϕ))p dy

) 2
p ≤

∫

RN
|(−�)s/2 (u(1 + εϕ)) |2 dy +

∫

�

au2(1 + εϕ)2 dy.

(3.4)

We shall expand both sides of (3.4) in powers of ε. For the left side, a simple Taylor expansion
together with (3.2) gives

(∫

�

(u(1 + εϕ))p dy

) 2
p

= 1 + 2ε
∫

�

u pϕ dy + ε2

(

(p − 1)
∫

�

u pϕ2 dy − (p − 2)

(∫

�

u pϕ dy

)2
)

+ o(ε2).

(3.5)

Expanding the right side is harder and we need to invoke the fractional product rule (3.1).
Firstly, integrating by parts, we have

∫

RN
|(−�)s/2 (u(1 + εϕ)) |2 dy =

∫

RN
u(1 + εϕ)(−�)s (u(1 + εϕ)) dy.

By (3.1), we can write

(−�)s (u(1 + εϕ)) = (1 + εϕ)(−�)su + εu(−�)sϕ − ε Is(u, ϕ).
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Hence,
∫

RN
|(−�)s/2 (u(1 + εϕ)) |2 dy =

∫

�

u(−�)su(1 + εϕ)2 + ε2I(ϕ),

where we write

I(ϕ) := ε−1
∫

�

u(1 + εϕ)
(
u(−�)sϕ − Is(u, ϕ)

)
dy. (3.6)

Writing out (−�)sϕ as the singular integral given by (1.5), we obtain (we drop the principal
value for simplicity)

I(ϕ) = ε−1CN ,s

∫∫

RN×RN
u(x)u(y)(1 + εϕ(x))

ϕ(x) − ϕ(y)

|x − y|N+2s dx dy

= CN ,s

2

∫∫

RN×RN
u(x)u(y)

|ϕ(x) − ϕ(y)|2
|x − y|N+2s dx dy. (3.7)

The last equality follows by symmetrizing in the x and y variables.
Thus we can write the right side of (3.4) as

∫

RN
|(−�)s/2 (u(1 + εϕ)) |2 dy +

∫

�

au2(1 + εϕ)2 dy

=
∫

�

u((−�)su + au)(1 + εϕ)2 dy + ε2I(ϕ)

= S
∫

�

u p(1 + εϕ)2 dy + ε2I(ϕ),

where we used Eq. (3.3). After expanding the square (1+εϕ)2, the terms of orders 1 and ε on
both sides of (3.4) cancel precisely. For the coefficients of ε2, we thus recover the inequality

∫

�

u pϕ2 dy ≤ 1

S(p − 2)
I(ϕ) +

(∫

�

u pϕ dy

)2

. (3.8)

We now make a suitable choice of ϕ, which turns (3.8) into the desired contradiction. As
in [20], we choose

ϕi (y) := (S(y))i , i = 1, . . . , N + 1,

where S : RN → S
N is the (inverse) stereographic projection, i.e. [34, Sect. 4.4]

ϕi = 2yi
1 + |y|2 for i = 1, . . . , N , ϕN+1 = 1 − |y|2

1 + |y|2 . (3.9)

Moreover, we may assume (up to scaling and translating � if necessary) that the balancing
condition

∫

�

u pϕi dy = 0, i = 1, . . . , N + 1, (3.10)

is satisfied. Since [20] is rather brief on this point, we include some details in Lemma 3.2
below for the convenience of the reader.

By definition, we have
∑N+1

i=1 ϕ2
i = 1. Testing (3.8) with ϕi and summing over i thus

yields, by (3.10),

1 =
∫

�

u p dy ≤ 1

S(p − 2)

N+1∑

i=1

I(ϕi ). (3.11)
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To obtain a contradiction and finish the proof, we now show that
∑N+1

i=1 I(ϕi ) < S(p − 2).
By definition of ϕi , we have

N+1∑

i=1

I(ϕi ) = CN ,s

2

∫∫

RN×RN
u(x)u(y)

|S(x) − S(y)|2
|x − y|N+2s dx dy. (3.12)

To evaluate this integral further, we pass to S
N . Set JS−1(η) := det DS−1(η) and define

U (η) := u(S−1(η))JS−1(η)
1
p ,

so that
∫
SN

U p dη = 1. Since the distance transforms as

|S−1(η) − S−1(ξ)| = JS−1(η)
1
2N |η − ξ |JS−1(ξ)

1
2N ,

changing variables in (3.12) gives

N+1∑

i=1

I(ϕi ) = CN ,s

2

∫∫

SN×SN

U (η)U (ξ)

|η − ξ |N+2s−2 dη dξ. (3.13)

By applying first Cauchy–Schwarz and then Hölder’s inequality, we estimate

N+1∑

i=1

I (ϕi ) ≤ CN ,s

2

∫∫

SN×SN

U (η)2

|η − ξ |N+2s−2 dη dξ

= CN ,s

2
δN ,s

∫

SN
U (η)2 dη <

CN ,s

2
δN ,s |SN | 2sN , (3.14)

where the last inequality is strict. Indeed, U vanishes near the south pole of SN , hence there
cannot be equality in Hölder’s inequality applied with the functions U 2 and 1. Moreover,
above we abbreviated

δN ,s :=
∫

SN

1

|η − ξ |N+2s−2 dξ

(note that this number is independent of η ∈ S
N ). By transforming back toRN and evaluating

a Beta function integral, the explicit value of δN ,s can be computed explicitly to be

δN ,s = 22−2sπN/2 �(1 − s)

�
( N
2 + 1 − s

) .

Inserting this into estimate (3.14), as well as the explicit values of CN ,s given in (1.6) and of
SN ,s given in (1.9), a direct computation then gives

∑N+1
i=1 I(ϕi )

SN ,s
<

1

SN ,s

CN ,s

2
δN ,s |SN | 2sN = s22−2s

N − 2s

(

2
�(N )�( 12 )

�
( N+1

2

)
�
( N
2

)

) 2s
N

.

It can be easily shown by induction over N that

2
�(N )�( 12 )

�
( N+1

2

)
�( N2 )

= 2N

for every N ∈ N, and hence

N+1∑

i=1

I(ϕi ) < S
4s

N − 2s
= S(p − 2).
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This is the desired contradiction to (3.11). ��

Here is the lemma that we referred to in the previous proof. It expands an argument
sketched in [20, Step 1]. To emphasize its generality, instead of u p we state it for a general
nonnegative function h with

∫
�
h = 1.

Lemma 3.2 Let � ⊂ R
N be an open bounded set and 0 ≤ h ∈ L1(�) with ‖h‖1 = 1. Then

there is (y, t) ∈ R
N × (0,∞) such that

F(y, t) :=
∫

�

h(x)
2t(x − y)

1 + t2|x − y|2 dx = 0,

G(y, t) :=
∫

�

h(x)
1 − t2|x − y|2
1 + t2|x − y|2 dx = 0.

Proof Define H : RN × R → R
N+1 by

H(y, s) :=
(

F

(

y,
s + √

s2 + 4

2

)

+ y,G

(

y,
s + √

s2 + 4

2

)

+ s

)

.

We claim that

|H(y, s)| ≤ |y|2 + s2 (3.15)

whenever |y|2 + s2 is large enough. Thus, for large enough radii R > 0, the map H sends
B(0, R) ⊂ R

N+1 into itself. By the Brouwer fixed point theorem, H has a fixed point (y, s).

Then the pair (y, s+√
s2+4
2 ) satisfies the property stated in the lemma.

To prove (3.15), it is more natural to set t := s+√
s2+4
2 > 0, so that s = t − t−1. By

writing out |H(y, s)|2, (3.15) is equivalent to
2y · F(y, t) + 2(t − t−1)G(y, t) + |F(y, t)|2 + |G(y, t)|2 ≤ 0 (3.16)

whenever |y|2 + (t − t−1)2 is large enough.
First, it is easy to see that y · F(y, t), F(y, t) and G(y, t) are bounded in absolute value

uniformly in (y, t) ∈ R
N × (0,∞). Moreover, there is C > 0 such that

G(y, t) = 1 − 2
∫

�

h(x)
t2|x − y|2

1 + t2|x − y|2 dx

{
≥ 1

2 if 0 < t ≤ 1/C,

≤ − 1
2 if t ≥ C .

Therefore, (t − t−1)G(y, t) → −∞ as t → 0 or t → ∞. Thus (3.16) holds whenever
(t − t−1)2 is large enough.

Thus, in what follows, we assume that t ∈ [1/C,C] and prove that (3.16) holds if |y| is
large enough. For convenience, fix some sequence (y, t)with |y| → ∞ and t → t0 ∈ (0,∞).
Then |F(y, t)| → 0 andG(y, t) → −1.Moreover, since� is bounded, |x−y|

|y| → 1 uniformly
in x ∈ � and hence

2y · F(y, t) = −
∫

�

h(x)
4t |y|2

1 + t2|x − y|2 + O
(∫

�

h(x)
t |y|

1 + t2|x − y|2 dx

)

→ − 4

t0
.

Altogether, the quantity on the left side of (3.16) thus tends to −2t0 − 2t−1
0 + 1 ≤ −3 < 0,

which concludes the proof of (3.16). ��
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3.2 Profile decomposition

The following proposition gives an asymptotic decomposition of a general sequence of
normalized (almost) minimizers of S(a + εV ).

Proposition 3.3 (Profile decomposition) Let a ∈ C(�) be critical and let V ∈ C(�) be such
that Na(V ) 
= ∅. Suppose that (uε) ⊂ H̃ s(�) is a sequence such that

lim
ε→0

Sa+εV [uε] − S(a + εV )

S − S(a + εV )
= 0 and

∫

�

u p
ε dy =

∫

RN
U p
0,1 dy, (3.17)

where U0,1 is given by (1.13). Then, there are sequences (xε) ⊂ �, (λε) ⊂ (0,∞), (wε) ⊂
T⊥
xε,λε

, and (αε) ⊂ R such that, up to extraction of a subsequence,

uε = αε

(
PUxε,λε + wε

)
. (3.18)

Moreover, as ε → 0, we have

‖(−�)s/2wε‖2 → 0,

d(xε)λε → ∞,

xε → x0,

αε → ±1.

In what follows, we shall always work with a sequence uε that satisfies the assumptions
of Proposition 3.3. For readability, we shall often drop the index ε from αε , xε, λε and wε,
and write d := dε := d(xε). Moreover, we adopt the convention that we always assume the
strict inequality

S(a + εV ) < S. (3.19)

In Theorems 1.4 and 1.6, we assume Na(V ) 
= ∅, so assumption (3.19) is certainly justified
in view of Corollary 2.3. For Theorem 1.5, where we assume Na(V ) = ∅, we discuss the
role of assumption (3.19) in the proof of that theorem in Sect. 6.

Proof Step 1. We derive a preliminary decomposition in terms of the Sobolev optimizers
Uz,λ and without orthogonality condition on the remainder, see (3.20) below.

The assumptions imply that the sequence (uε) is bounded in H̃ s(�), hence, up to a
subsequence, we may assume uε⇀u0 for some u0 ∈ H̃ s(�). By the argument given in [25,
Proof of Proposition 3.1, Step 1], the fact that Sa+εV [uε] → S(a) = S implies that u0 is a
minimizer for S(a), unless u0 ≡ 0. Since such a minimizer does not exist by Proposition 3.1,
we conclude that, in fact, uε⇀0 in H̃ s(�).

By Rellich’s theorem, uε → 0 strongly in L2(�), in particular
∫
�
(a+εV )u2ε = o(1). The

assumption (1.17) thus implies that (uε) is a minimizing sequence for the Sobolev quotient∫
RN |(−�)s/2u|2 dy/‖u‖2 2N

N−2 s
. Therefore, the assumptions of [35, Theorem 1.3] are satisfied,

and we may conclude by that theorem that there are sequences (zε) ⊂ R
N , (με) ⊂ (0,∞),

(σε) such that

μ
− N−2s

2
ε uε(zε + μ−1

ε ·) → βU0,1

in Ḣ s(RN ), for some β ∈ R. By the normalization condition from (1.17), we have β ∈ {±1}.
Now, a change of variables y = zε + μ−1

ε x implies

uε(y) = Uzε,με (y) + σε, (3.20)
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where still σε → 0 in Ḣ s(RN ), since the Ḣ s(RN )-norm is invariant under this change of
variable.

