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Abstract
In this paper, blow-up solutions of autonomous ordinary differential equations (ODEs)
which are unstable under perturbations of initial points, referred to as saddle-
type blow-up solutions, are studied. Combining dynamical systems machinery (e.g.,
compactifications, timescale desingularizations of vector fields) with tools from
computer-assisted proofs (e.g., rigorous integrators, the parameterization method for
invariant manifolds), these blow-up solutions are obtained as trajectories on local
stable manifolds of hyperbolic saddle equilibria at infinity. With the help of computer-
assisted proofs, global trajectories on stable manifolds, inducing blow-up solutions,
provide a global picture organized by global-in-time solutions and blow-up solutions
simultaneously. Using the proposed methodology, intrinsic features of saddle-type
blow-ups are observed: locally smooth dependence of blow-up times on initial points,
level set distribution of blow-up times and decomposition of the phase space playing
a role as separatrixes among solutions, where the magnitude of initial points near
those blow-ups does not matter for asymptotic behavior. Finally, singular behavior of
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blow-up times on initial points belonging to different family of blow-up solutions is
addressed.

Keywords Saddle-type blow-up solutions · Rigorous numerics · Compactifications ·
Desingularization · Parameterization method · Separatrix

Mathematics Subject Classification 34C08 · 34C20 · 34C45 · 34C37 · 35B44 ·
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1 Introduction

Our concern in the present paper is blow-up solutions of the following initial value
problem of an autonomous system of ordinary differential equations (ODEs) in R

n :

dy(t)

dt
= f (y(t)), y(0) = y0, (1.1)

where t ∈ [0, T ) with 0 < T ≤ ∞, f : Rn → R
n is a C1 function and y0 ∈ R

n . We
call a solution y(t) of the initial value problem (1.1) a blow-up solution if

tmax
def= sup

{
t̄ | a solution y ∈ C1([0, t̄)) of (1.1) exists

}
< ∞.

The maximal existence time tmax is then called the blow-up time of (1.1). Blow-up
solutions can be seen inmany dynamical systems generated byODEs, or partial differ-
ential equations (PDEs) like nonlinear heat equations or Keller–Segel systems. These
dynamical systems are categorized as exhibiting finite-time singularities and have
been the center of attention of many researchers, who have studied these phenomena
from mathematical, physical, numerical viewpoints and so on (e.g., Fila and Matano
2002; Herrero and Velázquez 1997; Mizoguchi 2016; Winkler 2013 from theoretical
viewpoints and, e.g., Anada et al. 2017; Berger and Kohn 1988; Cho 2016; Cho et al.
2007; Zhou and Saito 2017 from numerical viewpoints). Fundamental questions for
blow-up solutions are whether or not a solution blows up and, if it does, when, where
and how it blows up. In general, blow-up phenomena depend on initial points, and
rigorously characterizing them as functions of initial points remains non-trivial.

A typical approach for studying and proving existence of blow-up solutions is via
energy estimates (see, e.g., Fila and Matano 2002), namely inequalities (involving
energy functionals associated with the systems) giving sufficient conditions for exis-
tence of blow-up. In such cases, relatively large initial data induce finite-time blow-up.
However, in general, these criteria do not provide an answer on how large initial points
should be to exhibit blow-up and how solutions behavewhen these criteria are violated.
There are several cases where initial points are divided such that solutions through
them either exist globally in time or blow-up by means of bounded stationary solu-
tions (e.g., Fujita 1969). A stationary solution with the above property is referred to
as the separatrix, which plays a key role in describing asymptotic behavior of solu-
tions. Despite their importance, results about the existence and explicit description
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of separatrixes are limited. On the other hand, there are also results about the exis-
tence of blow-ups in which the magnitude of initial points does not matter. Alternative
approaches to the energy estimates have been introduced to prove such blow-ups, but
their dependence on initial points remain unknown in many cases, while arguments
based on energy estimates easily yield the continuous dependence of blow-up behav-
ior on initial points by continuity of energy functionals. Furthermore, there are also
blow-up solutions whose asymptotic behavior is described not only by divergence, but
also by complex behavior like oscillations, some of which are mentioned in Sect. 8.1
(Concluding Remarks). Mathematical and physical importance for studying blow-up
behavior follow from such rich nature, but their comprehensive understanding are
limited to well-known systems like PDEs mentioned above at present. See, e.g., Fila
andMatano (2002) and Galaktionov and Vázquez (2002) for more detailed summaries
of blow-up problems including another well-known characterization of blow-up solu-
tions by means of (backward) self-similarity.

Meanwhile, the second author has recently proposed a description of blow-up
solutions from the viewpoint of dynamical systems (Matsue 2018). More precisely,
compactifications of the phase space Rn is applied to mapping the infinity onto points
on the boundary E of a compact manifold or their tangent spaces denoted by D with
∂D = E . The boundary E shall be called the horizon in this context. Accordingly
the vector field (1.1) is transformed to one on the corresponding manifolds, but the
behavior of solutions near the boundary E is still singular reflecting the behavior of the
original vector field at infinity. The timescale transformation, which shall be called the
timescale desingularization, is then introduced to desingularize the singularity of the
vector field around E . Consequently, dynamics at infinity can be characterized through
the time-transformed vector field, called the desingularized vector field, on D. Stan-
dard arguments in the theory of dynamical systems through compactifications show
that divergent solutions of (1.1) correspond to global-in-time solutions of the desin-
gularized vector field converging to invariant sets on E .1 A significant consequence of
the preceding studies is that a solution of (1.1) with bounded initial point is a blow-up
solution, namely tmax < ∞, if the image of the solution through a compactification
mentioned above is on the local stable manifold of a hyperbolic equilibrium on E for
the desingularized vector field.2

Simultaneously, the second and the third authors have developed a computer-
assisted methodology for proving the existence of blow-up solutions for concretely
given dynamical systems with rigorous bounds of their blow-up times tmax (Matsue
and Takayasu 2020a, b; Takayasu et al. 2017). The basic idea is the combination of
compactifications as well as timescale desingularizations mentioned above with rig-
orous integrator of ODEs based on interval (and affine) arithmetic and topological
characterizations of asymptotic behavior such as locally defined Lyapunov functions.
Evaluation of tmax is one of the most important issues in blow-up studies to estimate
upper bounds of the existence of solutions, or the onset of finite-time singularities such
as ignition in combustion studies (e.g., Dold 1985), while the study is limited even in

1 The above ideas themselves are applied to describe dynamics around bounded invariant sets in several
preceding works (e.g., Dumortier and Herssens 1999).
2 The same conclusion holds for hyperbolic periodic orbits on E . A brief comment about the statement is
mentioned in Remark 8.1. Several theoretical generalizations are discussed in Matsue (2019).
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numerical studies (e.g., Cho 2016). The proposed methodology provides a rigorous
and standard way to obtain both lower and upper bounds of tmax through dynamics at
infinity.

The methodology works successfully for validating profiles and blow-up times of
blow-up solutions generated by hyperbolic stable equilibria at infinity, while blow-up
generated by unstable equilibria at infinity is not reported yet due to several technical
difficulties. Note that there is another work for characterizing blow-up solutions with
computer assistance by the first author and his collaborators based on analytic approach
(D’Ambrosio et al. 2015) whose detail is briefly mentioned in Sect. 8.1. On the other
hand, from the viewpoint of dynamics at infinity itself, namely when the viewpoint of
blow-up characterizations is not considered, asymptotic behavior of unstable invariant
sets at infinity is quite natural to study toward description of global bounded dynamics
(e.g., Dumortier 2006; Dumortier and Herssens 1999; Dumortier et al. 2006; Giraldo
et al. 2020; Kokubu and Roussarie 2004). We then believe that blow-up solutions
generated by unstable invariant sets at infinity contribute toward the comprehensive
understanding of global dynamics, including characteristics such as criteria for the
existence, dependence on initial points and analytic information of blow-up times.
Despite many mathematical and numerical studies of blow-ups, characterizations and
computations of blow-up solutions which are unstable under perturbations of initial
points in a standard way are not realistic, because we have to treat the following
difficulties simultaneously:

• instability of trajectories exhibiting blow-up solutions under perturbations of initial
points and

• treatment of infinity.

We shall call blow-up solutions exhibiting instability under perturbation of initial
points saddle-type blow-up solutions in the present paper, respecting the structure
of equilibria at infinity. This fuzzy nature is difficult to characterize clearly in gen-
eral, while such behavior can be partially observed in several practical problems as
mentioned in Sect. 8.1.

The main aim of the present paper is to reveal a global nature of saddle-type blow-
up solutions through mathematically rigorous blow-up characterizations mentioned
above with computational machineries in dynamical systems, both qualitatively and
quantitatively. As any computational method inevitably suffers from numerical errors,
due both to rounding and discretizing, onemust question the validity of its output. This
is especially through when solutions are sensitive to initial conditions, as it is the case
for instance for dynamical systems possessing blow-up solutions or exhibiting chaos.
In order to address the fundamental issue of reliability of computations, the recent field
of computer-assisted proofs in nonlinear analysis emerged at the intersection of sci-
entific computing, functional analysis, approximation theory, numerical analysis and
topology. In essence, a computer-assisted proof is the process by which the hypotheses
of a theorem are verified rigorously with the help of the computer. In the context of
dynamical systems, early pioneering works include the proof of the universality of the
Feigenbaum constant (Oscar 1982) and the proof of existence of the strange attrac-
tor in the Lorenz system (Tucker 2002). We refer the interested reader to the survey
papers (Koch et al. 1996; Nakao 2001; Tucker 2011; van den Berg and Lessard 2015;
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Gómez-Serrano 2018), as well as the recent book (Nakao et al. 2019). Computer-
assisted proofs are one way to both characterize and visualize mathematical objects
in a mathematically rigorous way. Keeping the success of computer-assisted proofs
for various applications to dynamical systems (e.g., Castelli et al. 2018; D’Ambrosio
et al. 2015; Matsue and Takayasu 2020a, b; Takayasu et al. 2017) in mind, we believe
that studying blow-up solutions with computer-assisted proofs provides rich insights
into asymptotic behavior of solutions to differential equations as well as new research
directions of global dynamics and finite-time singularities.

To validate saddle-type blow-up solutions, we combine the machinery applied in
preceding works, compactifications and timescale desingularizations, with the param-
eterization method (e.g., see Cabré et al. 2003a, b, 2005). The latter notion is now
understood as one of universal machineries in dynamical systems, which aims at char-
acterizing and constructing invariant manifolds, including local (un)stable manifolds
of invariant sets such as equilibria and periodic orbits. Moreover, the parameterization
method with rigorous ODE integrations has a great compatibility with computer-
assisted proofs to capture global nature of invariant manifolds in dynamical systems
with their explicit enclosures. In particular, globally extended saddle-type blow-up
solutions and the corresponding curves of blow-up times can be validated as easily as
preceding works (Matsue and Takayasu 2020a, b; Takayasu et al. 2017).

We shall also unravel non-trivial and global nature of saddle-type blow-up solutions
with the applicability of our proposed methodology through several examples. The
main features of blow-up solutionswe shall extract in the present paper are summarized
as follows, which are not observed in preceding works or theoretical characterizations
of blow-ups:

• The blow-up time tmax is described by a locally real analytic function of initial
points under a generic assumption (Sect. 4.2).

• Local foliation structure in level sets of blow-up times which is independent of
dynamics at infinity is observed (Sect. 6.2).

• Chain of connecting orbits including those corresponding to saddle-type blow-up
solutions can separate initial points into several regions possessing significantly
different properties, where solutions through these points either exist global-in-
time or blow up in finite time, no matter how large the magnitude of initial points
is (Sect. 7.2).

• The above chain of connecting orbits induces discontinuity of blow-up times
(Sect. 7.2).

The first feature is one of the biggest benefits of the parameterized method in blow-
up studies. In preceding works, no explicit expression of local stable manifolds is
obtained, yielding atmost upper and lower bounds of tmax (e.g., Takayasu et al. (2017)).
In the present methodology, the explicit expressions of local stable manifolds as the
graphs of locally analytic functions can be applied, and hence, combinedwith formulae
of tmax by means of integrals through trajectories, we obtain the explicit formulae of
tmax as functions of initial points.

Through computer-assisted proofs, we obtain explicit distributions of local stable
manifolds with their visualizations. We then see an interesting relationship between
asymptotic behavior of blow-up solutions and the corresponding tmax. As the second
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feature,we see that the asymptotic dynamics near blow-up do not essentially contribute
to determine blow-up times. In other words, only the magnitude of solutions can
determine tmax. The remaining features are also important and completely different
from blow-up solutions possessing persistence of structure under perturbations of
initial points. We see that, in the presence of saddle-type blow-up solutions, there
is no relationship between the magnitude of initial points and blow-up behavior of
solutions through these points. All these features rely on computer-assisted proofs,
implying that all results are mathematically rigorous and the methodology toward
these results are available to a large class of ODEs without any knowledge of blow-up
behavior.

The rest of the present paper is organized as follows. In Sect. 2, we review a
methodology for characterizing blow-up solutions from the viewpoint of dynamical
systems, which is based on compactifications and timescale desingularizations studied
in, e.g., Matsue (2018). Three types of compactifications are shown there: directional,
Poincaré-type and parabolic-type ones. The concrete process for characterizing blow-
up solutions is explained for each compactification for readers’ accessibility, while the
fundamental idea is identical. Both advantages and disadvantages of each compactifi-
cation depending the situation are finally mentioned. In Sect. 3, the parameterization
method for calculating invariant manifolds is summarized. In the present paper, we
restrict our attention to stable manifolds of equilibria. Under an essential assumption
called the non-resonance condition of eigenvalues, local stable manifolds can be char-
acterized as zeros of a countable family of nonlinear equations on Banach spaces.
Combining with the method of radii polynomials, which is one of standard functional
analytic and algebraic machineries for finding zeros of (infinite-dimensional) non-
linear maps, computer-assisted proofs of the existence and characterization of local
stable manifolds are provided. Note that the non-resonance condition yields that val-
idated stable manifolds can be given as locally real analytic functions. In Sect. 4, we
provide a methodology of computer-assisted proofs of the existence of blow-up solu-
tions. Because the detailed implementations such as the choice of compactifications
and timescale transformations is problem-dependent, only the basic idea for validating
blow-up solutions is presented therein. We also show that the present methodology
enables us to provide an exact and explicit formula of the maximal existence time,
equivalently the blow-up time, of solutions as a locally smooth or real analytic func-
tion of initial points, provided all our implementations work successfully. The present
characterization of the blow-up time provides us with a quantitative feature of blow-
up solutions such as distributions of blow-up times depending on initial points which
are not provided in preceding works (Matsue and Takayasu 2020a, b; Takayasu et al.
2017). As we shall see, the combination of compactifications with the parameteriza-
tion method provide a universal concept of blow-up validations and characterizations
both qualitatively and quantitatively, no matter how stable equilibria on the horizon
(for desingularized vector fields) are.

The applicability of the present methodology and global nature of saddle-type
blow-up solutions is shown in successive sections. In Sect. 5, a two-dimensional ODE
possessing saddle-type blow-up solutions is considered. A locally defined (i.e., direc-
tional) compactification is applied, and a saddle-type blow-up solution, as well as the
blow-up time as a function of initial points, is validated to check the applicability
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of our methodology to locally distributed blow-up solutions. In particular, the blow-
up profile as well as its blow-up time as a function of initial points is successfully
validated, extended and visualized. In Sect. 6, we consider a three-dimensional sys-
tem. The Poincaré-type compactification is applied, and one- and two-dimensional
stable manifolds of saddle equilibria on the horizon are validated. The aim is to show
the applicability of our methodology to saddle-type blow-up solutions distributed on
multi-dimensional stable manifolds of unstable invariant sets on the horizon. Further-
more, distribution of blow-up times as functions of initial points on two-dimensional
stable manifolds is validated, which shows a relationship of blow-up times to the
structure of stable manifolds around the horizon. Finally, global extension of local
stable manifolds is demonstrated to visualize the distribution of blow-up nature. In
Sect. 7, a two-dimensional ODE which is quasi-homogeneous in an asymptotic sense
is considered. The system possesses both stable and unstable equilibria on the horizon.
The parabolic-type compactification is applied and a saddle-type blow-up solution is
firstly validated, while validations of blow-up solutions asymptotic to stable equilibria
on the horizon are already demonstrated in a preceding work (Matsue and Takayasu
2020a). The main aim of this section is to study global nature of solution families near
saddle-type blow-up solutions. We see that saddle-type blow-up solutions can play the
role of the separatrix decomposing initial points into collections of blow-up solutions
and global-in-time solutions. In other words, saddle-type blow-up solutions can divide
initial points into those with globally bounded nature and blow-up nature, no matter
how large magnitudes of initial points are. This separation cannot be seen in blow-
up solutions induced by solutions asymptotic to stable equilibria on the horizon for
desingularized vector fields. Moreover, it is also seen that blow-up times can behave
in a singular manner across the saddle-type blow-up solutions. Remark that such a
singular nature has not been provided only by the local theory, because the global
dynamical information requires to unravel it, while many theoretical characterizations
of solution structures are stated only in the local sense. We emphasize that computer-
assisted proofs enable us to clarify the global nature, even in dynamically singular
one, with appropriately chosen machineries. All the codes for generating results with
computer-assisted proofs in Sects. 5, 6 and 7 are available at Lessard et al. (2021).

