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Abstract

Fors € (0,1), N > 2s, and a bounded open set & C R" with C? boundary, we study the
fractional Brezis—Nirenberg type minimization problem of finding
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where the infimum is taken over all functions u € H®(RY) that vanish outside . The
function a is assumed to be critical in the sense of Hebey and Vaugon. For low dimensions
N € (2s5,45), we prove that the Robin function ¢, satisfies inf,cq ¢,(x) = 0, which
extends a result obtained by Druet for s = 1. In dimensions N € (8s/3, 4s5), we then study
the asymptotics of the fractional Brezis—Nirenberg energy S(a 4+ ¢V) for some V € L*°(Q)
as ¢ — 04. We give a precise description of the blow-up profile of (almost) minimizing
sequences and characterize the concentration speed and the location of concentration points.

S(a) =
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1 Introduction and main results

Let N € Nand 0 < 2s < N, for some s € (0, 1), and let Q@ C R be a bounded open
set with C2 boundary. The goal | of the present paper is to analyze the variational problem of
minimizing, for a given a € C(2), the quotient functional
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S 1(=8)2u>dy + [ a(y)u(y)?dy

S,lu] = 3 (1.1)
lull™ oy
LN=25 (Q)
over functions in the space
Q) = [ueHS(RN): u=0 onRN\Q}, (12)
where u € H*(RY) iff
1/2
lull 2y + ( /R . |<—A)”2u|2dy) < oo, (13)

and the fractional Laplacian operator (—A)*u is defined for any u € H*(R") through the
Fourier representation

(=A)u = F e Fu). (1.4)

We also recall the singular integral representation of the fractional Laplacian (see [12, 26]):

(=A)u(x) == CN,sP.V.AgN %d)}, (1.5)
where
25 (N42s
Cyys = 7ST2N/ZI;_‘((12—S)) (1.6)
The associated infimum,
S(a) = inf {Sylul : u € H ()}, (1.7)

is to be compared with the number S := Sy ¢ := S(0), which is equal to the best constant in
the fractional Sobolev embedding

[Pl ay = sl? (1.8

N3 RV)

given by

SN.s = 22558

N+2s 2s/N
r(*3 )(mv/z)) ’ (19)

r(v2) Ut

where I'(x) := fooo t*~1e~" dr denotes the Euler Gamma function.

We note that the embedding HS () — LPI(Q) and the associated best constant are
in fact independent of 2 and equal to the best full-space Sobolev constant Sy . This fol-
lows, e.g., from the computations in [42]. An alternative proof of this fact is provided by
Theorem 2.1 below.

In the classical case s = 1, problem (1.7) has been first studied in the famous paper [10] by
Brezis and Nirenberg, who were interested in obtaining positive solutions to the associated
elliptic equation. One of the main findings in that paper is that the behavior of (1.7) depends
on the space dimension N in a rather striking way. Indeed, when N > 4, then S(a) < Sifand
only if a(x) < 0 for some x € Q. On the other hand, when N = 3, then S(a) = S whenever
llalloo is small enough, leaving open the question of characterizing the cases S(a) < S in
terms of a. In [20], Druet proved that, for N = 3, the following equivalence holds:

S@a) < S — ¢qa(x) <0 forsomex € 2, (1.10)
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where ¢, (x) denotes the Robin function associated to a (see (1.11) below). This answered
positively a conjecture previously formulated by Brezis in [9].

For a fractional power s € (0, 1) and assuming a = —A\ for some constant A > 0,
Brezis—Nirenberg type results have been obtained by Servadei and Valdinoci:

(1) In [42], they proved that, for N > 4s, S(—A) < S whenever A > 0;
(i1) In [40], they proved that, for 2s < N < 4s, there is Ay € (0, A15) (Where A| s is the first
Dirichlet eigenvalue of (—A)*) such that for every A € (Ag, A1 5), one has S(—X) < S.

In this paper, we shall exclusively be concerned with the low-dimensional range 2s <
N < 4s. This is the natural replacement of the classical case N = 3, s = 1, as indicated by
the results above. One may also notice that when 2s < N, the Green’s function for (—A)* on
RY behaves like G (x, y) ~ |x — y|~V 25 near the diagonal and thus fails to be in L%OC (RM)
precisely if N < 4s, compare [31].

A central notion to what follows is that of a critical function a, which was introduced by
Hebey and Vaugon in [30] for s = 1 and readily generalizes to the fractional setting. Indeed,
the following definition is naturally suggested by the behavior of S(a) just described.

Definition 1.1 (Criticalfunctiolz) Let a € C(Q). We say that a is critical if S(a) = S and
S(a) < S(a) foreverya € C(2) witha <aanda # a.

When N > 4s, the result of [42] implies that the only critical potential is a = 0. For this
case, or more generally for N > 2s with a = 0, the recent literature is rather rich in refined
results going beyond [42]. Notably, in [15, 16], the authors proved the fractional counterpart
of some conjectures by Brezis and Peletier [11] concerning the blow-up asymptotics of
minimizers to the problem S(—e¢) and a related problem with subcritical exponent p — ¢
as ¢ — 0. For the fractional subcritical problem, we also mention the result on Gamma
convergence from [36]. In the classical case s = 1, such results are due to Han [29] and Rey
[37, 38]. Corresponding existence results, also for non-minimizing multi-bubble solutions,
are also given in [15, 16], as well as in [18, 28].

In contrast to this, in the more challenging setting of dimension 2s < N < 4s, critical
functions can have all possible shapes and are necessarily non-zero, compare [20] and Corol-
lary 1.3 below. In this setting, and notably in the presence of a critical function, results of
Han—Rey type as just discussed are much more scarce in the literature. Even in the local case
s = 1 and N = 3, the conjecture of Brezis and Peletier (see [11, Conjecture 3.(ii)]) which
involves a (constant) critical function has only been proved recently in [24]. The purpose of
the present paper is to treat the analogous question for low dimensions 2s < N < 4s in the
fractional setting.

1.1 Main results

For all of our results, a crucial role is plaled by the Green’s function of (—A)* + a, which
we introduce now. For a function a € C(2) such that (—A)* + a is coercive, i.e.

/RN |<—A)S/2v|2dy+/gav2dy zc/RN [(—=A)*?v[*dy

for some ¢ > 0, we define G, :  x RY — R as the unique function such that for every
fixedx € Q

(=2) +a)Gq(x, ) = yNs0x  InQ,
Gu(x,) =0 on RN\ Q.
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25 N2 . .
Here, we set yy s = %, so that (—A)*|y|~N*+25 = yy 80 on RV Thus, this choice
2

of yn s ensures that we can write G, as a sum of its singular part and its regular part H, (x, y)
as follows:

1
Gulx,y) = m — Hy(x,y).

The function H, is continuous up to the diagonal, see e.g. Lemma A.3. Therefore, we may
define the Robin function

¢a(x) := Hg(x,x), x€Q. (1.11)

We prove several properties of the Green’s functions G, in Appendix A.
Our first main result is the following extension of Druet’s theorem from [20] to the
fractional case.

Theorem 1.2 (Characterization of criticality) Let 2s < N < 4s and let a € C(R2) be such
that (—A)* + a is coercive. The following properties are equivalent.

(i) There is x € Q such that ¢,(x) < 0.
(i) S(a) < S. ~
(iii) S(a) is achieved by some function u € H*(S2).

As an immediate corollary, we can characterize critical functions in terms of their Robin
function.

Corollary 1.3 Let a be critical. Then infcq ¢q(x) = 0.

The implications (i) = (ii) and (ii) = (iii) in Theorem 1.2 are well-known: indeed,
(i) = (ii) easily follows by the proper choice of test functions thanks to Theorem 2.1 below;
the implication (ii) = (iii) is the fractional version of the seminal observation in [10] (see
[42, Theorem 2]).

Our proof of (iii) = (ii) is the content of Proposition 3.1 below and follows [20, Step
1]. The most involved proof is that of the implication (ii) = (i), which we give in Sect. 4.
We adapt the strategy developed by Esposito in [22], who gave an alternative proof of that
implication for s = 1. His approach is based on an expansion of the energy functional
Sa—elue] as e — 0, where a is critical as in Definition 1.1 and u, is a minimizer of S(a — ¢).

In fact, by using the techniques applied in the recent work [25] for s = 1, we are even able
to push this expansion of S,_.[u.] further by one order of ¢ and derive precise asymptotics
of the energy S(a — ¢) and of the sequence (u).

To give a precise statement of our results, let us fix some more assumptions and notations.
We denote the zero set of the Robin function ¢, by

Ny i={x € Q:¢,(x) =0}

It follows from Theorem 1.2 that infg ¢, (x) = 0 if and only if a is critical. In particular, N,
is not empty if a is critical.

We will consider perturbations of a of the form a + ¢V, with non-constant V € L ().
For such V, following [25], we let

0y () :=fQV(y>Ga<x,y)2dy
and

Nyg(V) :={x e N, : Qy(x) <0}.
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Finally, we shall assume that © has C? boundary and that
aeC(@)NClR), ax) <0 forallx € N,. (1.12)

By Corollary 2.2, we have a priori that a(x) < 0 on N,. Also, (1.12) is clearly satisfied
for the canonical case of a being constant, since a critical forces @ < 0 in that case. In this
sense we may say that assumption (1.12) is not severe. The C? assumption on §2 ensures
that the concentration point xo of u, does not lie on the boundary; see Proposition 3.6 and
Lemma A.1 below.

We point out that with our methods we are able to prove the following theorems only
for the restricted dimensional range %s < N < 4s, which enters in Sect. 5. We discuss this
assumption in some more detail after the statement of Theorem 1.6 below.

The following theorem describes the asymptotics of the perturbed minimal energy S(a +
eV) as ¢ — 0+. It shows, in particular, the non-obvious fact that the condition NV, (V) # @
is sufficient to have S(a +¢V) < S.

Theorem 1.4 (Energy asymptotics) Let %s < N < 4s. Let us assume that Ny (V) # @. Then,
S(a+¢eV) < Sforalle > 0and

2s
. Sla+eV)—S§ Qv (x)| &N
lim ————— =0y Sup ——F5—
e—=0% N XeNL(V)  |a(x)| 3N

where oy s > 0 is a dimensional constant given explicitly by

2s
_ N—2s _N=2s (N —2s\ &N 4s — N
ons = Ay, (@ns+onsdysbys) BV < 2s ) N —2s’

The constants Ay 5, AN s, CN .5, AN .5, and by s are given explicitly in Lemma B.5 below.

On the other hand, when A, (V) = @, the next theorem shows that the asymptotics become
trivial provided Qy > 0 on N,. Only in the case when miny,, Qy = 0 we do not obtain the
precise leading term of S(a +eV) — S.

Theorem 1.5 (Energy asymptotics, degenerate case) Let %s < N < 45. Let us assume that
Ny(V) = @. Then S(a + V) = S + 0(e%) as ¢ — 0%, If, in addition, Qv (x) > 0 for all
X € Ny then S(a + V) = S for sufficiently small ¢ > 0.

For a potential V such that N, (V) # @, and thus S(a + ¢V) < S by Theorem 1.4, a
minimizer u, of S(a + ¢V) exists by Theorem 1.2. We now turn to studying the asymptotic
behavior of the sequence (u.). In fact, since our methods are purely variational, we do not
need to require that the u, satisfy a corresponding equation and we can equally well treat a
sequence of almost minimizers in the sense of (1.17) below.

Since the functional S, is merely a perturbation of the standard Sobolev quotient func-
tional, it is not surprising that, to leading order, the sequence u, approaches the family of
functions

N-2s

2 N
) s xeRY, A>0. (1.13)

A

s = (15—

The U, ;, are precisely the optimizers of the fractional Sobolev inequality on RV

=AY ullF o @n, = SN,xnuniA (1.14)

N=2s5 (RN) '
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and satisfy the equation

—A) = e
(=) Uxp(y) = cn sUx a (V) V=% (1.15)

with ¢y s > 0 given explicitly in Lemma B.5.

Since we are working on the bounded set €2, the first refinement of the approximation
consists in ‘projecting’ the functions Uy ; to H?(Q). That is, we consider the unique function
PUy , € H%(Q) satisfying

{(—A)SPUX,A =(=A)y'Uyy inQ, (1.16)

PU,; =0 on RV \ Q

in the weak sense, that is,

N+2s

/ (=) PU A (=A) 2y dy :/ (=A)* Uy andy zczv,s/ Ugy ' ndy
RN RN o

for every n € e ().
Finally, we introduce the space

T = span | PUL 5. 8 PU s 0, PUGL, | € B ()

and denote by TXJ’-A C H5(Q) its orthogonal complement in H*(Q) with respect to the scalar
product (u, v) = fRN (—A)S/zu(—A)S/zv dy. Moreover, let us denote by I ; and Hik
the projections onto T ; and ij,')\ respectively.

Then we have the following result.

Theorem 1.6 (Concentration of almost-minimizers) Let %s < N < 4s5. Suppose that (ug) C
H*(R) is a sequence such that

S, -8 \%
lim Soxevluel =S@tev) oo, [uray=[ vgian
e—0 S—Sa+¢eV) Q RN

Then there exist sequences (xg) C 2, (L) C (0, 00), (wg) C Txt/\g’ and (a;) C R such
that, up to extraction of a subsequence,

_N-2s
U = Qg (PUXg,)Lg + A2 Ht’}\s (Ho(xg, ") — Ha(xg, ) + rs) ] (1.18)
Moreover, as ¢ — 0, we have
2Zs 2s
X0)| &N LN
Xe = xo for some xo € Ny(V) such that % = sup %’
la(xp)|4=N  yeNa(V) Ja(y)|4=N

Pa(xe) = 0(e),

1
lim ¢ 5 <2~“(“N,s + CN,st,sbN,s>|a(xo)|>4s—N
ime®»-NA, =
60 (N —25)| Qv (xo0)|

a,=§+0 (8%) for some & € {£1}.

K 2s
Finally, re € T, and |(=A)3r|2, 5y, = 0 (gm)

The constants o 5, CN s, AN s, and by s are given explicitly in Lemma B.5.
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Remark 1.7 Since a is critical and ¢, (xg) = 0, x¢ is in particular a global minimum of ¢,.
Thus, we obtain the commonly found necessary condition V¢, (xp) = 0, provided that ¢,
is differentiable. We strongly expect this to be the case for smooth enough a, with a proof
along the lines of Lemma A.3 (see also [24, Sect. B.2]), but prefer to not go into these details
here.