Moreover, since � is smooth, the fact that
∫

με�+zε
U p
0,1 dy =

∫

�

U p
zε,με

dy =
∫

RN
U p
0,1 dy + o(1)

implies μεdist(zε,RN\�) → ∞.
Step 2. We make the necessary modifications to derive (3.18) from (3.20). The crucial

argument is furnished by [2, Proposition 4.3], which generalizes the corresponding statement
by Bahri and Coron [3, Proposition 7] to fractional s ∈ (0, 1). It states the following. Suppose
that u ∈ H̃ s(�) with ‖u‖H̃ s (�) = AN ,s satisfies

inf
{‖(−�)s/2(u − PUx,λ)‖2 : x ∈ �, λd(x) > η−1} < η (3.21)

for some η > 0. Then, if η is small enough, the minimization problem

inf
{‖(−�)s/2(u − αPUx,λ)‖2 : x ∈ �, λd(x) > (4η)−1, α ∈ (1/2, 2)

}
(3.22)

has a unique solution.
By the decomposition from Step 1 and Lemma A.2, we have

‖(−�)s/2(uε − PUzε,με )‖2 ≤ ‖(−�)s/2(Uzε,με − PUzε,με )‖2 + ‖(−�)s/2σε‖2 → 0

as ε → 0, so that (3.21) is satisfied by uε for all ε small enough, with a constant ηε tending
to zero. We thus obtain the desired decomposition

uε = αε(PUxε,λε + wε)

by taking (xε, λε, αε) to be the solution to (3.22) and wε := α−1
ε uε − PUxε,λε . To verify

the claimed asymptotic behavior of the parameters, note that since ηε → 0, by definition
of the minimization problem (3.22), we have ‖(−�)s/2wε‖2 < ηε → 0 and λεd(xε) >

(4ηε)
−1 → ∞. Since � is bounded, the convergence xε → x0 ∈ � is ensured by passing to

a suitable subsequence. Finally, using (1.17), we have
∫

RN
U p
0,1 dy =

∫

�

u p
ε dy = |αε|p

∫

�

PUxε,λε dy + o(1) = |αε|p
∫

RN
U p
0,1 dy + o(1),

which implies αε = ±1 + o(1). ��

3.3 Coercivity

In the following sections, our goal is to improve the bounds from Proposition 3.3 step by
step.

The following inequality, and its improvement in Proposition 3.5 below, will be central.
For s = 1, these inequalities are due to Rey [38, Eq. (D.1)] and Esposito [22, Lemma 2.1],
respectively, whose proofs inspired those given below.

Proposition 3.4 (Coercivity inequality) For all x ∈ R
n and λ > 0, we have

‖(−�)s/2v‖22 − cN ,s(p − 1)
∫

�

U p−2
x,λ v2 dy ≥ 4s

N + 2s + 2
‖(−�)s/2v‖22 (3.23)

for all v ∈ T⊥
x,λ.
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As a corollary, we can include the lower order term
∫
�
av2, at least when d(x)λ is large

enough and at the price of having a non-explicit constant on the right side. This is the form
of the inequality which we shall use below to refine our error bounds in Sects. 3.4 and 5.2.

Proposition 3.5 (Coercivity inequality with potential a) Let (xn) ⊂ � and (λn) ⊂ (0,∞)

be sequences such that dist(xn, ∂�)λn → ∞. Then there is ρ > 0 such that for all n large
enough,

‖(−�)s/2v‖22 +
∫

�

av2 dy − cN ,s(p − 1)
∫

�

U p−2
xn ,λn

v2 dy ≥ ρ‖(−�)s/2v‖22,
for all v ∈ T⊥

xn ,λn . (3.24)

Proof Abbreviate Un := Uxn ,λn and Tn := Txn ,λn . We follow the proof of [22] and define

Cn := inf

{

1 +
∫

�

av2 dy − cN ,s(p − 1)
∫

�

U p−2
n v2 dy : v ∈ T⊥

n , ‖(−�)s/2v‖ = 1

}

.

Then Cn is bounded from below, uniformly in n. We first claim that Cn is achieved whenever
Cn < 1. Indeed, fix n and let vk be a minimizing sequence. Up to a subsequence, vk⇀v∞ in
H̃ s(�) and consequently ‖(−�)s/2v∞‖ ≤ 1 and

∫
�
av2k − cN ,s(p − 1)

∫
�
U p−2
n v2k dy →

∫
�
av2∞ − cN ,s(p − 1)

∫
�
U p−2
n v2∞ dy, by compact embedding H̃ s(�) ↪→ L2(�). Thus

(1 − Cn)‖(−�)s/2v∞‖2 +
∫

�

av2∞ dy − cN ,s(p − 1)
∫

�

U p−2
n v2∞ dy

≤ (1 − Cn) +
∫

�

av2∞ dy − cN ,s(p − 1)
∫

�

U p−2
n v2∞ dy = 0.

On the other hand, the left hand side of the above inequality must itself be non-negative,
for otherwise ṽ := v∞/‖(−�)s/2v∞‖ (notice that Cn < 1 enforces v∞ 
≡ 0) yields a
contradiction to the definition of Cn as an infimum. Thus the above inequality must be in fact
an equality, whence ‖(−�)s/2v∞‖ = 1. We have thus proved that Cn is achieved if Cn < 1.

Now, assume for contradiction, up to passing to a subsequence, that limn→∞ Cn =: L ≤ 0.
By the first part of the proof, let vn be a minimizer satisfying

(1 − Cn)

∫

RN
(−�)s/2vn(−�)s/2w dy +

∫

�

avnw dy − cN ,s(p − 1)
∫

�

U p−2
n vnw dy = 0 (3.25)

for all w ∈ T⊥
n . Up to passing to a subsequence, we may assume vn⇀v ∈ H̃ s(�). We claim

that

(1 − L)(−�)sv + av = 0 in (H̃ s(�))′. (3.26)

Assuming (3.26) for the moment, we obtain a contradiction as follows. Testing (3.26) against
v ∈ H̃ s(�) gives

‖(−�)s/2v‖2 +
∫

�

av2 dy = L‖(−�)s/2v‖2 ≤ 0.

On the other hand, by coercivity of (−�)s + a, the left hand side must be nonnegative and
hence v ≡ 0. By compact embedding, we deduce vn → 0 strongly in L2(�) and thus

Cn = 1 − cN ,s(p − 1)
∫

�

U 2
n v2n dy + o(1) ≥ 4s

N + 2s + 2
+ o(1).

This is the desired contradiction to limn→∞ Cn ≤ 0.
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At last, we prove (3.26). Let ϕ ∈ H̃ s(�) be given and write ϕ = un + wn , with un ∈ Tn
and wn ∈ T⊥

n . By (3.25) and using
∫
RN (−�)s/2vn(−�)s/2un = 0, we have

(1 − Cn)

∫

RN
(−�)s/2vn(−�)s/2ϕ dy +

∫

�

avnϕ dy − cN ,s(p − 1)
∫

�

U p−2
n vnϕ dy

(3.27)

=
∫

�

avnun dy − cN ,s(p − 1)
∫

�

U p−2
n vnun dy = O(‖(−�)s/2un‖). (3.28)

On the one hand,
∣
∣
∣
∣

∫

�

U p−2
n vnϕ dy

∣
∣
∣
∣ ≤ ‖U p−2

n ϕ‖ p
p−1

→ 0

because ϕ
p

p−1 ∈ L p−1 = (L
p−1
p−2 (�))′ and U

(p−2)p
p−1

n ⇀0 weakly in L
p−1
p−2 (�). Thus, by weak

convergence, the expression in (3.27) tends to

(1 − L)

∫

RN
(−�)s/2v(−�)s/2ϕ dy +

∫

�

avϕ dy

as desired. In view of (3.28), the proof of (3.26) is thus complete if we can show
‖(−�)s/2un‖ → 0. This is again a consequence of weak convergence to zero of the Un .
Indeed, by Lemmas B.1 and B.2, we have

∣
∣
∣
∣

∫

RN
(−�)s/2

PUn

‖(−�)s/2PUn‖ (−�)s/2ϕ dy

∣
∣
∣
∣ �

∫

RN
U p−1
n |ϕ| dy = o(1),

∣
∣
∣
∣

∫

RN
(−�)s/2

∂λPUn

‖(−�)s/2∂λPUn‖ (−�)s/2ϕ dy

∣
∣
∣
∣ � λ

∫

RN
U p−2
n ∂λUnϕ dy � ‖U p−2

n ϕ‖ p
p−1

= o(1),

and, similarly,
∫

RN
(−�)s/2(λ−N+2s∂xi PUn)(−�)s/2ϕ dy = o(1).

Here, we used again that U p−1
n ⇀0 in L

p
p−1 and U

(p−2)p
p−1

n ⇀0 in L
p−1
p−2 weakly, and

∫
�
U

(p−2)p
p−1 ϕ

p
p−1 dy = o(1) by weak convergence.

From the convergence to zero of these scalar products, one can conclude un → 0 by
using the fact that the PUn , ∂λPUn , ∂xi PUn are ‘asymptotically orthogonal’ by the bounds
of Lemma B.2. For a detailed argument, we refer to Lemma 5.2 below, see also [25, Lemma
6.1]. ��

Let us now prepare the proof of Proposition 3.4. We recall that S : RN → S
N\{−eN+1}

(where −eN+1 = (0, . . . , 0, 1) ∈ R
N+1 is the south pole) denotes the inverse stereographic

projection defined in (3.9), with Jacobian JS(x) := det DS(x) =
(

2
1+|x |2

)N
.

Given a function v on RN , we may define a function u on S
N by setting

u(ω) := vS−1(ω) := v(S−1(ω))JS−1(ω)
N−2s
2N , ω ∈ S

N \ {−eN+1}.
The inverse of this map is of course given by

v(y) := uS(y) := u(S(y))JS(y)
N−2s
2N , y ∈ R

N .

The exponent in the determinant factor is chosen such that ‖v‖L p(RN ) = ‖u‖L p(SN ).
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For a basis (Yl,m) of L2(SN ) consisting of L2-normalized spherical harmonics, write
u ∈ L2(SN ) as u =∑l,m ul,mYl,m with coefficients ul,m ∈ R. With

λl = �
(
l + N

2 + s
)

�
(
l + N

2 − s
) . (3.29)

the Paneitz operator P2s is defined by

P2su :=
∑

l,m

λlul,mYl,m

for every u ∈ L2(SN ) such that
∑

l,m λl u2l,m < ∞.

It is well-known (see [6]) that, for every v ∈ C∞
0 (RN ), we have,

(−�)sv(x) = JS(x)
N+2s
2N P2su(S(x)), (3.30)

where u = vS . Thus, we have
∫

RN
|(−�)s/2v|2 dy =

∫

RN
v(−�)sv dy =

∫

SN
uP2su dy =

∑

l,m

λlu
2
l,m .

Since C∞
0 (RN ) is dense in the space Ds,2(RN ) := {v ∈ L

2N
N−2 s (RN ) : (−�)s/2v ∈

L2(RN )} (see, e.g., [8]), the equality
∫

RN
|(−�)s/2v|2 dy =

2∑

l,m

λl u
2
l,m (3.31)

extends to all v ∈ Ds,2(RN ). In particular, it holds for v ∈ H̃ s(�).

Proof of Proposition 3.4 We first prove (3.23) for (x, λ) = (0, 1). Let v ∈ T⊥
0,1 and denote

u = vS . We claim that the orthogonality conditions on v imply that ul,m = 0 for l = 0, 1.

Indeed, e.g. from v ⊥ ∂λPU0,1 and recalling JS(y) = ( 2
1+|y|2 )

N = 2NU
2N

N−2s
0,1 , we compute

0 =
∫

RN
(−�)s/2v(−�)s/2∂λPU0,1 dy = cN ,s

N + 2s

N − 2s

∫

RN
vU

4s
N−2s
0,1 ∂λU0,1 dy

= cN ,s
N + 2s

N − 2s
2− N+2s

2

∫

RN
v(y)JS(y)

N+2s
2N

1 − |y|2
1 + |y|2 dy

= cN ,s
N + 2s

N − 2s
2− N+2s

2

∫

SN
u(ω)ωN+1 dσ(ω).

Analogous calculations show that v ⊥ PU0,1 implies
∫
SN

u = 0 and that v ⊥ ∂xi PU0,1

implies
∫
SN

uωi = 0 for i = 1, . . . , N . Since the functions 1 andωi (i = 1, . . . , N +1) form
a basis of the space of spherical harmonics of angular momenta l = 0 and l = 1 respectively,
we have proved our claim.

Since the eigenvalues λl of P2s are increasing in l, changing back variables to R
N , we

deduce from (3.31) that
∫

RN
|(−�)s/2v|2 dy =

∑

l,m

λlu
2
l,m ≥ λ2

∫

SN
u(ω)2 dσ(ω) = 22sλ2

∫

RN
v2(y)U p−2

0,1 (y) dy.

123



Critical functions and blow-up asymptotics for the fractional… Page 23 of 52   114 

By an explicit computation using the numerical values of λ2 given by (3.29) and cN ,s given
in Lemma B.5, this is equivalent to

‖(−�)s/2v‖22 − cN ,s(p − 1)
∫

�

U p−2
0,1 v2 dy ≥ 4s

N + 2s + 2
‖(−�)s/2v‖22, (3.32)

which is the desired inequality.
The case of general (x, λ) ∈ �× (0,∞) can be deduced from this by scaling. Indeed, for

v ∈ T⊥
x,λ, set vx,λ(y) := v(x − λ−1y). Then vx,λ ∈ T⊥

0,1 with respect to the set λ(x − �), so
that by the above vx,λ satisfies

‖(−�)s/2vx,λ‖22 − cN ,s(p − 1)
∫

λ(x−�)

U p−2
0,1 v2x,λ dy ≥ 4s

N + 2s + 2
‖(−�)s/2vx,λ‖22.