2 Preliminary 1: Characterization of Blow-Up Solutions

In this section, we briefly review a characterization of blow-up solutions for
autonomous, finite-dimensional systems of ODEs from the viewpoint of dynamical
systems. In particular, we pay attention to several concrete cases which are applied
in examples later, while details of the present methodology are already provided in
Matsue (2018) and Matsue and Takayasu (2020a, b).

Consider the initial value problem of an autonomous system of ODEs

y′ = dy(t)

dt
= f (y(t)), y(0) = y0, (2.1)

where t ∈ [0, T ) with 0 < T ≤ ∞, f : Rn → R
n is a C1 function and y0 ∈ R

n .
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2.1 Asymptotically Quasi-Homogeneous Vector Fields

First of all, we review a class of vector fields in our present discussions.

Definition 2.1 (Asymptotically quasi-homogeneous vector fields, cf . Dumortier 1993;
Matsue 2018) Let f0 : R

n → R be a smooth (i.e., Cr with r ≥ 1) function. Let
α1, . . . , αn, k ≥ 1 be natural numbers.We say that f0 is a quasi-homogeneous function
of type α = (α1, . . . , αn) and order k if

f0(s
α1x1, . . . , s

αn xn) = sk f0(x1, . . . , xn), ∀x ∈ R
n, s > 0.

Next, let X = ∑n
j=1 f j (x)

∂
∂x j

be a smooth vector field onRn .We say that X , or sim-
ply f = ( f1, . . . , fn) is a quasi-homogeneous vector field of type α = (α1, . . . , αn)

and order k + 1 if each component f j is a quasi-homogeneous function of type α and
order k + α j .

Finally, we say that X = ∑n
j=1 f j (x)

∂
∂x j

, or simply f is an asymptotically quasi-

homogeneous vector field of type α = (α1, . . . , αn) and order k + 1 at infinity if there
is a quasi-homogeneous vector field fα,k = ( f j;α,k)

n
j=1 of type α and order k+1 such

that

lim
s→+∞ s−(k+α j )

{
f j (s

α1x1, . . . , s
αn xn) − sk+α j f j;α,k(x1, . . . , xn)

}
= 0

holds uniformly for (x1, . . . , xn) ∈ Sn−1 ≡ {x = (x1, . . . , xn) ∈ R
n | ∑n

i=1 x
2
i = 1}.

Throughout successive sections, consider the (autonomous) vector field (2.1),where
f : Rn → R

n is an asymptotically quasi-homogeneous smooth vector field of type
α = (α1, . . . , αn) and order k + 1 at infinity.

2.2 Compactifications, Dynamics at Infinity and Blow-Up Criteria

Here we summarize the basic strategy used throughout the successive sections. The
main idea is application of compactifications: the embedding of the original phase
space into compact manifolds or their tangent spaces with boundaries. The boundaries
then correspond to the infinity. There are mainly two different types of compactifi-
cations: the locally defined one and globally defined one. The local one is simple
and applied to many preceding works involving dynamics at infinity, while the global
one enables us to treat dynamics including infinity in one chart. After introducing
compactifications, we derive vector fields which we mainly concern, and provide the
characterization of blow-up solutions by means of dynamical systems. The concrete
process for the characterization of blow-up solutions is provided for each compactifi-
cation which we introduce.

2.2.1 A Basic Strategy

The basic strategy for characterizing blow-up solutions is summarized as follows,
which is independent of the choice of compactifications introduced below.
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1. For given vector field f provided by (2.1), determine its type α and order k + 1.
2. Choose an appropriate compactification of the same type α (mentioned below) as

f .
3. Transform (2.1) into the corresponding one through the compactification.
4. Introduce a timescale transformation to desingularize the vector field determined

by the order k+1 of f . The resulting vector field shall be called the desingularized
vector field. Dynamics at infinity then makes sense through the desingularized
vector field.

5. Validate hyperbolic invariant sets on the special geometric object corresponding to
infinity, the horizon and their local stable manifolds for the desingularized vector
field.

Once invariant sets, such as equilibria and periodic orbits, on the horizon with their
hyperbolicity are validated, their local stable manifolds characterize the collection
of blow-up solutions of (2.1) near blow-ups, which is the essence of our proposing
methodology. In the successive parts, the blow-up characterization is shown for each
compactification.

An important point here is a suitable choice of “appropriate” compactifications
so that our blow-up problem can be reduced to standard issues in dynamical systems.
Below are examples of such suitable compactifications,which possess both advantages
and disadvantages, and hence, these compactifications have to be used according to
our needs. Several characteristics of compactifications are summarized in Sect. 2.3.

2.2.2 Directional Compactifications

First a locally defined compactification is introduced, which shall be called a direc-
tional compactification.

Definition 2.2 (Directional compactification, cf . Dumortier et al. 2006; Matsue 2018)
A directional compactification3 of type α = (α1, . . . , αn) is defined as

y = (y1, . . . , yn) 
→ Td(y) = (s, x̂) ≡ (s, x̂1, . . . , x̂i0−1, x̂i0+1, . . . , x̂n),

yi := x̂i
sαi

(i �= i0), yi0 := ± 1

sαi0
(2.2)

with given direction i0 ∈ {1, . . . , n} and the signature ±. This compactification is
bijective in R

n ∩ {±yi0 > 0}, in which sense directional compactifications are local
ones. In particular, this compactification is availablewhenwe are interested in trajecto-
ries of (2.1) such that the i0th component has the identical sign during time evolution.
The image of Td is

D = {(s, x̂1, . . . , x̂i0−1, x̂i0+1, . . . , x̂n) | s > 0, x̂i ∈ R (i �= i0)}. (2.3)

The set E = {s = 0} corresponds to the infinity in the original coordinate, which shall
be called the horizon.

3 Although Td is not a compactification in the topological sense, we shall use this terminology for Td from
its geometric interpretation shown below.
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Other geometric interpretations arementioned in Sect. 2.3. For simplicity, fix i0 = 1
in (2.2) in the following arguments. Next transform (2.1) via (2.2), which is straight-
forward:

ds

dt
= − 1

α1
s−k+1 f̂1(s, x̂2, . . . , x̂n),

dx̂i
dt

= s−k
{
f̂i (s, x̂2, . . . , x̂n) − αi

α1
xi f̂1(s, x̂2, . . . , x̂n)

}
(i = 2, . . . , n),

where

f̂i (s, x̂2, . . . , x̂n)
def= sk+αi fi (s

−α1 , s−α2 x̂2, . . . , s
−αn x̂n), i = 1, . . . , n. (2.4)

The resulting vector field is still singular near the horizon, but it turns out that the
order of divergence of vector field as s → +0 is O(s−k), and hence, the following
timescale transformation is available.

Definition 2.3 (Time variable desingularization: the directional version) Define the
new time variable τd by

dτd = s(t)−kdt (2.5)

equivalently,

t = t0 +
∫ τ

τ0

s(τd)
kdτd , (2.6)

where τ0 and t0 denote the correspondence of initial times, and s(τd) is the solution
trajectory s(t) under the parameter τd . We shall call (2.5) the time variable desingu-
larization (of order k + 1).

The vector field g = gd in τd -timescale is

⎛
⎜⎜⎜⎜⎝

ds
dτd
dx2
dτd
...

dxn
dτd

⎞
⎟⎟⎟⎟⎠

= gd(s, x̂2, . . . , x̂n)
def=

⎛
⎜⎜⎜⎝

−s 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎞
⎟⎟⎟⎠ B

⎛
⎜⎜⎜⎝

f̂1
f̂2
...

f̂n

⎞
⎟⎟⎟⎠ (2.7)

where B is the inverse4 of the matrix

⎛
⎜⎜⎜⎜⎜⎝

α1 0 · · · 0 0
α2 x̂2 1 · · · 0 0

...
...

. . .
...

...

αn−1 x̂n−1 0 · · · 1 0
αn x̂n 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠

.

4 The existence of B immediately follows by cyclic permutations and the fact that αn > 0.
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The componentwise expression is

ds

dτd
= gd,1(s, x̂2, . . . , x̂n) ≡ − 1

α1
s f̂1(s, x̂2, . . . , x̂n),

dx̂i
dτd

= gd,i (s, x̂2, . . . , x̂n) ≡ f̂i (s, x̂2, . . . , x̂n)

− αi

α1
xi f̂1(s, x̂2, . . . , x̂n) (i = 2, . . . , n).

This vector field is as smooth as f including s = 0, and hence, dynamics at infinity
makes sense through dynamics generated by (2.7) around the horizon E = {s =
0}. Once the desingularized vector field (2.7) is provided, blow-up solutions can be
characterized as follows.

Theorem 2.4 (Stationary blow-up: the directional version, Matsue 2018) Assume that
the desingularized vector field (2.7) associated with (2.1) has an equilibrium on the
horizon x∗ = (0, x∗) ∈ E . Also suppose that x∗ is hyperbolic with ns > 0 (resp.
nu = n−ns) eigenvalues of the Jacobianmatrix Dgd (x∗)with negative (resp. positive)
real parts. If there is a solution y(t) of (2.1) with a bounded initial point y(0) whose
image x = Td(y) is on the local stable manifold Ws

loc(x∗; gd), then tmax < ∞ holds;
namely, y(t) is a blow-up solution. Moreover,

s(t)−1 ∼ c(tmax − t)−1/k as t → tmax

where c > 0 is a constant. Finally, if the i th component of x∗ (i ∈ {2, . . . , n}) is not
zero, then we also have

yi (t) ∼ ci (tmax − t)−αi /k as t → tmax,

where ci is a constant with the same sign as yi (t) as t → tmax.

Remark 2.5 Note that there are other locally defined compactifications, such as a quasi-
polar one known as Poincaré–Lyapunov disk (e.g., Dumortier and Herssens 1999;
Dumortier et al. 2006; Matsue 2018).

2.2.3 Poincaré-Type Compactifications

The remaining compactifications we introduce here are global ones in the sense that
they are embeddings of the whole phase spaceRn into compact manifolds with bound-
aries. A suitable class of global type compactifications for characterizing dynamics
at infinity for asymptotically quasi-homogeneous vector fields is discussed in Matsue
and Takayasu (2020a), where such a class of compactifications are called admissible
global compactifications. Among such compactifications, two representative compact-
ifications are reviewed.
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As a general setting, for given n-tuple of natural numbers α = (α1, . . . , αn), let
β1, . . . , βn be natural numbers5 such that

α1β1 = α2β2 = · · · = αnβn ≡ c ∈ N. (2.8)

Then define a functional p(y) as

p(y)
def=

(
y2β11 + y2β22 + · · · + y2βnn

)1/2c
. (2.9)

The prototype of admissible global compactifications is the Poincaré type.

Definition 2.6 (Poincaré-type compactification. cf . Matsue 2018) The Poincaré-type
compactification (of typeα = (α1, . . . , αn)) is defined as themapping TqP : Rn → R

n

as
TqP(y) = x, xi

def= yi
κ(y)αi

, (2.10)

with κ(y) = κqP (y)
def= (1 + p(y)2c)1/2c. The map TqP maps Rn onto

D = {x ∈ R
n | p(x) < 1}. (2.11)

The boundary E ≡ ∂D = {x ∈ R
n | p(x) = 1} is called the horizon.

Its geometric interpretation is mentioned in Sect. 2.3. Note fromMatsue (2018) that
κ = κqP (y) has an equivalent expression by means of x :

κ = κqP(T−1
qP (x)) =

⎛
⎝1 −

n∑
j=1

x
2β j
j

⎞
⎠

−1/2c

.

Similar to the directional ones, for given vector field f of typeα, we apply thePoincaré-
type compactification of the same type α. Then we have

dxi
dt

= f̃i (x) − αi xi

n∑
j=1

(∇κ) jκ
α j−1 f̃ j (x),

where

f̃ j (x1, . . . , xn) := κ−(k+α j ) f j (κ
α1x1, . . . , κ

αn xn), j = 1, . . . , n, (2.12)

which is the alternate object of f̂ j ’s in (2.4), κ = κqP (y), and

(∇κ) j ≡ (∇yκ(y)) j = β j y
2β j−1
j

cκ2c−1 = β jκ
2c−α j x

2β j−1
j

cκ2c−1 = x
2β j−1
j

α jκ
α j−1 . (2.13)

5 The simplest choice of the natural number c is the least common multiple of α1, . . . , αn . Once we
choose such c, we can determine the n-tuples of natural numbers β1, . . . , βn uniquely. The choice of
natural numbers in (2.8) is essential to desingularize vector fields at infinity, as shown below.
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It is shown inMatsue (2018) that the above vector field is still singular on the horizon
E , but the order of divergence isO(κk) as p(y) → +∞, equivalently p(x) → 1,which
is independent of components. Therefore, a common timescale transformation can be
introduced.

Definition 2.7 (Time variable desingularization: the Poincaré-type version) Define
the new time variable τd by

dτqP = κqP(y(t))kdt (2.14)

equivalently,

t = t0 +
∫ τ

τ0

κqP(y(τqP ))−kdτqP , (2.15)

where τ0 and t0 denote the corresponding initial times, and y(τqP ) is the solution y(t)
under the timescale τqP . We shall call (2.14) the time variable desingularization (of
order k + 1).

Using this timescale, we obtain

ẋi = dxi
dτ

= gqP,i (x)
def= f̃i (x) − αi xi

n∑
j=1

x
2β j−1
j

α j
f̃ j (x). (2.16)

This vector field is continuous including the horizon E , and hence, dynamics at infinity
makes sense through (2.16). It should be noted, however, that the desingularized vector
field (2.16) is not always smooth on E . Details are mentioned in Sect. 2.3.4. Similar
to Theorem 2.4, blow-up characterization is provided as follows.

Theorem 2.8 (Stationary blow-up: the Poincaré-type version,Matsue 2018) Consider
the desingularized vector field gqP associated with (2.1) given by (2.16). Assume that
gqP is C1 in a neighborhood of the horizon E and that gqP has an equilibrium on
the horizon x∗ ∈ E . Suppose that x∗ is hyperbolic with ns > 0 (resp. nu = n − ns)
eigenvalues of DgqP(x∗) with negative (resp. positive) real parts. If there is a solution
y(t) of (2.1) with a bounded initial point y(0) whose image x = TqP (y) is on the
local stable manifold Ws

loc(x∗; gqP ), then tmax < ∞ holds; namely, y(t) is a blow-up
solution. Moreover,

p(y(t)) ∼ c(tmax − t)−1/k as t → tmax,

where c > 0 is a constant. Finally, if the j th component x∗ is not zero, then we also
have

yi (t) ∼ ci (tmax − t)−αi /k as t → tmax,

where ci is a constant with the same sign as yi (t) as t → tmax.

2.2.4 Parabolic-Type Compactifications

An alternative admissible global compactification, which shall be called the parabolic-
type compactification, is introduced here. Compactifications of the present type were
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originally introduced in Gingold (2004) and generalized in Matsue and Takayasu
(2020a).

Similar to the Poincaré-type compactifications, define a set D ⊂ R
n by (2.11). For

any x ∈ D, correspond y ∈ R
n to x ∈ D by

S(x) = y, y j = x j
(1 − p(x)2c)α j

, j = 1, . . . , n.

Let κ̃α(x)
def= (1 − p(x)2c)−1, which satisfies κ̃α(x) ≥ 1 for all x ∈ D. Moreover,

y �= 0 implies κ̃α(x) > 1. We also have

p(y)2c = κ̃α(x)2c p(x)2c = κ̃α(x)2c
(
1 − 1

κ̃α(x)

)
. (2.17)

This equality indicates that p(y) = p(S(x)) < κ̃α(x) holds for all x ∈ D.

Lemma 2.9 (Matsue and Takayasu 2020a) Let F(κ; R)
def= κ2c − κ2c−1 − R2c for

R ≥ 0. Then, for any R ≥ 0, there is a unique κ = q(R) satisfying q(0) = 1 such
that F(q(R); R) ≡ 0. Moreover, q(R) > 1 holds for all R > 0 and q(R) is smooth
with respect to R ≥ 0.

Nowobserve that κ̃α(x) satisfies F(κ̃α(x); p(y)) = 0. By the uniqueness of κ(y) =
q(R) with respect to R = p(y), for any y ∈ R

n\{0}, κ(y) = κpara(y) ≡ κ(S(x))
def=

κ̃α(x) is well defined. As a consequence, the mapping S admits the inverse S−1 =
T ≡ Tpara, which yields the following definition.