Theorem 1.6 should be seen as the low-dimensional counterpart of [16, Theorems 1.1
and 1.2], which concerns N > 4s. The decisive additional complication to be overcome in
our case is the presence of a non-zero critical function a. More concretely, the coefficient
¢4 (x) of the subleading term of the energy expansion vanishes due to criticality of @ (compare
Theorem 2.1 and Lemma 5.5). As a consequence, it is only after further refining the expansion
that we are able to conclude the desired information about the concentration behavior of the
sequence ug.

In the same vein, the energy expansions from Theorem 1.4 are harder to obtain than their
analogues in higher dimensions N > 4 s. Indeed, for N > 4s we have

S(EV) = SN,s - EN,S sup ¢0(x)

45|V(x)|N 4y8N 4: +0<8N 49) (1 19)
{xeQ: V(x)<0}

where ¢y s > 0 is some dimensional constant. In this case, a sharp upper bound on S(¢V)
can already be derived from testing Sy against the family of functions P Uy . In contrast,
for 2s < N < 4s this family needs to be modified by a lower order term in order give the
sharp upper bound for Theorem 1.4 (see (2.1) and Theorem 2.1 below). For details of the
computations in case N > 4s, we refer to the forthcoming work [19]. It is noteworthy that
the auxiliary minimization problem giving the subleading coefficient in (1.19) is local in V
in the sense that it only involves the pointwise value V (x), whereas that of Theorem 1.4
contains the non-local quantity Qy .

Let us now describe in more detail the approach we use in the proofs of Theorems 1.4,
1.5 and 1.6, which are, in fact, intimately linked. Firstly, the family of functions v, ; defined
in (2.1) below yields an upper bound for S(a 4 ¢V'), which will turn out to be sharp. The
strategy we use to prove the corresponding lower bound on S, 4.y [u.], for a sequence (u;)
as in (1.17), can be traced back at least to work of Rey [37, 38] and Bahri—Coron [3] on
the classical Brezis—Nirenberg problem for s = 1; it was adapted to treat problems with
a critical potential @ when s = 1, N = 3 in [22] and, more recently, in [24, 25]. This
strategy features two characteristic steps, namely (i) supplementing the initial asymptotic
expansion uy = ag(PUy, 3, + W), obtained by a concentration-compactness argument, by
the orthogonality condition w, € TJ- ., and (i) using a certain coercivity inequality, valid
for functions in T a0 10 improve the bound on the remainder w,. The basic instance of this
strategy is carrled out in Sect. 3. Indeed, after performing steps (i) and (ii), in Proposition 3.6
below we are able to exclude concentration near 92 and obtain a quantitative bound on
we = 0o Ly, — PUy,, ;.. As in and [23, 37], this piece of information is enough to arrive at
(1.19) and similar conclusions when N > 4s; see the forthcoming paper [19] for details.

On the other hand, when 2s < N < 4s, the bound that Proposition 3.6 provides for the
modified difference u, — Vy, 1, is still insufficient. For s = 1, it was however observed in
[25] that one can refine the expansion of u. by reiterating steps (i) and (ii). Here, we carry out
their strategy in a streamlined version (compare Remark 5.1) and for fractional s € (0, 1)
That is, one writes wy = Yy, i, — PUyx, 2, + q¢, decomposes g, = t; + 1, With g € T
and applies the coercivity inequality a second time. We are able to conclude as long as the
technical condition 8s/3 < N is met (which is equivalent to A~ 3NH6s — 5(A~2%)). Indeed,
in that case the leading contributions of f, to the energy, which enter to orders A~¥*+2 and
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114  Page 8 of 52 N. De Nitti, T. Kénig

AT2NHS cancel precisely; see Lemma 5.8. If 85/3 < N, a plethora of additional terms in

te, which contribute to orders ATRIN=25) with 3 < k < %, will become relevant, and we
were not able to treat those in a systemized way. It is natural to expect that the cancellation
phenomenon that occurs for k = 1, 2 still persists for k > 3. This would allow to prove
Theorems 1.4, 1.5, and 1.6 for general N > 2s. For further details of the argument and the
difficulties just discussed, we refer to Sect. 5.

One may note that the method of proof just described makes no use of two common
techniques used to treat similar fractional-order problems. Firstly, we do not employ the
extension formulation for (—A)* due to either [14] for the restricted or to [13, 44] for the
spectral fractional Laplacian, differently from, e.g., [5, 15, 16, 18, 28]. Secondly, using the
properties of PUy ; (as given in Lemma A.2) we avoid lengthy calculations with singular
integrals, appearing e.g. in [42], while at the same time optimizing the cutoff procedure
with respect to [42]. We do use the singular integral formulation of (—A)* in the proof of
Proposition 3.1, but not in the main line of the asymptotic analysis argument.

To conclude this introduction, let us mention that several works in the literature (see [5,
7, 45]) treat the problem corresponding to (1.7) for a different notion of Dirichlet boundary
conditions for (—A)® on €2, namely the spectral fractional Laplacian, defined by classical
spectral theory using the L?(£2)-ONB of Dirichlet eigenfunctions for —A. In contrast to this,
the notion of (—A)* we use in this paper, as defined in (1.4) or (1.5) on H ¥(2) given by
(1.2), usually goes in the literature by the name of restricted fractional Laplacian. A nice
discussion of these two operators, as well as a method of unified treatment for both, can be
found in [18] (see also [41]).

1.2 Further perspectives

As far as we know, the role of the threshold configurations given by k(N — 2s) = 2s for
k > 1 in the fractional Brezis—Nirenberg problem (1.7) has only been investigated in the
literature for k = 1 corresponding to N = 4s, below which the problem is known to behave
differently by the results quoted above. It would be exciting to exhibit some similar, possibly
refined, qualitative change in the behavior of (1.7) at one or each of the following thresholds
N =3s, N =8s/3, N = 10s/4, etc.

For the fractional Brezis-Nirenberg problem in general, and the low-dimensional range
2s < N < 4s, many intriguing questions around the blow-up analysis remain open. For
instance, one may consider PDE solutions (u,) which are not necessarily energy-minizing
and even possibly admit several concentration points, as done for s = 1 in [4, 32].

Another possible extension includes the case of higher-order derivatives s > 1, for which
the maximum principle may fail and additional boundary conditions need to be supplemented.
For instance, to the best of our knowledge, even for s = 2 the analogue of Theorem 1.2 is
not known (we refer to [27, Chapters 7.5-7.9] for some polyharmonic problems with critical
growth). Finally, it could be of interest to study the limit case 2s = N corresponding to the
Moser—Trudinger inequality, see [21] for a very general blow-up result in this case when
s =1

1.3 Notation

We will often abbreviate the fractional critical Sobolev exponent by p := Nzivzs. For any

q > 1, we abbreviate || - g := [ - [ Lgn)- When g = 2, we sometimes write || - || := || - [l2-
Unless stated otherwise, we shall always assume s € (0, 1) and N € (2, 45).
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For x € Q, we use the shorthand d(x) = dist(x, 0$2).

For a set M and functions f, g : M — Ry, we shall write f(m) < g(m) if there exists a
constant C > 0, independent of m, such that f (m) < Cg(m) forallm € M, and accordingly
for>.If f < gand g < f, we write f ~ g.

The various constants appearing throughout the paper and their numerical values are
collected in Lemma B.5 in the Appendix.

2 Proof of the upper bound

The following theorem gives the asymptotics of Syy.v [V 1], for the test function
_N-2s
VU (y) = PUxp(y) =27 7 (Hqy(x,y) — Ho(x, y)) 2.1
as A — oQ.

Theorem 2.1 (Expansion of S,4¢v[¥x.2]) As A — 00, uniformly for x in compact subsets
of Q and for e > 0,

(=AY 2y 5113 + / (@+eV)yg, dy
Q

=cN sAN,s — CN saN.sPa (x)p~NF2s
+ (en5dN sbN s — an )a()A™ +ed™ VB Oy (x) + 0(A ™) + o(ea™NT)
2.2)

and

/ Yl dy = Ay — pan s¢a )RV + T1(¢a(x), ) + pdy by sa(x)A™> +o(L ™).
Q s

(2.3)
In particular,
_N-2s )
Surevlea] = S+ Ay [avsen s@aA™ 2 + Ta(gu(x), 2)
— (AP (w5 + en,sdn shu.s)
N2 Qv(x)] F00.7) + o(er— N+, (2.4)
Here, T; (¢, A) are (possibly empty) sums of the form
K
Ti(p, 1) =y yitkyp*a~ V=20 (2.5)
k=2
for suitable coefficients y; (k) € R, where K = | szzsj is the largest integer less than or

equal to N2_s2 S

Theorem 2.1 is valid irrespective of the criticality of a. The following corollary states two
consequences of Theorem 2.1, which concern in particular critical potentials.

Corollary 2.2 (Properties of critical potentials)
1) If S(a) = S, then ¢, (x) > 0 forall x € Q.
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114 Page 10 of 52 N. De Nitti, T. Kénig

(i) If S(a) = S and ¢,(x) = 0 for some x € 2, then a(x) < 0.

Proof Both statements follow from Theorem 2.1 applied with ¢ = 0. Indeed, suppose that
either ¢, (x) < 0 or ¢,(x) = 0 < a(x) for some x € Q2. In both cases, (2.4) gives S(a) <
Salx.2] < S for A > 0 large enough, contradiction. O

Based on Theorem 2.1, we can now derive the following upper bound for S(a + V)
provided that N (V) is not empty.

Corollary 2.3 Suppose that N,(V) # @. Then S(a+¢V) < S foralle > 0and, as e — 0+,

2s
4s—N c ¢
Qv (x)|% 2s (eﬁ)

S(a+eV)<S—ons sup &5 40 (2.6)

xeNa (V) |a(x)| 3=~

where
2s
_N=2s _N=2 (N — 25\ %N 45 — N

ons=Ay," (an,s +cnsdysbys) Y < 7 ) N2 Q.7

Proof Letus fix ¢ > 0 and x € N, (V). Then, by (2.4),
S(a+eV) < Saqevivnal (2.8)

_N-2s
=S+ Ay" (—(alx) + o(NA™ (an s + cn sdn sbn,s)

+e2 7Ny (x) +o(1))). 2.9)

We first optimize the right side over A > 0. Since A, := (—a(x)+o(1))(an s+cn sdn sDN )
and B, := —Qvy(x) + o(1), are strictly positive by our assumptions, we are in the situation
of Lemma B.6. Picking . = X¢(¢) given by (B.5), we have o(k_zs) = 0(54%1\’). Thus, by
(B.6), we get, as ¢ — 0+,

2s
2 X)|H-N  _N-2 _N=2
Statevy <8 — ey VTN o (s + end by ) o
la(x)|#=~
N —2s "N 4s — N
2s N —2s
+ 0(84%\,).

Optimizing over x € A, (V) completes the proof of (2.6). In particular, S(a + V) < S for
small enough ¢ > 0. Since S(a + ¢V) is a concave function of ¢ (being the infimum over u
of functions S,4.v[u] which are linear in €) and S(a) = S, this implies that S(a +eV) < §
for every ¢ > 0. O

Proof of Theorem 2.1 Step 1: Expansion of the numerator. Since (—A)* H, (x, -) = aG,4(x, -),
the function v, , satisfies
N=2s

-1 _
(_A)wa,)\« = CN,sUﬁ)\ - A 2 aGa(xa )

Therefore, recalling Lemma A.2,

=AYy 13 = fQ Ve ) (=AY Yy (3) dy
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Ao p—1 N2
(Ux,k —X 2 Ha(xv ) - fx,k) (CN,SUX,)L —A 2 aGa(x, )) dy
Q

2s

4 _N-2s
CN,s Ux’)\ dy _CN,s}L 2
Q

-1
/;ZU)zA Hy(x,)dy

N-2s

N-2s
s /aGa(x,‘) (V=25 Hax, ) dy
Q

N-2s

_/QfM <cN,SU;”;1—r > aGa(x,.))dy.

We now treat the four terms on the right side separately.
A simple computation shows that fRN\ Baoy () U ; ,dy = OMN). Thus the first term is
given by

CN,s / U,\I:,)» dy =cn.s ([;@N U({l d)’) + O()‘_N) =cn AN + 0()\_2‘?)-
Q

The second term is, by Lemma A.4,

N-2s

—CcNshT 2 / UP Ha(x, ) dy = —ensan,s@a AN 4 ey sdy sy sa ()™ +0(A72).
Q

The third term will be combined with a term coming from [ (a + ¢ V)Wf, ; dy, see below.

The fourth term can be bounded, by Lemma B.1 and recalling || fy 3 llco S A7 g from

Lemma A.2, by

[7—1 _N-2s P—l _ N-2s
Fea (ews UL =377 aGa(x, ) dy| S Wfealoo (I1Uallf2) 427757
Q
< A7N72+2S — 0()\(725).
Now we treat the potential term. We have
2 _ N2 2
@+eVyud,dy = [ @+eV) (Ves =27 He, ) = fin) dy
Q Q
_N-2s 2
Z/(a—l—é‘V) (UX,A_)" 2 Ha(x")) dy
Q
- 2/ @+eV)fos (UM A H(x, -)) dy +/ (a+eV)f2, dy.
Q Q

Similarly to the computations above, the terms containing f, ; are bounded by

_N-2s _N-2s
’/(G-FSV)fx,x (Ves =275 Ha(x,-))dy‘snfx,xnoo(uux,xnl—x =)
Q
< A._N_2+23 =0 (A'—ZS)
and

‘ /Q @+eV)f, dy‘ Slfeallle SATVTHE =0 (7).

Finally, we combine the main term with the third term in the expansion of ||(—A)*/? Yy ||§
from above. Recalling that

Uep =27 T Hax, ) = A7 G, ) = Upp = A7 7 [x — y V42
= 2RO — y) (2.10)
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114 Page 12 of 52 N. De Nitti, T. Kénig

with 2 as in Lemma B.3, we get
_N-2s _N-2s _N-2s 2
=37 [ aGute ) (Unn =27 Hue) v+ [ @ ev) (U =27 5 B )y
Q Q
_N-2s N-2s _N=2s 2
=—/a(um—x > Ha(x,-))x > h(k(x—y))dy+e/ V(UM—A : Ha(x,-)) dy.
Q Q
Since
/ aHa(x, YhO(x — ) dy < ANl = 0G),
Q

by Lemma B.4, we have

_ N-2s N-2s —2s —2s5
— [ @ (Vs =275 Hatx,0) 255 R = ) dy = —an h 2 a(@) +0672).
Q

Moreover, again by (2.10), and using the fact that 4 € L?>(R") by Lemma B.3,

s/g v (U — T Hy(x, -))2

=ea "N+ / VGa(x,)?dy — 28/ VGa(x, Yh(h(x — y))dy
Q Q

4 ealN=2s /Q Vh(AM(x — y))*dy
with
E/Q VGa(x, Yh(i(x — y)dy < ex™N2|Gu(x, )2lhl2 = 0 (SA_N+25)
and
gAN=2s /Q Vi(A(x —y)?dy S ed |kl =0 (8A*N+2s) .