Changing back variables now yields (3.32). ��

3.4 Improved a priori bounds

Themain section of this section is the following proposition, which improves Proposition 3.3.
It states that the concentration point x0 does not lie on the boundary of� and gives an optimal
quantitative bound on w.

Proposition 3.6 As ε → 0,

‖(−�)s/2w‖ = O
(
λ− N−2s

2

)
(3.33)

and

d−1 = O(1). (3.34)

In particular, x0 ∈ �.

The proposition will readily follow from the following expansion of Sa+εV [uε] with
respect to the decomposition uε = α(PUx,λ + w) obtained in the previous section.

Lemma 3.7 As ε → 0, we have

Sa+εV [uε] = S + 22sπN/2 �(s)

�
( N−2s

2

)

(
S

cN ,s

)− N−2s
2s

φ0(x)λ
−N+2s

+
(

S

cN ,s

)− N−2s
2s
(

‖(−�)s/2w‖2 +
∫

�

aw2 dy − cN ,s(p − 1)
∫

�

U p−2
x,λ w2 dy

)

+ O
(
λ− N−2s

2 ‖(−�)s/2w‖
)

+ o
(
(dλ)−N+2s

)
+ o

(‖(−�)s/2w‖2) .
Proof of Proposition 3.6 Using the almost minimality assumption (1.17) and the coercivity
inequality from Proposition 3.5, the expansion from Lemma 3.7 yields the inequality

0 ≥ (1 + o(1))(S − S(a + εV )) + cφ0(x)λ
−N+2s + c‖(−�)s/2w‖2

+ O
(
λ− N−2s

2 ‖(−�)s/2w‖
)

+ o
(
(dλ)−N+2s

)

for some c > 0. By Lemma A.1, we have the lower bound φ0(x) � d−N+2s . Using the
estimate

O
(
λ− N−2s

2 ‖(−�)s/2w‖
)

≤ δ‖(−�)s/2w‖2 + Cδλ
−N+2s,
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we obtain, by taking δ small enough,

Cδλ
−N+2s ≥ (1 + o(1))(S − S(a + εV )) + c(dλ)−N+2s + c‖(−�)s/2w‖2.

Since all three terms on the right side are nonnegative, the proposition follows. ��
Proof of Lemma 3.7 Step 1: Expansion of the numerator. By orthogonality, we have

‖(−�)s/2(PUx,λ + w)‖2 = ‖(−�)s/2PUx,λ‖2 + ‖(−�)s/2w‖2.
The main term can be written as

‖(−�)s/2PUx,λ‖2 =
∫

�

PUx,λ(−�)s PUx,λ dy = cN ,s

∫

�

U p−1
x,λ PUx,λ dy

= cN ,s

∫

�

U p
x,λ dy + cN ,sλ

− N−2s
2

∫

�

U p−1
x,λ H0(x, ·) dy

+ O(‖ fx,λ‖∞
∫

�

U p−1
x,λ dy),

whereweused PUx,λ = Ux,λ−λ− N−2 s
2 H0(x, ·)+ fx,λ with‖ fx,λ‖∞ � λ

−N+4−2 s
2 d−N−2+2 s ,

by Lemma A.2. Thus,

‖ f ‖∞
∫

�

U p−1
x,λ dy � (dλ)−N+2s−2 = o

(
(dλ)−N+2s

)
.

Next, we have
∫

RN \�
U p
x,λ dy ≤

∫

RN \Bd
U p
x,λ dy �

∫ ∞

dλ

r N−1

(1 + r2)N
dr � (dλ)−N = o

(
(dλ)−N+2s

)

and thus

cN ,s

∫

�

U p
x,λ dy = cN ,s‖U0,1‖p

p + o
(
(dλ)−N+2s

)
.

Finally, using the fact that H0(x, y) = φ0(x) + O(‖∇y H0(x, ·)‖∞|x − y|) = φ0(x) +
O(d−N+2 s−1|x − y|) by Lemma A.1, we have

λ− N−2s
2

∫

�

U p−1
x,λ H0(x, ·) dy = λ− N−2s

2 φ0(x)
∫

Bd
U p−1
x,λ dy

+ O(d−N+2s−1λ− N−2s
2

∫

Bd
U p−1
x,λ |x − y| dy)

+ λ− N−2s
2

∫

�\Bd
U p−1
x,λ H0(x, y) dy.

Since H0(x, y) � d−N+2s by Lemma A.1, the last term is

λ− N−2s
2

∫

�\Bd
U p−1
x,λ H0(x, ·) dy � d−N+2sλ− N−2s

2

∫

RN \Bd
U p−1
x,λ dy � (dλ)−N = o((dλ)−N+2s).

Similarly,

λ− N−2s
2 φ0(x)

∫

Bd
U p−1
x,λ dy = λ− N−2s

2 φ0(x)‖U0,1‖p−1
p−1 + O

(

φ0(x)λ
− N−2s

2

∫

RN \Bd
U p−1
x,λ dy

)

= λ− N−2s
2 φ0(x)‖U0,1‖p−1

p−1 + O((dλ)−N )

123



Critical functions and blow-up asymptotics for the fractional… Page 25 of 52   114 

= λ− N−2s
2 φ0(x)‖U0,1‖p−1

p−1 + o((dλ)−N+2s).

Finally,

d−N+2s−1λ− N−2s
2

∫

Bd
U p−1
x,λ |x − y| � (dλ)−N+2s−1

∫ dλ

0

r N

(1 + r2)
N+2s
2

dr = o((dλ)−N+2s)

(where one needs to distinguish the cases where 1− 2s is positive, negative or zero because
the dr -integral is divergent if 1 − 2s ≥ 0).

Collecting all the previous estimates, we have proved

‖(−�)s/2PUx,λ‖2 = cN ,s‖Ux,λ‖p
p + cN ,sλ

−N+2s‖Ux,λ‖p−1
p−1φ0(x) + o((dλ)−N+2s).

(3.35)

The potential term splits as
∫

�

(a + εV )(PUx,λ + w)2 dy =
∫

�

(a + εV )PU 2
x,λ dy +

∫

�

aw2 dy

+
∫

�

(
(a + εV )PUx,λw + εVw2) dy

and we can estimate
∣
∣
∣
∣

∫

�

(a + εV )PU 2
x,λ dy

∣
∣
∣
∣ � ‖Ux,λ‖22 � λ−N+2s

as well as
∫

�

(
(a + εV )PUx,λw + εVw2) dy � ‖PUx,λ‖p′ ‖w‖p + ε‖w‖2

= O
(
λ− N−2s

2 ‖(−�)s/2w‖) + o(‖(−�)s/2w‖2
)

.

In summary, we have, for the numerator of Sa+εV [uε],

α−2
(

‖(−�)s/2u‖2 +
∫

�

(a + εV )u2 dy

)

= cN ,s‖Ux,λ‖p
p + cN ,sλ

−N+2s‖Ux,λ‖p−1
p−1φ0(x) + ‖(−�)s/2w‖2 +

∫

�

aw2 dy

+ O(λ−N+2s) + O(λ− N−2s
2 ‖(−�)s/2w‖ + o((dλ)−N+2s) + o(‖(−�)s/2w‖2).

Step 2: Expansion of the denominator. By Taylor’s formula,

(PUx,λ + w)p = PU p
x,λ + pPU p−1

x,λ w + p(p − 1)

2
PU p−2

x,λ w2 + O
(
PU p−3

x,λ |w|3 + |w|p
)

.

Note that, strictly speaking, we use this formula if p ≥ 3. If 2 < p ≤ 3, the same is true
without the remainder term PU p−3|w|3, which does not affect the rest of the proof. To
evaluate the main term, we write PUx,λ = Ux,λ − ϕx,λ with ϕx,λ := λ−1/2H0(x, ·) + fx,λ
(see Lemma A.2). Then,

∫

�

PU p
x,λ dy =

∫

�

U p
x,λ dy − p

∫

�

U p−1
x,λ ϕx,λ dy + O

(∫

�

(U p−2
x,λ ϕ2

x,λ + ϕ
p
x,λ) dy

)

‖U0,1‖p
p − pλ−N+2s‖U0,1‖p−1

p−1φ0(x) + o((dλ)−N+2s),
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where we used that, by Lemmas A.2 and B.1,
∫
�
U p−2
x,λ ϕ2

x,λ dy ≤ ‖Ux,λ‖p−2
p−2‖ϕx,λ‖2∞ �

(dλ)−2N+4 s = o((dλ)−N+2 s) and ‖ϕx,λ‖p
p � (dλ)−N = o((dλ)−N+2 s).

Next, the integral of the remainder term is controlled by
∫

�

(PU p−3
x,λ |w|3 + |w|p) dy � ‖PUx,λ‖p−3

p ‖w‖3p + ‖w‖p
p = o(‖(−�)s/2w‖2).

The term linear in w is
∫

�

PU p−1
x,λ w dy =

∫

�

U p−1
x,λ w dy + O

(∫

�

(U p−2
x,λ ϕx,λ|w| + ϕ

p−1
x,λ |w|) dy

)

.

Now, by orthogonality of w, we have
∫

�

U p−1
x,λ w dy = c−1

N ,s

∫

�

(−�)sUx,λw dy =
∫

RN
(−�)s/2Ux,λ(−�)s/2w dy = 0.

Moreover, using ‖ϕx,λ‖p � (dλ)− N−2 s
2 by Lemma A.2, we get

∣
∣
∣
∣

∫

�

ϕ
p−1
x,λ w dy

∣
∣
∣
∣ ≤ ‖ϕx,λ‖p−1

p ‖w‖p ≤ (dλ)−
N+2s
2 ‖(−�)s/2w‖ = o((dλ)−N+2s).

Using additionally that ‖ϕx,λ‖∞ � d−N+2 sλ− N−2 s
2 byLemmaA.2, by the same computation

as in [23, Lemma A.1] we get ‖U p−2
x,λ ϕx,λ‖ p

p−1
� (dλ)−N+2 s and therefore

∫

�

U p−2
x,λ ϕx,λ|w| dy � (dλ)−N+2s‖(−�)s/2w‖.

In summary, we have, for the denominator of Sa+εV [uε],

α−p
∫

�

u p
ε dy = ‖U0,1‖p

p − pλ−N+2s‖U0,1‖p−1
p−1φ0(x) + p(p − 1)

2

∫

�

U p−2
x,λ w2 dy

+ O((dλ)−N+2s‖(−�)s/2w‖) + o(‖(−�)s/2w‖2) + o((dλ)−N+2s).

Step 3: Expansion of the quotient. Using Taylor’s formula, we find, for the denominator,

α−2
(∫

�

u p
ε dy

)−2/p

= ‖U0,1‖−2
p + 2‖U0,1‖−p−2

p ‖U0,1‖p−1
p−1λ

−N+2sφ0(x)

− cN ,s(p − 1)‖U0,1‖−p−2
p

∫

�

U p−2
x,λ w2 dy

+ O((dλ)−N+2s‖(−�)s/2w‖) + o(‖(−�)s/2w‖2) + o((dλ)−N+2s).

Multiplying this with the expansion for the denominator found above, we obtain

Sa+εV [uε] = cN ,s‖U0,1‖p−2
p + λ−N+2scN ,s‖U0,1‖−2

p ‖U0,1‖p−1
p−1φ0(x)

‖U0,1‖−2
p

(

‖(−�)s/2w‖2 +
∫

�

aw2 dy − cN ,s(p − 1)
∫

�

U p−2
x,λ w2 dy

)

+ O((dλ)−N+2s‖(−�)s/2w‖) + o(‖(−�)s/2w‖2) + o((dλ)−N+2s).

Expressing the various constants using Lemma B.5, we find

cN ,s‖U0,1‖p−2
p = S,

‖U0,1‖−2
p =

(
S

cN ,s

)− N−2s
2s

,
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cN ,s‖U0,1‖−2
p ‖U0,1‖p−1

p−1 = 22sπN/2 �(s)

�
( N−2s

2

)

(
S

cN ,s

)− N−2s
2s

.

This yields the expansion claimed in the lemma. ��

4 Proof of Theorem 1.2

At this point, we have collected sufficiently precise information on the behavior of a general
almost minimizing sequence to prove Theorem 1.2.

The main difficulty of the argument consists in constructing, for a critical potential a, a
point x0 ∈ � at which φa(x0) = 0. To do so, we carry out some additional analysis for a
sequence uε which we assume to consist of true minimizers of S(a − ε), not only almost
minimizers as in the rest of this paper. We make this additional assumption essentially for
convenience and brevity of the argument, see the remark below Lemma 4.1.

Indeed, since a is critical, we have S(a − ε) < S for every ε > 0. By the results of [42],
which adapts the classical lemma of Lieb contained in [10] to the fractional case, this strict

inequality implies existence of aminimizer uε of S(a−ε). Normalizing
∫
�
u

2N
N−2 s
ε dy = AN ,s

as in (1.17), uε satisfies the equation

(−�)suε + (a − ε)uε = S(a − ε)

A2s/N
N ,s

u
N+2s
N−2s
ε on �, u ≡ 0 on RN \ �. (4.1)

By using equation (4.1), we can conveniently extract the leading term of the remainder
termwε .We do this in the following lemma, which is the key step in the proof of Theorem 1.2.