Definition 2.10 (Parabolic-type compactification, Matsue and Takayasu 2020a) Let
the type α = (α1, . . . , αn) ∈ Z

n
>0 fixed. Let {βi }ni=1 and c be a collection of natural

numbers satisfying (2.8). Define Tpara : Rn → D as

Tpara(y)
def= x, xi = yi

κpara(y)αi
,

where κ = κpara(y) = κ̃α(x) is the unique zero of F(κ; p(y)) = 0 obtained in
Lemma 2.9. We say the map Tpara the parabolic-type compactification (of type α =
(α1, . . . , αn)). The map Tpara maps Rn onto D. The boundary E ≡ ∂D = {x ∈ R

n |
p(x) = 1} is called the horizon.

Similar to directional and the Poincaré-type ones, we apply the parabolic-type
compactification of the type α which is the same as that of f to transforming (2.1).
The resulting vector field is

dxi
dt

= f̃i (x) − αi xi

n∑
j=1

(∇κ) jκ
α j−1 f̃ j (x),
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where f̃ = ( f̃1, . . . , f̃n) is (2.12) replacing κ by κpara, in which case

(∇yκ(y)) j = y
2β j−1
j

α jκ(y)2c−1
(
1 − 2c−1

2c κ(y)−1
) .

Similar to the Poincaré-type case, all components of the transformed vector field
are O(κk) as p(y) → ∞, equivalently as x approaches to E , and hence, the uniform
timescale transformation can be introduced to desingularize the vector field on E .
Definition 2.11 (Time variable desingularization: the parabolic-type version) Define
the new time variable τpara by

dτpara = (1 − p(x)2c)−k
{
1 − 2c − 1

2c
(1 − p(x)2c)

}−1

dt, (2.18)

equivalently,

t = t0 +
∫ τ

τ0

{
1 − 2c − 1

2c
(1 − p(x(τpara))

2c)

}
(1 − p(x(τpara))

2c)kdτpara, (2.19)

where τ0 and t0 denote the correspondence of initial times. We shall call (2.18) the
time variable desingularization (of order k + 1).

The change of coordinate and the above desingularization yield the following vector
field gpara, which is continuous on D = {p(x) ≤ 1}:

ẋi = gpara,i (x)
def=

(
1 − 2c − 1

2c
(1 − p(x)2c)

)
f̃i (x) − αi xi

n∑
j=1

x
2β j−1
j

α j
f̃ j (x),

(2.20)

The desingularized vector field gpara has the very similar form to gqP . On the other
hand, the algebraic structure of κ is quite different from each other. In particular,
κ = κpara does not include radicals in x , and hence, the smoothness of f and the
asymptotic quasi-homogeneity guarantee the smoothness of the right-hand side gpara
of (2.20) including the horizon E . See Matsue and Takayasu (2020a) for details. This
property yields a relaxation of conditions for characterizing blow-ups.

Theorem 2.12 (Stationary blow-up: the parabolic-type version, cf.Matsue 2018;Mat-
sue and Takayasu 2020a) Consider the desingularized vector field gpara associated
with (2.1) given by (2.20). Assume that gpara has an equilibrium on the horizon x∗ ∈ E .
Also, suppose that x∗ is hyperbolic with ns > 0 (resp. nu = n − ns) eigenvalues of
Dgpara(x∗) with negative (resp. positive) real parts. If there is a solution y(t) of (2.1)
with a bounded initial point y(0) whose image x = Tpara(y) is on the local stable
manifold Ws

loc(x∗; gpara), then tmax < ∞ holds; namely, y(t) is a blow-up solution.
Moreover,

p(y(t)) ∼ c(tmax − t)−1/k as t → tmax
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where c > 0 is a constant. Finally, if the j th component x∗ is not zero, then we also
have

yi (t) ∼ ci (tmax − t)−αi /k as t → tmax,

where ci is a constant with the same sign as yi (t) as t → tmax.

The proof is essentially the same as Theorem2.8. Indeed, only the admissible nature
(discussed in Matsue and Takayasu 2020a) of Tpara is used to prove tmax < ∞, which
is the same as TqP .

The key point of our characterization of blow-ups (Theorems 2.4, 2.8 and 2.12)
is that blow-up solutions for (2.1) are characterized as trajectories on (local) stable
manifolds of invariant sets6 on the horizon E for desingularized vector fields. Compu-
tations of blow-up solutions are therefore reduced to those of local stable manifolds of
invariant sets, such as (hyperbolic) equilibria, for the associated vector field. Although
the above theorems only characterizes the existence and local dynamical nature of
blow-up solutions, combinations of our characterization with numerical computations
and computer-assisted proofs provide global nature of blow-up solutions in the phase
space.

2.3 Remark on Appropriate Choice of Compactifications

We have introduced three compactifications in this section. Each compactification
has its own set of advantages and disadvantages, which depend on our requirements.
Here we remark the choice of compactifications in case that the original vector field
f is polynomial.7 In our examples (Sects. 5, 6 and 7), all these compactifications are
applied. It is worth mentioning several features of each compactification toward effec-
tive choice and applications of our machineries to practical and advanced problems.

2.3.1 Geometric Interpretations of Compactifications

First the geometric interpretation of each compactification is briefly summarized.
Directional compactifications are not actually compactifications in the topological
sense, while these are still called “compactifications” because these are inclusively
discussed in the context of compactifications for applications. In fact, images of
directional compactifications are interpreted as the tangent space of the Poincaré’s
hemisphere considered in the Poincaré-type compactifications at points on the hori-
zon, as shown in Fig. 1a.

Global (Poincaré type and parabolic type) compactifications are geometrically sim-
ple in the homogeneous case α = (1, . . . , 1), in which case p(y) = ‖y‖ and we can
choose β = (1, . . . , 1) and c = 1. Therefore, κqP (y) = (1 + ‖y‖2)1/2, which is a

6 Hyperbolicity ensures not only blow-up behavior of solutions but their asymptotic behavior with the
specific form. Several case studies of blow-up solutions beyond hyperbolicity are shown in Matsue (2019).
7 This assumption is not essential but just for simplifications to show advantages and disadvantages of
each compactification.
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well-known (global, but homogeneous) compactification,8 and the resulting mapping
TqR is the embedding of Rn into the Poincaré hemisphere

H = {(x1, . . . , xn, z) ∈ R
n+1 | ‖x‖2 + z2 = 1, z > 0}.

A homogeneous compactification of this kind is shown in Fig. 1b.
The geometric nature of the parabolic-type compactification with α = (1, . . . , 1)

is also understood in a simple way, in which case Tpara is defined as

xi = 2yi

1 + √
1 + 4‖y‖2 ⇔ yi = xi

1 − ‖x‖2 , i = 1, . . . , n.

See Elias and Gingold (2006) and Gingold (2004) for the homogeneous case, which
is called the parabolic compactification. In particular, the parabolic compactification
is the embedding of Rn onto the bounded parabola

{
(x1, . . . , xn+1) ∈ R

n+1 |
n∑

i=1

x2i = xn+1, xn+1 < 1

}

in R
n+1 with the focus point (x1, . . . , xn, xn+1) = (0, . . . , 0, 1). The map Tpara is

actually defined as the composition of this embedding and the projection onto the first
n components, which is shown in Fig. 1c.

Our compactificaitons introduced here are quasi-homogeneous counterparts of the
above homogeneous compactifications. Geometric pictures of quasi-homogeneous
Poincaré-type and parabolic-type compactifications are shown in Matsue (2018) and
Matsue and Takayasu (2020a), respectively.

Remark 2.13 Any compactifications we have introduced are analytic at any point in
D by using the binomial theorem in the standard calculus and the inverse function
theorem for analytic mappings (e.g., Dieudonné 1960).

2.3.2 Directional Compactifications: Advantages and Disadvantages

A typical way to study dynamics at infinity is the application of directional compact-
ifications introduced in Sect. 2.2.2, which is simple in the sense that the magnitude of
points in the original coordinate can bemeasured by an independent variable s. Heuris-
tically, associated desingularized vector fields are as complex as the original vector
fields because the new variable x̂i in (2.2) depends only on the original variable yi and
the scaling variable s. Moreover, x̂i is proportional to yi . Characterization of blow-up
times is also simple, because they are characterized only by the asymptotic behavior
of s = s(τ ). On the other hand, directional compactifications are defined only locally.

8 Inmany references, this compactification is called thePoincaré compactification. The quasi-homogeneous
counterpart is introduced in Matsue (2018) where the corresponding mapping T = TqP is called the quasi-
Poincaré compactification.
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Fig. 1 Schematic illustrations of homogeneous compactifications ofR2 aDirectional compactification with
type α = (1, 1). The original point M = (y, 1) ∈ R

2 × {1} is mapped into the point (drawn as the red
star) on the upper half tangent space (colored by sky blue) of a point on ∂H, where H is the Poincaré’s
hemisphere determining the Poincaré compactification. The boundary E of the upper half tangent space (the
red line) is the horizon. b Poincaré compactification with type α = (1, 1). The image T (y) of the original
point y ∈ R

2 is defined as the projection of the intersection point P(M) ∈ H, given by the line segment
connecting M = (y, 1) ∈ R

3 and the origin O ∈ R
3, onto the original phase space R

2. The horizon is
identified with ∂H. The precise definition is its projection ontoR2 ×{1}. c Parabolic compactification with
type α = (1, 1). The image x of the original point y ∈ R

2 is defined as the projection of the intersection
point P(M) ∈ H determined by the paraboloid x21 + x22 = x3 in R

3 and the line segment connecting

M = (y, 0) ∈ R
3 and the focus point (0, 0, 1) ∈ R

3, onto the original phase space R
2. The horizon is

identified with the circle {x21 +x22 = 1} on the parabola. The precise definition is its projection ontoR2×{0}
(Color figure online)

If our interested blow-up solutions have sign-changing structure, multiple charts of
compactifications can be necessary for complete descriptions of blow-up solutions.
From the numerical viewpoint, change of coordinates may cause additional computa-
tion costs and errors. If one already knows from preceding mathematical or numerical
arguments that targeting blow-up solutions have identical signs during time evolutions
for a certain component, directional compactifications with appropriate choice of the
constant sign components are efficient.

2.3.3 Global Compactifications: Advantages and Disadvantages

If we study blow-up solutions with sign-changing structure, or one does not have suf-
ficient knowledge of solutions near infinity, globally defined compactifications like
the Poincaré type and the parabolic type are more appropriate than directional ones,
because one does not suffer from violation of integrations of differential equations due
to the change of signs, or change of local charts. Because the horizon, topologically
sphere-shaped boundary of the compactified space, is invariant under associated desin-
gularized vector fields (cf.Matsue 2018), computed trajectories through points inD for
desingularized vector fields are always insideD, unless unrealistic or mathematically
inappropriate choice of numerical parameters. On the other hand, application of such
global compactifications generally increases the degree of associated desingularized
vector fields as polynomial ones, which cause complication of arguments. For exam-
ple, in the case of the vector field shown in Sect. 7, we have to study (desingularized)
polynomial vector fields with degree over 10, while the original one before compacti-
fication has degree at most 2 or 3. Without systematic implementations of vector fields
or their derivatives like automatic differentiations, applications to concrete systems
require lengthy calculations.
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2.3.4 Poincaré Type or Parabolic Type?

Among globally defined compactifications, more than one compactifications are intro-
duced here, the Poincaré type and the parabolic type. The simplest one in the class
of admissible compactifications (e.g., Elias and Gingold 2006; Matsue and Takayasu
2020a) is thePoincaré type,which is easy to understand fromgeometric viewpoints and
widely applied in many fields of mathematics. However, the Poincaré-type compacti-
fication has an unavoidable defect, the presence of radicals in the definition. Radicals
generally lose the smoothness of desingularized vector fields on the horizon. In other
words, desingularized vector fields under the Poincaré-type compactification are C0

but not C1 in general around the horizon. Therefore, typical “linear stability analy-
sis” in the theory of dynamical systems does not always make sense on the horizon.
Nevertheless, it should be noted that there is an exception where the Poincaré-type
compactifications can be applied without losing the smoothness of resulting vector
fields, which is the case if f is quasi-homogeneous (not only in the asymptotic sense),
or the residual term f − fα,k has sufficiently low degree. In this case, the associated
desingularized vector field is also smooth, and hence, no obstruction ofC1 smoothness
on the horizon arises. Details are discussed in Matsue (2018).

Although the degree of polynomials significantly increases when we apply the
parabolic-type compactifications, we do not worry about the lack of smoothness of
desingularized vector fields. Indeed, parabolic-type transformations of the present
type originally transforms rational functions into rational ones, unlike the Poincaré-
type ones (cf. Gingold 2004). We thus do not suffer from obstructions to consider
dynamics at infinity when we apply parabolic-type compactifications.

2.3.5 The Other Choice?

The geometrically simplest compactificationwould be the one-point compactifications
such as embedding ofRn into Sn , which is known as theBendixson’s compactification.
One can use the Bendixson’s compactification to map the infinity to a bounded point,
where the corresponding dynamics possess the high degeneracy in general (e.g., Hell
2010). In order to avoid the degeneracy at infinity, we have to apply an additional
desingularization (blowing up) of the infinity. The Poincaré-type and the parabolic-
type compactifications avoid such extra tasks for obtaining desingularized dynamics
at infinity.

3 Preliminary 2: ParameterizationMethod

In this section, we introduce the theory of the parameterization method (Cabré et al.
2003a, b, 2005) to compute rigorous charts of local stable and unstable manifolds of
fixed points of ODEs of the form ẋ = g(x), where g is a desingularized vector field.
We begin by making some assumptions, which will be sufficient for the purpose of
the present paper.

A1. Assume g : Rn → R
n is a polynomial vector field with a steady state x̃ ∈ R

n

(i.e., g(x̃) = 0).
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A2. Assume that the eigenvalues of the Jacobian matrix Dg(x̃) are real, nonzero and
distinct. (Hence, the Jacobian matrix Dg(x̃) is diagonalizable over the real and
x̃ is hyperbolic.)

Denote by λ1, . . . , λm < 0 the stable eigenvalues of Dg(x̃) with ξ1, . . . , ξm ∈ R
n

some associated stable eigenvectors. From now on, we focus on the computation of a
local stable manifold, which we denote byWs

loc(x̃), and note that dimWs
loc(x̃) = m ≤

n. The computation of the unstable manifold is similar (e.g., see Breden et al. 2016).
The idea of the computational approach is to represent the chart of the local stable
manifold using a Taylor series representation P : Bm → R

n of the form

P(θ) =
∞∑

|α|=0

aαθα, aα ∈ R
n, (3.1)

where Bm ⊂ R
m is a domain (usually chosen to be a ball) on which the Taylor

series converges, and where α = (α1, . . . , αm) ∈ N
m , |α| = α1 + · · · + αm , θ =

(θ1, . . . , θm) ∈ R
m and θα = θ

α1
1 · · · θαm

m . This requires making an extra assumption,
which involves the notion of a resonance.

Definition 3.1 The eigenvalues λ1, . . . , λm are said to have a resonance of order α =
(α1, . . . , αm) ∈ N

m if
α1λ1 + · · · + αmλm − λ j = 0, (3.2)

for some j ∈ {1, . . . ,m} with |α| ≥ 2. If there are no resonances at any order |α| ≥ 2,
then the eigenvalues λ1, . . . , λm are said to be non-resonant.

We are ready to state our third hypothesis.

A3. Assume that the eigenvalues λ1, . . . , λm are non-resonant.

Construct the following real-valued matrices: an m × m diagonal matrix with the
diagonal entries made up of the stable eigenvalues


 =
⎛
⎜⎝

λ1 . . . 0
...

. . .
...

0 . . . λm

⎞
⎟⎠ (3.3)

and an n × m matrix whose columns are the associated eigenvectors

A0 = [ξ1| . . . |ξm].

Using the basis defined by the stable eigenvectors, the linearized equation for ẋ =
g(x) restricted to the stable subspace takes the form

ẏ = 
y, y ∈ R
m .

The associated flow is given by e
t . As indicated above our goal is to construct an
analytic function P : Bm → R

n such that P(Bm) = Ws
loc(x̃). To obtain constraints,
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θ eΛtθ

P

P

P (θ)

ϕ(t, ·)

eΛt

R
m

R
n

R
n

R
m

x̃ x̃ ϕ(t, P (θ)) = P (eΛtθ)

Fig. 2 Schematic of the ParameterizationMethod for Vector Fields inRn : the figure illustrates the conjugacy
described by Equation (3.4). The bottom half of the figure represents the parameter space inRm (the domain
of the parameterization P) while the top half of the figure represents the phase space inRn . The image of P
is the local stable manifold shown in blue. The dynamics are depicted by moving from the left to the right
side of the figure. The dynamics in the parameter space is generated by exponentiating the matrix of stable
eigenvalues 
. The dynamics in phase space is generated by the flow ϕ associated with the vector field g.
The diagram commutes in the sense that applying first the chart map P , and then, nonlinear flow ϕ(t, ·) is
required to be the same as applying the linear dynamics e
t , and then, the chart map P . The result is that
the dynamics on the local stable manifold are described by the stable linear dynamics (Color figure online)

so that we can solve for P , we begin by insisting that P be a conjugacy between the
flow ϕ of ẋ = g(x) restricted to Ws

loc(x̃) and the flow e
t of the linear equation. The
most obvious restriction is that P must map fixed points to fixed points, and hence,

P(0) = x̃ .