This completes the proof of the claimed expansion (2.2).
Step 2: Expansion of the denominator. Recall p = N

) N-2s"
N-2s
AT 2 Hu(x,-) — fx.n, we have

» _N-2s P
ldy = | (Ves =27 Hax ) dy
Q Q

_N-2s p—1 P
+0 (102 = 275 Ha, I el + L fel% )

Firstly, writing ¥ » = Uy ) —

. _N44-2 .
Using Lemma B.1 and the bound || fx 1 lloc S A S , we deduce that the remainder term

~

is 0(A~2%). To evaluate the main term, from Taylor’s formula for ¢ — ¢”, we have

K
(@+b? =a? —pa?~'b+ Y (i)m’—kbk +0 (ap_K_] b K+ |b|P) .
k=2

Here, (Z) = W#SID(HI) is the generalized binomial coefficient and K = | szhj as in
N-—2s
the statement of the theorem. Applying this with a = Uy 3 (y) and b = =172 H,(x, -),

we find

N-2s
/ (Ux,k — A7 7 Hul(x, ))p dy
Q
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P _N-2s p— 1
= Ug,dy—pr= 2 U 5 Ha(x,-)dy
Q

+0 (A‘N“S f U;’,KzHa(x, )’ dy) +0 (A—N / Hq(x, -)"dy) :
Q Q

By Lemma A.4, the claimed expansion (2.3) follows.
Step 3: Expansion of the quotient. Fora = 2/p € (0, 1), and fixed a > 0, we again use
the Taylor expansion

K
(a +b)70{ —aq @ _aafotflb + Z <_ka)a—a7kbk + O(bK+l).
k=2

By Step 2, we may apply this witha = Ay jandb = —paN,S¢>y(x))FN+2‘Y+T1(d)a(x), A+
pdy sby sa(x)2725 + 0(A72%). Since b = OAN2%) and K + 1 > ﬁ, we have
OBEH) = 0(A~29) and thus

—2/p N _ 2N-=s)
( / vl dy) = Ay, +AyT <2aN,X¢a(x))fN+2‘v - 2dN,XbN,Sa(x)r2S)
2.11)
+T3($a(x), ) +0(A™) 2.12)
for some term 73 (¢, 1) as in (2.5). Multiplying this expansion with (2.2), we obtain

N-2s

SurevlVeal = nsAd Ay, [avsensda @AV 4 T, 1)

— AR (@, + ensdu sy + AV Oy ()]
+0(}\—2s) +0(8)\._N+2S).
By integrating the equation (—A)*Up1 = cn ¢ U(f_ fl and using the fact that Up,; mini-
mizes the Sobolev quotient on R" (or by a computation on the numerical values of the
2.

2s
constants given in Lemma B.5), we have cy A Z’VV ¢ = S. Hence, this is the expansion claimed
in (2.4). O

3 Proof of the lower bound I: a first expansion
3.1 Non-existence of a minimizer for S(a)

In this section, we prove that for a critical potential a, the infimum S(a) is not attained. As we
will see in Sect. 3.2, this implies the important basic fact that the minimizers for S(a + eV)
must blow up as ¢ — 0.

The following is the main result of this section.

Proposition 3.1 (Non-existence of a minimizer for S(a)) Suppose thata € C(Q) is a critical
potential. Then

S(@) = _inf Jo |2 Pul dy + Jg au? dy

ueHs (Q),u0 llull®,y
N-2s

is not achieved.
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114 Page 14 of 52 N. De Nitti, T. Kénig

For s = 1, Proposition 3.1 was proved by Druet [20] and we follow his strategy. The
feature that makes the generalization of [20] to s € (0, 1) not completely straightforward is
its use of the product rule for ordinary derivatives. Instead, we shall use the identity

(=AY (uv) = u(—A)’v + v(—=AYu — I;(u, v), (3.1

where

(u(x) —u(y)(x) —v(y)

|x _y|N+2s

Ii(u,v)(x) := CN,SP.V./ dy

RN

with Cy s as in (1.6). While the relation (3.1) can be verified by a simple computation (see
e.g. [26, Lemma 20.2]), it leads to more complicated terms than those arising in Druet’s proof.
To be more precise, the term fQ u?|Ve|? from [20] is replaced by the term Z () defined in
(3.6), which is more involved to evaluate for the right choice of ¢.

Proof of Proposition 3.1 For the sake of finding a contradiction, we suppose that there exists
u which achieves S(a), normalized so that

2N
/ uv- dy = 1. (3.2)
Q
Then u satisfies the equation
(=A)’u+au = Sux%%f‘ (3.3)

with Lagrange multiplier S = Sy equal to the Sobolev constant. Indeed, this value is
determined by integrating the equation against # and using (3.2).
Since S(a) = S, we have, forevery ¢ € C®[®R")ande > 0,and abbreviating p = Nz_st s

2
S(/ <u<1+s<p>>”dy)" s/ (=AY (1 + £0)) |2dy+/au2<1+w)2dy.
Q RN Q
(3.4)

We shall expand both sides of (3.4) in powers of €. For the left side, a simple Taylor expansion
together with (3.2) gives

2
( f (u(1+s<p>>1’dy>”
Q
2
:1+28/ uPody + &2 ((p—l)/u"(pzdy—(p—b (/ u”(pdy) >+0(£2).
Q Q Q

(3.5)

Expanding the right side is harder and we need to invoke the fractional product rule (3.1).
Firstly, integrating by parts, we have

/RN [(=A)*2 (u(l + e@)) |*dy = /R u(l 4+ e) (=AY (1 + eg)) dy.

By (3.1), we can write

(—=A) (1 +e9)) = (1 +ep)(—=A)'u + eu(=A)'¢ — els(u, ¢).
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Hence,
/R LAY @ +ep)) Py = /Q (=8 u(l +£9)* +£2Z(p),
where we write
I(p) =& /Qu(l + &) (u(=A) ¢ — L(u, @) dy. (3.6)
Writing out (—A)®¢ as the singular integral given by (1.5), we obtain (we drop the principal

value for simplicity)

I(p) =& 'Cnys //N u(x)u(y)(l + ep(x ))%d”y

Cn.s lp(x) — ()2
= //I;NXRN M(X)M( )W dx dy (37)

The last equality follows by symmetrizing in the x and y variables.
Thus we can write the right side of (3.4) as

/ [(=A)*2 (u(1 + eg)) |2dy+/ au*(1 + ep)* dy
RN Q
_ f u((— A u + au)(1 + ep) dy + £2T(p)
Q
= s/ uP (1 +ep)*dy + £2Z(9),
Q

where we used Eq. (3.3). After expanding the square (1 +&¢)?, the terms of orders 1 and & on
both sides of (3.4) cancel precisely. For the coefficients of &2, we thus recover the inequality

| 2
- P
/Qu P> dy < S —2) (§0)+</Qu (pdy> . (3.8)

We now make a suitable choice of ¢, which turns (3.8) into the desired contradiction. As
in [20], we choose

0i(y) =G, i=1,...,N+1,
where S : RN — SV is the (inverse) stereographic projection, i.e. [34, Sect. 4.4]
2 1=yl
L+ 1yl T+ y2

Moreover, we may assume (up to scaling and translating 2 if necessary) that the balancing
condition

(3.9

Qi = fori =1,..., N, PON+1 =

/ul’<p,~dy:o, i=1,...,N+1, (3.10)
Q

is satisfied. Since [20] is rather brief on this point, we include some details in Lemma 3.2
below for the convenience of the reader.

By definition, we have ZN J{I = 1. Testing (3.8) with ¢; and summing over i thus
yields, by (3.10),
N+1
1= rd 3.11
fgu V=509 2)2(¢, (3.11)
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114 Page 16 of 52 N. De Nitti, T. Kénig

To obtain a contradiction and finish the proof, we now show that ZlNz Jql Z(p;) < S(p —2).
By definition of ¢;, we have

N+1

Cn,s S(x) =Sy
}::zw%>—» > /]m o ()Lngggﬁéﬁgfdxdy. (3.12)

To evaluate this integral further, we pass to SN. Set J s-1(n) :=det DS ~1(1) and define

U = (S~ ) g1 ()7,

so that fqv UP dn = 1. Since the distance transforms as

1 1
5710 = S7HE) = Js1 )2 [ — €l Js-1(5)
changing variables in (3.12) gives

N+1

Cys Umué)
7z = ———————dndé¢. 3.13
Z (pi) = /fSS gV dndé (3.13)
By applying first Cauchy—Schwarz and then Holder’s inequality, we estimate
N+1 2
U
I(gi) < dn d§
; ! SN xSV | — |N+2s 2
C C s
= o / UM dy < =25y ISV, (3.14)
2 SN 2

where the last inequality is strict. Indeed, U vanishes near the south pole of SV, hence there
cannot be equality in Holder’s inequality applied with the functions U? and 1. Moreover,
above we abbreviated

1
Ons = /S i —g2 9

(note that this number is independent of € SV). By transforming back to RY and evaluating
a Beta function integral, the explicit value of 6 s can be computed explicitly to be
_ 22 N TA=9)

N .
Inserting this into estimate (3.14), as well as the explicit values of C s given in (1.6) and of
Sn.s given in (1.9), a direct computation then gives

5N,s

2

SN () L Cnag ovz _ 5272 ranrd) \"
S <Sv. 2 BT = Py ey )
N.s N.s s\ T (5T (%)

It can be easily shown by induction over N that
rNTG)
r(5Hré
for every N € N, and hence
N+1

Zﬂ%) <S5y
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This is the desired contradiction to (3.11). m]

Here is the lemma that we referred to in the previous proof. It expands an argument
sketched in [20, Step 1]. To emphasize its generality, instead of u” we state it for a general
nonnegative function i with (o 7 = 1.

Lemma3.2 Let @ C RY be an open bounded set and 0 < h € LY(Q) with k||| = 1. Then
there is (y, 1) € RN x (0, 00) such that

F(y.1) fh( PG DR
1) = x x =0,
Y o Tk —yP

1= 2[x — P2
G , 1) = h — - d :0
-0 /Q O™

Proof Define H : RN x R — RN *! by
s++/s2+4 s+/s2+4
H(y,s) = F T +y.G T +s].

We claim that
|H(y,9)| < Iy|* + 57 (3.15)

whenever |y|?> + s2 is large enough. Thus, for large enough radii R > 0, the map H sends
B(0, R) ¢ RN+ into itself. By the Brouwer fixed point theorem, H has a fixed point (y, s).

Then the pair (y, $=¥3+4 VSZM) satisfies the property stated in the lemma.

To prove (3.15), it is more natural to set ¢ := stvst+d V252+4 > 0,sothats =t — ¢t~ L, By
writing out | H (y, 9|2, (3.15) is equivalent to

2y - F(y, )+ 2t =t HG Gy, ) + |F(, DI + Gy, > <0 (3.16)

whenever |y|? 4 (t — t~1)? is large enough.
First, it is easy to see that y - F(y, 1), F(y,t) and G(y, t) are bounded in absolute value
uniformly in (y, t) € RY x (0, co). Moreover, there is C > 0 such that

Gy.1) =1 2/h() APl GNP E-
)=1-— xX)—————dx
Y o Tt ex -y T <

ifo<t<1/C,

3 ifr=cC.

| =

Therefore, (t — t’l)G(y, t) > —o0ast — 0ort — oo. Thus (3.16) holds whenever
(t — 1~ 1?2 is large enough.

Thus, in what follows, we assume that ¢ € [1/C, C] and prove that (3.16) holds if |y]| is
large enough. For convenience, fix some sequence (y, t) with |y| — ocoandt — #9 € (0, 00).
Then |F(y, t)|] — Oand G(y, t) — —1.Moreover, since €2 is bounded, |x|;|y‘ — 1 uniformly

in x €  and hence

2y-F(y,t):—fh(x)4t|y|2+O /h(x)de —>—ﬂ.
Q 1+ 2x —y? Q 1+22|x — y|? fo

Altogether, the quantity on the left side of (3.16) thus tends to —2#p — 21, 1 +1<-3<0,
which concludes the proof of (3.16). ]
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3.2 Profile decomposition

The following proposition gives an asymptotic decomposition of a general sequence of
normalized (almost) minimizers of S(a + eV).

Proposition 3.3 (Profile decomposition) Lez a € C(S) be critical and let V € C(2) be such
that Ny (V) # @. Suppose that (ug) C H* () is a sequence such that
S -5 Vv
lim Sorevluel =Sarev) oo, /ug’dy :/ Ul dy, (317
e—0 S—Sa+¢eV) Q RNV 7

where Uy, 1 is given by (1.13). Then, there are sequences (x¢) C 2, (A¢) C (0, 00), (wg) C
Txt " and (og) C R such that, up to extraction of a subsequence,

ug = og (PUx, 5, + We) . (3.18)
Moreover, as € —> 0, we have

(=A) w2 — 0,
d(xa))\e — 00,
Xg —> X0,

o, — 1.

In what follows, we shall always work with a sequence u, that satisfies the assumptions
of Proposition 3.3. For readability, we shall often drop the index ¢ from o, x., A and wg,
and write d := d,; := d(x,;). Moreover, we adopt the convention that we always assume the
strict inequality

Sa+¢eV) < S. (3.19)

In Theorems 1.4 and 1.6, we assume N, (V) # @, so assumption (3.19) is certainly justified
in view of Corollary 2.3. For Theorem 1.5, where we assume N, (V) = @, we discuss the
role of assumption (3.19) in the proof of that theorem in Sect. 6.

Proof Step 1. We derive a preliminary decomposition in terms of the Sobolev optimizers
U, ., and without orthogonality condition on the remainder, see (3.20) below.