Lemma 4.1 Let uε be minimizers of S(a − ε) which satisfy (4.1). Then we have

S(a − ε) = S + cN ,s A
−2/p
N ,s φa(x)λ

−N+2s + o(λ−N+2s). (4.2)

If 8s/3 < N , Lemma 4.1 is in fact implied by the more refined analysis carried out in
Sect. 5 below, which does not use the Eq. (4.1). If 2s < N ≤ 8s/3, we speculate than one
can prove Lemma 4.1 for almost minimizers not satisfying (4.1) by arguing like in [25, Sect.
5], but we do not pursue this explicitly here.

Proof of Lemma 4.1 Clearly, the analysis carried out in Sect. 3 so far applies to the sequence
(uε). Thus, up to passing to a subsequence, we may assume that uε = αε(PUxε,λε + wε)

with αε → 1, xε → x0 ∈ � and ‖(−�)s/2wε‖2 � λ− N−2s
2 as ε → 0.

Thus the sequence w̃ε := λ
N−2s
2

ε wε is bounded in H̃ s(�) and converges weakly in H̃ s(�),
up to a subsequence, to some w̃0 ∈ H̃ s(�). Inserting the expansion u = α(PUx,λ + w) in
(4.1), the equation fulfilled by w̃ε reads

(−�)sw̃ε + (a − ε)w̃ε = −(a − ε)PUx,λλ
N−2s
2 + λ−2s S(a − ε)

A2s/N
N ,s

(
PUx,λλ

N−2s
2 + w̃ε

) N+2s
N−2s

.

(4.3)

By Lemma A.2, we can write

PUx,λλ
N−2s
2 = G0(x, ·) − λN−2sh(λ(x − ·)) − λN−2s fx,λ
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with h as in Lemma B.3. By the bounds on h and fx,λ from Lemmas A.2 and B.3, this yields

PUx,λλ
N−2s
2 → G0(x0, ·) uniformly on compacts of � \ {x0} and in Lq(�), q < N

N−2s .

(4.4)

Letting ε → 0 in (4.3), we obtain
∫

�

(−�)s/2w̃0(−�)s/2ϕ dy +
∫

�

aw̃0ϕ dy = −
∫

�

aG0(x, ·)ϕ dy (4.5)

for every ϕ ∈ C∞
c (� \ {x0}). Now it is straightforward to show that C∞

c (�\{x0}) is dense in
H̃ s(�), by using a cutoff function argument together with identity (3.1). Thus, by approx-
imation, (4.5) even holds for every ϕ ∈ H̃ s(�). In other words, w̃0 weakly solves the
equation

(−�)sw̃0 + aw̃0 = −aG0(x0, ·) on �, w̃0 ≡ 0 on R
N \ �.

By uniqueness of solutions, we conclude w̃0 = H0(x0, ·) − Ha(x0, ·).
We will now use this information to prove the desired expansion (4.2) of the energy

S(a − ε) = Sa−ε[PUx,λ + w]. Indeed, using the already established bound ‖(−�)s/2w‖ �
λ− N−2s

2 , the numerator is

‖(−�)s/2PUx,λ‖2 +
∫

�

a(PU2
x,λ + 2PUx,λw) dy + ‖(−�)s/2w‖2 +

∫

�

aw2 dy + o(λ−N+2s).

(4.6)

By integrating the equation for w against w and recalling S(a−ε)

A2s/N
N ,s

= cN ,s + o(1), we easily

find the asymptotic identity (compare [22, Eq. (8)] for s = 1)

‖(−�)s/2w‖2 +
∫

�

aw2 dy = cN ,s(p − 1)
∫

�

U p−2
x,λ w2 dy −

∫

�

aPUx,λw dy.

Inserting this in (4.6), together with the expansion of ‖(−�)s/2PUx,λ‖2 given in (3.35), the
numerator of Sa−ε[PUx,λ + w] becomes

cN ,s AN ,s − cN ,saN ,sφ0(x)λ
−N+2s +

∫

�

a(PU 2
x,λ + PUx,λw) dy

+cN ,s(p − 1)
∫

�

U p−2
x,λ w2 dy + o(λ−N+2s). (4.7)

The numerator of Sa−ε[PUx,λ +w], by the computations in the proof of Lemma 3.7, is given
by

(∫

�

(PUx,λ + w)p dy

)−2/p

= A
− 2

p
N ,s − A

− 2
p −1

N ,s

(

−2φ0(x)λ
−N+2s + (p − 1)

∫

�

U p−2
x,λ w2 dy

)

.

(4.8)

Multiplying out (4.7) and (4.8), the terms in
∫
�
U p−2w2 dy cancel precisely and we obtain

S(a − ε) = S + cN ,s A
−2/p
N ,s aN ,sφ0(x)λ

−N+2s

+ A−2/p
N ,s λ−N+2s

(∫

�

a
(
(λ

N−2s
2 PUx,λ)

2 + λ
N−2s
2 PUx,λw̃

)
dy

)

+ o(λ−N+2s).

(4.9)
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Now we are ready to return to our findings about w̃0. Indeed, by (4.4), and observing that
G0(x, ·) is an admissible test function in (4.5), we get

∫

�

a
(
(λ

N−2s
2 PUx,λ)

2 + λ
N−2s
2 PUx,λw̃

)
dy

=
∫

�

a
(
G0(x, ·)2 + G0(x, ·)w̃0

)
dy + o(1) (4.10)

= −
∫

�

(−�)s/2w̃0(−�)s/2G0(x, ·) dy + o(1) = −w̃0(x)

= γN ,s(φa(x) − φ0(x)) + o(1). (4.11)

By inserting this into (4.9) and observing that γN ,s = cN ,saN ,s by the numerical values given
in Lemma B.5, the proof is complete. ��

Now we have all the ingredients to give a quick proof of our first main result.

Proof of Theorem 1.2 As explained after the statement of the theorem, it only remains to prove
the implication (i i) ⇒ (i). Suppose thus S(a) < S and let c > 0 be the smallest number
such that ā := a + c satisfies S(ā) = S. For ε > 0, let uε be the sequence of minimizers
S(ā − ε), normalized to satisfy (4.1). By Lemma 4.1, we have

S > S(ā − ε) = S − cN ,s A
−2/p
N ,s φa(x)λ

−N+2s + o(λ−N+2s).

Letting ε → 0, this shows φā(x0) ≤ 0. By the resolvent identity, we have for every x ∈ �

φã(x) = φa(x) +
∫

�

(ã − a)(z)Ga(x, z)Ga+c(z, x) dz < φa(x),

and hence φa(x0) is strictly monotone in a. Thus φa(x0) < φa+c(x0) = 0, and the proof is
complete. ��

5 Proof of the lower bound II: a refined expansion

This section is the most technical of the paper. It is devoted to extracting the leading term of
the remainderw and to obtaining sufficiently good bounds on the new error term. In Sect. 5.2
we will need to work under the additional assumption 8s/3 < N in order to obtain the
required precision.

Concretely, we write

w = λ− N−2s
2 (H0(x, ·) − Ha(x, ·)) + q

and decompose the remainder further into a tangential and an orthogonal part

q = t + r , t ∈ Tx,λ, r ∈ T⊥
x,λ.

(We keep omitting the subscript ε.) A refined expansion of Sa+εV [uε] then yields an error
term in r which can be controlled using the coercivity inequality of Proposition 3.5. The
refined expansion is derived in Sect. 5.2 below.

On the other hand, since t is an element of the (N + 2)-dimensional space Tx,λ, it can be
bounded by essentially explicit computations. This is achieved in Sect. 5.1.
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Remark 5.1 The present Sect. 5 thus constitutes the analogon of [25, Sect. 6], where the
same analysis is carried out for the case s = 1 and N = 3. We emphasize that, despite
these similarities, our approach is conceptually somewhat simpler than that of [25]. Indeed,
the argument in [25] relies on an intermediate step involving a spectral cutoff construction,

through which the apriori bound ‖∇q‖ = o(λ1/2) = o(λ− N−2s
2 ) is obtained.

On the contrary, we are able to conduct the following analysis with only the weaker bound

‖∇q‖ = O(λ− N−2s
2 ) at hand (which follows from Proposition 3.6). This comes at the price

of some additional explicit error terms in r , which can however be conveniently absorbed
(see Lemmas 5.7 and 5.9). Since N > 8s/3 is fulfilled when N = 3, s = 1, this simplified
proof of course also works in the particular situation of [25].

5.1 A precise description of t

For λ large enough, the functions PUx,λ, ∂λPUx,λ and ∂xi PUx,λ, i = 1, . . . , N are linearly
independent. There are therefore uniquely determined coefficients β, γ, δi , i = 1, . . . , N ,
such that

t = βλ−N+2s PUx,λ + γ λ−N+2s+1∂λPUx,λ +
N∑

i=1

δiλ
−N+2s−2∂xi PUx,λ. (5.1)

Here the choice of the different powers of λ multiplying the coefficients is justified by the
following result.

Lemma 5.2 As ε → 0, we have β, γ, δi = O(1).

As a corollary, we obtain estimates on t in various norms.

Lemma 5.3 As ε → 0,

‖(−�)s/2t‖2 � λ−N+2s and ‖t‖ 2N
N+2s

� ‖t‖2 � λ− 3N−6s
2 .

Proof Recall that PUx,λ = Ux,λ − λ− N−2s
2 H0(x, ·) + fx,λ. Then all bounds follow in a

straightforward way from (5.1) together with Lemma 5.2 and the standard bounds from
Lemmas A.1, A.2, B.1 and B.2. ��
Proof of Lemma 5.2 Step 1.We introduce the normalized basis functions

ϕ̃1 := PUx,λ

‖(−�)s/2PUx,λ‖ , ϕ̃2 := ∂λPUx,λ

‖(−�)s/2∂λPUx,λ‖ , ϕ̃ j := ∂x j−2 PUx,λ

‖(−�)s/2∂x j−2 PUx,λ‖ ,

(5.2)

and prove that

a j :=
∫

RN
(−�)s/2ϕ̃ j (−�)s/2t dy =

{
O(λ−N+2s), j = 1, 2,

O(λ−N+2s−1), j = 3, . . . , N + 2.
(5.3)

Since λ− N−2 s
2 (H0(x, ·) − Ha(x, ·)) + t + r = w ∈ T⊥

x,λ, and r ∈ T⊥
x,λ, we have

a j = λ− N−2s
2

∫

RN
(−�)s/2ϕ̃ j (−�)s/2 (Ha(x, ·) − H0(x, ·)) dy
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= λ− N−2s
2

∫

RN
(−�)s ϕ̃ j (Ha(x, ·) − H0(x, ·)) dy.

Thus,

a1 = λ− N−2s
2 ‖(−�)s/2PUx,λ‖−1cN ,s

∫

�

U
N+2s
N−2s
x,λ (Ha(x, ·) − H0(x, ·)) dy

� λ−N+2s,

where we used that by Lemma B.2, ‖(−�)s/2PUx,λ‖−1 � 1. The bound for a2 follows
similarly. To obtain the claimed improved bound for a j , j = 3, . . . , N + 2, we write

ai+2 � λ− N−2s
2 ‖(−�)s/2∂xi PUx,λ‖−1

∫

�

U
4s

N−2s
x,λ ∂xi U (Ha(x, ·) − H0(x, ·)) dy

λ− N−2s
2 ‖(−�)s/2∂xi PUx,λ‖−1O

(∫

RN \Bd
U

4s
N−2s
x,λ |∂xi Ux,λ| dy +

∫

�

U
4s

N−2s
x,λ |∂xi Ux,λ||x − y| dy

)

� λ−N+2s−1.

Here, we wrote Ha(x, y)−H0(x, y) = φa(x)−φ0(x)+O(|x− y|) and used that by oddness
of ∂xiU ,

(φa(x) − φ0(x))
∫

Bd
U

4s
N−2s
x,λ ∂xiUx,λ = 0.

This concludes the proof of (5.3).
Step 2.We write

t =
N+2∑

j=1

b j ϕ̃ j ,

with

b1 = βλ−N+2s‖(−�)s/2PUx,λ‖, b2 = γ ‖(−�)s/2∂λPUx,λ‖,
b j = δ jλ

−N+2s−2‖(−�)s/2∂x j−2 PUx,λ‖, j = 3, . . . , N + 2.

Our goal is to show that

b j = a j + O(λ−N+2s) sup
k

ak, j = 1, . . . , N + 2. (5.4)

Then, from (5.4), we conclude by using the estimates on the a j from (5.3) and Lemma B.2.
To prove (5.4), we define the Gram matrix G by

G j,k := ((−�)s/2ϕ̃ j , (−�)s/2ϕ̃k).

By Lemma B.2 and the definition of the ϕ̃ j it is easily checked that

G j,k = δ j,k + O(λ−N+2s), j, k = 1, . . . , N + 2.