To obtain the conjugacy, we assume that

DP(0) = A0

and
ϕ (t, P(θ)) = P

(
e
tθ

)
, (3.4)

for all θ ∈ Bm . The geometric meaning of this conjugacy is illustrated in Fig. 2. To
see that P (Bm) ⊂ Ws

loc(x̃) observe that

lim
t→∞ ϕ(t, P(θ)) = lim

t→∞ P
(
e
tθ

) = P
(
lim
t→∞ e
tθ

)
= P(0) = x̃,

because the entries of 
 are negative.
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Note that any function P(θ) satisfying Eq. (3.4) is one-to-one on Bm . To see this
observe that P is tangent to the stable eigenspace at the origin as DP(0) = A0.
Moreover, recall that A0 is of full rank as its columns are linearly independent. By the
implicit function theorem, P is of rankm, and hence one-to-one, in someneighborhood
U ⊂ Bm of 0. Now suppose that θ1, θ2 ∈ Bm and that P(θ1) = P(θ2). Then for any
t ∈ R, ϕ (t, P(θ1)) = ϕ (t, P(θ2)) by the uniqueness of the initial value problem.
Choose T > 0 large enough so that e
T θ1, e
T θ2 ∈ U . By the conjugacy relation,
we have that P

(
e
tθ1

) = P
(
e
tθ2

)
, and because the arguments are in U , the local

immersion gives that e
T θ1 = e
T θ2. But e
T is an isomorphism and we have
θ1 = θ2. We therefore conclude from the above discussion that P(Bm) = Ws

loc(x̃).
The utility of (3.4) is limited by the appearance of the flow ϕ in the equation. In

practice, the flow is only known implicitly, that is, it is determined by solving the
differential equation. The following lemma establishes a more practical infinitesimal
version of (3.4).

Lemma 3.2 Let P : Bm ⊂ R
m → R

n be a smooth function with

P(0) = x̃ and DP(0) = A0. (3.5)

Then P(θ) satisfies the conjugacy relationship (3.4) if and only if P is a solution of
the partial differential equation (PDE)

λ1θ1
∂

∂θ1
P(θ1, . . . , θm)+· · ·+λmθm

∂

∂θm
P(θ1, . . . , θm) = g(P(θ1, . . . , θm)) (3.6)

for all θ = (θ1, . . . , θm) ∈ Bm.

Proof Let P : Bm → R
n be a smooth function with P(0) = x̃ and DP(0) = A0.

(⇐�) Suppose that P(θ) solves the partial differential equation (3.6) in Bm . Choose
a fixed θ ∈ Bm and fix t > 0. Define the function γ : [0, t] → R

n by

γ (t)
def= P

(
e
tθ

)
. (3.7)

Then, γ (0) = P(θ) and

γ ′(t) = d

dt
P
(
e
tθ

) = DP
(
e
tθ

)

e
tθ = g

(
P
(
e
tθ

)) = g(γ (t)),

where we pass from the first to the second equality by the chain rule, from the second
to the third equality by the invariance Eq. (3.6) and the fact that e
tθ ∈ Bm when
t > 0, and from the third to the fourth equation by the definition of γ . Hence, γ is the
solution of the initial value problem

γ ′(t) = g(γ (t)), and γ (0) = P(θ). (3.8)

Therefore, by definition ϕ(t, γ (0)) = γ (t), and it follows from (3.7) and (3.8) that

ϕ(t, P(θ)) = P(e
tθ).
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(�⇒) Suppose that P satisfies the conjugacy relationship (3.4) for all θ ∈ Bm . Fix
θ ∈ Bm and differentiate both sides with respect to t in order to obtain

g(ϕ(t, P(θ))) = DP(e
tθ)
e
tθ.

Taking the limit as t → 0 gives that P(θ) is a solution of (3.6). ��
As a consequence of Lemma 3.2, it should now be clear that computing a local

m-dimensional stable manifold is equivalent to find a solution P : Bm → R
n of the

PDE (3.6). As mentioned earlier, the idea is to use a Taylor series representation of
the form (3.1). Note that since g : Rn → R

n is a polynomial vector field, the power
series expansion of g(P(θ)) involves Cauchy products. Denote the Taylor expansion
of g(P(θ)) as

g(P(θ)) =
∞∑

|α|=0

(g(a))α θα, j = 1, . . . , n,

where we abuse slightly the notation and used the same notation g(a) to denote the
vector field g where the monomial terms in the variables x1, . . . , xn are replaced by
Cauchy products in the variables a1, . . . , an .

Formally plugging the Taylor expansion (3.1) in the PDE (3.6) results in

DP(θ)
θ =
∞∑

|α|=0

(α · λ)aαθα =
∞∑

|α|=0

(g(a))α θα = g(P(θ)),

where α ·λ def= α1λ1+· · ·+αmλm and aα = ((a1)α, . . . , (an)α) ∈ R
n . The first-order

constraints (3.5) imply that

a0 = ((a1)0, . . . , (an)0) = x̃ ∈ R
n and ae j = ξ j ∈ R

n ( j = 1, . . . ,m),

where e j is the j th vector of the canonical basis of Rn . In other words, the Taylor
coefficients aα for |α| ∈ {0, 1} are fixed and do not need to be solved for.

Computing the higher-order Taylor coefficients aα = ((a1)α, . . . , (an)α) (for |α| ≥
2) of (3.1) reduces to find the solution of the zero finding problem F(a) = 0, with F
given by

(F(a))α
def= (α · λ)aα − (g(a))α, |α| ≥ 2. (3.9)

Also denote, for j = 1, . . . , n and |α| ≥ 2,

(Fj (a))α
def= (α · λ)(a j )α − (g j (a))α,

so that we may write F(a) = (F1(a), F2(a), . . . , Fn(a)).

Remark 3.3 When |α| ∈ {0, 1}, the constraints (F(a))α = 0 correspond to finding the
steady state (|α| = 0) and the stable eigenvalues/eigenvectors (|α| = 1). Since this
information is already assumed to be at hand, we only need to solve for (F(a))α = 0
for |α| ≥ 2.
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Denote the Banach space


1
def=

⎧⎨
⎩b = (bα)|α|≥2 : bα ∈ R and ‖b‖1 def=

∞∑
|α|=2

|bα| < ∞
⎫⎬
⎭ (3.10)

and the product Banach space X
def= (
1)n = 
1 × 
1 × · · · × 
1 with induced norm

‖a‖X def= max
j=1,...,n

‖a j‖1. (3.11)

Moreover, denoting the Banach space


̃1
def=

⎧⎨
⎩b = (bα)|α|≥2 : bα ∈ R and

∞∑
|α|=2

|(α · λ)bα| < ∞
⎫⎬
⎭ , (3.12)

and X ′ def= (
̃1)n , we get that F : X → X ′. Slightly generalized Banach spaces can
be also applied, which will be mentioned in Sect. 5.

Denote by Bm
1

def= {z = (z1, . . . , zm) ∈ C
m : |zk | ≤ 1, for all k = 1, . . . ,m} the

unit polydisc in Cm . We have the following result.

Theorem 3.4 Assume that Assumptions A1, A2 and A3 are satisfied. If there exists
ã ∈ X such that F(ã) = 0 with F given in (3.9), then the corresponding Taylor
expansion P : Bm

1 → R
n given by

P(θ)
def= x̃ +

m∑
k=1

ξkθk +
∞∑

|α|=2

ãαθα (3.13)

provides a parameterization of a local stable manifold of x̃ , that is, P(Bm
1 ) = Ws

loc(x̃).

Proof Assume that ã ∈ X solves F(ã) = 0. Then by construction, the function P(θ)

given in (3.13) converges absolutely and uniformly on Bm
1 as for each j ∈ {1, . . . , n}

sup
z∈Bm

1

|Pj (z)| ≤ |x̃ j | + sup
z∈Bm

1

∣∣∣∣∣∣
m∑

k=1

(ξk) j zk +
∞∑

|α|=2

(ã j )αz
α1
1 · · · zαmm

∣∣∣∣∣∣

≤ |x̃ j | + sup
z∈Bm

1

m∑
k=1

|(ξk) j ||zk | + sup
z∈Bm

1

∞∑
|α|=2

|(ã j )α||z1|α1 · · · |zm |αm

≤ |x̃ j | +
m∑

k=1

|(ξk) j | +
∞∑

|α|=2

|(ã j )α|

= |x̃ j | +
m∑

k=1

|(ξk) j | + ‖ã j‖1 < ∞,
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since ‖ã‖1 < ∞. By construction, the function P : Bm
1 → R

n given in (3.13)
satisfies the first-order constraints (3.5) and the PDE (3.6). By Lemma 3.2, P satisfies
the conjugacy relationship (3.4). Finally, we conclude that P : Bm

1 → R
n provides a

parameterization of a local stable manifold of x̃ , that is, P(Bm
1 ) = Ws

loc(x̃). ��
The strategy to compute a parameterization ofWs

loc(x̃) is now clear. Fix the lengths
of the eigenvectors ξ1, . . . , ξm such that we can compute ã ∈ X such that F(ã) = 0.
This is achieved with a Newton–Kantorovich type argument, which we now state.

Denote by Br (b)
def= {x ∈ X : ‖x − b‖X ≤ r} the closed ball of radius r > 0

centered at a given b ∈ X and B(X1, X2) the space of bounded linear operators
between two Banach spaces X1 and X2.

Theorem 3.5 (ANewton–Kantorovich type theorem) Let X and X ′ be Banach spaces,
A† ∈ B(X , X ′) and A ∈ B(X ′, X) be bounded linear operators. Assume F : X → X ′
is Fréchet differentiable at ā ∈ X, A is injective and AF : X → X . Let Y0, Z0 and
Z1 be nonnegative constants, and a function Z2 : (0,∞) → (0,∞) satisfying

‖AF(ā)‖X ≤ Y0 (3.14)

‖I − AA†‖B(X) ≤ Z0 (3.15)

‖A[DF(ā) − A†]‖B(X) ≤ Z1, (3.16)

‖A[DF(c) − DF(ā)]‖B(X) ≤ Z2(r)r , for all c ∈ Br (ā), (3.17)

where ‖ · ‖B(X) denotes the operator norm. Define the radii polynomial by

p(r)
def= Z2(r)r

2 − (1 − Z1 − Z0)r + Y0. (3.18)

If there exists r0 > 0 such that p(r0) < 0, then there exists a unique ã ∈ Br0(ā) such
that F(ã) = 0.

The strategy of Theorem 3.5 requires obtaining ā (a numerical approximation), the
operator A† ∈ B(X , X ′) (an approximation of the Fréchet derivative DF(ā)) and the
operator A ∈ B(X ′, X) (an approximate inverse of DF(ā)).

To compute the numerical approximation ā, we first consider a finite-dimensional
projection of the map F : X → X ′. Fixing a dimensional Taylor projection number
N , denote by X (N ) the finite-dimensional space

X (N ) def=
{
a = (a1, . . . , an) : a j = (

(a j )α
)N
|α|=2 , for j = 1, . . . , n

}
.

Moreover, denote by κ(N )
def= # {α ∈ N

m : |α| ∈ {2, . . . , N }} the number of multi-
indices α with order between 2 and N . Given a vector b = (b
)|
|≥0 ∈ 
1, consider
the projection

πN : 
1 → R
κ(N )

b 
→ πNb
def= (bα)N|α|=2 ∈ R

κ(N ).
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We generalize that projection to get �N : X = (
1)n → X (N ) ∼= R
nκ(N ) defined by

�Na
def= (πNa1, . . . , π

Nan) ∈ X (N ).

Given a ∈ X , we denote

a(N ) def= �Na ∈ X (N ).

Moreover, we define the natural inclusion ιN : R
κ(N ) ↪−→ 
1 as follows. For b =

(bα)N|α|=2 ∈ R
κ(N ), let ιNb ∈ 
1 be defined componentwise by

(
ιNb

)
α

=
{
bα, |α| = 2, . . . , N

0, |α| > N .

Similarly, let ι(N ) : X (N ) ↪−→ X be the natural inclusion defined as follows. Given
a = (a1, . . . , an) ∈ X (N ) ∼= R

nκ(N ), let

ι(N )a
def=

(
ιNa1, . . . , ι

Nan
)

∈ X .

Finally, define the finite-dimensional projection F (N ) : X (N ) → X (N ) by

F (N )(a) = �(N )F(ι(N )a). (3.19)

Also denote F (N ) =
(
F (N )
1 , . . . , F (N )

n

)
.

Assume that a numerical approximation ā(N ) =
(
ā(N )
1 , . . . , ā(N )

n

)
such that

F (N )(ā(N )) ≈ 0 has been computed (e.g., using Newton’s method). Given j =
1, . . . , n, denote ā j = ιN ā(N )

j ∈ 
1 and denote ā = (ā1, . . . , ān), and for the sake
of simplicity of the presentation, we use the same notation ā to denote ā ∈ X and
ā(N ) ∈ X (N ). Denote by DF (N )(ā) the Jacobian of F (N ) at ā, and let us write it as

DF (N )(ā) =
⎛
⎜⎝
Da1F

(N )
1 (ā) · · · Dan F

(N )
1 (ā)

...
. . .

...

Da1F
(N )
n (ā) · · · Dan F

(N )
n (ā)

⎞
⎟⎠ ∈ Mnκ(N )(R).

The next step is to construct the linear operator A† (an approximate derivative of the
derivative DF(ā)) and the linear operator A (an approximate inverse of DF(ā)). Let

A† =

⎛
⎜⎜⎝
A†
1,1 · · · A†

1,n
...

. . .
...

A†
n,1 · · · A†

n,n

⎞
⎟⎟⎠ , (3.20)
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whose action on an element h = (h1, . . . , hn) ∈ X is defined by (A†h)i =∑n
j=1 A

†
i, j h j , for i = 1, . . . , n. Here the action of A†

i, j is defined as

(A†
i, j h j )n =

{(
Daj F

(N )
i (ā)h(N )

j

)
α

for 2 ≤ |α| ≤ N ,

δi, j (α · λ)(h j )α for |α| > N ,

where δi, j is the Kronecker δ. Consider now a matrix A(N ) ∈ Mnκ(N )(R) computed

so that A(N ) ≈ DF (N )(ā)
−1

. We decompose it into n2 κ(N ) × κ(N ) blocks:

A(N ) =

⎛
⎜⎜⎝
A(N )
1,1 · · · A(N )

1,n
...

. . .
...

A(N )
n,1 · · · A(N )

n,n

⎞
⎟⎟⎠ .

This allows defining the linear operator A as

A =
⎛
⎜⎝
A1,1 · · · A1,n
...

. . .
...

An,1 · · · An,n

⎞
⎟⎠ , (3.21)

whose action on an element h = (h1, . . . , hn) ∈ X is defined by (Ah)i =∑n
j=1 Ai, j h j , for i = 1, . . . , n. Given i, j ∈ {1, . . . , n}, the action of Ai, j is defined

as

(Ai, j h j )n =
{(

A(N )
i, j h

(N )
j

)
α

for 2 ≤ |α| ≤ N

δi, j
1

α·λ (h j )α for |α| > N .

Having obtained an approximate solution ā and the linear operators A† and A, the
next step is to construct the bounds Y0, Z0, Z1 and Z2(r) satisfying (3.14), (3.15),
(3.16) and (3.17), respectively.

3.1 The Y0 Bound

Denote by d the highest order nonlinear term of the vector field f . Then since ā
consists of Taylor coefficients of order N , then (F(ā))α = 0 for all |α| > dN . For
i = 1, . . . , n, we set

Y (i)
0

def=
N∑

|α|=2

∣∣∣∣∣∣
n∑
j=1

(
A(N )
i, j F

(N )
j (ā)

)
α

∣∣∣∣∣∣
+

dN∑
|α|=N+1

∣∣∣∣
1

α · λ
(Fi (ā))α

∣∣∣∣
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which is a collection of finite sums that can be evaluated with interval arithmetic. We
conclude that

‖[AF(ā)]i‖1 =
∥∥∥∥∥∥

n∑
j=1

Ai, j Fj (ā)

∥∥∥∥∥∥
1

≤ Y (i)
0 , for i = 1, . . . , n

and we set
Y0

def= max
(
Y (1)
0 , . . . ,Y (n)

0

)
. (3.22)

3.2 The Z0 Bound

We look for a bound of the form ‖I − AA†‖B(X) ≤ Z0. Recalling the definitions of
A and A† given in (3.21) and (3.20), let B

def= I − AA† the bounded linear operator
represented as

B =
⎛
⎜⎝
B1,1 · · · B1,n
...