The assumptions imply that the sequence (u.) is bounded in H (€2), hence, up to a
subsequence, we may assume u.—uo for some ug € S (£2). By the argument given in [25,
Proof of Proposition 3.1, Step 1], the fact that S, y.v[us] — S(a) = S implies that ug is a
minimizer for S(a), unless ug = 0. Since such a minimizer does not exist by Proposition 3.1,
we conclude that, in fact, u,—0 in HS (2).

By Rellich’s theorem, u, — 0 strongly in L2(£2), in particular fQ (a +£V)u? = 0o(1). The
assumption (1.17) thus implies that (#,) is a minimizing sequence for the Sobolev quotient

f]RN [(—A)2u2 dy/||u 1% ,v - Therefore, the assumptions of [35, Theorem 1.3] are satisfied,
N-2s
and we may conclude by that theorem that there are sequences (z;) C RV, (ue) C (0, 00),

(o¢) such that

N-2s

He 2 ue(ze +M5_1‘) g IBUO,I

in HS(RV), for some g € R. By the normalization condition from (1.17), we have 8 € {£1}.
Now, a change of variables y = z. + u; 'x implies

ue(y) = Uz, e ) + o, (3.20)
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where still o, — 0 in H*(RN), since the H*(RV)-norm is invariant under this change of
variable.
Moreover, since €2 is smooth, the fact that

/ U&dYZ/ UL e dy:/ Ug dy +o(1)
e 2tz Q RN

implies pedist(z;, RVN\Q) — oo.

Step 2. We make the necessary modifications to derive (3.18) from (3.20). The crucial
argument is furnished by [2, Proposition 4.3], which generalizes the corresponding statement
by Bahri and Coron [3, Proposition 7] to fractional s € (0, 1). It states the following. Suppose
that u € H*(2) with lull s (@) = An,s satisfies

inf {[|(=A)?(u — PU )l x €2, Ad(x) > 7'} < (3.21)
for some n > 0. Then, if 5 is small enough, the minimization problem

inf {[[(=A)*2(u —aPU )2t x € Q, 2d(x) > ™", e € (1/2,2)}  (3.22)

has a unique solution.
By the decomposition from Step 1 and Lemma A.2, we have

(=AY (us — PU;, u )2 < I(=A)2(Uy, e — PUz )2 + 1(=A) 0]l — 0

as ¢ — 0, so that (3.21) is satisfied by u, for all & small enough, with a constant 7, tending
to zero. We thus obtain the desired decomposition

Ug = as(PUxE,AE + we)

by taking (x., A, &tc) to be the solution to (3.22) and w, := ozg‘lug — PUy, .. To verify
the claimed asymptotic behavior of the parameters, note that since . — 0, by definition
of the minimization problem (3.22), we have ||(— A 2wells < ne — 0 and Agd(xe) >
(4n¢)~' — oo. Since Q is bounded, the convergence x, — x € £ is ensured by passing to
a suitable subsequence. Finally, using (1.17), we have

[ otiar=[uwray=iatr [ Ui ay+o = jar [ 0fav+on.

which implies o, = £1 + o(1). ]

3.3 Coercivity

In the following sections, our goal is to improve the bounds from Proposition 3.3 step by
step.

The following inequality, and its improvement in Proposition 3.5 below, will be central.
For s = 1, these inequalities are due to Rey [38, Eq. (D.1)] and Esposito [22, Lemma 2.1],
respectively, whose proofs inspired those given below.

Proposition 3.4 (Coercivity inequality) For all x € R" and ) > 0, we have

(=AY v]3  (3.23)

ds
= A)”Zvnz—cmw—l)[ gy B
N +2s+2

forallv e T
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As a corollary, we can include the lower order term fQ av?, at least when d(x) is large
enough and at the price of having a non-explicit constant on the right side. This is the form
of the inequality which we shall use below to refine our error bounds in Sects. 3.4 and 5.2.

Proposition 3.5 (Coercivity inequality with potential a) Let (x,) C 2 and (A,) C (0, 00)
be sequences such that dist(x,, dQ2)A,, — o00. Then there is p > 0 such that for all n large
enough,

-2 .
||(—A)f/2v||§+/gav2dy—cN,s(p— 1)/QU;;,Mv2dy > pll(=A)"v|3,
forallv e Txi,)»n' (3.24)

Proof Abbreviate U, := Uy, », and T,, := Ty, ,,. We follow the proof of [22] and define

Cn ::inf{l +/ av?dy —cns(p — 1)/ UP 20t dy s ve T, (A2 = 1}.
Q Q

Then C,, is bounded from below, uniformly in n. We first claim that C,, is achieved whenever
C, < 1.Indeed, fix n and let v be a minimizing sequence. Up to a subsequence, vy— v in

H* () and consequently [[(—A)*/?va| < 1 and anv,% —ens(p—1) [q Uf_zv,% dy —
Joavi —cens(p—1) [q U,{J_zvgo dy, by compact embedding H*(Q) < L%(S). Thus

(1 — C)I(=A) v |? +/ avi, dy — ey s(p — 1)/ Ul vk dy
Q Q

=d _Cn)+/ avi dy —ens(p — 1)f Urf’_zvgody=0~
Q Q

On the other hand, the left hand side of the above inequality must itself be non-negative,
for otherwise ¥ := voo/|| (—=A)*?vg| (notice that C,, < 1 enforces vuo # 0) yields a
contradiction to the definition of C,, as an infimum. Thus the above inequality must be in fact
an equality, whence || (—=A)/?ys|l = 1. We have thus proved that C,, is achieved if C,, < 1.

Now, assume for contradiction, up to passing to a subsequence, thatlim, .o, C;, =: L < 0.
By the first part of the proof, let v, be a minimizer satisfying

(1= [ arPuarPuay+ [ anwdy - evsp =) [ 0Fuwdy =0 (325)
RN Q Q

for all w € T,;-. Up to passing to a subsequence, we may assume v, —v € H* (). We claim
that

(I=L)y(=AY’v+av=0 in (H*(R))'. (3.26)

Assuming (3.26) for the moment, we obtain a contradiction as follows. Testing (3.26) against
v € H*(Q2) gives

[(—A)v)? +/ avtdy = L||(-A)/?v|* < 0.
Q

On the other hand, by coercivity of (—A)* + a, the left hand side must be nonnegative and
hence v = 0. By compact embedding, we deduce v, — 0 strongly in L*(£2) and thus

+ o(1).

4s
2.2
Cy =1—cN,s(p—1)fQU"””dy+o(l) “Ntm+2

This is the desired contradiction to lim,_. o C, < 0.
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At last, we prove (3.26). Let ¢ € ﬁs(Q) be given and write ¢ = u, + wy, withu, € T,
and w, € Tnl. By (3.25) and using fRN (=A)*2v,(—A)/?u,, = 0, we have

(1-Cn) / (=AY, (=A)Ppdy + / avppdy — ey s(p — 1) / UL vap dy
RN Q Q
(3.27)
- / avputy dy — ey s(p — 1) / UY 2 vgutn dy = O(l1(— A uy ). (3.28)
Q Q

On the one hand,

2 -2
U vnrpdy‘ <0 ¢l — 0
o :

(p— 2)1' —1
because 97T € LP~! = (L7 (Q)) and U, "1 —0 weakly in L 7= (€2). Thus, by weak
convergence, the expression in (3.27) tends to

(1-1L) / (=AY Pu(=A)Pedy + / ave dy
RN Q

as desired. In view of (3.28), the proof of (3.26) is thus complete if we can show
l(=A)2u,|| — 0. This is again a consequence of weak convergence to zero of the U,.
Indeed, by Lemmas B.1 and B.2, we have

_A)/? s/2 p—1 _
'f( P T ) wdy‘ [, vt ety = o,

9, PU, ., 5
—AY P (—A)Ppd <A/ Ur . Ungpdy S U = o(1),
[ e P e 0 Peds| S [ U U dy S 10E e e, = o)

and, similarly,
/R LA POTNE, U (= 8) P dy = o(1).

(p=2p 2)p

=l
Here, we used again that U}~ '20 in L7T and U,”" —0 in Lr-2 weakly, and
(p—2) D
Jo U = 1’1*' dy = o(1) by weak convergence.

From the convergence to zero of these scalar products, one can conclude u, — 0 by
using the fact that the PU,, 9, PU,, 0y, PU, are ‘asymptotically orthogonal’ by the bounds
of Lemma B.2. For a detailed argument, we refer to Lemma 5.2 below, see also [25, Lemma
6.1]. O

Let us now prepare the proof of Proposition 3.4. We recall that S : RN — SN\{—ey, 1}
(where —ey4+1 =(0,...,0,1) € RN+ is the south pole) denotes the inverse stereographic

N
projection defined in (3.9), with Jacobian Js(x) := det DS(x) = (ﬁ) .
Given a function v on R, we may define a function u on S" by setting
(@) = v5-1(®) == (S (@) g1 (@) T,  weSY\{—ensi).
The inverse of this map is of course given by
N-2s N
v(y) ==us(y) =uE(NIs(y) ™, yeR™.

The exponent in the determinant factor is chosen such that [|v||Lpgyy = lull Lr ).
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For a basis (¥},,) of L?(S"™) consisting of L2-normalized spherical harmonics, write
weL2SVyasu =Y, umYim with coefficients u; , € R. With

r+4%+s
o= % (3.29)
r (l + 2 S)
the Paneitz operator Py is defined by
Posu = Z)‘-lul,mYl,m

I,m

forevery u € L2(S") such that Zl,m Alufnl < 00.
It is well-known (see [6]) that, for every v € Cgo (RN), we have,

N+2s
(=AY v(x) = Js(x) 2V Pru(S(x)), (3.30)
where u = vs. Thus, we have

fRN I(=A)*?v]>dy = /RN v(—=A)vdy = /SN uPysudy = .

I,m

Since C(‘)’O(RN) is dense in the space DV2(RY) = {v € LN%S(]RN) D (=AY €
LZRM)} (see, e.g., [8]), the equality

2
/RN (Ao dy =) hu,, (3.31)

I,m

extends to all v € DS2(RY). In particular, it holds for v € H ().

Proof of Proposition 3.4 We first prove (3.23) for (x,A) = (0,1). Letv € Toﬁ and denote

u = vs. We claim that the orthogonality conditions on v imply that u; , = O for/ = 0, 1.
2

N
Indeed, e.g. from v L 3, PUy, and recalling Js(y) = (ﬁ)N =2NU*, we compute

N +2s
N —2s

0

_4s_
[, CarPuarPa punidy =en 3o [ oU T 0t dy
RN RN

N +2s _ N42s vias 1 — |y)?
= 2772 J N
N5 /RN VoM)W T
N+2 s
=CN,s + S27 = / u(w)wyy1 do ().
N —2s SN

Analogous calculations show that v L PUp ; implies ng u = 0 and that v L 9y, PUp 1
implies fSN uw; =0fori =1, ..., N.Since the functions l andw; i = 1,..., N+ 1) form
a basis of the space of spherical harmonics of angular momenta/ = 0 and / = 1 respectively,
we have proved our claim.

Since the eigenvalues A; of Py, are increasing in I, changing back variables to RV, we
deduce from (3.31) that

/ (=) o2 dy =Y wuj,, = 2 / u(w)* do (w) =2%1, / UL () dy.
RN Sl RN ’

I,m
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By an explicit computation using the numerical values of A, given by (3.29) and ¢y s given
in Lemma B.5, this is equivalent to

2112 -2.2 4s 2 12
I(=a) v||2—cN,s(p—1)[91]5’,1 vidy > mlu—m” vz, (3.32)

which is the desired inequality.

The case of general (x, 1) € Q x (0, co) can be deduced from this by scaling. Indeed, for
v e ij, set vx A (y) == v(x — 2~ 1y). Then Uxa € TOJ;I with respect to the set A(x — €2), so
that by the above v, ; satisfies

. -2
1(=A)"v 13— ens(p — 1) Ui

)
dy > ————|(=A)*v, 513
o e ot (G KGRV

Changing back variables now yields (3.32). 0

3.4 Improved a priori bounds

The main section of this section is the following proposition, which improves Proposition 3.3.
It states that the concentration point xo does not lie on the boundary of €2 and gives an optimal
quantitative bound on w.

Proposition 3.6 As ¢ — 0,
I8y w] =0 (x~5) (333)
and
d~' = o). (3.34)
In particular, xo € .

The proposition will readily follow from the following expansion of S;4cv[us] with
respect to the decomposition u, = (P Uy ) + w) obtained in the previous section.

Lemma3.7 As e — 0, we have

N-2s

, I'(s S\ > s
Sa+eV[u5] =S5+ 2237[[\//2% ( ) ¢0(x))L "
r(352) \ens

25

N-2s
S\ . _
+( ) (||<—A)5/2w||2+/ aw’dy — ey s(p — 1>/ Ux”fwzdy)
CN,s Q Q

+0 (17T 1=y 2ul) +o (@072 +o (-4 ).