Thus, for sufficiently large λ, G is invertible with

(G−1) j,k = δ j,k + O(λ−N+2s). (5.5)

By definition of G,

ψ j :=
N+2∑

k=1

(G−1/2) j,k ϕ̃k (5.6)
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is an orthonormal basis of Tx,λ. We can therefore write

t =
∑

j

(
(−�)s/2ψ j , (−�)s/2t

)
ψ j =

∑

j

∑

k

(G−1/2) j,k
(
(−�)s/2ϕ̃k, (−�)s/2t

)
φ j

=
∑

j

∑

k

(G−1/2) j,kak
∑

l

(G−1/2) j,l ϕ̃l

=
∑

l

⎛

⎝
∑

k

⎛

⎝
∑

j

(G−1/2)l, j (G
−1/2) j,k

⎞

⎠ ak

⎞

⎠ ϕ̃l

=
∑

l

(
∑

k

(G−1)l,kak

)

ϕ̃l .

Thus, bl =∑k(G
−1)l,kak and (5.4) follows from (5.5). ��

Remark 5.4 By treating the terms in the above proof more carefully, it can be shown in fact
that λN−2 sβ, λN−2 s−1γ and λN−2 s+2δi have a limit as λ → ∞. Indeed, for instance, the

leading orders of the expressions
∫
�
U

N+2 s
N−2 s
x,λ (Ha(x, ·) − H0(x, ·)) dy and ‖(−�)s/2PUx,λ‖

going into the leading behavior of β can be explicitly evaluated, see Lemma A.4 and the
proof of Lemma B.2 respectively. We do not need the behavior of the coefficients β, γ, δi to
that precision in what follows, so we do not state them explicitly.

5.2 The new expansion ofSa+"V[u]

Our goal is now to expand the value of the energy functional Sa+εV [uε] with respect to the
refined decomposition introduced above, namely

u = α(ψx,λ + q) = α
(
PUx,λ +

(
λ− N−2s

2 Ha(x, )̇ − H0(x, ·)
)

+ t + r
)

.

In all that follows, we work under the important assumption that

− 3N + 6s < −2s, i.e. 8
3 s < N (5.7)

so that λ−3N+6s = o(λ−2s). Assumption (5.7) has the consequence that, using the available
bounds on t and r , we can expand the energy Sa+εV [u] up to o(λ−2s) errors in a way that
does not depend on t . This is the content of the next lemma.

Lemma 5.5 As ε → 0, we have

Sa+εV [uε] = Sa+εV [ψx,λ] + D−2/p
0

(

E0[r ] − 2N0

pD0
I [r ] + o(‖(−�)s/2r‖2)

)

+ o(λ−2s) + o(ελ−N+2s) + o(φa(x)λ
−N+2s).

Here,

N0 := ‖(−�)s/2ψx,λ‖22 +
∫

�

(a + εV )ψ2
x,λ dy, D0 :=

∫

�

ψ
p
x,λ dy, (5.8)

and I [r ] is as defined in (5.10) below.

We emphasize that the contribution of t enters only into the remainders o(λ−2 s) +
o(ελ−N+2 s) + o(φa(x)λ−N+2 s). This is remarkable because t enters to orders λ−N+2 s �
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λ−2 s and λ−2N+4 s � λ−2 s (if N < 3 s) into both the numerator and the denominator of
Sa+εV [uε], see Lemmas 5.6 and 5.7 below. When calculating the quotients, these contribu-
tions cancel precisely, as we verify in Lemma 5.8 below. Heuristically, such a phenomenon
is to be expected because (up to projection onto H̃ s(�) and perturbation by a+ εV ) by defi-
nition t represents the directions along which the quotient functional is invariant. As already
pointed out in the introduction, we suspect, but cannot prove, that in the absence of assump-
tion (5.7) the contributions of t to the higher order coefficients λ−kN+2ks for 3 ≤ k ≤ 2N

N−2 s
would continue to cancel.

We prove Lemma 5.5 by separately expanding the numerator and the denominator of
Sa+εV [uε]. We abbreviate

Eε[u] := ‖(−�)s/2u‖2 +
∫

�

(a + εV )u2 dy

and write Eε[u, v] for the associated bilinear form.

Lemma 5.6 (Expanding the numerator) As ε → 0,

|α|−2Eε[uε] = Eε[ψx,λ] + (2E0[ψx,λ, t] + ‖(−�)s/2t‖2)+ E0[r ] + o(λ−2s) + o(ελ−N+2s).

Proof We write α−1uε = ψx,λ + t + r and therefore

Eε[uε] = Eε[ψx,λ] + 2Eε[ψx,λ, t + r ] + Eε[t + r ]. (5.9)

The third term on the right side is

Eε[t + r ] = E0[t] + 2E0[t, r ] + E0[r ] + ε

∫

�

V (t + r)2 dy.

Now
∫
RN (−�)s/2t(−�)s/2r dy = 0 by orthogonality and therefore, by Lemma 5.3,

E0[t, r ] =
∫

�

atr dy = O(‖(−�)s/2r‖‖t‖ 2N
N+2s

) = O(λ
−3N+6s

2 ‖(−�)s/2r‖)
= o(λ−2s) + o(‖(−�)s/2r‖2),

where the last equality is a consequence of assumption (5.7) and Young’s inequality. Finally,
again by Lemma 5.3,

ε

∫

�

V (t + r)2 dy = O(ε(‖t‖2 + ‖(−�)s/2r‖2)) = o(ελ−N+2s) + o(‖(−�)s/2r‖2).

The second term on the right side of (5.9) is

2Eε[ψx,λ, t + r ] = 2E0[ψx,λ, t] + 2E0[ψx,λ, r ] + 2ε
∫

�

Vψx,λ(t + r) dy.

To start with, using Lemma 5.3,

ε

∫

�

Vψx,λ(t + r) dy = O(ε(‖t‖ 2N
N+2s

+ ‖ψ‖ 2N
N+2s

‖(−�)s/2r‖))

= O(ελ− N−2s
2 ‖(−�)s/2r‖) + o(ελ−N+2s)

= o(ελ−N+2s) + o(‖(−�)s/2r‖2)),
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again by Young’s inequality. Moreover, using that r ∈ T⊥
x,λ, that (−�)s Ha(x, ·) = aGa(x, ·)

and (−�)s H0(x, ·) = 0, and integrating by parts,

E0[ψx,λ, r ] = λ− N−2s
2

∫

�

(−�)s/2(H0 − Ha)(x, ·)(−�)s/2r dy +
∫

�

aψx,λr dy

=
∫

�

a(−λ− N−2s
2 Ga(x, ·) + ψx,λ)r dy.

Since we can write λ− N−2s
2 Ga(x, y) − ψx,λ(y) = λ

N−2s
2 h(λ(x − y)) + fx,λ with h as in

Lemma B.3 and fx,λ as in Lemma A.2, we get

E0[ψx,λ, r ] �
(
λ− N−2s

2 ‖h(λ·)‖ 2N
N+2s

+ ‖ fx,λ‖∞
)

‖(−�)s/2r‖ � λ−2s‖(−�)s/2r‖ = o(λ−2s)

by the bounds in those lemmas. Finally,

E0[t] = ‖(−�)s/2t‖2 +
∫

�

at2 dy

and
∫
�
at2 dy � ‖t‖22 � λ−3N+6 s = o(λ−2 s) by Lemma 5.3 and Assumption (5.7). ��

Lemma 5.7 (Expanding the denominator) As ε → 0,

|α|−p
∫

�

u p
ε dy =

∫

�

ψ
p
x,λ dy +

(

p
∫

�

ψ
p−1
x,λ t dy + p(p − 1)

2

∫

�

ψ
p−2
x,λ t2 dy

)

+ p(p − 1)

2

∫

�

ψ
p−2
x,λ r2 dy

+ O
(

λ− N−2s
2

∫

�

U p−2|Ha ||r | dy
)

+ o(‖(−�)s/2r‖2) + o(λ−2s).

Proof Write α−1uε = ψx,λ + t + r . We expand
∫

�

(ψx,λ + t + r)p dy =
∫

�

(ψx,λ + r)p dy

+ p
∫

�

(ψx,λ + r)p−1t dy + p(p − 1)

2

∫

�

(ψx,λ + r)p−2t2 dy

+ O
(
‖ψx,λ + r‖p−3

p ‖(−�)s/2t‖3 + ‖(−�)s/2t‖p
)

.

By Lemma 5.3 together with assumption (5.7), the last term is o(λ−2s). The third term is, by
Lemma 5.3,

∫

�

(ψx,λ + r)p−2t2 dy =
∫

�

ψ
p−2
x,λ t2 dy + O

(
λ−2N+4s‖(−�)s/2r‖

)
.

The second term is
∫

�

(ψx,λ + r)p−1t dy =
∫

�

ψ
p−1
x,λ t dy + (p − 1)

∫

�

ψ
p−2
x,λ r t dy + o(‖(−�)s/2r‖2).

The remaining term
∫
�

ψ
p−2
x,λ r t dy needs to be expanded more carefully. Using ψx,λ =

Ux,λ − λ− N−2s
2 Ha(x, ·) − fx,λ with ‖λ− N−2s

2 Ha(x, ·) + fx,λ‖∞ � λ− N−2s
2 , we write

∫

�

ψ
p−2
x,λ r t dy =

∫

�

U p−2
x,λ r t dy + O

(
λ− N−2s

2 ‖(−�)s/2r‖‖(−�)s/2t‖
)
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and using assumption (5.7), the remainder is bounded by

λ− N−2s
2 ‖(−�)s/2r‖‖(−�)s/2t‖ � λ

−3N+6s
2 ‖(−�)s/2r‖ = o(λ−2s) + o(‖(−�)s/2r‖2).

Now using orthogonality of r and the expansion (5.1) of s, by some standard calculations,
whose details we omit, one obtains

∫

�

U p−2
x,λ r t dy = O

(
λ

−3N+6s
2 ‖(−�)s/2r‖

)
= o(λ−2s) + o(‖(−�)s/2r‖2),

where we used again assumption (5.7) for the last equality.
It remains only to treat the t-independent term

∫
�
(ψx,λ + r)p dy. We find

∫

�

(ψx,λ + r)p dy =
∫

�

ψ
p
x,λ dy + p

∫

�

ψ
p−1
x,λ r dy

+ p(p − 1)

2

∫

�

ψ
p−2
x,λ r2 dy + o(‖(−�)s/2r‖2).

Using orthogonality of r , we get that
∫
�
U p−1
x,λ r dy = 0 and hence

∫

�

ψ
p−1
x,λ r dy = O

(

λ− N−2s
2

∫

�

U p−2
x,λ |Ha(x, ·)||r | dy + λ− N+2s

2 ‖(−�)s/2r‖
)

and λ− N+2 s
2 ‖(−�)s/2r‖ � λ−N = o(λ−2 s). Finally, we have

∫

�

ψ
p−2
x,λ r2 dy =

∫

�

U p−2
x,λ r2 dy + o(‖(−�)s/2r‖2).

Collecting all the estimates gives the claim of the lemma. ��
We can now prove the claimed expansion of the energy functional.

Proof of Lemma 5.5 We write the expansions of the numerator and the denominator as

Eε[uε] = N0 + N1 + E0(r) + o(λ−2s + (ε + φa(x))λ
−N+2s,

where

N0 = Eε[ψ], N1 := 2E0[ψx,λ, t] + ‖(−�)s/2t‖2,
and

∫

�

u p
ε = D0 + D1 + I[r ] + o(λ−2s),

where

D0 =
∫

�

ψ p, D1 := p
∫

�

ψ
p−1
x,λ t + p(p − 1)

2

∫

�

ψ
p−2
x,λ t2,

and

I[r ] := p(p − 1)

2

∫

�

ψ
p−2
x,λ r2 + O(λ− N−2s

2

∫

�

U p−2|Ha ||r | dy). (5.10)

Taylor expanding up to and including second order, we find
(∫

�

u p
ε

)−2/p

= D−2/p
0

(

1 − 2

p

D1 + I [r ]
D0

+ p + 2

p2
(D1 + I [r ])2

D2
0

)

+ o(λ−2s).
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We now observe I[r ] � ‖(−�)s/2r‖2 + o(φa(x)λ−N+2 s + λ−2 s) since

λ− N−2s
2

∫

�

U p−2|Ha ||r | �
∫

�

U p−2r2 + λ−N+2s
∫

�

U p−2H2
a

� ‖(−�)s/2r‖2 + o(λ−N+2sφa(x))

Hence we can simplify the expression of the denominator to
(∫

�

u p
ε

)−2/p

= D−2/p
0

(

1 − 2

p

D1 + I [r ]
D0

+ p + 2

p2
D2
1

D2
0

)

+ o(‖(−�)s/2r‖2)

+o(φa(x)λ
−N+2s) + o(λ−2s).

Multiplying this with the expansion of the numerator from above, we find

Sa+εV [uε] = D−2/p
0 N0 + D−2/p

0

(

N1 − 2

p

N0

D0
D1 − 2

p

N1D1

D0
+ p + 2

p2
D2
1N0

D2
0

)

+ D−2/p
0

(

E0[r ] − 2N0

pD0
I [r ] + o(‖(−�)s/2r‖2)

)

+ o(λ−2s) + o(φa(x)λ
−N+2s).