. . .
...

Bn,1 · · · Bn,n

⎞
⎟⎠ .

We remark that (Bi, j )n1,n2 = 0 for any i, j ∈ {1, . . . , n}, whenever n1 > N or
n2 > N . Hence, we can compute the norms ‖Bi, j‖B(
1) using the following standard
result.

Lemma 3.6 Given � ∈ B(
1) a bounded linear operator, acting as (�a)β =∑
|α|≥2 �β,αaα for |β| ≥ 2.

‖�‖B(
1) = sup
|α|≥2

∑
|β|≥2

|�β,α|. (3.23)

Given h = (h1, . . . , hn) ∈ X = (
1)n with ‖h‖X = max(‖h1‖1, . . . , ‖hn‖1) ≤ 1,
and for i = 1, . . . , n, we obtain

‖(Bh)i‖1 =
∥∥∥∥∥∥

n∑
j=1

Bi, j h j

∥∥∥∥∥∥
1

≤
n∑
j=1

‖Bi, j‖B(
1).

Hence, we define

Z0
def= max

i=1,...,n

⎛
⎝

n∑
j=1

‖Bi, j‖B(
1)

⎞
⎠ , (3.24)

where each norm ‖Bi, j‖B(
1) can be computed using formula (3.23) with vanishing
tail terms.
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3.3 The Z1 Bound

Recall that we look for the bound ‖A[DF(ā) − A†]‖B(X) ≤ Z1. Given h =
(h1, . . . , hn) ∈ X with ‖h‖X ≤ 1, set

z
def= [DF(ā) − A†]h.

Then, for each i = 1, . . . , n, (zi )α = 0 for |α| = 2, . . . , N and for |α| > N ,

(zi )α = − (Dgi (ā)h)α = −
⎛
⎝

n∑
j=1

∂gi
∂a j

(ā)h j

⎞
⎠

α

Denote

λ∗(N )
def= min|α|>N

|α · λ|.

Since the tail of Ai, j is zero for i �= j , then Az = (A1,1z1, . . . , An,nzn). Then a
straightforward calculation yields, for each i ∈ {1, . . . , n}, that

‖Ai,i zi‖1 ≤ Z (i)
1

def= 1

λ∗(N )

n∑
j=1

∥∥∥∥
∂gi
∂a j

(ā)

∥∥∥∥
1
,

so that we set
Z1

def= max
(
Z (1)
1 , . . . , Z (n)

1

)
. (3.25)

3.4 The Z2 Bound

For a fixed r∗ > 0, set

Z2(r∗)
def= sup

b∈Br∗ (ā)

⎛
⎝ max

i=1,...,n

n∑
k,m=1

∥∥∥∥∥∥
n∑
j=1

Ai j
∂2g j

∂am∂ak
(b)

∥∥∥∥∥∥
B(
1)

⎞
⎠ (3.26)

which satisfies (by the mean value inequality in Banach spaces)

‖A[DF(c) − DF(ā)]‖B(X) ≤ Z2(r∗)r , for all c ∈ Br (ā), for all r ≤ r∗.

Evaluating the bound (3.26) is straightforward with interval arithmetic and the easily
computed formulas of the second derivatives of each component fi of the vector field
f .
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3.5 Rigorous Enclosure of the Points onWs
loc(x̃)

Assume that assumptions A1, A2 and A3 are satisfied for a fixed point x̃ . Let
λ1, . . . , λm < 0 be the corresponding non-resonant real (stable) eigenvalues and
ξ1, . . . , ξm ∈ R

n be some associated stable eigenvectors.
Consider N ≥ 2 the order of the Taylor approximation, and as before, assume that

a numerical approximation ā(N ) =
(
ā(N )
1 , . . . , ā(N )

n

)
such that F (N )(ā(N )) ≈ 0 has

been computed. Denote by

P(N )(θ)
def= x̃ +

m∑
k=1

ξkθk +
N∑

|α|=2

āαθα. (3.27)

Using a computer program in MATLAB using the interval arithmetic package INT-
LAB, we can compute rigorously the bounds Y0, Z0, Z1 and Z2 satisfying (3.22),
(3.24), (3.25) and (3.26), respectively. Define the radii polynomial p(r) defined in
(3.18), and assume the existence of r0 > 0 such that p(r0) < 0. From Theorem 3.5,
there exists a unique ã ∈ Br0(ā) such that F(ã) = 0. By Theorem 3.4, the correspond-
ing Taylor expansion P : Bm

1 → R
n given by (3.13) provides a parameterization of

a local stable manifold of x̃ , that is, P(Bm
1 ) = Ws

loc(x̃). From the computer-assisted
proof, we immediately obtain a rigorous upper bound for the C0 error bound between
the approximate parameterization (3.27) and the true parameterization. More explic-
itly, for a fixed j = 1, . . . , n

sup
z∈Bm

1

|Pj (z) − P(N )
j (z)| = sup

z∈Bm
1

∣∣∣∣∣∣
∞∑

|α|=2

((ã j )α − (ā j )α)zα

∣∣∣∣∣∣

≤ sup
z∈Bm

1

∞∑
|α|=2

|(ã j )α − (ā j )α||z1|α1 · · · |zm |αm

≤
∞∑

|α|=2

|(ã j )α − (ā j )α| = ‖ã j − ā j‖1 ≤ ‖ã − ā‖X < r0.

Using that estimate, given a point z ∈ Bm
1 in parameter space, one may evaluate

rigorously the corresponding value P(z) ∈ Ws
loc(x̃) on the local stable manifold using

the following enclosure

Pj (z) ∈ P(N )
j (z) + [−r0, r0], j = 1, . . . , n (3.28)

where P(N )
j (z) can be computed with interval arithmetic using the formula (3.27).
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4 Saddle-Type Blow-Up Solutions: Basic Methodology for Validations
and Extensions

In this section, we provide a methodology for validating saddle-type blow-up solu-
tions with computer-assisted proofs. A remarkable feature obtained from theorems
mentioned in Sect. 2 is that stability of equilibria on the horizon does not matter for
characterizing blow-up solutions. Therefore, we can characterize blow-up solutions
whose blow-up direction is characterized by unstable equilibria9 in the same way as
stable ones. When we emphasize structure of equilibria on the horizon, we shall call
them as follows.

Definition 4.1 We say that a blow-up solution is sink-type (resp. saddle-type) if it is
transformed into a trajectory on Ws

loc(x∗; g) with a sink (resp. saddle) equilibrium x∗
on the horizon for the associated desingularized vector field g introduced in Sect. 2.

There are many studies of blow-up solutions through analytic arguments (e.g.,
Fila and Matano 2002; Herrero and Velázquez 1997; Winkler 2013) or numerical
simulations (e.g., Anada et al. 2017; Cho 2016; Cho et al. 2007; Zhou and Saito
2017), many of which would be sink-type through related numerical simulations
and computer-assisted proofs (e.g., Matsue 2018; Matsue and Takayasu 2020a, b).
Whereas, saddle-type blow-up solutions are quite difficult to calculate and to under-
stand the role in global dynamics, because generic small perturbations of initial points
[for (2.1)] break the structure. Even in the context of dynamics at infinity (i.e., without
concerning the blow-up nature of solutions), there are very limited studies for char-
acterizing trajectories asymptotic to the horizon themselves and their global nature,
except special cases such as planar dynamical systems (e.g., Dumortier and Herssens
1999; Dumortier et al. 2006). On the other hand, saddle-type blow-up solutions them-
selves can exist in various types of differential equations, many of which do not
concern with its sensitivity under perturbations of initial points, but are interested
only in their existence and/or persistence of blow-up structure under perturbation of
initial points is mentioned implicitly (cf. Harada 2016, 2017; Nouaili and Zaag 2015
for complex-valued PDEs).

Here wewill see that our validationmethodology provide not only a systematic way
to capture saddle-type blow-up solutions but also distributions of a collection of blow-
up solutions in the phase space, both of which are with mathematical rigor. Moreover,
as seen in preceding works, methodologies with computer-assisted proofs provide
explicit enclosures of computation objects. This property enables us to visualize the
distribution of solution profiles and blow-up times depending on initial points of blow-
up solutions. As a by-product of the application of parameterization method reviewed
in Sect. 3, we obtain an explicit formula of tmax as a function of initial points and its
smoothness.

9 Potentially the similar characterization of blow-up solutions can be achieved with general invariant sets
on the horizon. But we pay attention only to equilibria on the horizon in the present study.
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4.1 Basic Methodology

First we discuss a basicmethodology for validating (locally defined) blow-up solutions
and their extension. The fundamental steps consist of the following:

1. Validation of local stable manifolds of equilibria on the horizon for desingularized
vector fields;

2. Extension of validated stable manifolds via rigorous integration of desingularized
vector fields.

These steps are shown to provide a collection of divergent solutions of (2.1), according
to Theorems 2.4, 2.8, and 2.12 except the evaluation of tmax. When an equilibrium p
on the horizon is stable, the validation procedures reported in Matsue and Takayasu
(2020a, b); Takayasu et al. (2017) allow (a) studying the local stable manifold of p by
means of locally defined Lyapunov functions and (b) computing rigorous enclosure
of solutions converging to p, hence yielding a rigorous bound of the blow-up time.
Although the same strategy or similar topological arguments such as covering relations
(e.g., Zgliczyński 2009) can work effectively, we apply the parameterization method
to validating local stable manifolds of equilibria on the horizon for desingularized
vector fields here instead.

An important merit of the parameterization method is that only the stable informa-
tion of equilibria can be treated through the whole computations involving invariant
manifolds, no matter how unstable equilibria or general invariant sets are. In other
words, if we can compute stable eigenvectors at the equilibria and a topological con-
jugacy P with high accuracy, we obtain the local stable manifold without containing
intrinsic unstable information of equilibria.10 Moreover, we obtain the embedding of
the parameterized invariant manifolds, and hence, the distribution of locally defined
invariant manifolds in the whole phase space can be captured at the same time. This
distribution greatly helps us with investigating the behavior of trajectories far from
invariant manifolds. Universality of such features in the parameterization is shown
in many preceding works (e.g., Barker et al. 2020; Breden et al. 2016; Gonzalez and
Mireles-James 2017; Mireles-James 2018; van den Berg et al. 2011) for obtaining
global nature of dynamical systems.

After validating the locally parameterized stable manifolds, these manifolds can be
extended through time integrations of the time-reversed desingularized vector fields. In
particular, we obtain globalized stable manifolds whose preimages under compactifi-
cations are (candidates of) families of saddle-type blow-up solutions.11 Globalization
of invariant manifolds enables us to investigate global nature of dynamical systems,
including blow-up solutions in the present study, while the methodology itself is stan-
dard and essentially identical with the one used in preceding works (e.g., Matsue and
Takayasu 2020a, b; Takayasu et al. 2017).

Remark 4.2 (Rigorous integrators of ODEs) Many methods for rigorously integrating
solution trajectories of vector fields have been proposed over the last thirty years.

10 In topological arguments such as local Lyapunov functions and covering relations, topological infor-
mation of both stable and unstable directions around equilibria are necessary to validate locally defined
invariant manifolds, which cause a big difference of treatments between stable and unstable invariant sets.
11 Needless to say, the proposing methodology can be also applied to sink-type blow-up solutions.
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The most famous achievement is the resolution of Smale’s 14th problem by Tucker
(2002). We refer to Berz and Makino (1998); Bünger (2020); Immler (2018); Kashi-
wagi and Oishi (1994); Lessard and Reinhardt (2014); Lohner (1987); Zgliczynski
(2002) for different methods for rigorous integration of ODEs. These methods are
based on fixed-point arguments, which is equivalent to show the existence of solution
trajectories, and several techniques of interval arithmetic. For the sake of forward time
integration, we use a C++ Library for rigorous integration of ODEs, which is named
the kv library (Kashiwagi). This integrator is based on an interval representation of
the solutions’ Taylor series and the Affine arithmetic (Rump and Kashiwagi 2015),
which is a technique for preventing the so-called wrapping effect in interval analysis.

The remaining issue is the finiteness of tmax and its explicit enclosure to assure
that our validated trajectories indeed correspond to blow-up solutions for the original
system. The blow-up time tmax generally depends on initial points of solutions. We
now introduce an explicit estimate methodology for obtaining blow-up times.

The blow-up time tmax is defined by the improper integral as τ → ∞ in (2.6), (2.15)
or (2.19), where τ is the corresponding timescale. The basic approach to enclose tmax
is to divide the integral into two parts:

tmax = t0 +
∫ τ̄

τ0

h(τ )dτ +
∫ ∞

τ̄

h(τ )dτ ≡ t0 + tmax,1(τ̄ ) + tmax,2(τ̄ ) (4.1)

for some τ̄ > τ0, where h is a functional representing integrands for characterizing
tmax depending on solutions of the desingularized vector field g. The key point of
the successive treatments is to enclose tmax,2(τ̄ ) by using the asymptotic information
of trajectories, say the fact that trajectories of our interest are located on a local
stable manifold Ws

loc(p; g) of a saddle equilibrium p. Once the manifold Ws
loc(p; g)

is constructed through the parameterization P , the functional h is expressed by means
of a (nonlinear) combination of P , and the enclosure of tmax,2(τ̄ ) is also computed
through P itself or its enclosure. As for tmax,1(τ̄ ), we directly enclose the integral
through the enclosed trajectories via ODE integrations.

When we extend the local stable manifold, then integrate the vector field g in the
reverse time direction and evaluate tmax,1(τ̄ ) by

∫ τ̄

τ0

h(τ )dτ =
∫ −τ0

−τ̄

h(τ̃ )dτ̃ with τ̃ = −τ.

The functional h is given as follows, depending on the choice of compactifications:

Directional: h(τ ) = s(τ )k .
Poincaré type: h(τ ) = (1 − p(x(τ ))2c)k/2c = (

1 − ∑n
i=1 xi (τ )2βi

)k/2c
.

Parabolic type: h(τ ) = (
1 − 2c−1

2c (1 − p(x(τ ))2c)
)
(1 − p(x(τ ))2c)k .

Remark 4.3 The absence of constant terms in the integrand of tmax is the most essential
property to show that tmax < ∞ in the preceding work Matsue (2018) when equilibria
on the horizon are hyperbolic, where the Hartman–Grobman-type argument is applied
to extracting the exponentially decaying property of the integrand. This property is
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essentially independent of the choice of compactifications associated with appropri-
ately chosen timescale desingularizations. The present argument explicitly extracts
this property to verify tmax < ∞ by means of the parameterization method.

Summarizing the above arguments, our methodology for validating (saddle-type)
blow-up solutions consists of the following.

1. Validate the local stable manifold of an equilibrium on the horizon for desingu-
larized vector fields via the parameterization method.

2. Extend the validated stable manifold via (backward) integration, which is done
by considering the time-reversed desingularized vector fields.

3. Compute a rigorous enclosure of the blow-up time tmax through the decompo-
sition of the form (4.1) as well as direct integrations through trajectories and
parameterizations.

In the subsequent sections, applicability of the present methodology is shown. In
particular, we aim at showing the following features, respectively:

• Section 5 shows an application of directional compactifications for validating
saddle-type blow-up profiles and computing the validated curve tmax as a function
of initial points.

• Section 6 shows an application to higher-dimensional systems. In the present study,
we consider an artificial three-dimensional system. The Poincaré-type compacti-
fication is applied to an asymptotically homogeneous vector field. This example
shows the global phase portrait involving multiple saddle-type blow-up solutions.

• Section 7 shows a characteristic nature of saddle-type blow-up solutions with
bounded global solutions which separate the whole phase space into four sets,
one of which is the set of points such that solutions through them determine time
global solutions for both time directions and the others are the sets of points such
that solutions through them are blow-up solutions in positive and/or negative time
directions. Dependence of tmax as a function of initial points including saddle-
type blow-up solutions is also addressed. The parabolic-type compactification is
applied to an asymptotically quasi-homogeneous vector field.

4.2 Smooth Dependence of tmax on Initial Points

Explicit expressions of tmax shown in Sect. 4.1 indicate that tmax depends continuously,
possibly smoothly, on initial points within stable manifolds of hyperbolic equilibria
(for desingularized vector fields) on the horizon, which is just a consequence of stan-
dard calculus. One of benefits of applying the parameterization method reviewed in
Sect. 3 is that tmax can be treated as a locally analytic function on initial points of
solutions. Here we discuss the dependence of tmax on initial points in more details.