Proof of Proposition 3.6 Using the almost minimality assumption (1.17) and the coercivity
inequality from Proposition 3.5, the expansion from Lemma 3.7 yields the inequality

0> (14+0(1))(S — S(a+eV)) +cgo()r™ V4 4+ ¢[(=A)w]?
+0 (A—N%zs ||(—A)5/2w||) +o ((dk)_N“S)

for some ¢ > 0. By Lemma A.1, we have the lower bound ¢ (x) > d~N+2

estimate

. Using the
O (A= 18y 2wll) = 81(=Ay 2wl + Cia N2,
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we obtain, by taking § small enough,
CsA™N 2 = (14 0o()(S = Sa+ V) +c@dn) ™ + el (=) w].
Since all three terms on the right side are nonnegative, the proposition follows. O

Proof of Lemma 3.7 Step 1: Expansion of the numerator. By orthogonality, we have
I(=8)2(PU s + w)? = (=2)2PU i 1* + 1 (=2) 2w,

The main term can be written as

(=AY PU 4 |1* = f PUy (=AY’ PUy 5 dy = cn s f Ul PUL . dy
Q Q
p _N-2s p—1
=CN,s Ux,)» dy + CN AT 2 UX’)\ Hy(x,-)dy
Q Q

+ O filloe / ur; dy),
Q

where weused PU, , = Ux,,\—)(%flo(x, It fea with || ferlloo < AT N =242
by Lemma A.2. Thus,

1o [ 025"y 5 @722 = (@@ )
R

Next, we have

0 .N-1
‘ g : =N _ —N+2
/]RN\Q Ux,x dy < /I;N\Bd Ux,,\ dy S /dA mdr < @dr) =0 ((d}») s)

and thus
s f U, dy = ensUollh +o (@) ™N42).
Q

Finally, using the fact that Ho(x, y) = ¢o(x) + O(IVyHo(x, )lloclx — ¥I) = ¢o(x) +
O(d~N+25=1|x — y|) by Lemma A.1, we have

N-2s

A UP T Hx, ) dy = A o) | UPTNd
o X, A 0, y 0 B X,A y
d

N-2s

+O@d N fBU;’;’lx—yldy)
d

N-2s
2

+A / U’y Ho(x, y) dy.
Q\By

Since Hy(x, y) < d—N+2s by Lemma A.1, the last term is

N-2s

A2

N—-2s

/ UP Ho(x, ) dy S a5 / Ul dy < @) = o(@dn) V),
NBs R¥\B;

Similarly,

_N=2s 1 _N-2s —1 _N-2s -1
P ¢0(X)/ Ul dy = z¢o<x)||Uo,1||ﬁ,1+0(¢o<xn z / ul; dy)
By RN\ By

=172 oW U1 1571 + Od ™)
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= 17 T o)1 Un 1 107} + o((dr)~N+2),
Finally,
N

dh
—1 _ _ r _
Ul e =yl S dy~ N 1/ PN dr = o((dn) V%)
By 0 (1+r9)2

(where one needs to distinguish the cases where 1 — 2s is positive, negative or zero because
the dr-integral is divergent if 1 — 2s > 0).
Collecting all the previous estimates, we have proved

I(=AY2PUI? = ensllUr il + en sk N2 U107 o (x) + o((da) ™V ).
(3.35)

The potential term splits as
/ (a+8V)(PUy s +w)’dy = f (a+eV)PUZ, dy +/ aw? dy
Q Q : Q

—|—/ ((a+eV)PUyxw + eVw?)dy
Q

and we can estimate

/ (a+ sV)PUfAdy‘ SNUeall3 S ATNF2
as well as

/ (@ + eV)PUgsw + eVu?) dy < | PUsllyllwll, + ellw]?
Q

:(’)(r

In summary, we have, for the numerator of S, y.v[uc],

a™? (||<—A)”2u||2+ / (a+8V)u2dy>
Q

= N sllUrallh + en A V2 U0 g0 ) + (= A) 2w + f aw? dy
Q

Pl + ol (- Ay 2wl?).

+OGNE) 1 0G0 T (=AY 2wl + (@) V) + ol (-8 Pwl?).
Step 2: Expansion of the denominator. By Taylor’s formula,
rip—1)
2

Note that, strictly speaking, we use this formula if p > 3. If 2 < p < 3, the same is true
without the remainder term PUP~3|w|3, which does not affect the rest of the proof. To
evaluate the main term, we write PUy j = Uy y — @y, With ¢y ) 1= )L_l/zHo(x, )+ fe
(see Lemma A.2). Then,

/QPU)ZAdy=/QUfAdy—p/ Ux)L §0x,\dy+(9</( A (px)»+(pxk)dy>

10111y — pA= N+ U015 o (x) + o((dh) N2,

(PU, s +w)? = PUP, + pPU" w + PU’w +o( ” |w|3—|—|w|p>.
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where we used that, by Lemmas A.2 and B.1, fQ A Wx ,dy < Uy, ;\||p 2||g0x ,\||2

(@n) 72N = o((da) N2 and el S (A1) N = o((da)~NF2),
Next, the integral of the remainder term is controlled by

/(P PP+ wl?)dy S IPUlL wl + lwlh = o(I(=A)2w]?).
The term linear in w is
/PUPA wdy_/QU)‘Z;lwdy—FO(/;Z(ngz(px,klwl—l—(pf,;llwl)dy).
Now, by orthogonality of w, we have
/U”A wdy_cNS/( A) UX,\wdy_/ (=AU, 5 (=AY ?wdy = 0.
Moreover, using [l@xall, S (d)h)’i by Lemma A.2, we get

-1 -1 _N+42s — g
‘ /Q o wdy‘ < llpealy  wly < @)™ [(=A) 2w = o((dr) V).

Using additionally that ||@x 1 |lco § d’NJrZ syt by Lemma A.2, by the same computation
as in [23, Lemma A.1] we get | U A gox AII < (dA)~N*2$ and therefore
/ Ul ol dy S @)™ N ) (=a) ).
o0

In summary, we have, for the denominator of S, 4.y [u¢],

aipfguepdy:”UO»lng_ AN U e: 0+ 2 )/ Ul 2w?d
+0(dV) VY (=) Pwl) + o(n(—A)s/zw“ ) + o((dn) N2,

Step 3: Expansion of the quotient. Using Taylor’s formula, we find, for the denominator,

2/p
_ — 1., —
@ 2(f ufdy) = 1001152 + 21001 11," 21001 15- 14N+ g (x)
Q

—ens(p = DI 1" /9 U dy
+O(@n) V(=AY Pwl) + ol (=AY Pw]?) + o(@dn) V).
Multiplying this with the expansion for the denominator found above, we obtain

-2 _ ¢ _ —1
Saveviuel = ensIUoally~ + 2"V ey |1Uo 111, U0 1115~ do(x)

10111, (||( Ay P +/ aw?dy — ey (p — 1)/ ur? 2dy)
Q
+ 0@V (= 2) 2wl + o (= 2)2w]?) + o((dn) V).
Expressing the various constants using Lemma B.5, we find

2
ensllUoallh ™ =S,
N-2.

S
S T
-2
U011l :( ,
P CN,s
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N-2s

_ _q I'(s) S\
en sl 2 o) = 22%N/ZW,2S) (CN

This yields the expansion claimed in the lemma. O

4 Proof of Theorem 1.2

At this point, we have collected sufficiently precise information on the behavior of a general
almost minimizing sequence to prove Theorem 1.2.

The main difficulty of the argument consists in constructing, for a critical potential a, a
point xo € € at which ¢,(xg) = 0. To do so, we carry out some additional analysis for a
sequence u, which we assume to consist of true minimizers of S(a — €), not only almost
minimizers as in the rest of this paper. We make this additional assumption essentially for
convenience and brevity of the argument, see the remark below Lemma 4.1.

Indeed, since a is critical, we have S(a — ¢) < S for every ¢ > 0. By the results of [42],

which adapts the classical lemma of Lieb contained in [10] to the fractional case, this strict
2N

inequality implies existence of a minimizer u, of S(a —¢). Normalizing fQ ud > dy=A N.s
as in (1.17), u, satisfies the equation
Sa—o) ¥
2s/N ¢
AN,S

(=AY ug + (a — &)ue = on, u=0 onRV\Q. .1

By using equation (4.1), we can conveniently extract the leading term of the remainder
term w,. We do this in the following lemma, which is the key step in the proof of Theorem 1.2.

Lemma 4.1 Let u, be minimizers of S(a — &) which satisfy (4.1). Then we have
S(a—e) =S+ s Ay da(OA™NFE 4o NF2), 4.2)

If 8s/3 < N, Lemma 4.1 is in fact implied by the more refined analysis carried out in
Sect. 5 below, which does not use the Eq. (4.1). If 2s < N < 8s/3, we speculate than one
can prove Lemma 4.1 for almost minimizers not satisfying (4.1) by arguing like in [25, Sect.
5], but we do not pursue this explicitly here.

Proof of Lemma 4.1 Clearly, the analysis carried out in Sect. 3 so far applies to the sequence
(ug). Thus, up to passing to a subsequence, we may assume that u, = o (PUy, ;, + ws)

. 5/2 _N-2s
witha, — 1, x; = xp € Qand [|[(—A)“welp SAT 2 ase — 0.
N=2s ~ ~
Thus the sequence W, 1= As > w; . isbounded in H ¥(€2) and converges weakly in H* (2),
up to a subsequence, to some wo € H*(2). Inserting the expansion u = «(PUy ; + w) in

(4.1), the equation fulfilled by w, reads

. 3 N, S(a—¢) N\
(80" + (@ =) = —(@ =) PUA T +175 = (PUM)\ 2 +w€) .
N,s

4.3)

By Lemma A.2, we can write

PU AT = Golx, ) — N2 h(ax — ) — AV 2 £ 5
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with £ as in Lemma B.3. By the bounds on % and f ; from Lemmas A.2 and B.3, this yields

PUX’)\')\.N%ZS — Go(xp, -) uniformly on compacts of  \ {xo} and in LY(Q), g < %

A

4.4)

Letting ¢ — 0 in (4.3), we obtain
/ (=) Pdo(~A)p dy + f abopdy = — f aGo(x. Jpdy  (45)
Q Q Q

forevery ¢ € C°(2\ {xp}). Now it is straightforward to show that CS°(2\{x¢}) is dense in
H ¥(2), by using a cutoff function argument together with identity (3.1). Thus, by approx-
imation, (4.5) even holds for every ¢ € H (2). In other words, wo weakly solves the
equation

(—A)*Wo + awy = —aGo(xg,-) on, wy=0 onRY\Q.
By uniqueness of solutions, we conclude wo = Ho(xo, -) — Hy(xo, *).

We will now use this information to prove the desired expansion (4.2) of the energy
S(a — &) = Sy—¢[PUy ) + w]. Indeed, using the already established bound l(=A)S 2w <

_N=2s .
A~ 2, the numerator is

I(=A)2PU, 511> + f a(PU}, +2PU, w)dy + [[(=A)w|* + / aw?dy + oA "N,
Q Q
4.6)

By integrating the equation for w against w and recalling S/i;‘;;) = cn,s + o(1), we easily

N.,s
find the asymptotic identity (compare [22, Eq. (8)] fors = 1)
(=AY 2w|? +/ aw?dy = ey (p — 1)/ Ul Pwtdy —/ aPU, wdy.
Q Q 7 Q

Inserting this in (4.6), together with the expansion of || (—A)*/2PU, ; ||* given in (3.35), the
numerator of S,_¢[PU, , + w] becomes

CNsANs — CNsan sPo (AN T + [ a(PU3, + PUx w)dy
Q

+ens(p—1) / Ul wtdy + 007N, (4.7)
Q

The numerator of S,_¢[ P Uy, + w], by the computations in the proof of Lemma 3.7, is given
by

—2/p _2 _2_
</(PUX_A+w)p dy> =A\" — Ay 1<72¢0(X)A_N+25+(p7 1)/ U;’;zwzdy).
(4.8)

Multiplying out (4.7) and (4.8), the terms in fQ UP~2w? dy cancel precisely and we obtain
Sa—e) =S+ ey, Ay ayspox)r N+
 AGIPA NS (/ a ((x% PU )+ 277 PUMw) dy) T o NFY,
’ Q

(4.9)
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Now we are ready to return to our findings about wg. Indeed, by (4.4), and observing that
Go(x, -) is an admissible test function in (4.5), we get

( N-2s5 2 N-2s5 ~
a (T PUL)? 40" PUX.,\w)dy
Q
:/a(Go(x, )% + Go(x, o) dy + o(1) (4.10)
Q

. / (= 8) (=AY 2 Go(x, -) dy + o(1) = o (x)
Q
— s (G0 (x) — G0 () + 0(D). @.11)

By inserting this into (4.9) and observing that yy s = cn san,s by the numerical values given
in Lemma B.5, the proof is complete. O

Now we have all the ingredients to give a quick proof of our first main result.

Proof of Theorem 1.2 As explained after the statement of the theorem, it only remains to prove
the implication (ii) = (i). Suppose thus S(a) < S and let ¢ > 0 be the smallest number
such that a := a + c satisfies S(a) = S. For ¢ > 0, let u, be the sequence of minimizers
S(a — €), normalized to satisfy (4.1). By Lemma 4.1, we have

§>8@—e) =58 —cns Ay da(rVNTE 4o N,

Letting ¢ — 0, this shows ¢z (xg) < 0. By the resolvent identity, we have for every x € Q

Pa(x) = ¢a(x) + /Q(fl —a)(2)Galx, 2)Gate(z, x) dz < ¢q(x),

and hence ¢, (xp) is strictly monotone in a. Thus ¢, (x0) < ¢g+c(xp) = 0, and the proof is
complete. O

5 Proof of the lower bound II: a refined expansion

This section is the most technical of the paper. It is devoted to extracting the leading term of
the remainder w and to obtaining sufficiently good bounds on the new error term. In Sect. 5.2
we will need to work under the additional assumption 8s/3 < N in order to obtain the
required precision.

Concretely, we write

—2s

_N-2s
w=21" 7 (Ho(x,) — Ha(x,-)) + ¢
and decompose the remainder further into a tangential and an orthogonal part
qg=t+r, teTy,, reTxJ:A.

(We keep omitting the subscript €.) A refined expansion of S,4.v[u:] then yields an error
term in » which can be controlled using the coercivity inequality of Proposition 3.5. The
refined expansion is derived in Sect.5.2 below.

On the other hand, since ¢ is an element of the (N + 2)-dimensional space Tk j, it can be
bounded by essentially explicit computations. This is achieved in Sect.5.1.
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Remark 5.1 The present Sect.5 thus constitutes the analogon of [25, Sect. 6], where the
same analysis is carried out for the case s = 1 and N = 3. We emphasize that, despite
these similarities, our approach is conceptually somewhat simpler than that of [25]. Indeed,
the argument in [25] relies on an intermediate step involving a spectral cutoff construction,
through which the apriori bound [|[ V¢ = 0o(A1/2) = o(A="7") is obtained.

On the contrary, we are able to conduct the following analysis with only the weaker bound
Vgl = O~ NEZX) at hand (which follows from Proposition 3.6). This comes at the price
of some additional explicit error terms in r, which can however be conveniently absorbed
(see Lemmas 5.7 and 5.9). Since N > 8s/3 is fulfilled when N = 3, s = 1, this simplified

proof of course also works in the particular situation of [25].

5.1 A precise description of t

For A large enough, the functions PUy 3, 8y PUx 3 and 9y, PUy »,i = 1,..., N are linearly
independent. There are therefore uniquely determined coefficients 8, y,8;,i = 1,..., N,
such that

N
t =BV PU G+ y A VI PUG + ) 8N, PUG. (5.

i=1

Here the choice of the different powers of A multiplying the coefficients is justified by the
following result.

Lemma5.2 Ase — 0, we have B, y, 6; = O(1).
As a corollary, we obtain estimates on ¢ in various norms.