We show in Lemma 5.8 below that the bracket involving the terms N1 and D1 involving
s vanishes up to order o(λ−2s), due to cancellations. Noting that D−2/p

0 N0 is nothing but
Sa+εV [ψ], the expansion claimed in Lemma 5.5 follows. ��
Lemma 5.8 Assume (5.7) and let N0, N1, D0, D1 be defined as in the proof of Lemma 5.5.
Then

N1 = 2βcN ,s AN ,sλ
−N+2s

+ cN ,sλ
−2N+4s

(

β2AN ,s + γ 2(p − 1)BN ,s − 2aN ,sφ0(x)(β − N − 2s

2
γ )

)

+ o(λ−2s)

and

D1 = λ−N+2s pβAN ,s + λ−2N+4s
(
p(p − 1)

2
(β2AN ,s + γ 2BN ,s) − p(β − N − 2s

2
γ )aN ,sφ0(x)

)

+ o(φa(x)λ
−N+2s) + o(λ−2s),

where we abbreviated BN ,s := ∫
RN U p−2

0,1 |∂λU0,1|2 dy.
In particular,

N1 − 2

p

N0

D0
D1 − 2

p

N1D1

D0
+ p + 2

p2
D2
1N0

D2
0

= o(λ−2s) + o(φa(x)λ
−N+2s).

Proof We start with expanding N1 = 2E0[ψ, t] + ‖(−�)s/2t‖2. From Lemma B.2 and the
expansion (5.1) for t , one easily sees that

‖(−�)s/2t‖2 = β2λ−2N+4s‖(−�)s/2PUx,λ‖2 + γ λ−2N+4s+2‖(−�)s/2∂λPUx,λ‖2
= β2cN ,s AN ,sλ

−2N+4s + γ 2(p − 1)cN ,s BN ,s + o(λ−2s),

where we also used assumption (5.7). Next, recalling ((−�)s + a)ψx,λ = cN ,sU
p−1
x,λ −

a(λ
N−2s
2 h(λ(x − ·) + fx,λ) with h as in Lemma B.3, we easily obtain

2E0[ψx,λ, t] = 2cN ,s

∫

�

U p−1
x,λ t dy + o(λ−2s) = 2βcN ,s AN ,sλ

−N+2s
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− 2cN ,saN ,sφ0(x)λ
−2N+4s(β + N − 2s

2
γ ) + o(λ−2s).

(Observe that the leading order term with γ vanishes because
∫
RN U p−1

0,1 ∂λU0,1 = 0.) This
proves the claimed expansion for N1. For D1, we have
∫

�

ψ
p−1
x,λ t dy = λ−N+2sβ

∫

�

ψ
p−1
x,λ PUx,λ dy + γ λ−N+2s+1

∫

�

ψ
p−1
x,λ ∂λPUx,λ dy + o(λ−2s).

Writing outψx,λ = Ux,λ−λ− N−2s
2 H0(x, ·)− fx,λ and PUx,λ = Ux,λ−λ− N−2s

2 H0(x, ·)− f ,
by the usual bounds together with assumption (5.7) we get

λ−N+2sβ

∫

�

ψ p−1PUx,λ dy = λ−N+2sβAN ,s − λ−2N+4sβaN ,sφ0(x)

+ o(λ−N+2sφa(x)) + o(λ−2s).

Similarly,

γ λ−N+2s+1
∫

�

ψ p−1∂λPUx,λ dy = γ
N − 2s

2
λ−2N+4saN ,sφ0(x) + o(λ−N+2sφa(x)) + o(λ−2s).

Observe that the leading order term with γ vanishes because
∫
RN U p−1

0,1 ∂λU0,1 = 0. Finally,
∫

�

ψ
p−2
x,λ t2 dy = λ−2N+4s (β2AN ,s + γ 2BN ,s

)+ o(λ−2s).

Putting together the above, we end up with the claimed expansion for D1.
The last assertion of the lemma follows from the expansions of N0, D0, N1, and D1 by

an explicit calculation whose details we omit. ��
Based on the refined expansion of Sa+εV [uε] obtained in Lemma 5.5, we are now in a

position to give the proofs of our main results.
We first use the coercivity inequality from Proposition 3.4 to control the terms involving

r that appear in Lemma 5.5.

Lemma 5.9 (Coercivity result) There is ρ > 0 such that, as ε → 0,

E0[r ] − 2N0

pD0
I [r ] ≥ ρ‖(−�)s/2r‖2.

Proof Recalling the definition (5.10) of I[r ] and observing that N0/D0 = cN ,s , we find by
Proposition 3.5 that

E0[r ] − 2N0

pD0
I [r ] = ‖(−�)s/2r‖2 +

∫

�

ar2 dy − cN ,s(p − 1)
∫

�

U p−2
x,λ r2 dy

+ O
(

λ− N−2s
2

∫

�

U p−2
x,λ |Ha(x ·)||r | dy

)

+ o(‖(−�)s/2r‖2)

≥ ρ‖(−�)s/2r‖2 + O
(

λ− N−2s
2

∫

�

U p−2
x,λ |Ha(x ·)||r | dy

)

for some ρ > 0. The remaining error term can be bounded as follows:

λ− N−2s
2

∫

�

U p−2
x,λ |Ha(x, ·)||r | dy ≤ δ′

∫

�

U p−2
x,λ r2 dy + Cλ−N+2s

∫

�

U p−2
x,λ Ha(x, ·)2 dy

≤ δ‖(−�)s/2r‖2 + O(λ−2N+4sφa(x)
2) + o(λ−2s)
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≤ δ‖(−�)s/2r‖2 + o(λ−N+2sφa(x) + λ−2s),

where we used Lemma A.4. By choosing δ > 0 small enough, we obtain the conclusion. ��

6 Proof of themain results

CombiningLemma 5.9with Lemma 5.5 gives a lower bound onSa+εV [uε]. Using the almost-
minimizing assumption (1.17) and the expansion from Theorem 2.1, this lower bound can
be stated as follows:

0 ≥ (1 + o(1))(S − S(a + εV )) + R

+ A
− N−2s

N
N ,s

(
(QV (x) + o(1))ελ−N+2s − (a(x) + o(1))(αN ,s + cN ,sdN ,sbN ,s)λ

−2s
)

,

(6.1)

where

R := A
N−2s
N

N ,s

(
aN ,scN ,s(1 + o(1))φa(x)λ

−N+2s + T2(φa(x), λ)
)

+ ρ‖(−�)s/2r‖22,
for some ρ > 0, and T2(φa(x), λ) as in (2.5).

Recall that φa ≥ 0 by Corollary 2.2 and that φa(x) is bounded because x0 ∈ �. Since T2
is a sum of higher powers (φa(x)λ−N+2 s)k with k ≥ 2, we have R ≥ 0 for ε small enough.

Lemma 6.1 As ε → 0, φa(x) = o(1). In other words, x0 ∈ Na.

Proof Since S − S(a + εV ) ≥ 0 and ‖(−�)s/2r‖22 ≥ 0, the bound (6.1) gives

φa(x) � ε + λN−4s + λN−2sT2(φa(x), λ).

Sinceφa(x) is uniformly bounded,we can bound T2(φa(x), λ) � λ−2N+4s , which concludes.
��

Lemma 6.2 If Na(V ) 
= ∅, then x0 ∈ Na(V ).

In the proof of this lemma, we need the assumption (1.12), i.e. that a(x) < 0 on Na .

Proof By Lemma 6.1 we only need to prove that QV (x0) < 0.
Inserting the upper bound from Corollary 2.3 on S − S(a + εV ) into (6.1), and using

R ≥ 0, we obtain that

(QV (x) + o(1))ελ−N+2s ≤ −C1ε
2s

4s−N + C2λ
−2s .

Here, the numbers C1 and C2 are given by

C1 := (1 + o(1))σN ,s sup
x∈Na(V ).

|QV (x)| 2s
4s−N

|a(x)| N−2s
4s−N

, C2 := −a(x) + o(1).

Using Lemma 6.1 and the assumption a < 0 on Na , we have that C2 is strictly positive and
remains bounded away from zero by assumption. Since Na(V ) is not empty, the same is
clearly true for C1. Thus, by Young’s inequality,

−C1ε
2s

4s−N + C2λ
−2s ≤ −cελ−N+2s

for some c > 0. This implies QV (x0) < −c < 0 as desired. ��
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Now we are ready to prove our main results Theorems 1.4, 1.5, and 1.6.

Proof of Theorem 1.4 By using R ≥ 0 and minimizing the last term over λ, like in the proof
of Corollary 2.3, the bound (6.1) implies

(1 + o(1))(S(a + εV ) − S) ≥ −σN ,s
|QV (x0)| 2s

4s−N

|a(x0)| N−2s
4s−N

ε
2s

4s−N + o
(
ε

2s
4s−N

)

≥ −σN ,s sup
x∈Na(V )

|QV (x)| 2s
4s−N

|a(x)| N−2s
4s−N

ε
2s

4s−N + o
(
ε

2s
4s−N

)
,

where the last inequality follows from Lemma 6.2. This is equivalent to

S(a + εV ) ≥ S − σN ,s sup
x∈Na(V )

|QV (x)| 2s
4s−N

|a(x)| N−2s
4s−N

ε
2s

4s−N + o
(
ε

2s
4s−N

)
.

Since the matching upper bound has already been proved in Corollary 2.3, the proof of the
theorem is complete. ��

Proof of Theorem 1.5 Since x0 ∈ Na by Lemma 6.1, by assumption we have QV (x0) ≥ 0
and a(x0) < 0. Together with R ≥ 0, the bound (6.1) then implies

0 ≥ (1 + o(1))(S − S(a + εV )) + cλ−2s + o(ελ−N+2s)

for some c > 0. Since o(ελ−N+2 s) ≥ − c
2λ

−2 s + o(ε
2 s

4 s−N ) by Young, this implies S(a +
εV ) ≥ S + o(ε

2s
N−4s . Since the inequality

S(a + εV ) ≤ S (6.2)

always holds (e.g. by Theorem 2.1), we obtain S(a + εV ) ≥ S + o(ε
2s

N−4s ) as desired.
Now assume that additionally QV (x0) > 0. With R ≥ 0, (6.1) implies, for ε > 0 small

enough and some C1,C2 > 0

S(a + εV ) − S ≥ C1ελ
−N+2s + C2λ

−2s > 0,

which contradicts (6.2). Thus assumption (3.19), under which we have worked so far, cannot
be satisfied, and we must have S(a + ε0V ) = S for some ε0 > 0. Since S(a + εV ) is
concave in ε (being the infimum of functions linear in ε) and since S(a) = S, we must have
S(a + εV ) = S for all ε ∈ [0, ε0]. ��

Proof of Theorem 1.6 We may first observe that the upper and lower bounds on S(a + εV )

already discussed in the proof of Theorem 1.4 imply

|QV (x0)| 2s
4s−N

|a(x0)| N−2s
4s−N

= sup
x∈Na

|QV (x)| 2s
4s−N

|a(x)| N−2s
4s−N

. (6.3)

Now, by using additionally Lemma B.6, the estimate (6.1) becomes

(1 + o(1)) ((S(a + εV ) − S) ≥ −σN ,s
|QV (x0)| 2s

4s−N

|a(x0)| N−2s
4s−N

ε
2s

4s−N + R′ + o
(
ε

2s
4s−N

)
, (6.4)
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where

R′ =

⎧
⎪⎨

⎪⎩

R + c0ε
2s−2
4s−N

(
λ−1 − λ0(ε)

−1
)2

if
(
Aε

Bε

) 1
4s−N

ε− 1
4s−N λ−1 ≤ 2

(
2s

N−2s

) 1
N−4s

,

R + c0ε
2s

4s−N if
(
Aε

Bε

) 1
4s−N

ε− 1
4s−N λ−1 > 2

(
2s

N−2s

) 1
N−4s

,

in the notation of Lemma B.6, for Aε := A
− N−2 s

N
N ,s (αN ,s + cN ,sdN ,sbN ,s)(|a(x0)| + o(1))

and Bε := A
− N−2 s

N
N ,s (|QV (x0)| + o(1)), with λ0(ε) given by (B.5). Now applying in (6.4) the

upper bound on S(a + εV ) from Corollary 2.3 yields

R′ = o(ε
2s

4s−N ).

The terms that make up R′ being separately nonnegative, this implies R = o(ε
2s

4s−N ) and

(λ−1 − λ0(ε)
−1)2 = o(ε

2
4 s−N ), that is,

λ =
(

2s Aε

(N − 2s)Bε

) 1
4s−N

ε− 1
4s−N + o

(
ε− 1

4s−N

)

=
(
2s(αN ,s + cN ,sdN ,sbN ,s)|a(x0)|

(N − 2s)|QV (x0)|
) 1

4s−N

ε− 1
4s−N + o

(
ε− 1

4s−N

)
(6.5)

and

‖(−�)s/2r‖2 = o
(
ε

s
4s−N

)
. (6.6)

Inserting the asymptotics of λ back into R = o
(
ε

2 s
4 s−N

)
now gives

φa(x) = o(ε). (6.7)

It remains to derive the claimed expansion for α. From Lemma 5.7, we deduce

|α|− 2N
N−2s

∫

�

u
2N

N−2s
ε dy =

∫

�

ψ
2N

N−2s
x,λ dy + O

(
‖(−�)s/2s‖2 + ‖(−�)s/2r‖22 + λ−N+2s

)
.