Consider the desingularized vector field g associated with the directional (resp.
Poincaré type and parabolic type) compactification with the associated timescale
desingularization. Let p∗ ∈ E be a hyperbolic equilibrium for g. First note that typical
choices of timescale desingularizations h, namely the integrand of tmax mentioned in
(4.1), satisfy the following properties (so that trajectories for g is orbitally equivalent
to the original dynamical system (cf. Matsue 2019)):
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• It vanishes at p∗.
• It is positive along Ws

loc(p∗; g).
• It is smooth, in particular analytic, except k/2c /∈ N in the case of the Poincaré-type
compactifications.

Assume that all assumptions in Theorem 3.5 for F given in (3.9) as well as (A1),
(A2) and (A3) associated with the hyperbolic equilibrium p∗ for g are satisfied, in
which case the local stable manifold Ws

loc(p∗; g) is parameterized by an analytic
function P defined on the m-dimensional unit polydisc Bm

1 so that Ws
loc(p∗; g) =

P(Bm
1 ). For typical asymptotically quasi-homogeneous fields, the function h can be

chosen as a polynomial or a rational function whose denominator is polynomial and
positive onWs

loc(p∗; g). From these observations, we obtain the following proposition.

Proposition 4.4 (Analytic function through parameterization) Let p∗ be an hyperbolic
equilibrium for a dynamical system generated by a vector field g which is analytic in
a neighborhood of p∗ satisfying (A1), (A2) and (A3). Assume that a parameterization
P of Ws

loc(p∗) satisfying P(0) = p∗ is defined on the m-dimensional unit polydisc
Bm
1 , in particular Ws

loc(p∗) = P(Bm
1 ). Let h be an analytic function defined in a

neighborhood of Ws
loc(p∗) satisfying h(p∗) = 0. Then the integral

U (θ)
def=

∫ ∞

0
h ◦ P(e
τ θ)dτ, θ ∈ Bm

1 (4.2)

is an analytic function on Bm
1 satisfying U (0) = 0.

Proof Because h and P are analytic, then so is h ◦ P , and hence, the integrand of U
is written by the convergent series

h ◦ P(e
τ θ) =
∑
|α|≥0

cα

(
e
τ θ

)α
.

Denoting α · λ = ∑m
i=1 αiλi , the assumption h ◦ P(0) = 0 implies that c0 = 0 and

U (θ) =
∫ ∞

0

∑
|α|>0

cα

(
e
τ θ

)α
dτ =

∫ ∞

0

∑
|α|>0

cαθαe(α·λ)τdτ

=
∑
|α|>0

cαθα
(
e(α·λ)τdτ

)

= −
∑
|α|>0

cαθα

α · λ
,

which converges uniformly on Bm
1 . Indeed, letting σgap

def= min j=1,...,m |λ j | > 0, then

∣∣U (θ) j
∣∣ =

∣∣∣∣∣∣
∑
|α|>0

(c j )αθα

α · λ

∣∣∣∣∣∣
≤ 1

σgap

∣∣∣∣∣∣
∑
|α|>0

(c j )αθα

∣∣∣∣∣∣
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holds for j = 1, . . . , n, uniformly in Bm
1 . ��

This proposition provides a fundamental feature of blow-up times. Combining
with the choice of functionals h mentioned in Sect. 4.1, the compositions of h and the
parameterization P are given as follows for each compactification:

Directional: h(s(τ ), x(τ )) = s(τ )k and s(τ ) = P1(e
τ θ).

Poincaré type with k/2c ∈ N: h(x(τ )) = (1 − p(x(τ ))2c)k/2c =
(
1 − ∑n

i=1 xi

(τ )2βi
)k/2c

and x(τ ) = P(e
τ θ).

Parabolic type: h(x(τ )) = (
1 − 2c−1

2c (1 − p(x(τ ))2c)
)
(1 − p(x(τ ))2c)k and

x(τ ) = P(e
τ θ).

The function U (θ) in (4.2) equals to tmax = tmax(θ) under corresponding compact-
ifications and timescale desingularizations. Note that the function h corresponds to
the timescale transformation factor. Different choice of timescale desingularizations
provides different h and, consequently, different determination of U (θ) = tmax(θ).

The inverse T−1 of compactifications away from the horizon can be described by
analytic functions because it is defined by the n-tuples of composite functions of radi-
cals and rational functions whose singularities in the sense of the loss of regularity and
convergence of infinite series are located on the horizon. The analytic dependence of
tmax on bounded initial points for (2.1) near blow-up is therefore inherited by restrict-
ing our attention to stable manifolds of equilibria on the horizon for desingularized
vector fields.

Theorem 4.5 (Analyticity of blow-up times) Let tmax be given by the directional (resp.
the Poincaré typewith k/2c ∈ N, or the parabolic type) compactification given by (2.6)
(resp. (2.15) and (2.19)). Let Ws

loc(p∗; g) be a local stable manifold of a hyperbolic
saddle p∗ on the horizon for the desingularized vector field g = gd (resp. g = gqP
and g = gpara) given by the parameterization P satisfying all requirements presented
in Proposition 4.4. Let y0 ∈ R

n be a point such that the solution y(t) to (2.1) with
y(t0) = y0 is mapped into the trajectory {(T (y))(τ )}τ≥τ0 included in Ws

loc(p∗; g)
through T = Td (resp. T = TqP and T = Tpara) and the corresponding timescale
desingularization.

Then the blow-up time tmax is real analytic at y0 in intT−1(D)T
−1(Ws

loc(p∗; g)),
where D is given by (2.3) (resp. (2.11) for Poincaré and parabolic types). Moreover,
tmax = tmax(y0) converges to 0 as y0 goes to infinity along the solution y(t).

Proof Let y0 ∈ intT−1(D)T
−1(Ws

loc(p∗; g)) be arbitrary. Then there is a unique point
θ0 ∈ Bm

1 such that y0 = T−1(P(θ0)). We shall write θ0 = P−1(T (y0)), where the
expression of P−1 reflects the one-to-one property of P on Bm

1 . Because T is analytic
in D (Remark 2.13), then so is P−1 ◦ T in intT−1(D)T

−1(Ws
loc(p∗; g)).12 Then the

blow-up time tmax = tmax(y0) at y0 is written by

tmax = tmax(θ0) = t0 +
∫ ∞

τ0

h ◦ P(e
τ (P−1(T (y0))))dτ ≡ tmax(y0),

12 Analyticity of P−1 follows from that of P by assumption, linear isomorphism property of DP and the
inverse function theorem for analytic functions. See, e.g., Dieudonné (1960) for the latter argument.

123



Journal of Nonlinear Science            (2023) 33:46 Page 37 of 76    46 

where h is a function mentioned just after the proof of Proposition 4.4. The inte-
grand is analytic in intT−1(D)T

−1(Ws
loc(p∗; g)), according to the same argument

as the proof of Proposition 4.4. Therefore, tmax = tmax(y0) is analytic at y0 ∈
intT−1(D)T

−1(Ws
loc(p∗; g)).

Our assumption for the solution y(t) implies that the property of y(t) going to
infinity as t → tmax corresponds to (T (y))(τ ) → p∗ as τ → ∞. Moreover, for
any y0 ∈ intT−1(D)T

−1(Ws
loc(p∗; g)), we can choose a point ỹ0 ∈ R

n such that
T (ỹ0) ∈ Ws

loc(p∗; g) and that y0 = y(t) = y(t; ỹ0, t0) for some t > t0, where t is
uniquely determined by ỹ0. The last assertion is equivalent to T (y0) = (T (ỹ0))(τ̄ )

for τ̄ > τ0 uniquely determined by t and the timescale desingularization. Fix the
point ỹ0. Consider the decomposition (4.1) of tmax = tmax(ỹ0) with the integrand
Sh(τ ) ≡ h ◦ P(e
τ (P−1(T (y0)))). Notice that the second term in the right-hand side
is the contribution of y0 to the determination of tmax. As a result, we have

tmax(y0) =
∫ ∞

τ̄

Sh(τ )dτ.

As mentioned, the convergence of T (y0) to p∗ corresponds to τ̄ → ∞. Because Sh
is analytic in Bm

1 , the integral tmax(y0) goes to 0 as τ̄ → ∞. This implies the final
statement in the theorem. ��

Theorem 4.5 indicates that tmax depends analytically on initial points on T−1

(Ws
loc(p∗; g)), provided that the non-resonance condition holds for eigenvalues of

Dg(p∗). Furthermore, a computer-assisted proof for the existence of P as discussed
in Sect. 3 provides the explicit region where the analyticity of tmax as a function of
initial points of trajectories is guaranteed. ExtendingWs

loc(p∗; g) through the flow and
using the smooth dependence of the flow on initial points, we can extend tmax as a
smooth function of the initial points whose smoothness depends on that for the flow,
as long as Ws

loc(p∗; g) is smoothly continued. In particular, tmax can be analytically
continued if the vector field g is analytic. Note that the analyticity or even continuity
of tmax is not guaranteed as a function of y in Rn because the expression of tmax as an
analytic function only makes sense onWs

loc(p∗; g). The different choice of p∗ induces
a different expression of P and hence of tmax.

In the end of this section, we shall derive a detailed implementation of tmax for
directional compactifications, namely an estimate of the integral

∫ ∞
τ̄

s(τ )kdτ given
in (2.6). The corresponding calculations of tmax for Poincaré type with k/2c ∈ N and
parabolic-type compactifications are achieved in the same manner. Let p∗ ∈ E be a
hyperbolic equilibrium for the desingularized vector field g = gd . Assume that the
parameterizationmethod around p∗ works and the local stablemanifoldWs

loc(p∗; g) is
obtained through the (m-dimensional) stable polydisk Bm

1 and the parameterization P .
For simplicity, stable eigenvalues {λi }mi=1 of the linearizedmatrix of the desingularized
vector field at p∗ are assumed to be simple and real. In particular, λi < 0 for i =
1, . . . ,m. Recalling (3.3), write
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 =
⎛
⎜⎝

λ1
. . .

λm

⎞
⎟⎠ .

Then the solution (s(τ ), x̂(τ )) ∈ Ws
loc(p∗; g) is written by

(s(τ ), x̂(τ )) = P
(
e
τ θ

)
with s(τ ) = P1

(
e
τ θ

)
, θ = (θ1, . . . , θm) ∈ Bm

1 ,

where

P(θ) =
∑
|α|≥0

aαθα ≡
⎛
⎜⎝
P1(θ)

...

Pn(θ)

⎞
⎟⎠ ∈ R

n, θ =
⎛
⎜⎝

θ1
...

θm

⎞
⎟⎠ ∈ R

m, aα =
⎛
⎜⎝

(a1)α
...

(an)α

⎞
⎟⎠ ∈ R

n,

(4.3)
is the parameterization ofWs

loc(p∗; g). The rightmost integral in (2.6) can be calculated
as follows, once we obtain a concrete form of P:

∫ ∞

τ̄

s(τ )kdτ =
∫ ∞

τ̄

(
P1

(
e
(τ−τ̄ )θ

))k
dτ ≡

∫ ∞

0

(
P1

(
e
τ̃ θ

))k
dτ̃

=
∫ ∞

0

⎛
⎝∑

|α|≥0

(a1)α
(
e
τ̃ θ

)α

⎞
⎠

k

dτ̃

=
∫ ∞

0

⎛
⎝∑

|α|≥0

(a1)αe
(α·λ)τ̃ θα

⎞
⎠

k

dτ̃ .

Denote the Cauchy product over multi-indices by

(a ∗ b)α =
∑

β+γ=α

aβbγ , aβ, bγ ∈ R for α, β, γ ∈ Z
m≥0, (4.4)

and given k ∈ N denote

(
ak

)
α

= (

k times︷ ︸︸ ︷
a ∗ · · · ∗ a)α.

Herewe observe that (a1)0 = 0, since P(0) = p∗ is the equilibrium for the desingular-
ized vector field (2.7) and P1(0) = 0 from our choice of compactifications. Using the
previous notation and the above fact, the above integral is formally written as follows:

∫ ∞

τ̄

s(τ )kdτ =
∫ ∞

0

⎧⎨
⎩

∑
|α|≥0

(ak1)αe
(α·λ)τ̃ θα

⎫⎬
⎭ dτ̃

=
∑
|α|≥0

(ak1)αθα

(∫ ∞

0
e(α·λ)τ̃dτ̃

)
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=
∑
|α|>0

(ak1)αθα

(∫ ∞

0
e(α·λ)τ̃dτ̃

)

= −
∑
|α|>0

(ak1)α
θα

α · λ
. (4.5)

In particular, the denominator α · λ is strictly negative for all possible α, and the
analyticity of P implies that the above infinite sum is convergent uniformly in Bm

1 .
The final formula (4.5) implies that we can calculate the rigorous value of tmax near

blow-up, once we obtain the parameterization of the local stable manifoldWs
loc(p∗; g)

and fix the point θ ∈ Bm , namely P(θ) ∈ Ws
loc(p∗; g). As seen below, the similar

expressions of tmax to (4.5) can be obtained for Poincaré-type and parabolic-type
compactifications.

Remark 4.6 (Special case) If ns = 1, the explicit expression (4.5) admits the simpler
form:

(a ∗ b)n =
∑
j≥0

a jbn− j , a = (a j ) j≥0, b = (b j ) j≥0.

Indeed, α becomes a single index l and

tmax =
∑
|α|>0

(ak1)αθα

(∫ ∞

0
e(α·λ)τ̃dτ̃

)
= −1

λ

∞∑
l=k

(ak1)l
θ l

l
,

where we have used the fact that (a1)0 = 0 and that the Cauchy product (ak1)l =

(

k times︷ ︸︸ ︷
a1 ∗ · · · ∗ a1)l , with l < k contains at least one (a1)0.

Remark 4.7 (Integrands and smoothness of tmax) The concrete procedure to compute
the integral (4.5) or its upper bound depends on problems, namely the choice of
compactifications and timescale desingularizations.

• Our first example (Sect. 5) applies a directional compactification, while the
timescale desingularization has the different form from (2.5) so that the result-
ing desingularized vector field is polynomial. Instead, tmax requires integrations of
rational-type functions. Nevertheless, the essence of the above argument, namely
the absence of constant terms in the integrand of tmax, can be applied to verifying
that tmax < ∞. Analyticity of the integrand follows from that for both the numera-
tor and the denominator with additional boundedness property of the denominator.
Detailed derivation of tmax or its upper bound is shown in subsequent sections.

• In the case of Poincaré-type compactifications, analyticity of tmax is not guaranteed
when k/2c /∈ N, because the function h(x) = xk/2c is not analytic at x = 0. This
failure comes from the “mismatch” of properties of vector fields in the sense that
the order k + 1 and the type α, consequently the natural number c, determining
an appropriate Poincaré-type compactifications are determined by the asymptotic
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quasi-homogeneity of vector fields. We then need further estimates for calculating
tmax in such a case. The difficulty originated from this issue can be overcome by
choosing the parabolic-type compactifications.

Remark 4.8 (Lyapunov functions versus parameterizations for expressing tmax) In the
preceding studies (e.g.,Matsue andTakayasu 2020a, b; Takayasu et al. 2017), tmax in all
examples there are enclosed by means of Lyapunov functions. Local Lyapunov func-
tions only provide upper bounds of tmax, because they do not trace concrete trajectories
on stablemanifolds, but values of functionals on trajectories, implying that smoothness
arguments for tmax as a function of initial points cannot be derived. Instead, simple
inequalities by means of Lyapunov functions provide upper bounds of tmax even in the
case of Poincaré-type compactifications with k/2c /∈ N, as demonstrated in Takayasu
et al. (2017). Moreover, non-resonance condition (A3) is not required for estimations.

On the other hand, we can trace trajectories on stable manifolds bymeans of param-
eterizations, indicating that tmax is “exactly” calculated through the integration of given
functions depending on solutions. In particular, we can explicitly discuss properties
of tmax as a functions of initial points. In compensation for these precise informa-
tion, however, we have to take care of analytic information of dynamical systems to
ensure smoothness or analyticity of functions of interests, such as non-resonance con-
dition (A3) for analyticity of P providing the conjugacy to linearizations, matching
of integers k and c for Poincaré-type compactifications mentioned in Remark 4.7.

5 Example 1: Validation and Visualization of Globally Extended
Saddle-Type Blow-Ups

In what follows, we show several applications of our proposed methodology not only
to show its applicability but also to reveal several remarkable features of saddle-type
blow-up solutions. The first problem is concerned with saddle-type blow-up solutions
for the following system:

{
β ′ = vB1(β) − cβ − c1,

v′ = v2B2(β) − cv − c2,
′ = d

dζ
, (5.1)

where

B1(β) = (β − ρ1)(β − ρ2)

β
, B2(β) = β2 − ρ1ρ2

2β2

and ρ2 > ρ1 are positive constants. Moreover,

c = vR B1(βR) − vL B1(βL)

βR − βL
(5.2)

and (c1, c2) = (c1L , c2L) with

{
c1L = vL B1(βL) − cβL ,

c2L = v2L B2(βL) − cvL .
(5.3)
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Points (βL , vL) and (βR, vR) are given in advance.