Lemmab5.3 Ases — 0,

3N—6s

=22l S A7V and el oy S el S A7
+2s

Proof Recall that PUy; = Uy — A~ 2> Ho(x,-) + fr.... Then all bounds follow in a
straightforward way from (5.1) together with Lemma 5.2 and the standard bounds from

Lemmas A.1, A.2, B.1 and B.2. O

Proof of Lemma 5.2 Step 1. We introduce the normalized basis functions

. PUy . 9 PU, ;. G dx;_, PUx s
1 = .—5 2 = o 9 | = o b
[(=A)$/2PU, 4| [(=A)$/28, PU, 5| ! [(=A)/20y, , PUx sl
(5.2)
and prove that
s O~ N+2s) ji=12
aj = —A2Gi(=A)Prdy = ’ o 5.3
i /RN( VR EATT Y = o vy oy vy, OF)

Since 27" (Ho(x, ) — Ha(x, ) + 1 +r=w e T, andr € T, we have

aj=r"7" /RN (=225 (=A)*/? (Hy(x, -) — Ho(x, ) dy
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— A /R (—A)'G) (Hy(x, ) = Ho(x, ) dy.

Thus,

N+2s

N-2s -
ar =272 (=AY PU N en s / UM (Ha(x,-) — Ho(x, ) dy
sl

S )\—N+2s’

where we used that by Lemma B.2, ||(=A)/?2PU, ;||~' < 1. The bound for ay follows
similarly. To obtain the claimed improved bound for a;, j =3, ..., N + 2, we write

N=2s _ =5
ais2 SATT I(=A)Y29, PU,|! f U7 0 U (Hy(x, ) — Ho(x, ) dy
sl

N—

2s
ATz ||(—A)“/28xiPUx,A|\‘10(/l;

5 )L—N+25—1 .

4s 4s
N deizslax,‘ Ux,kldy+/ UXI\,/)TZSWM Us allx _yldy>
\Bg Q

Here, we wrote H, (x, y) — Ho(x, ¥) = ¢q(x) — po(x) + O(]x — y|) and used that by oddness
of 9, U,

4s
(ba(x) — ¢0(X))/B U 285U = 0.
d

This concludes the proof of (5.3).
Step 2. We write

N+2
=2 b,
j=1
with
by =B VEN(=A)PPUL by =y I(=A)28, PUL I,
bj = 8;A " NIE 2| (=AY 2oy, PUIlL,  j=3.....N+2
Our goal is to show that
bj:aj—l—O()fN*zs)s;lpak, j=1...,N+2 (5.4)
Then, from (5.4), we conclude by using the estimates on the a; from (5.3) and Lemma B.2.
To prove (5.4), we define the Gram matrix G by
Gk = ((=8)"g;, (=D)*Gp).
By Lemma B.2 and the definition of the ¢; it is easily checked that
Gix=8;x +O0™N)  jk=1,...,N+2.

Thus, for sufficiently large A, G is invertible with

(G =8j%+007NTE), (5.5)
By definition of G,
N+2
V=Y (G i (5.6)
k=1
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is an orthonormal basis of T ;. We can therefore write

1= (=D (=8 Py Y =Y Y (G sk (AP, (—A)71)
k

J J
=YY G jaar Y (G g
i K ]

j
=) <Z(Gl)l,kak) @
I\ k

Thus, b; = Zk(G_])l,kak and (5.4) follows from (5.5). O

= D DG 6 e |
1 k

Remark 5.4 By treating the terms in the above proof more carefully, it can be shown in fact

that AN’Z‘Y/B, AN’ZS’ly and AN ~25%+25; have a limit as A — oo. Indeed, for instance, the
N+2s

leading orders of the expressions fQ UX’\”A’Z"' (Hy(x, ) — Ho(x,-))dy and ||(—A)S/2PUXYA||
going into the leading behavior of B can be explicitly evaluated, see Lemma A.4 and the
proof of Lemma B.2 respectively. We do not need the behavior of the coefficients 8, y, §; to
that precision in what follows, so we do not state them explicitly.

5.2 The new expansion of S, cy[u]

Our goal is now to expand the value of the energy functional S, .v[u.] with respect to the
refined decomposition introduced above, namely

N—-2s .
w=a(n+q) =a(PUns+ (37 Haw,) = Hox, ) +147).
In all that follows, we work under the important assumption that
—3N +65 <25, iels<N (5.7)

so that A 73V+6s — 5 (1, =25). Assumption (5.7) has the consequence that, using the available
bounds on ¢ and r, we can expand the energy S,4.v[u] up to o(A~%) errors in a way that
does not depend on ¢. This is the content of the next lemma.

Lemma5.5 Ase — 0, we have
Savevlue] = Surevivenl + Dy <50[V] - %Im + o<||(—A)S/2r||2>>
+ 0o ) +0(ex™ V) + o(@a ().
Here,
No = [I(=A) 2y 1]l + /Q(a +eV)yg,dy,  Do:= /Q yr, dy, (5.8)
and I[r] is as defined in (5.10) below.

We emphasize that the contribution of ¢ enters only into the remainders o(A~2%) +
0(ex™NH25) 4 0(¢py (x)A~N125). This is remarkable because ¢ enters to orders A~V 125 >>
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2725 and A72VH45 5 2725 (if N < 3) into both the numerator and the denominator of
Sa+svlue], see Lemmas 5.6 and 5.7 below. When calculating the quotients, these contribu-
tions cancel precisely, as we verify in Lemma 5.8 below. Heuristically, such a phenomenon
is to be expected because (up to projection onto H* (£2) and perturbation by a + ¢V') by defi-
nition ¢ represents the directions along which the quotient functional is invariant. As already
pointed out in the introduction, we suspect, but cannot prove, that in the absence of assump-
tion (5.7) the contributions of ¢ to the higher order coefficients ATKNH2ks for 3 < | < Nz_l\és
would continue to cancel.

We prove Lemma 5.5 by separately expanding the numerator and the denominator of

Sa+teviue]. We abbreviate

Eclu] := (=2)"%ul® + /Q (a+eVyu?dy
and write & [u, v] for the associated bilinear form.
Lemma 5.6 (Expanding the numerator) As ¢ — 0,
lot| 2 Eeue] = Eelrnn] + (2E0[Wa . 11+ 1(—A)/221%) + Elr] + oA ™) + o(eA™NT2).

Proof We write o 'u, = Yy +t + r and therefore
Eelue] = gs[dfx,)\] + ng[wx,)u t+r]+Elt+rl (5.9

The third term on the right side is
Eelt + 1] = Eolt] + 2&o[t, 11+ Elrl + ¢ / V(t+r)*dy.
Q
Now [pn (—A)2t(=A)*?r dy = 0 by orthogonality and therefore, by Lemma 5.3,

—3N+6s

So[t,r]:/Qatrdy:O(||(—A)S/2r||||t||%):O(A =)

= 0(x75) + o(Il(=A)?r|1?),

where the last equality is a consequence of assumption (5.7) and Young’s inequality. Finally,
again by Lemma 5.3,

e /Q V(t+r)?dy = Ot + I1(=2)"2r ) = o(eA™ %) + o(ll(—A)/2r|1?).
The second term on the right side of (5.9) is
26t + 1] = 260l 1]+ 20l 1 7] + 26 /Q Vit +r)dy.
To start with, using Lemma 5.3,

s/ Vot +r)dy = OCelitll 2 + I1¥ll 2 [[(—A)2r|))
Q N+2s N+2s

= O " [(=A)2r ) + o(er V)
= 0o(er™NT2) 1 o(Il(=A) 2 |?)),
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again by Young’s inequality. Moreover, using thatr € T A,that( AY H,(x,)=aG,(x,")
and (—A)* Hy(x, -) = 0, and integrating by parts,

Eoles.r] =27 f (—A)/2(Ho — Ho)(x, ) (—AYPrdy + / e sr dy
Q Q
= / a(=2""T" Ga(x, ) + Y p)r dy.
Q

Since we can write A G x,y) =Y a(y) = )L%h()x(x — ¥)) + fx.n with A as in
Lemma B.3 and f; ; asin Lemrna A2, we get

Eoltrea 11 S (AT IRGAN . + 1 el ) (=202 S A2 (=AY 27| = 00 7%)

by the bounds in those lemmas. Finally,
&alr) = -2 + [ artay
Q
and [, at>dy < |Itl3 S A73N465 = o(72%) by Lemma 5.3 and Assumption (5.7). ]

Lemma 5.7 (Expanding the denominator) As ¢ — O,
1
|“|_pf“§dy:/‘/ff.xdy+< /wfxtd +p(p )/‘/fprdY>
Q e v
p(p—1) )
+ — / wgk 2 dy
+O<A‘*/ UP%|H, ||r|dy) +o(l(=A)2r %) + o(A™>).
Proof Write o~ 'u, = v 5 +t + r. We expand
[ st rarray = [ ey
Q Q
-1
+p f W+ )P e dy + % / (W + )P 212 dy
Q Q

O (W + P15 1= AP 4 (=) 2117

By Lemma 5.3 together with assumption (5.7), the last term is 0(A~2*). The third term is, by
Lemma 5.3,

_ -2 _
/Q W+ P2 dy = fQ Yl dy + 0 (N -8y ).
The second term is

[ sy eay = [ wleay e =1 [0l 2y o= i)
Q Q Q

The remaining term [, ¥ f ;zrt dy needs to be expanded more carefu]]y Using ¥y =
Ues — A2 Hy(x, ) — fo with A2 Ha(x, ) + fronlloo <A77, we write

— —2s
/ witredy = [ Ulredy 0 (S -0 I8P )
Q
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and using assumption (5.7), the remainder is bounded by

AT AP (=AY S S2rl = 00 7F) 4 o(|l(—A)2r|?).

Now using orthogonality of » and the expansion (5.1) of s, by some standard calculations,
whose details we omit, one obtains

/UP)L rtdy_0<)»7 Z

where we used again assumption (5.7) for the last equality.
It remains only to treat the 7-independent term fg(wx, »+r)P dy. We find

) = 0072 4 ol (~8) 2P,

/ Wxp +1r)Pdy = / yl,dy + pf vl 'rdy
Q Q Q
-1 _ ‘
+ %[ Y2 dy + o(ll(—8) ).
Using orthogonality of r, we get that fQ ; rdy = 0 and hence
- N2 - _ N3
/ yllrdy =0 (A 2 f UP | Ha(x, )| dy + 4772 ||<—A>S/2r||>
Q Q
and A= "5 (=AY 2r | < AN = 0(A~2%). Finally, we have

[ty = [ vrR dy oty
Collecting all the estimates gives the claim of the lemma. O
We can now prove the claimed expansion of the energy functional.

Proof of Lemma 5.5 We write the expansions of the numerator and the denominator as

Eelugl = No+ N1 + Eo(r) + 0()\_2S +(e+ (f)a(x)))\_NJ"ZS,

where
No = &[W1, Ni =28V, 11+ [(—A) 212,
and
/ u? = Do+ Dy +Z[r] + o(A™%),
Q
where
Do = P Dy = p—1 P(P - 1) p—2.2
o= [ V7, 1:=p wx,xf“‘T Yt
Q Q Q
and

-1 _ 25
I[r] = % / YAy oom T / UP=2|H,||r| dy). (5.10)
Q ] Q

Taylor expanding up to and including second order, we find

—2/p 2D +1 2 (D + I[r])?
(/ u,,> _ppeie (12 2RI p 2D TR
Q p Do P D;
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We now observe Z[r] < [[(—A)*/2r |12 + 0(¢a (x)A N F25 4+ 1725) since
P / UP~2|H,|Ir| < / UP=2p2 4 p VA2 / UP~2H?
Q Q Q

SI=AY 212 4+ 007V T2 g (x))

Hence we can simplify the expression of the denominator to
—2/p 2D 2
-2 1+1lr]  p+2D
(/ uf) =Dy (12 + 5 | Foll(=8)2r|?)
Q p Dy p D()
+0(@a () ~NE) £ 017

Multiplying this with the expansion of the numerator from above, we find

2 ) 2 Ny 2 N1 D p+2D2N()
Satevluel = Dy /" No+ Dy /" (Nl - ;HODI = Do 2 ll)g

+ Dy 7 (&m - %Im + o(n(—A)S/zrnz)) + 0 E) + 0(da ()N,

We show in Lemma 5.8 below that the bracket involving the terms N and D; involving
s vanishes up to order o(A~2%), due to cancellations. Noting that Dy 2/p Np is nothing but
Sa+evI[¥], the expansion claimed in Lemma 5.5 follows. ]

Lemma 5.8 Assume (5.7) and let No, N1, Do, D1 be defined as in the proof of Lemma 5.5.
Then

Ni =2Bcn Ay s VT
N —2s
2

+ ey gh TN (ﬂzAN,s +72(p — DBy — 2an s¢0(x)(B — y)) +o(™%)

and

_ _ (p—10 N —2s
Dy = ANt pBAy 422N (%(MNJ +¥2Bn.) — p(B — Ty)aN,s(po(x))

+ 0(ga ()ATNFZ) 4 o(A7%),

where we abbreviated By s := [pn U({Izla)\ U1 dy.

In particular,
2 No 2 Ni1D; +2 D?Ny _ _
N - =D - = P20 — 0002) 4 o(ga(r)n V),
p Do P Do p*  Dj

Proof We start with expanding N = 2&[v, ] + ||(—A)*/2¢||2. From Lemma B.2 and the
expansion (5.1) for ¢, one easily sees that

(=AYt = BPAT2N T4 (=AY P PUL P + y N8 T2 (=AY 28, PU ;|12
= ﬁZCN,SAN,SA_2N+4s + Vz(P - 1)CN,sBN,s + O(A_zs)v

where we also used assumption (5.7). Next, recalling ((—A)* + a)¥xx = cN.s Uﬁ;l -

a(kN%mh()h(x — )+ fx.») with & as in Lemma B.3, we easily obtain

—1 _9¢ _ .
2E0 s 1] = 2ens / UPT 1 dy + 0072 = 2By s Ay s bV
Ul
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' N —2s '
—2cp san spo ()TN (B 4 ¥) +o(A™%).