Using the bound ‖(−�)s/2s‖2 � λ−N+2s , together with (6.5), (6.6) and the expansion of
∫
�

ψ
2N

N−2s
x,λ from Theorem 2.1, we obtain

|α|−p = 1 + O(λ−N+2s) = 1 + O
(
ε

N−2s
4s−N

)
.

This completes the proof of Theorem 1.6. ��
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Appendix A: Green’s function

A.1 The Green’s function G0 and the projections PUx,�

We begin by studying the case a = 0. The next lemma collects some important estimates on
the regular part H0(·, ·) of the Green’s function and the Robin function φ0(x) = H0(x, x),
which will turn out very important for our analysis. Similar estimates for s = 1 have been
derived in [38, Sect. 2 and Appendix A].

We denote in the following d(x) := dist(x, ∂�).

Lemma A.1 Let x ∈ � and N > 2s. Then y �→ H0(x, y) is continuous on � and we have,
for all y ∈ �,

0 ≤ H0(x, y) � d(x)2s−N ,

|∇y H0(x, y)| � d(x)2s−N−1.

Moreover, the Robin function φ0 satisfies the two-sided bound

d(x)2s−N � φ0(x) � d(x)2s−N . (A.1)

Proof H0(x, ·) satisfies
(−�)s H0(x, ·) = 0 on �,

H0(x, ·) = 1

|x − ·|N−2s on RN \ �.

Thus we can write

H0(x, y) =
∫

RN \�
1

|x − z|N−2s dP
y
�(z),

where Py
� denotes harmonic measure for (−�)s , see [33, Theorem 7.2]. Since Py

� is a
probability measure, this implies

0 ≤ H0(x, y) � d(x)−N+2s .

Similarly, since

(−�)s∇H0(x, ·) = ∇(−�)s H0(x, ·) = 0 on �,

∇H0(x, ·) = ∇ 1

|x − ·|N−2s on R
N \ �,

we have

|∇y H0(x, y)| =
∣
∣
∣
∣

∫

RN \�

(

∇z
1

|x − z|N−2s

)

dPy
�(z)

∣
∣
∣
∣ � d(x)−N+2s−1.
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The lower bound d(x)2s−N � φ0(x) is proved in [18, Lemma 7.6]. ��
The following important lemma shows the relation between the regular part H0(x, ·)

and the projections PUx,λ introduced in (1.16). For the classical case s = 1, this is [38,
Proposition 1]. For fractional s ∈ (0, 1), a slightly weaker version relying on the extension
formulation of (−�)s appears in [16, Lemma C.1].

Lemma A.2 Let x ∈ � and N > 2s.

(i) We have

0 ≤ PUx,λ ≤ Ux,λ (A.2)

and the function ϕx,λ := Ux,λ − PUx,λ satisfies the estimates

‖ϕx,λ‖L∞(RN ) � d(x)−N+2sλ
−N+2s

2 (A.3)

and

‖ϕx,λ‖L p(RN ) � (d(x)λ)−
N−2s
2 . (A.4)

(ii) Moreover, the expansion

PUx,λ = Ux,λ − λ
N−2s
2 H0(x, y) + fx,λ, (A.5)

holds with

‖ fx,λ‖L∞(�) � d(x)−N−2+2sλ− N+4−2s
2 .

Proof Claim (i). Our proof follows mostly [38, Appendix A]. Since

(−�)s PUx,λ ≥ 0 on �,

PUx,λ ≡ 0 on R
N \ �,

the maximum principle (see e.g. [43, Proposition 2.17]) implies that PUx,λ ≥ 0. Similarly,
ϕx,λ = Ux,λ − PUx,λ satisfies

(−�)sϕx,λ = 0 on �, (A.6)

ϕx,λ = Ux,λ ≥ 0 on RN \ �,

and, thus, ϕx,λ ≥ 0 by the maximum principle. This completes the proof of (A.2).
By (A.6), we can moreover write

ϕx,λ(y) =
∫

RN \�
Ux,λ(z) dP

y
�(z), y ∈ �.

Thus, ‖ϕx,λ‖L∞(RN ) = ‖Ux,λ‖L∞(RN \�) � λ
−N+2 s

2 d(x)−N+2 s .
Next, let us prove the L p estimate onϕx,λ. Sinceϕx,λ ∈ Hs(RN ), by theSobolev inequality

we have

‖ϕx,λ‖2L p(RN )
� ‖(−�)s/2ϕx,λ‖22
= ‖(−�)s/2Ux,λ‖22 + ‖(−�)s/2PUx,λ‖22 − 2

∫

RN
(−�)sUx,λPUx,λ dy.

(A.7)
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The second summand in (A.7) can be written as

‖(−�)s/2PUx,λ‖22 = cN ,s

∫

�

PUx,λU
p−1
x,λ dy

= ‖(−�)s/2Ux,λ‖22 − cN ,s

∫

�

ϕx,λU
p−1
x,λ dy

= ‖(−�)s/2Ux,λ‖22 + O
(

‖ϕx,λ‖∞
∫

�

U p−1
x,λ dy

)

= ‖(−�)s/2Ux,λ‖22 + O
(
(d(x)λ)−N+2s

)

by (A.3).
Similarly, the third summand in (A.7) is

−2
∫

RN
(−�)sUx,λPUx,λ dy = −2cN ,s

∫

�

U p
x,λ dy + 2cN ,s

∫

�

U p−1
x,λ ϕx,λ dy

= −2‖(−�)s/2Ux,λ‖22 + O
(
(d(x)λ)−N+2s

)
,

where we also used the bound
∫

RN \�
U p
x,λ dy � (d(x)λ)−N .

Collecting these estimates and returning to (A.7), we obtain

‖ϕx,λ‖2L p(RN )
� (d(x)λ)−N+2s .

This concludes the proof of (A.4).

Claim (ii). The function fx,λ := ϕx,λ − λ− N−2 s
2 H0(x, ·) satisfies

(−�)s fx,λ = 0 on �,

fx,λ = Ux,λ − λ− N−2s
2

|x − ·|N−2s on RN \ �.

As in the proof of Lemma A.1, we have

fx,λ(y) =
∫

RN \�

(

Ux,λ(y) − λ− N−2s
2

|x − z|N−2s

)

dPy
�(z),

and, hence, since Px
� is a probability measure, we have

‖ fx,λ‖L∞(�) ≤
∥
∥
∥
∥
∥
Ux,λ(y) − λ− N−2s

2

|x − y|N−2s

∥
∥
∥
∥
∥
L∞(RN \�)

= O
(
λ− N+4−2s

2 dist(x, ∂�)−N−2+2s
)

by Lemma B.3 below. ��

A.2 Expanding the regular part Hb(x, y) near the diagonal

We now turn to the Green’s function Gb, for a general potential b ∈ C1(�) ∩ C(�) such
that (−�)s + b is coercive. By calling the potential b rather than a, we emphasize the fact
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that criticality of b is not needed for the following expansions. Moreover, in contrast to the
previous subsection, we specialize to the condition 2s < N < 4s again, which plays a role
in the proof of Lemmas A.3 and A.4 below.

Lemma A.3 Let x ∈ � and 2s < N < 4s.

(i) If 4s − N < 1, then, as y → x,

Hb(x, y) = φb(x) − dN ,sb(x)|x − y|4s−N + o(|x − y|4s−N ).

(ii) If 4s − N ≥ 1, then there is ξx ∈ R
N such that

Hb(x, y) = φb(x) + ξx · (y − x) − dN ,sb(x)|x − y|4s−N + o(|x − y|4s−N ).

Here, the constant dN ,s > 0 is given by (B.2). The asymptotics are uniform for x in compact
subsets of �.

Proof Fix x ∈ � and let

ψx (y) := Hb(x, y) − φb(x) + dN ,sb(x)|x − y|4s−N ,

with dN ,s as in (B.2). We use the facts that, in the distributional sense,

(−�)sy Hb(x, y) = b(y)Gb(x, y) = b(y)

|x − y|N−2s − b(y)Hb(x, y)

and, by Lemma B.5,

(−�)s |x |4s−N = −d−1
N ,s |x |2s−N .

Thus ψx solves, in the distributional sense, the equation

(−�)syψx (y) = Fx (y), (A.8)

with

Fx (y) = b(y) − b(x)

|x − y|N−2s − b(y)Hb(x, y).

Since b ∈ C1(�), we have

|b(x) − b(y)|
|x − y|N−2s � |x − y|−N+2s+1.

We will deduce the assertion of the lemma in each case from elliptic estimates on the Eq.
(A.8) and appropriate bounds on Fx .

Case −N + 2s + 1 < 0. Since the second summand b(y)Hb(x, y) is in L∞, we have
Fx ∈ L p(�) for every p < N

N−2s−1 . For the following, fix some p ∈ ( N
2 s ,

N
N−2 s−1 ). (The

assumption N < 4 s guarantees that this interval is not empty.)
Define ψ̃x := (−�)−s Fx , where (−�)−s is convolution with the Riesz potential. Then by

[39, Theorem 1.6.(iii)] we have [ψ̃x ]Cα(RN ) � ‖Fx‖L p(RN ), where α = 2s − N
p . Moreover,

(−�)s(ψx − ψ̃x ) = 0 on �. Since s-harmonic functions are smooth (see, e.g., [1, Sect. 2]),

we conclude that ψx ∈ C2s− N
p (Bd/2(x)).

Since ψx (x) = 0, we conclude that as y → x ,

ψx (y) = O
(
|x − y|2s− N

p

)
. (A.9)
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If we choose p ∈
(

N
N−2 s ,

N
N−2 s−1

)
, then 2 s− N

p > 4 s− N . As a consequence of N < 4 s,

we have the inclusion
(

N
N−2 s ,

N
N−2 s−1

)
⊂
(

N
2 s ,

N
N−2 s−1

)
. Together with the definition of

ψx , (A.9) then implies

Hb(x, y) = φb(x) − dN ,sb(x)|x − y|4s−N + o
(
|x − y|4s−N

)
,

which is the assertion of the lemma.
Case −N + 2s + 1 ≥ 0. In this case Fx ∈ L∞(�). More precisely, we have

Fx ∈
{
L∞(�) if N = 2s + 1,

C0,−N+2s+1(�) if 0 < −N + 2s + 1.

Notice that we always have −N + 2s + 1 < 1, since N > 2s. As above, define ψ̃x =
(−�)−s Fx . By [43], we find using N < 4s that in any of the above cases, ψ̃x ∈ C1,α for all
α ∈ (0, 1] with α < 4 s − N . Using Hölder continuity of the gradient, we easily find

ψx (y) = ψx (x) + ∇ψx (x) · (y − x) + O(|x − y|α+1).

Choosing α > 4s − N − 1 and inserting the definition of ψx , we find

Hb(x, y) = φb(x) + ∇ψx (x) · (y − x) − dN ,sb(x)|x − y|4s−N + o(|x − y|4s−N ),

which is the assertion of the lemma with ξx := ∇ψx (x). ��
Lemma A.4 Let k ∈ N with k ≤ p = 2N

N−2 s . If k > 2 s
N−2 s , then

λ− k
2 (N−2s)

∫

�

U p−k
x,λ Ha(x, ·)k dy = o(λ−2s).

If 2 ≤ k ≤ 2s
N−2s , then

λ− k
2 (N−2s)

∫

�

U p−k
x,λ Ha(x, ·)k dy =

(∫

RN
U0,1(y)

p−k dy

)

φa(x)
kλ−k(N−2s) + o(λ−2s).

If k = 1,

λ− N−2s
2

∫

�

U p−1
x,λ Hb(x, ·) dy

= aN ,sφb(x)λ
−N+2s − dN ,sbN ,sb(x)λ

−2s + o(λ−2s) + o(φb(x)λ
−N+2s).

The asymptotics are uniform for x in compacts of �.

Proof Let us start with the easy case of k > 2s
N−2s . In that case, since Ha(x, ·) is uniformly

bounded, we have

λ− k
2 (N−2s)

∫

�

U p−k
x,λ Ha(x, ·)k dy � λ−k(N−2s)

∫

BRλ

U p−k
0,1 dy �

⎧
⎪⎨

⎪⎩

λ−k(N−2s) if k < N
N−2s ,

λ−N ln λ if k = N
N−2s ,

λ−N if k > N
N−2s .

In any case, this is o(λ−2s).
Now, assume 1 ≤ k ≤ 2s

N−2s . Let us abbreviate d = d(x) and Bd = Bd(x) and show that
the integral over �\Bd is o(λ−2s). Indeed, since Ha(x, ·) is uniformly bounded,

λ− k
2 (N−2s)

∫

�\Bd
U p−k
x,λ Ha(x, y)

k dy � λ− k
2 (N−2s)

∫

RN \Bd
U p−k
x,λ dy (A.10)
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= λ−k(N−2s)
∫

RN \Bdλ

U p−k
0,1 dy = λ−N = o(λ−2s).

(A.11)

To evaluate the remaining integral over Bd , we use the formula

(Ha(x, y))
k =

(
φa(x) + ξx · (y − x) − dN ,s(a(x) + o(1))|x − y|4s−N

)k
(A.12)

by Lemma A.3 (where ξx may be zero if we are in case (i) of that lemma). After multiplying
out the right side, every term containing the factor ξx ·(y−x) only once vanishes by oddness.