Remark 5.1 The system (5.1) stems from theRiemannproblemof the following system
of conservation laws describing the (simplified) two-phase, one-dimensional incom-
pressible flow (Keyfitz et al. 2003):

βt + (vB1(β))x = 0, vt + (v2B2(β))x = 0 (5.4)

with

(β(x, 0), v(x, 0)) =
{
UL ≡ (βL , vL) x < 0,

UR ≡ (βR, vR) x > 0.
(5.5)

Observe that B1(β) < 0 for β ∈ (ρ1, ρ2) and B1(β) > 0 for 0 < β < ρ1, β > ρ2.
Details are stated in Keyfitz et al. (2003).

The system (5.1) is the reducedproblemof (5.4) satisfying viscosity profile criterion,
namely the traveling wave problem with respect to the frame coordinate ζ = x − ct
with the boundary condition

lim
ζ→−∞(β(ζ ), v(ζ )) = (βL , vL), lim

ζ→+∞(β(ζ ), v(ζ )) = (βR, vR),

where c is the speed of traveling waves. Saddle-type blow-up solutions for (5.1) are
considered as components of singular shock wave solutions13 to (5.4).

We choose the directional compactification (2.2) of type (0, 1): (β, v) 
→ (x1, s) =
(β, v−1) (cf. Keyfitz et al. 2003; Matsue 2018). Direct calculations yield the following
desingularized vector field on {r ≥ 0} × {ρ1 ≤ β ≤ ρ2}:

⎧⎪⎨
⎪⎩

dx1
dτ

= B1(x1) − cx1s − c1s,

ds

dτ
= −s

{
B2(x1) − cs − c2s

2
}
,

(5.6)

where τ is the desingularized timescale given by dτ = s−1dt . Obviously, (x1, s) =
(ρ1, 0) ≡ p1 and (ρ2, 0) ≡ p2 are equilibria of (5.6) on the horizon E = {s = 0} and
the vector field on E \ {p1, p2} is monotone on each component.

On the other hand, the vector field (5.6) is rational. In order to nicely apply the
parameterization method, we introduce further timescale transformation as follows:

dτ

dη
= x−2

1 .

13 Tomake the correspondence precisely, the extended fast–slow system setting is required. Detail is shown
in Keyfitz et al. (2003).
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Then the resulting vector field is

⎧⎪⎪⎨
⎪⎪⎩

dx1
dη

= x1(x1 − ρ1)(x1 − ρ2) − cx31s − c1x
2
1s,

ds

dη
= −s

{
1

2
(x21 − ρ1ρ2) − x21 (cs + c2s

2)

}
.

(5.7)

Note that typical solutions of (5.6) are consideredwithin the region {ρ1 ≤ x1 ≤ ρ2} and
ρ1 > 0. Therefore, the new vector field (5.7) is intrinsically the time-reparameterized
vector field of (5.6), and hence, these vector fields provide topologically the same
information as each other.

The horizon is {s = 0} and equilibria on the horizon is (x1, s) = (ρ1, 0), (ρ2, 0).
Looking at (5.7) only, (x1, s) = (0, 0) can be also a stationary point, but it is not
appropriate from our requirement.

Remark 5.2 (Technical details) When we solve the problem (5.7) in practice, we need
to fix several parameters. In the present case,

• First, we fix xL ≡ (x1,L , sL) = (1.9, 0.25) as a sample data. Then, follow-
ing the directional compactification (x1, s) = (β, v−1), we obtain (βL , vL) =
(1.9, 4). Next, we fix xR ≡ (x1,R, sR) = (1.5, 0.2) similarly. Then we obtain
(βR, vR) = (1.5, 5). Independently, we need to fix (ρ1, ρ2). In the present case,
we fix (ρ1, ρ2) = (1, 2).

• Following standard arguments of systems of conservation laws, compute B1(β),

B2(β) and c given above for (β, v) = (βL , vL), (βR, vR).

In the present study, we compute the stable manifold of the saddle equilibrium on
the horizon (x1, s) = (2, 0) for (5.7) in {s ≥ 0} with parameters shown in Remark
5.2.

5.1 A Local One-Dimensional Stable Manifold of p2 in (5.7)

Consider the system of desingularized ODEs

ẋ = g(x) =
(
g1(x1, x2)
g2(x1, x2)

)
def=

⎛
⎝x31 − (ρ1 + ρ2)x

2
1 + ρ1ρ2x1 − cx31 x2 − c1x

2
1 x2

−1

2
x21 x2 + 1

2
ρ1ρ2x2 + cx21 x

2
2 + c2x

2
1 x

3
2

⎞
⎠ ,

(5.8)

which is exactly (5.7) by replacing (x1, s) with (x1, x2). The dot ˙ denotes d/dη.
Furthermore, at x (2) def= (ρ2, 0)

Dg(x (2)) =
(

ρ2(ρ2 − ρ1) −ρ2
2 (cρ2 + c1)

0 −ρ2
2 (ρ2 − ρ1)

)
.
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We focus on the one-dimensional stable manifold of the steady state x (2) with stable
eigenvalue λ

def= −ρ2
2 (ρ2 − ρ1) < 0 and corresponding stable eigenvector

v
def=

(−ρ2
2 (cρ2 + c1)

− 3ρ2
2 (ρ2 − ρ1)

)
.

Our goal is to produce an analytic function P : (−ν, ν) → R
2 with ν = 1 that

parameterizesWs
loc(x

(2)). Note that the parameter ν can generalize the setting in Sect.
3, and corresponds to that appeared in Sect. 5.1.3. The Taylor series representation
has the form

P(θ) =
∞∑
n=0

anθ
n where an =

(
(a1)n
(a2)n

)
.

By Lemma 3.2, P will represent the stable manifold if

P(0) =
(

ρ2
0

)
, DP(0) = v =

(−ρ2
2 (cρ2 + c1)

− 3ρ2
2 (ρ2 − ρ1)

)
, and λθ

∂P

∂θ
(θ) = g(P(θ)).

From this, we can immediately conclude that

(
(a1)0
(a1)0

)
=

(
ρ2
0

)
,

(
(a1)1
(a2)1

)
=

(−ρ2
2 (cρ2 + c1)

− 3ρ2
2 (ρ2 − ρ1)

)
, and

λ

∞∑
n=0

nanθ
n = g

( ∞∑
n=0

anθ
n

)
, (5.9)

where

g

( ∞∑
n=0

anθ
n

)
=

∞∑
n=0

⎛
⎝(a31)n − (ρ1 + ρ2)(a

2
1)n + ρ1ρ2(a1)n − c(a31a2)n − c1(a

2
1a2)n

−1

2
(a21a2)n + 1

2
ρ1ρ2(a2)n + c(a21a

2
2) + c2(a

2
1a

3
2)

⎞
⎠ θn .

Let


1
def=

⎧⎨
⎩b = (bn)n≥2 : ‖b‖1 def=

∑
n≥2

|bn| < ∞
⎫⎬
⎭ .

For j = 1, 2, denote a j = ((a j )n)n≥2, and a = (a1, a2). Define F = (F1, F2) : X →
X ′ with X = (
1)2 and X ′ = (
̃1)2, defined in the similar manner to arguments in
Sect. 3 (below (3.12)), by

(F1(a))n
def= λn(a1)n −

(
(a31)n − (ρ1 + ρ2)(a

2
1)n + ρ1ρ2(a1)n

−c(a31a2)n − c1(a
2
1a2)n

)
(5.10)
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(F2(a))n
def= λn(a2)n −

(
−1

2
(a21a2)n + 1

2
ρ1ρ2(a2)n + c(a21a

2
2) + c2(a

2
1a

3
2)

)

(5.11)

for n ≥ 2, and observe that if there exists ã ∈ X such that F(ã) = 0, then we have
obtained the desired parameterization.

5.1.1 A Computer-Assisted Proof

Fixing N = 300, we computed the bounds Y0, Z0, Z1 and Z2 as presented in
Sects. 3.1, 3.2, 3.3 and 3.4, respectively. Then, we applied Theorem 3.5 to proving the
existence of ã ∈ Br (ā) such that F1(ã) = F2(ã) = 0 with F1 and F2 given in (5.10)
and (5.11), respectively. More explicitly, we got that ‖ã − ā‖X ≤ r = 4.2 × 10−13.

The Taylor series representation of the parameterization of the local stablemanifold
has the form

P(θ) =
∞∑
n=0

ãnθ
n where ãn =

(
(ã1)n
(ã2)n

)

and denote by

P(N )(θ) =
N∑

n=0

ānθ
n where ān =

(
(ā1)n
(ā2)n

)

the numerical approximation of the local stable manifold. Then,

‖P − P(N )‖∞ = sup
θ∈(−ν,ν)

‖P(θ) − P(N )(θ)‖∞

= sup
θ∈(−ν,ν)

max
(
|P1(θ) − P(N )

1 (θ)|, |P2(θ) − P(N )
2 (θ)|

)

≤ sup
θ∈(−ν,ν)

max

( ∞∑
n=0

|(ã1)n − (ā1)n||θ |n,
∞∑
n=0

|(ã2)n − (ā2)n||θ |n
)

≤ max

( ∞∑
n=0

|(ã1)n − (ā1)n|νn,
∞∑
n=0

|(ã2)n − (ā2)n|νn
)

= max (‖ã1 − ā1‖ν, ‖ã2 − ā2‖ν)

= ‖ã − ā‖X ≤ r = 4.2 × 10−13.
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Fig. 3 Numerical values of tmax according to formula (5.14). Here the coordinate σ denotes θ/ν with
ν = 1. As in Fig. 4, the graph makes sense only in the region {tmax(σ ) ≥ 0} as the object determining
the blow-up solution of the original vector field (5.1). In the present validation result, initial points of the
blow-up solution are distributed in the half-polydisk {σ ≤ 0} in the parameter space

5.1.2 Computing the Blow-Up Time

Given a point (x1(0), s(0)) ∈ Ws
loc(p2) (with p2 = (2, 0)), the blow-up time is given

by

tmax =
∫ ∞

0

s(η)

x1(η)2
dη. (5.12)

Given that (x1(0), s(0)) = (P1(θ), P2(θ)) for a given θ ∈ (−ν, ν), we get from (3.4)
that ϕ (t, P(θ)) = P

(
eλtθ

)
for all t ≥ 0. Hence, the solution (x1(t), s(t)) with the

initial point (x1(0), s(0)) = (P1(θ), P2(θ)) is given by (x1(t), s(t)) = P
(
eλtθ

)
.

Rescaling the time interval η ∈ [0,∞] to u ∈ [θ, 0] leads (via the change of
coordinates u = eληθ ) to

tmax =
∫ ∞

0

s(η)

x1(η)2
dη =

∫ ∞

0

P2
(
eληθ

)

[P1
(
eληθ

)]2 dη =
∫ 0

θ

1

λu

P2(u)

[P1(u)]2 du. (5.13)

Now, note that

P2(u) =
∑
n≥0

(ã2)nu
n =

∑
n≥1

(ã2)nu
n

since (ã2)0 = (p2)2 = 0. Denote

Q(u)
def= P2(u)

u
= 1

u

∑
n≥1

(ã2)nu
n =

∑
n≥0

(ã2)n+1u
n =

∑
n≥0

q̃nu
n

where q̃n
def= (ã2)n+1 for n ≥ 0. Hence, Eq. (5.13) becomes

tmax = 1

λ

∫ 0

θ

Q(u)

[P1(u)]2 du.
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Fig. 4 Rigorously computed stable manifold with rigorous error bound ‖P− P(N )‖∞ ≤ r = 4.2×10−13.
Note that the plotted local stable manifold is defined for the desingularized vector field (5.8), which itself
makes sense for both positive and negative x2. On the other hand, this makes sense only in {x2 > 0} as
the corresponding object to the original vector field (5.1), while the horizon {x2 = 0} corresponds to the
infinity in the original (β, v)-phase space

Assume now that we have (again using rigorous numerics) obtained

R(u)
def= Q(u)

[P1(u)]2 =
∑
n≥0

rnu
n

with rigorous error bounds. Using that information,

tmax = 1

λ

∫ 0

θ

∑
n≥0

rnu
n du = 1

λ

∑
n≥0

rn

∫ 0

θ

un du = −1

λ

∑
n≥0

rn
n + 1

θn+1, (5.14)

which is in essence computable (that is, we can provide a numerical approximation
together with rigorous error bounds). In Fig. 3, we present a rigorous numerical com-
putation (with rigorous bounds) of the value of tmax as a function of θ , that is, as a
function of the initial points P(θ) on Ws

loc(p2). The rigorous error bound is obtained
by computing rigorously the Taylor coefficients of rn in the expansion (5.14). We
present how to do that next.

5.1.3 Rigorous Computation of the Coefficients rn

Through ã = (ã1, ã2) with ‖ã − ā‖X ≤ r = 4.2 × 10−13 the power series Pi (u) =∑
n≥0(ãi )nu

n are determined. The goal in this section is to compute rigorously the
coefficients rn of R(u) = ∑

n≥0 rnu
n such that [P1(u)]2R(u) = Q(u). This amounts

to solve the Taylor coefficients equation

ψ(r)
def= ã21r − q̃ = 0. (5.15)

Using Newton’s method, assume that we computed r̄ such that ψ(r̄) ≈ 0. Denote by
Dψ(N )(r̄) the Jacobian of ψ(N ) at r̄ . The next step is to construct the linear operator
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A† (an approximate derivative of the derivative Dψ(r̄)) and the linear operator A (an
approximate inverse of Dψ(r̄)). Let A† be defined as

(A†h)n =
{(

Dψ(N )(r̄)h(N )
)
n for 0 ≤ n ≤ N ,

(ā21)0 for n > N ,

Consider now a matrix A(N ) ∈ MN+1(R) computed so that A(N ) ≈ Dψ(N )(r̄)
−1

.
This allows defining the linear operator A whose action on an element h ∈ 
1ν is

(Ah)n =
{(

A(N )h(N )
)
n for 0 ≤ n ≤ N

1
(ā21 )0

hn for n > N ,

where, given ν ≥ 1,


1ν
def=

⎧
⎨
⎩b = (bn)n≥0 : ‖b‖ν

def=
∑
n≥0

|bn|νn < ∞
⎫
⎬
⎭ .

In this expression, X = (
1ν)
2 is applied and the norm is given by ‖a‖X :=

max(‖a1‖ν, ‖a2‖ν) for a = (a1, a2) ∈ X . We have used a generalized setting of
Banach spaces towards further applications. Having obtained an approximate solution
r̄ and the linear operators A† and A, the next step is to construct the bounds Y0, Z0,
Z1 and Z2(r) satisfying (3.14), (3.15), (3.16) and (3.17), respectively. Note that since
problem (5.15) is linear, then Z2 = 0.
The bound Y0 We look for a bound such that ‖Aψ(r̄)‖ν ≤ Y0. Expand

ψ(r̄) = ã21 r̄ − q̃ = (ā1 + δ1)
2r̄ − (q̄ + δq) = ψ̄(r̄) + ψδ(r̄),

where

ψ̄(r̄)
def= ā21 r̄ − q̄ and ψδ(r̄)

def= 2δ1ā1r̄ + δ21 r̄ − δq

and δ1
def= ã1 − ā1 and δq

def= q̃ − q̄ . Hence, we can compute Y0 such that

‖Aψ(r̄)‖ν ≤ ‖Aψ̄(r̄)‖ν + ‖A‖B(
1ν )‖ψδ(r̄)‖ν

≤ ‖Aψ̄(r̄)‖ν + ‖A‖B(
1ν )

(
2‖ā1‖ν‖r̄‖ν + ‖r̄‖νr0 + 1

ν

)
r0 ≤ Y0,

where we used that

‖δq‖ν =
∑
n≥0

|(ã2)n+1 − (ā2)n+1|νn = 1

ν

∑
n≥0

|(ã2)n+1 − (ā2)n+1|νn+1

≤ 1

ν
‖ã2 − ā2‖ν ≤ r0

ν
.
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The bound Z0 It is the same computation as the one presented in Sect. 3.2.
The bound Z1 Given h ∈ 
1ν , denote

z
def= Dψ(r̄)h − A†h

which is given componentwise by

zn =
⎧⎨
⎩

(
(ã21 − ā21)h

)
n

=
(
2δ1ā1h + δ21h

)
n

for 0 ≤ n ≤ N ,

(ã21h)n − (ā21)0hn = (2(δ1)0(ā1)0 + (δ1)
2
0)hn + ∑n

k=1(ã
2
1 )khn−k for n > N .

Define βk = (ã21)k for k > 0 and β0 = 0. Hence,

‖Az‖ν ≤ ‖A‖B(
1ν )‖2δ1ā1h + δ21h‖ν + 1

(ā21)0

∑
n≥N+1

|(β ∗ h)n|νn

≤ ‖A‖B(
1ν )

(
2r0‖ā1‖ν + r20

)
+ 1

(ā21)0
‖β‖ν,

where

‖β‖ν =
∑
n≥1

|(ã21)n|νn ≤
2N+2∑
n=1

|(ā21)n|νn + 2‖ā1‖νr0 + r20 .