2

(Observe that the leading order term with y vanishes because fRN U(i 17181 Up,1 = 0.) This
proves the claimed expansion for N;. For D, we have

-1 — ¢ -1 — ¢ -1 _2
/%’} tdy = N+2Aﬁ/ Yl PU s dy + v N+23+1/ Yl 0 PUL s dy +00.7).
Q Q Q

Writing out , , = Uy —A~ "2 Ho(x, ) — fupand PU, ;= Uy, —A~ T Ho(x, ) — f,
by the usual bounds together with assumption (5.7) we get

AN f YP PUL s dy = AN BAN o — ATV Bay o (x)
Q

+ o N g, (x) + 01 7).
Similarly,

2s

_ . _ N — _ ' _ e
7R / YP9  PU s dy = y ——— 2"V ay (90(x) + oV, (x)) + oA 7).
Q

Observe that the leading order term with y vanishes because fRN U({ 1_1 9,.Up,1 = 0. Finally,

2 _ . _9¢
/ vl dy = a7 N (B2 Ay + 2 Bis) + o).
Q

Putting together the above, we end up with the claimed expansion for Dj.
The last assertion of the lemma follows from the expansions of Ny, Do, N1, and D; by
an explicit calculation whose details we omit. O

Based on the refined expansion of S,.v[uc] obtained in Lemma 5.5, we are now in a
position to give the proofs of our main results.

We first use the coercivity inequality from Proposition 3.4 to control the terms involving
r that appear in Lemma 5.5.

Lemma 5.9 (Coercivity result) There is p > 0 such that, as ¢ — 0,
2Ny )
&lrl = =171 = pll(—A)r%.
pDo

Proof Recalling the definition (5.10) of Z[r] and observing that No/ Dy = cy 5, we find by
Proposition 3.5 that

2No ) -2
Eolrl — —~1r] = ||(—A)‘/2r||2+far dy—ch(p—l)/ Uy rtdy
pDo Q
+o(r*/ uls 2|Ha<x>||r|oly)+o<||< A)2r)
/2,112 - p=2
> pl(=A)"“r||*+ O |17 2 QUM |Hy (x)|Ir|dy
for some p > 0. The remaining error term can be bounded as follows:
2T | U i dy <87 [ 0T e | up? ?
y UX’)\ redy +Cx Uy Halx,)"dy
Q

< 6||<—A>S/2r||2 + 0072V g, (1)) + o(A7)
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< SI(=AYr|> + o NPy (x) +17),

where we used Lemma A.4. By choosing § > 0 small enough, we obtain the conclusion. O

6 Proof of the main results

Combining Lemma 5.9 with Lemma 5.5 gives alower bound on S, .y [ ]. Using the almost-
minimizing assumption (1.17) and the expansion from Theorem 2.1, this lower bound can
be stated as follows:

0>U+o(1))(S—S@+eV)+R

+ Ay, T ((Qv0) + 014 — @) + o) @ + exsd,sbr. )2 >)
(6.1)

where
N-2s

Ri= Ay (ansens(l+o()ga(0r ™ + T(@a(). 1) + pll (=) (3,

for some p > 0, and 72(¢,(x), A) as in (2.5).
Recall that ¢, > 0 by Corollary 2.2 and that ¢, (x) is bounded because x¢ € €2. Since 7,
is a sum of higher powers (¢, (0)A~ V29K with k > 2, we have R > 0 for & small enough.

Lemma6.1 As e — 0, ¢o(x) = o(1). In other words, xg € Nj.
Proof Since S — S(a +¢&V) > 0and ||(—A)*/?r||3 > 0, the bound (6.1) gives
ba(x) S &4+ AT L AN TET (g, (x), 1),

A~2N+4s which concludes.

[m}

Since ¢, (x) is uniformly bounded, we can bound 75 (¢, (x), ) <

Lemma 6.2 If N, (V) # @, then xg € Ny (V).
In the proof of this lemma, we need the assumption (1.12), i.e. that a(x) < 0 on N.

Proof By Lemma 6.1 we only need to prove that Qv (xp) < O.
Inserting the upper bound from Corollary 2.3 on S — S(a + ¢V) into (6.1), and using
R > 0, we obtain that

(Qv(x) +0()eA™F2 < —Cie®W 4+ Co0 7.
Here, the numbers C; and C» are given by

=y
Ci:={0+4o(l))onys sup M

N-2s ° C2 = _a(-x) + 0(1).
XeNL(V). |a(x)|4x—N

Using Lemma 6.1 and the assumption a < 0 on A, we have that C; is strictly positive and
remains bounded away from zero by assumption. Since A, (V) is not empty, the same is
clearly true for C;. Thus, by Young’s inequality,

25 - —
—C1e5N 4 Coa7% < —cea™NF2s

for some ¢ > 0. This implies Qv (x¢9) < —c < 0 as desired. ]
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Now we are ready to prove our main results Theorems 1.4, 1.5, and 1.6.

Proof of Theorem 1.4 By using R > 0 and minimizing the last term over A, like in the proof
of Corollary 2.3, the bound (6.1) implies

N 35 g4-N 4o |legs—N
la(xo)| =¥

A 4+o(1)(Sa+¢eV)—=2S)

v

—oy,

> —ON,s Sup e4-N

N-2s
xeNy (V) la(x)|4s=N

2s
4s—N 2s 2s
1QvDIFV 2y o(ew).,

where the last inequality follows from Lemma 6.2. This is equivalent to

S@a+eV)>=S—onNs sup eB-N 4o (em-NW

N-2s
xeNa (V) a(x)|%—N

Since the matching upper bound has already been proved in Corollary 2.3, the proof of the
theorem is complete. O

Proof of Theorem 1.5 Since xy € N, by Lemma 6.1, by assumption we have Qv (xg) > 0
and a(xp) < 0. Together with R > 0, the bound (6.1) then implies

0> (1+0(1)(S—S@+eV))+cr™> +o(er N2
for some ¢ > 0. Since o(ex~"N125) > —%A‘zs + 0(84%\/) by Young, this implies S(a +
eV)y =S+ o(aﬁ. Since the inequality
Sa+eV)<S§S (6.2)

always holds (e.g. by Theorem 2.1), we obtain S(a +eV) > S + o(s%) as desired.
Now assume that additionally Qv (xg) > 0. With R > 0, (6.1) implies, for & > 0 small
enough and some C{, C; > 0

S(a+eV)—8 > Crer™ Nt 4 o0 > 0,

which contradicts (6.2). Thus assumption (3.19), under which we have worked so far, cannot
be satisfied, and we must have S(a + g9V) = S for some gy > 0. Since S(a + ¢V) is
concave in ¢ (being the infimum of functions linear in ¢) and since S(a) = S, we must have
S(a+¢eV)=Sforall ¢ € [0, g]. O

Proof of Theorem 1.6 We may first observe that the upper and lower bounds on S(a + ¢V)
already discussed in the proof of Theorem 1.4 imply

2s 2s
| Qv (x0)| 5N | Qv (x)|#-N
——~o, = Sup ———x5—-

e N3
la(xp)| %=~ xeNa |a(x)|4N

(6.3)

Now, by using additionally Lemma B.6, the estimate (6.1) becomes

2s
[Qv (x)| 5N 2

(1+0(1) (S +eV) — §) > —on.s D T (8ﬁ> . (64)
la(xo) |5
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where
25—2 2 1 1 1
e _ _ . 4s—N __1 _ . _ N—4.
Roteoe B (1 o)) i ()T e w At <2 ()T
!/ A 7y
R = . o 1 o
N i Ag |\ 45— —n—wv -1 2s —4s
R + coe?—N if (B:> P i Yl B 2(N_2S) ,

in the notation of Lemma B.6, for A, := A;,,SN (an.s + N .sdN sDN s)(Ja(xo)| + o(1))

_N-2s
and B, := AN’SN (|Qv (x0)| + o(1)), with Ao (¢) given by (B.5). Now applying in (6.4) the
upper bound on S(a + ¢V) from Corollary 2.3 yields

/ — o(e T
R = o0(e%-N).

2s
The terms that make up R’ being separately nonnegative, this implies R = o(¢%-~) and
2
A= 20e) ™ H2 = 0(¢T57), that is,

25 A =y o1 1
= m & 4-N +0 (8 4x—N)
- &

1
_ <2S(05N,s + CN,st,sbN,s)|a(x0)|>4‘_N P (e‘ﬁ) ©6.5)
(N —25)|Qv (xo0)|
and
I8 rl2 = 0 (e3°7). (6.6)
Inserting the asymptotics of A back into R = o <z~: ﬁ) now gives
Ga(x) = 0(e). (6.7)

It remains to derive the claimed expansion for «. From Lemma 5.7, we deduce

__2N 5 s -
ol / o dy—/ YT dy+ 0 (I8 sl + (- 8) 27 4 27N2).
Q

Using the bound |[(—A)*/%sy < A~N+2S, together with (6.5), (6.6) and the expansion of

Jo ¥, N ¥ from Theorem 2.1, we obtain
| ? = 1+00 N2y =140 (s%) :

This completes the proof of Theorem 1.6. O
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Appendix A: Green’s function
A.1 The Green’s function Gg and the projections PU, ;

We begin by studying the case a = 0. The next lemma collects some important estimates on
the regular part Hy(-, -) of the Green’s function and the Robin function ¢o(x) = Hp(x, x),
which will turn out very important for our analysis. Similar estimates for s = 1 have been
derived in [38, Sect. 2 and Appendix A].

We denote in the following d(x) := dist(x, 2).

LemmaA.1 Letx € Qand N > 2s. Then y — Hy(x, y) is continuous on Q and we have,
forally € ,

0< Ho(x,y) Sd@)> ",
VyHox, y)| S doy> N
Moreover, the Robin function ¢ satisfies the two-sided bound
d0)* ™V S go(x) S d@> . (A.D)
Proof Hy(x, -) satisfies
(=AY’ Hp(x,)=0 ong,

Ho(x,") = on RV \ Q.

|x _ ,|N—25

Thus we can write

1 !
Ho(x,y) =/ —————dP}(2),
RN\@ |x —z|N=2s " €

where Psy2 denotes harmonic measure for (—A)*, see [33, Theorem 7.2]. Since Pé is a
probability measure, this implies
0 < Ho(x,y) S d(x)~ M.
Similarly, since
(=A)*VHy(x,) =V(—A)Hy(x,-) =0 ong,

VHy(x,)=V on RV \ Q,

|x_,|N—2s

1 .
)/
/RN\Q (VZ lx — ZIN‘25> o)

we have

|Vy Ho(x, y)| = < d(x) NFEL
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The lower bound d (x)>—N < ¢o(x) is proved in [18, Lemma 7.6]. O

The following important lemma shows the relation between the regular part Ho(x, -)
and the projections PUy  introduced in (1.16). For the classical case s = 1, this is [38,
Proposition 1]. For fractional s € (0, 1), a slightly weaker version relying on the extension
formulation of (—A)® appears in [16, Lemma C.1].

LemmaA.2 Letx € Qand N > 2s.
(i) We have
0 =< PUX,A = UX,)» (A.2)

and the function ¢y ) 1= Uy ; — PUx ) satisfies the estimates

e allsoyy S d@) N2 (A3)
and
lexallo@e, S @@A)~T (Ad)
(i) Moreover, the expansion
PUps = Uss — "7 Ho(x, y) + fuas (A5)

holds with
| fealli=@ S d(x)_N_z*‘zs)\_w.
Proof Claim (i). Our proof follows mostly [38, Appendix A]. Since
(—A)’PU,) >0 onQ,
PU,;; =0 onRV\Q,

the maximum principle (see e.g. [43, Proposition 2.17]) implies that PU, ; > 0. Similarly,
Ox 5 = Uy — PUx satisfies

(=AY’ px =0 onQ, (A.6)
@xn=Uxy >0 onRV\ Q,

and, thus, gy, > 0 by the maximum principle. This completes the proof of (A.2).
By (A.6), we can moreover write

©x 2 (y) :/ Ura(2)dPY(2), yeQ.
RV\Q

—N+2s _
Thus, |x 1l zeo@yy = 1Uxpll Lo @i\ SAT 2 dx) N+2s,

Next, letus prove the L” estimate on ¢, ;.. Since ¢, 5 € H*(RY), by the Sobolev inequality
we have

2 2 2
lox 7 vy S N=2)"00 a3

= (=8 PUx I3 + (=42 PUL 15 -2 /R (DY Ura PU s dy.
(A7)
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The second summand in (A.7) can be written as
-1
I(=AY2PUL L5 = en.s / PU,, U dy
Q
-1
= 1820 - enee [ gratll; 'y
Q

= (=AU ull3 + 0 (nq)x,xnoo /Q vl dy)
= (=AY PU I3 + O (@ ™)
by (A.3).
Similarly, the third summand in (A.7) is
_2/RN(—A)‘YUMPUX,Xdy = —2cN,S/QU;’de+2cN,SfQUf,;lgax,x dy
= “20(=Ar U3 + 0 (@@ V),
where we also used the bound
/R e Ul;dy S @d@nN.

Collecting these estimates and returning to (A.7), we obtain

el 7oy, S @@~V
This concludes the proof of (A.4).
Claim (ii). The function fx  := @x,x — A_N%h Hy(x, -) satisfies

(=AY fr =0 onQ,

_N-2s

A 2
e =Uxs — P on RV \ Q.

As in the proof of Lemma A.1, we have

B U )\'_N;2s dPy
fear(y) = /RN\Q () — m o (2),

and, hence, since Pé is a probability measure, we have

N-2s
2

| fealloo@) < |Ura(y) —

lx — y|N =2

Lo@®RN\Q)
4-—2s

=0 (r B dist(x, 0Q) N —2+2S)

by Lemma B.3 below. O

A.2 Expanding the regular part Hy (x, y) near the diagonal

We now turn to the Green’s function Gy, for a general potential b € C L) N C(Q) such
that (—A)* + b is coercive. By calling the potential b rather than a, we emphasize the fact
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that criticality of b is not needed for the following expansions. Moreover, in contrast to the
previous subsection, we specialize to the condition 2s < N < 4s again, which plays a role
in the proof of Lemmas A.3 and A.4 below.

LemmaA3 Letx € Qand2s < N < 4s.
(1) If4s — N < 1, then, as y — x,
Hy(x, y) = ¢p () = di sb(@)x = y[* ™V +o(lx — y[* ).
(ii) If4s — N > 1, then there is £, € RN such that
Hy(x, y) = $p(0) + & - (v = x) —d sb0)lx = y[¥ N +o(lx — y¥ ).
Here, the constant dy s > 0 is given by (B.2). The asymptotics are uniform for x in compact

subsets of Q.