Let now k ≥ 2. Since φa(x) and a(x) are uniformly bounded and � is bounded, it is clear
that we can estimate

Ha(x, y)
k = φa(x)

k + O(|y − x |2 + |y − x |4s−N ) ≤ φa(x)
k + O

(
|y − x |4s−N

)
.

For the last step we used that 4s − N ≤ 2 + 2s − N < 2. Now

λ− k
2 (N−2s)

∫

Bd
U p−k
x,λ |x − y|4s−N dy = λ−k(N−2s)λN−4s

∫

Bdλ(0)
U p−k
0,1 |y|4s−N dy (A.13)

� λ−Nλ−(k−2)(N−2s) ×
{
ln λ if k = 2,

λ(k−2)(N−2s) if k > 2.

(A.14)

In any case, this is o(λ−2s).
Finally, if k = 1, plugging in expansion (A.12), the term involving a(x) is not negligible

anymore. Instead, it gives

λ− N−2s
2

∫

Bd
U p−1
x,λ (a(x) + o(1))|x − y|4s−N dy = λ−2saN ,sa(x) + o(λ−2s),

which completes the proof. ��

Appendix B: Auxiliary computations

In this Appendix, we collect some technical results and computations used throughout the
paper.

First, we compute the Lq norm of Ux,λ for various values of q .

Lemma B.1 (Lq -norm of Ux,λ) Let x ∈ � and q ∈ [1,∞]. As λ → ∞, we have, uniformly
for x in compact subsets,

‖Ux,λ‖Lq (�) ∼

⎧
⎪⎪⎨

⎪⎪⎩

λ
N−2s
2 − N

q , q > N
N−2s ,

λ− N−2s
2 (ln λ)

N−2s
N , q = N

N−2s ,

λ− N−2s
2 , q < N

N−2s .

Moreover, for ∂λUx,λ = N−2 s
2 λ

N−2 s−2
2

1−λ2|x−y|2
(1+λ2|x−y|2) N−2 s+2

2
, we have |∂λUx,λ| = O(λ−1Ux,λ)

pointwise and therefore

‖∂λUx,λ‖q � λ−1‖Ux,λ‖q , q ∈ [1,∞].
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Finally, for ∂xiUx,λ = (−N + 2 s)λ
N−2 s+2

2
λ(x−y)

(1+λ2|x−y|2) N−2 s+2
2

, we have

‖∂xiUx,λ‖Lq (�) ∼

⎧
⎪⎪⎨

⎪⎪⎩

λ
N−2s+2

2 − N
q , q > N

N−2s+1 ,

λ− N−2s
2 (ln λ)

N−2s+1
N , q = N

N−2s+1 ,

λ− N−2s
2 , q < N

N−2s+1 .

Lemma B.2 We have

‖(−�)s/2PU‖ ∼ 1, ‖(−�)s/2∂λPU‖ ∼ λ−1, ‖(−�)s/2∂xi PU‖ ∼ λ.

Moreover,
∫

RN
(−�)s/2PUx,λ(−�)s/2∂λPUx,λ dy � λ−N+2s−1,

∫

RN
(−�)s/2PUx,λ(−�)s/2∂xi PUx,λ dy � λ−N+2s,

∫

RN
(−�)s/2∂λPUx,λ(−�)s/2∂xi PUx,λ dy � λ−N+2s−1,

∫

RN
(−�)s/2∂xi PUx,λ(−�)s/2∂x j PUx,λ dy � λ−N+2s .

We remark that the bounds of Lemma B.2 are consistent with the ones proved in [38,
Appendix B].

Lemma B.3 We have

0 ≤ λ− N−2s
2

|x − y|N−2s −Ux,λ(y) = λ
N−2s
2 h(λ(x − y)), (B.1)

with

h(z) :=
(

1

1 + |z|2
) N−2s

2 − 1

|z|N−2s .

Moreover h(z) ∼ |z|−N−2+2 s and |∇h(z)| ∼ |z|−N+2 s−3 as |z| → ∞. Consequently,
h ∈ L p(RN ) for every p ∈ [1, N

N−2 s ) and ∇h ∈ L p(RN ) for every p ∈ [1, N
N−2s+1 ), where

the latter interval is possibly empty.

Lemma B.4 Let b ∈ C(�) ∩ C1(�). As λ → ∞, uniformly for x in compact subsets of �,
∫

�

b(y)Ux,λ(y)λ
N−2s
2 h(λ(x − y)) dy = αN ,sλ

−2sb(x) + o(λ−2s).

The numerical value of αN ,s = ∫
RN U0,1(y)h(y) dy is given in Lemma B.5 below.

Proof Abbreviate d = d(x) and Bd = Bd(x). We integrate separately over Bd and over
� \ Bd .

For the outer integral, from Lemma B.3 we get that U0,1(y)h(y) ∼ |y|−2N+4s−2. Thus,
∫

�\Bd
b(y)Ux,λ(y)λ

N−2s
2 h(λ(x − y)) dy � λ−N+2s−2 = o(λ−N ) = o(λ−2s).
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For the inner integral, using that b ∈ C1(�), we write b(y) = b(x) + ∇b(x) · (y − x) +
o(|x − y|) for y ∈ Bd . Then (the integral over ∇b(x) · (y − x) cancels due to oddness)

∫

Bd
b(y)Ux,λ(y)λ

N−2s
2 h(λ(x − y)) dy

= b(x)λ−2s
∫

Bλd (0)
U0,1(y)h(y) dy + o

(

λ−2s−1
∫

Bλd (0)
U0,1(z)h(z)|z| dz

)

= b(x)λ−2sαN ,s + o(λ−2s) + o

(

λ−2s−1
∫

Bλd (0)
U0,1(z)h(z)|z| dz

)

.

To show that the last term is o(λ−2s) as well, note that by Lemma B.3 we have
U0,1(z)h(z)|z| � |z|−2N+4 s−1. Thus,

λ−2s−1
∫

Bλd (0)
U0,1(z)h(z)|z| dz �

⎧
⎪⎨

⎪⎩

λ−2s−1 if N > 4s − 1,

λ−2s−1 log λ if N = 4s − 1,

λ−N+4s−1 if N < 4s − 1.

This is o(λ−2s) in all cases. ��
We compute explicitly the constants that appear in the asymptotic expansions throughout

the paper.

Lemma B.5 (Constants) For N > 2s and p = 2N
N−2s , let U0,1(y) =

(
1

1+|y|2
) N−2s

2
and

h(y) = 1
|y|N−2 s − 1

(1+|y|2) N−2 s
2

. Then, for every 0 ≤ k < N
N−2 s , we have

aN ,s(k) :=
∫

RN
U0,1(y)

p−k dy = πN/2�
( N
2 (1 − k) + ks

)

�
( N
2 (2 − k) + ks

) .

We denote AN ,s := aN ,s(0) and aN ,s := aN ,s(1). Furthermore,

bN ,s :=
∫

RN
U0,1(y)

N+2s
N−2s |y|4s−N dy = πN/2 �(2s)�

( N
2 − s

)

�
( N
2

)
�
( N
2 + s

) ,

αN ,s :=
∫

RN
U0,1(y)h(y) dy = πN/2

�
( N
2

)�

(
N

2
− 2s

)(
�(s)

�
( N
2 − s

) − �
( N
2

)

�(N − 2s)

)

.

Moreover, the constant in (−�)su(x) := CN ,s P.V .
∫
RN

u(x)−u(y)
|x−y|N+2 s dy is given by

CN ,s := 22s�
( N+2s

2

)

πN/2s�(1 − s)

and the constant in (−�)sU0,1 = cn,sU
N+2 s
N−2 s
0,1 is given by

cN ,s = 22s
�( N+2s

2 )

�( N−2s
2 )

.

The explicit value of the best fractional Sobolev constant in ‖(−�)s/2u‖2 ≥ S‖u‖2 2N
N−2 s

is

S := SN ,s = 22sπ s �( N+2s
2 )

�( N−2s
2 )

(
�(N/2)

�(N )

)2s/N

.
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The constant in (−�)s |x |4s−N = −d−1
N ,s |x |2s−N is given by

dN ,s := −2−2s �( N−4s
2 )�(s)

�( N−2s
2 )�(2s)

> 0. (B.2)

The constant γN ,s in ((−�)s + a)Ga(x, ·) = γN ,sδx is given by

γN ,s = 22sπN/2�(s)

�( N−2s
2 )

.

Proof The values of an,s(k) and bN ,s are a consequence of the following computation. For
α, β > 0,

∫

RN

(
1

1 + |y|2
)α

|y|β dy = 2πN/2

�
( N
2

)
∫ ∞

0

(
1

1 + r2

)α

r N−1+β dr

= πN/2

�
( N
2

) B
(

β+N
2 , α − β+N

2

)
= πN/2

�
( N
2

)
�
(

β+N
2

)
�
(
α − β+N

2

)

�(α)
.

(B.3)

To compute αN ,s , we write

αN ,s =
∫

RN
U0,1(y)h(y) dy

= 2πN/2

�
( N
2

)
∫ ∞

0

((
1

1 + r2

) N−2s
s

r2s−1 −
(

1

1 + r2

)N−2s

r N−1
)

︸ ︷︷ ︸
I (r ,N ,s)

dr .

If N > 4s, then the summands of I (r , N , s) are separately integrable, in which case (B.3)
gives

αN ,s = πN/2

�
( N
2

)�

(
N

2
− 2s

)(
�(s)

�
( N
2 − s

) − �( N2 )

�(N − 2s)

)

. (B.4)

To extend this formula to the case 2s < N < 4s which concerns us, we remark that the
right side of (B.4) defines a holomorphic function of s in the complex subdomain DN :=
{0 < Re(s) < N/2}\{N/4} ⊂ C. On the other hand, by a cancellation I (r , N , s) remains
integrable in r ∈ (0,∞) for every s ∈ (0, 1) and N ∈ (2s, 4s). Indeed,

I (r , N , s) ∼ (r2s−1 − r N−1) as r → 0,

I (r , N , s) ∼
⎛

⎝r−2 N−2s
2 r2s−1

(
1

1 + 1
r2

) N−2s
2

− r−2(N−2s)r N−1

(
1

1 + 1
r2

)N−2s
⎞

⎠

=
(

r−2 N−2s
2 r2s−1

(

1 + 1

r2

)− N−2s
2 − r−2(N−2s)r N−1

(

1 + 1

r2

)−(N−2s)
)

= r−N+4s−1

(

1 −
N
2 − s

r2
+ O

(
1

r4

)

− 1 + N − 2s

r2
+ O

(
1

r4

))

=
(
N

2
− s

)

r−N+4s−3 + O(r−N+4s−5) as r → ∞.
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By a standard argument, this implies that
∫∞
0 I (r , N , s) dr is holomorphic inDN as a function

of s. By the identity theorem for analytic functions, the formula (B.4) thus holds also for
s ∈ (N/4, N/2), which is what we wanted to show.

Finally, the claimed value of S can be found, e.g., in [17, Theorem 1.1] and that of dN ,s

in [33, Table 1, p. 168]. ��
Lemma B.6 Let 2 s < N < 4 s and let fε : (0,∞) → R be given by

fε(λ) = Aε

λ2s
− Bε

ε

λN−2s

with Aε, Bε > 0 uniformly bounded away from 0 and ∞. The unique global minimum of fε
is given by

λ0 = λ0(ε) =
(

2s Aε

(N − 2s)Bε

) 1
4s−N

ε− 1
4s−N . (B.5)

with corresponding minimal value

min
λ>0

fε(λ) = fε(λ0) = −ε
2s

4s−N
B

2s
4s−N
ε

A
N−2s
4s−N
ε

(
N − 2s

2s

) 2s
4s−N 4s − N

N − 2s
. (B.6)

Moreover, there is a c0 > 0 such that, for all ε > 0, we have

fε(λ) − fε(λ0) ≥

⎧
⎪⎨

⎪⎩

c0ε
2s−2
4s−N

(
λ−1 − λ0(ε)

−1
)2

if
(

Aε

Bε

) 1
4s−N

ε− 1
4s−N λ−1 ≤ 2

(
2s

N−2s

) 1
N−4s

,

c0ε
2s

4s−N if
(

Aε

Bε

) 1
4s−N

ε− 1
4s−N λ−1 > 2

(
2s

N−2s

) 1
N−4s

.

(B.7)

Proof The values of λ0 and fε(λ0) are obtained by standard computations. Thus we only

prove (B.7). Let F(t) := t2s − t N−2s and denote by t0 := ( 2 s
N−2 s )

− 1
4 s−N the unique global

minimum of F on (0,∞). Then, there exists c > 0 such that

F(t) − F(t0) ≥
{
c(t − t0)2 if 0 < t ≤ 2t0,

ct N−2s
0 if t > 2t0.

The assertion of the lemma now follows by rescaling. Indeed, it suffices to observe that

fε(λ) = A
− N−2s

4s−N
ε B

2s
4s−N
ε ε

2s
4s−N F

((
Aε

Bε

) 1
4s−N

ε− 1
4s−N λ−1

)

and to use the boundedness of Aε and Bε . ��
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