Proof Fix x € © and let

Ve (y) == Hp(x,y) — ¢p(x) + dy sb(x)|x — y[* N,
with dy s as in (B.2). We use the facts that, in the distributional sense,

b(y)
m —b(y)Hp(x, y)

(=A) Hp(x, y) = b(y)Gp(x, y) = |

and, by Lemma B.5,
(_A)S |x|4S—N — _d;/’ls |X|2S_N.
Thus ¥, solves, in the distributional sense, the equation

(_A);I//x ) = Fx(y), (A.8)
with

b(y) —b
Foy) = 22220 by e, ).
lx — yl

Since b € C1(2), we have

() = b _

_ —N-+2s5+1
X N2 Sl =yl .

We will deduce the assertion of the lemma in each case from elliptic estimates on the Eq.
(A.8) and appropriate bounds on Fy.

Case —N + 2s + 1 < 0. Since the second summand b(y) Hp(x, y) is in L°°, we have
Fy € LP(Q) for every p < % For the following, fix some p € (%, ﬁ). (The
assumption N < 4 s guarantees that this interval is not empty.)

Define Iﬁx := (—A)*F,, where (—A) ™% is convolution with the Riesz potential. Then by

[39, Theorem 1.6.(iii)] we have [Vileawyy S I Fellpp gy, where o = 2s — % Moreover,
(=AY (Y — 1/;x) = 0 on Q. Since s-harmonic functions are smooth (see, e.g., [1, Sect. 2]),

N
we conclude that ¢, € cr v (Bij2(x)).
Since ¥ (x) = 0, we conclude that as y — x,

) =0 (=" 7). (A.9)
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If we choose p € (% #H)thenlv—% > 45— N.Asaconsequence of N < 4y,

. . N N N N . s
we have the inclusion (m, m) C (27, m) Together with the definition of

¥y, (A.9) then implies
Hy(x, ) = 9p(3) = dy b (@) ]x = y[* ™ 40 (5 = y ),

which is the assertion of the lemma.
Case —N + 2s + 1 > 0. In this case F, € L>(£2). More precisely, we have

F e L°°(Q2) ifN=2s+1,
* CON+2+1(Q)  if0 < —N +2s + 1.
Notice that we always have —N + 2s + 1 < 1, since N > 2s. As above, define 1/;x =

(—=A)7¥Fy. By [43], we find using N < 4s that in any of the above cases, w} e CL¥ forall
a € (0, 1] with < 45 — N. Using Holder continuity of the gradient, we easily find

Y () = Y (¥) + Vi (1) - (v — x) + O(lx — y|**h).
Choosing o > 4s — N — 1 and inserting the definition of v, we find
Hy(x, y) = $p(0) + Ve (x) - (v = 0) = dn.sb@)x = y[* ™M - o(lx — y[#=M),
which is the assertion of the lemma with &, := Vi, (x). ]

LemmaA.4 Letk € Nwithk < p = sz]\és Ifk > Nz_szs, then

wHE / UL Ha(x, F dy = 0G7%).
Q

If2 <k < Nz_szs, then

AT / UL Ha(x, ) dy = ( / U, 1(»)"~* dy) (AN o372,
Q ’ RN

Ifk=1,

_N-2s p—1

A2 U, Hp(x,)dy
q

= an @b (ORI —dy by HATE 4 00.7F) + o(@p(0)ATVF).

The asymptotics are uniform for x in compacts of <.

Proof Let us start with the easy case of k > N2_52x. In that case, since H,(x, -) is uniformly

bounded, we have

ATRN=29 e <

N-2s>

k — -
rﬂN—Z‘)/ UL Hy(x, )k dy gr“N—Z‘)[ Uy S 1Nima itk = g
¢ e aN ith > g

In any case, this is o(A™%).

Now, assume 1 < k < Nz_szs . Let us abbreviate d = d(x) and B; = B;(x) and show that

the integral over 2\ By is o(A~%5). Indeed, since H,(x, -) is uniformly bounded,

AT f UL Hy(x, y)bdy S 2730V-29 f ulitdy (A.10)
Q\By RN\ By
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= A k(N=29) / Ug T dy =27V = 0 7%).
RNM\By;,
(A.11)

To evaluate the remaining integral over By, we use the formula

k
(Ha (e, ) = (90 0) + & - (v = ) = divs@(@) + oDlx = y* V) (A12)

by Lemma A.3 (where &, may be zero if we are in case (i) of that lemma). After multiplying
out the right side, every term containing the factor &, - (y — x) only once vanishes by oddness.

Letnow k > 2. Since ¢, (x) and a(x) are uniformly bounded and €2 is bounded, it is clear
that we can estimate

Ha(x,)’)k=¢a(x)k+(9(|y_x|2+|y_x|4s—N) §¢a(x)k+0(|y_x|4s—1\/).

For the last step we used that4s — N <2+ 2s — N < 2. Now

k . — . . . — .
)f?(N*z’)/ Uﬁ,\klx - y|45’N dy = ) KW =25) ) N—ds / Uéfl k|y|4kN dy (A.13)
Bq

By3.(0)
In A ifk=2

< 3 =Ny —(k=2)(N—2s) )
S x {Mk—?)w—zﬂ ifk > 2.

(A.14)

In any case, this is o(L~%5)y,
Finally, if £ = 1, plugging in expansion (A.12), the term involving a(x) is not negligible
anymore. Instead, it gives

N-2s _
o / U7 @) + o()lx — ¥V dy = AP ay a(x) + 0072,
Bd

which completes the proof. O

Appendix B: Auxiliary computations

In this Appendix, we collect some technical results and computations used throughout the

paper.
First, we compute the L? norm of U, ; for various values of g.

LemmaB.1 (L9-norm of U, ;) Let x € Q and q € [1, o0]. As A — 00, we have, uniformly
for x in compact subsets,

N-2s N
Azody 4> vy
N—2s N-2s
~ - N5 N
”U)C,}n”Lq(Q) A 2 (ln )\.) N q = N_2s*
_NEZS < N
’ 9 =< N2
_ N-25-2 22 x—vy2 —
Moreover, for 9, Uy ;. = NTzs)» 2 %, we have |0, Uy x| = O(A lUx,;t)

(I+22x—y[2) 2
pointwise and therefore

183 Uxallg S A7 MUy g €1, 00)
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N— 2:+2 A
Finally, for 9y, Uy 5 = (=N +2s)A (x—y)w, we have
(14+22]x—y[?)
N-2s+2 N
2o N
! g 9> N=25+1°
S
~ _ N
||axi Ux,)»”L‘l(Q) q = N=25+1°
_N—2s N
A ) 9 < N=as¥1°

Lemma B.2 We have
I(=A)Y2PU|~1, [I(=AY2HPU|~r"  [(=A)728,, PU| ~ A.

Moreover,
(=) 2PU (= A28, PUx s dy S 27V
RN

/ (=A)2PU, 5 (=A) %8y, PU, s dy S ANT2S

RN

f (= 8)"/28, PU, (=)0, PU . dy < 2N+,
RN

(=8)*/203, PU (= 8) 205, PUx s dy S 27VF2,
RN
We remark that the bounds of Lemma B.2 are consistent with the ones proved in [38,
Appendix B].

LemmaB.3 We have

N-—2s
-
= m Uer(0) =2 2 hux = y), (B.1)

with

—2s
1

N
o= (1500)
MRRNETE FEa

Moreover h(z) ~ |z|™ V2725 and |Vh(z)| ~ |z| V12573 a5 7| —> oo. Consequently,
h e LPRN) forevery p € [1, %) and Vh € LPRN) for every p € [1, ﬁm), where
the latter interval is possibly empty.

LemmaB.4 Letb € C(Q2) N CY(Q). As A — oo, uniformly for x in compact subsets of 2,
N-2s _ _ —2s5 —2s
b(MUx (A2 h(A(x —y))dy = an 277 b(x) + o(A™7).
Q

The numerical value of oy s = fRN Uo,1(y)h(y) dy is given in Lemma B.5 below.

Proof Abbreviate d = d(x) and B; = By(x). We integrate separately over By and over
Q\ By.
For the outer integral, from Lemma B.3 we get that Uy | (y)h(y) ~ |y|_2N+4‘_2. Thus,

/ b(y) Uy, AT RO — ) dy SAVB2 50Ny = 07,
Q\By
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For the inner integral, using that b € C1(R2), we write b(y) = b(x) + Vb(x) - (y — x) +
o(]x — y|) for y € B;. Then (the integral over Vb(x) - (y — x) cancels due to oddness)

N-2s
2

/B b(MUx (M)A 2 h(A(x — y))dy
d

— b / Vo ()h(y) dy+o(r25‘1 / Uo,l(z)h(Z)IZIdZ>
B4 (0) B

2.d (0)

=b)A Han s+ o) +o (HH / Uo,1(2)h(2)lz] dz>.
B

2 (0)

To show that the last term is o(A~2) as well, note that by Lemma B.3 we have
Uo1(2)h(2)|z] < |z|72N+45~1 Thus,

A2l ifN >4s —1,
A2l / Uo1(@h(@)lzldz S A Tlogh if N =4s—1,
Bia(©) A= N+as—1 N <4s—1.

This is 0(A~2%) in all cases. m]

We compute explicitly the constants that appear in the asymptotic expansions throughout
the paper.
N-=2s

LemmaB.5 (Constants) For N > 2s and p = % let Up,1(y) = (ﬁ) * and

h(y) = Iy\Nl’“ - 1 v—5- Lhen, for every 0 < k < ﬁ, we have
(I+y1») 2

NP (51— k) +ks)
(k) = U Pk gy = T 2 .
ay s (k) /RN 0.1(») y F(X2—h+ks)

We denote Ay s := an 5(0) and ay s := an s(1). Furthermore,
resr(§ —s)
F(3)r(3+s)
Nz /N I'(s) r (%)
= U, h(y)dy=—-+T(=-2 - .
v = [ Uni O dy = Zos (5-2) (r(g S T

Moreover, the constant in (—A)*u(x) := Cy sP.V. fJRN f}ffl%ﬁiﬁ{ dy is given by

225 (N2s
ey 2T ()
aN2sT(1 —s)

NA2s
and the constant in (—A)*Up,1 = cp s UONI"ZJ is given by

N42s _
by = /RN Up,1(y) V=2 |y|45 Ndy — 7 N/2

F(N-‘,Z-ZS)

=

CN = 223

The explicit value of the best fractional Sobolev constant in || (=AY 2u|? > S||u|? oy IS
N-25

SF(N42>2X) <F(N/2)>2S/N

S:=Sys=2%
Mo =2 ez Utv)
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The constant in (—A)S |x|¥—N = —d;’]‘g|x|2S’N is given by
r N—4s (s
dy.s = —2*2‘?% > (B.2)
[(55=)T'(2s)
The constant yy 5 in ((—A)° +a)Gy(x, ) = YN 50y is given by
2237TN/2F(S)
VNs =~ NZas+
F(NZZY)

Proof The values of a, (k) and by ; are a consequence of the following computation. For
o, B >0,

o N/2 a
./ 1 Iy|P dy = 2 _/OO : PN g
'Y \ 1+ 1y r(¥ o \1+2

B+N BN
N2 1"( 5 )F(a— 5 )

) T'(a)

(B.3)

To compute oy 5, we write

apy,s :/ Uo,1 (y)h(y)dy
]RN

== N—2s
() e T e
r (&) Jo 1+r2 1+r2 '

I(r,N,s)

If N > 4s, then the summands of I(r, N, s) are separately integrable, in which case (B.3)

gives
N2 /N T(s) r§)
s=——TI==2 - . B.4
o= (3 S)<r(§—s) Fv -2 B

To extend this formula to the case 2s < N < 4s which concerns us, we remark that the
right side of (B.4) defines a holomorphic function of s in the complex subdomain Dy :=
{0 < Re(s) < N/2}\{N/4} C C. On the other hand, by a cancellation / (», N, s) remains
integrable in r € (0, co) for every s € (0, 1) and N € (2s, 4s). Indeed,

I(r,N,s) ~ > 1 —/¥N1y  asr -0,
N—=2s

2 N-—2s
1N, s) ~ |22 (1 _ 229, 8-
1+ % 1+

_N-2s —(N=2
_ (rzzvzzs 251 (1 n %) L F—2(N=25) N—1 (1 N %) ( s))
r r
N
_—N+ds—1 2 S 1 N —2s 1
=r (1— r2 +O<r74>_1+ }"2 +0 r74

N :
— <7 _ S) r7N+4s73 + O(r7N+4375) asr — oo.

~
I\)"_‘

2
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By astandard argument, this implies that f0°° I(r, N, s)dr isholomorphicin Dy as a function
of s. By the identity theorem for analytic functions, the formula (B.4) thus holds also for
s € (N/4, N/2), which is what we wanted to show.

Finally, the claimed value of S can be found, e.g., in [17, Theorem 1.1] and that of dy
in [33, Table 1, p. 168]. m]

LemmaB.6 Let2s < N < 4s and let f; : (0,00) — R be given by

A, e
JeQ) = PV Bam

with Ag, Be > 0 uniformly bounded away from 0 and co. The unique global minimum of f
is given by

25A, >41N B

)\.() = }\()(8) = <m g &N, (BS)

with corresponding minimal value

_2s 2s
in £.00 = £.0h0) 2 BF N (N —2s\%N 45 — N
min = = —g%- )
>0 "¢ Jelto N2\ o N —2s

4s—N
&

(B.6)

Moreover, there is a co > 0 such that, for all € > 0, we have
1 1
25—2 ey | N—as
cosFF (1T =20 )i (42) T eI <2 (5By)

1 1
2s Ts—N 1 N—as
. . A -N .1 2s N—ds
e H-N e &N
coe® zf<B£) g BN >2(N_25) .

(B.7)

Py

Jfe@) = fe(ho) =

Proof The values of A¢ and f.(Ao) are obtained by standard computations. Thus we only
1

prove (B.7). Let F(t) := 25 — tN=25 and denote by 1y := (ﬁ)i‘sw the unique global

minimum of F on (0, co). Then, there exists ¢ > 0 such that

c(t —to)>  if0 <t < 21,
F@)— F(t) >
(t) — Flto) > [Ctév_zs if 1 > 2.

The assertion of the lemma now follows by rescaling. Indeed, it suffices to observe that

1
_ N-2s 2s 5 A Is—N
fo() = A, SV BE N TN ((;) 54:11”1)

€

and to use the boundedness of A, and B,. m]
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