We therefore set

Z1
def= ‖A‖B(
1ν )

(
2r0‖ā1‖ν + r20

)
+ 1

(ā21)0

(
2N+2∑
n=1

|(ā21)n|νn + 2‖ā1‖νr0 + r20

)
.

Assume that using the radii polynomial approach of Theorem 3.5, we prove the
existence r̃ ∈ Brmin(r̄) such that ψ(r̃) = 0. Hence, given θ ∈ (−ν, ν), tmax given in
(5.14) can be controlled

tmax = −1

λ

∑
n≥0

r̃n
n + 1

θn+1

∈ −1

λ

N∑
n=0

r̄n
n + 1

θn+1 + 1

|λ|
∑
n≥0

|r̃n − r̄n|
n + 1

|θ |n+1[−1, 1]

∈ −1

λ

N∑
n=0

r̄n
n + 1

θn+1 + rmin

|λ| [−1, 1],

which can be evaluated rigorously with interval arithmetic.

Remark 5.3 The above estimate directly shows the analyticity of tmax on θ , which
is implicitly guaranteed by analyticity of the parameterization P and the uniform
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boundedness of the denominator x1(η) = P1(u) away from 0 on Ws
loc(p2). See Fig. 4

about the latter fact. Finally, we have applied X = (
1ν)
2 with ν = 1 in the present

validations. Different choice of ν can be also valid.

5.2 Extension of the Stable Manifold of p2 in (5.7) and Blow-Up TimeValidations

Once we validate the local stable manifold of a saddle equilibrium, we can extend
the manifold integrating (5.7) in the backward time direction, which is achieved by
standard rigorous integrator of ODEs. Recall that we rewrite the system of differential
equations (5.7) as in (5.8), that is,

ẋ = g(x) =
(
g1(x1, x2)
g2(x1, x2)

)
def=

⎛
⎝x31 − (ρ1 + ρ2)x

2
1 + ρ1ρ2x1 − cx31 x2 − c1x

2
1 x2

−1

2
x21 x2 + 1

2
ρ1ρ2x2 + cx21 x

2
2 + c2x

2
1 x

3
2

⎞
⎠ ,

where ˙ = d
dη , x2 ≡ s, (ρ1, ρ2) = (1, 2), (βR, vR) = (1.5, 5), (βL , vL) = (1.9, 4)

with the constant c in (5.2) and (c1, c2) = (c1L , c2L) satisfying

{
c1L = vL B1(βL) − cβL ,

c2L = v2L B2(βL) − cvL .

We integrate (5.7) backward in time. Taking ξ
def= −η, we integrate

⎧⎪⎪⎨
⎪⎪⎩

dx1
dξ

= −
(
x31 − (ρ1 + ρ2)x

2
1 + ρ1ρ2x1 − cx31 x2 − c1x

2
1 x2

)
,

dx2
dξ

= −
(

−1

2
x21 x2 + 1

2
ρ1ρ2x2 + cx21 x

2
2 + c2x

2
1 x

3
2

)
.

(5.16)

from 0 to ξ0 with the initial point (x1(0), x2(0)) = p0 = P(θ)|θ=−1, which is on the
local stable manifold Ws

loc(p2). The rigorous integrator we have used is mentioned
in Remark 4.2. Furthermore, we rigorously compute the passing time in the original
timescale using the following formula:

tξ0 =
∫ ξ0

0

x2(ξ)

x1(ξ)2
dξ,

where x1(ξ) and x2(ξ) denote the solution of (5.16).
In the present example, (5.7) is integrated with the initial point at the boundary of

locally validated stable manifold, which is the boundary of the red curve in Fig. 4 with
x2 > 0, in the backward time direction and compute an enclosure of the evolution
time in the original timescale:

t−η =
∫ −η

0

x2(η̃)

x1(η̃)2
dη̃.
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Fig. 5 Extended stable manifold
Ws (p2) for (5.7) and
corresponding blow-up times.
The blue curve is the validated
stable manifold Ws (p2), while
the black curve is the projection
onto the (x1, x2)-plane.
Numbers near points along the
curve correspond to those shown
in Table 1 where the rigorous
enclosures of blow-up times are
shown (Color figure online)

Table 1 Blow-up time enclosures for (5.1)

Points (label) x1 x2 Blow-up time

P1 1.99704842870362221 0.0620904215416403 0.01945344745758624

P2 1.971379977171454031 0.222654902274653237387 0.1821531459806739776968

P3 1.895702934910671105 0.241427350053088728752 1.0017034574574772293

P4 1.897711586418197872 0.25031644904987256631 1.782317866577252067

P5 1.899856004192656361 0.250172652545145549681 2.66514229375083342664

“Points (label)” correspond to points drawn in Fig. 5.“Blow-up time” is the validated enclosure of blow-up
time for (5.1) through the preimage of points under Td

The blow-up time of the corresponding blow-up solution with the initial point
T−1
d (x1(η), x2(η)) is then enclosed by the sum of enclosures of tmax and t−η. Fig-

ure5 shows the blow-up time tmax of blow-up solutions as a function of initial points
on T−1

d (Ws(p2)). Note that the point in the figure where the corresponding blow-up
time tends to infinity is the source equilibrium for (5.7), which corresponds to the
bounded source for (5.1). Rigorous enclosures of tmax on several sample points are
shown in Table 1. Finally, we can reconstruct the true blow-up profile of the validated
saddle-type blow-up solution through the directional compactification Td , which is
drawn in Fig. 6. Note that this profile cannot be computed in the direct way since small
perturbations of initial points violate the profile.14

Remark 5.4 The integrand of tmax has a different form from typical integrands shown in
Sect. 2. Indeed, the integrand of (5.12) is a rational function consisting of two analytic
functions. Nevertheless, the function x1(η) determining the denominator attains the
value around 2 with sufficiently small error bounds so that the function 1/x1(η)2

is analytic at x1(0), which is justified through the parameterization P , provided the
trajectory {x1(η), s(η)}η∈[0,∞) is located on the interior of Ws

loc(p2). In particular,
Proposition 4.4 and Theorem 4.5 can be still applied to showing that tmax defined by

14 As far as we have calculated (in non-rigorous sense), solutions of (5.7) through points near validated
solutions (in Fig. 5) go to the direction so that the x1-component goes to +∞ directly, or rounding the
bounded source (near P5 in Fig. 5).
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Fig. 6 Blow-up profile corresponding to Fig. 5. Each point Qi (i = 1, . . . , 5) corresponds to the preimage
of Pi in Fig. 5 under the directional compactification (x1, x2) = (β, v−1). The initial time t = 0 is set so
that Q5 = (β(0), v(0))

(5.12) depends analytically on initial points. Note that arguments in Sect. 5.1.3 directly
confirm the analyticity of tmax.

6 Example 2: Application to Higher-Dimensional Systems

The second example is the following (artificial) system in R3:

⎧⎪⎨
⎪⎩

y′
1 = y1(y21 − 1),

y′
2 = y21 y2 + y21 y3,

y′
3 = y21 y3 + δ−1

{
cy21 y3 − y2(y2 − ay1)(y1 − y2) + wy31

}
.

(6.1)

The present system is asymptotically homogeneous of order 3, namely asymptotically
quasi-homogeneous of type α = (1, 1, 1). We thus apply the Poincaré-type compact-
ification15 to obtain the associated desingularized vector field as written by (2.16). In
the present case, k = 2, n = 3, α j = β j = c = 1 for j = 1, . . . , n, and hence,

⎧⎪⎪⎨
⎪⎪⎩

f̃1(x) = x31 −
(
1 − ∑3

i=1 x
2
i

)
x1,

f̃2(x) = x21 x2 + x21 x3,

f̃3(x) = x21 x3 + δ−1
{
cx21 x3 − x2(x2 − ax1)(x1 − x2) + wx31

}
,

(6.2)

15 In the present demonstration, radicals in the Poincaré-type compactification do not prevent us from C1

studies of dynamical systems. In particular, the linear stability analysis of equilibria on the horizon makes
sense. Indeed, the lower-order terms in (6.1) are chosen so that our methodology properly works, following
discussions in Matsue (2018).
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derived by (2.12), is applied to determining (2.16). The concrete form is

ẋ1 = g1(x)
def= f̃1(x) − x1G(x),

ẋ2 = g2(x)
def= f̃2(x) − x2G(x),

ẋ3 = g3(x)
def= f̃3(x) − x3G(x), (6.3)

where

G(x)
def=

3∑
j=1

x j f̃ j (x)

= x1

{
x31 −

(
1 −

3∑
i=1

x2i

)
x1

}
+ x2

{
x21 x2 + x21 x3

}

+ x3
[
x21 x3 + δ−1

{
cx21 x3 − x2(x2 − ax1)(x1 − x2) + wx31

}]

= x21

{
−1 + 2x21 + x1x2 + 2x22 + δ−1wx1x3 + (2 + δ−1c)x23

}

− δ−1x2x3(x2 − ax1)(x1 − x2).

The direct calculation of the Jacobian matrix of (6.3) is quite lengthy. Assuming that
the Jacobian matrix of f̃ with respect to x is calculated, the Jacobian matrix of g with
respect to x is calculated as follows:

∂gi
∂x j

= ∂ f̃i
∂x j

− δi j

(
3∑

k=1

xk f̃k(x)

)
− xi

3∑
k=1

{
δ jk f̃k(x) + xk

∂ f̃k
∂x j

}
,

where δi j is the Kronecker’s delta. In the present case, the Jacobian matrix of f̃ is

J f̃ =
⎛
⎜⎝
3x21 −

(
1 − ∑3

i=1 x
2
i

)
+ 2x21 2x1x2 2x1x3

2x1(x2 + x3) x21 x21
f̃31 f̃32 f̃33

⎞
⎟⎠ ,

f̃31 = 2x1x3 + δ−1
{
2cx1x3 + ax2(x1 − x2) − x2(x2 − ax1) + 3wx21

}
,

f̃32 = δ−1 {−(x2 − ax1)(x1 − x2) − x2(x1 − x2) + x2(x2 − ax1)} ,

f̃33 = (1 + δ−1c)x21 .

We observe that there are (at least) three equilibria on the horizon {p(x)2 ≡∑3
i=1 x

2
i = 1}, one of which, denoted by p0, has a one-dimensional stable mani-

fold and two of which, denoted by p1 and p2, have two-dimensional stable manifolds.
In the present study, we fix the following parameters:

(a, c, δ, w) = (0.3, 0.7, 9.0, 0.02).
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Fig. 7 Rigorously computed local stable manifolds for hyperbolic equilibria for (6.3). The C0 rigorous
error bound for the manifold around p1 (left) is ‖P − P(N )‖∞ ≤ r = 8.2 × 10−9 with N = 50,
while it is ‖P − P(N )‖∞ ≤ r = 9.8 × 10−10 with N = 60 for the manifold around p2 (right) and
‖P − P(N )‖∞ ≤ r = 9.8× 10−13 with N = 160 for the manifold around p0 (center). The black dots are
equilibria on the horizon; denoting p1, p0 and p2 from the left to the right

Wehave computed the concrete position and associated eigenvalues,which are approx-
imately given as follows:

p0 ≈ (0.9333789, 0.3588924, 0),

λ1(p0) ≈ −1.74239248, λ2(p0) ≈ 0.033880 + 0.1430256i, λ3(p0) = λ2(p0),

p1 ≈ (0.7180928, 0.6959473, 0),

λ1(p1) ≈ −0.11437086, λ2(p1) = 0.1544775, λ3(p1) ≈ −1.0313145,

p2 ≈ (0.9985628,−0.0535924, 0),

λ1(p2) ≈ −1.994255, λ2(p2) ≈ −0.1870901, λ3(p2) ≈ 0.26464449.

On the other hand, (6.2) possesses a source in a bounded region, namely {∑3
i=1 x

2
i <

1}, which is

pb ≈ (0.7071051816183367, 0.001504037399468,−0.001504037399468).

The parameterization method applied to three equilibria on the horizon; p0, p1 and
p2, for (6.3) provides local stable manifolds with rigorous error enclosures. Distribu-
tions of these local stable manifolds are drawn in Fig. 7.

6.1 Blow-Up Time Computation

Since the compactification is homogeneous (namely α = (1, . . . , 1) for defining
compactifications) and k = 2 in the present example, the maximal existence time tmax
is

tmax =
∫ ∞

0
κ(x(τ ))−kdτ =

∫ ∞

0

(
1 − ‖x‖2

)
dτ, (6.4)
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according to (2.15). Let P be a parameterization around x∗ ∈ E whose image of Bns

determines the local stablemanifoldWs
loc(x∗) of x∗ such that P(0) = x∗. P is assumed

to have a polynomial expression (cf. (4.3))

P(θ) =
∑
|α|≥0

aαθα, θ =
⎛
⎜⎝

θ1
...

θns

⎞
⎟⎠ ∈ R

ns , aα =
⎛
⎜⎝

(a1)α
...

(an)α

⎞
⎟⎠ ∈ R

n

satisfying a0 = x∗. α = (α1, . . . , αns ) ∈ Z
ns≥0 denotes the multi-index and

θα = θ
α1
1 · · · θαns

ns . Assuming that the solution trajectory x(τ ) is on Ws
loc(x∗), the

parameterization argument indicates that

x(τ ) = P(Q−1e
τ Qθ0), 
 = diag(λ1, . . . , λns ) with Re λi < 0.

For a while, we further assume that Q = I , λi ∈ R for i = 1, . . . , ns and k = 2. Then

P(θ) =
∑
|α|≥0

aαθ(τ )α, θ(τ ) =
⎛
⎜⎝

eλ1τ (θ1)0
...

eλns τ (θns )0

⎞
⎟⎠ , θ0 =

⎛
⎜⎝

(θ1)0
...

(θns )0

⎞
⎟⎠ ,

aα ≡ ((a1)α, . . . , (an)α) ∈ R
n

and

tmax =
∫ ∞

0

⎧
⎪⎨
⎪⎩
1 −

n∑
i=1

⎛
⎝∑

|α|≥0

(ai )αθ(τ )α

⎞
⎠

2
⎫
⎪⎬
⎪⎭
dτ

=
∫ ∞

0

⎧
⎨
⎩1 −

n∑
i=1

⎛
⎝∑

|β|≥0

∑
|γ |≥0

(ai )β(ai )γ e
(
∑m

j=1(β j+γ j )λ j )τ θ
β+γ
0

⎞
⎠
⎫
⎬
⎭ dτ

=
∫ ∞

0

⎧⎨
⎩1 −

n∑
i=1

∑
|α|≥0

(ai ∗ ai )αe
(α·λ)τ θα

0

⎫⎬
⎭ dτ,

where (a ∗ b)α denotes the discrete convolution over the multi-index α ∈ Z
ns≥0 given

in (4.4) and θα
0 = ((θ1)0)

α1 · · · ((θns )0)αns . Here we use the fact

n∑
i=1

∑
|α|=0

(ai ∗ ai )αe
(α·λ)τ θα =

n∑
i=1

((ai )0)
2 = ‖x∗‖2 = 1
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because P(0) = x∗ and x∗ ∈ E = {‖x‖ = 1}. Thus, we have
∫ ∞

0

⎧⎨
⎩1 −

∑
|α|>0

∑
|α|≥0

(ai ∗ ai )αe
(α·λ)τ θα

0

⎫⎬
⎭ dτ = −

∫ ∞

0

∑
|α|>0

n∑
i=1

(ai ∗ ai )αe
(α·λ)τ θα

0 dτ

=
∑
|α|>0

(
n∑

i=1

(ai ∗ ai )α

)
θα
0

α · λ
,

where the denominator is strictly negative for all possible α and the analyticity of P
ensures the convergence of the above series. Finally, we have the following expression
of tmax:

tmax =
∑
|α|>0

(
n∑

i=1

(ai ∗ ai )α

)
θα
0

α · λ
. (6.5)

Remark that the above expression makes sense only if

‖P(θ0)‖2 =
n∑

i=1

⎛
⎝∑

|α|≥0

(ai )αθ0

⎞
⎠

2

= 1 +
∑
|α|>0

(
n∑

i=1

(ai ∗ ai )α

)
θ0 < 1

by definition of the Poincaré compactification.With an explicit expression or enclosure
of P(θ), the quantity (6.5) or its enclosure is rigorously calculated for each θ0 ∈ Bns .
The above procedure is applied with n = 3 and ns = 1 or 2 in the present problem.

If ns = 1, the expression (6.5) can be simplified by considering the single index
l ≥ 1 instead of the multi-index α to obtain

tmax = 1

λ

∑
l≥1

{
n∑

i=1

(ai ∗ ai )l

}
θ l0

l
.

In practice, the computation of the Taylor coefficients a1, . . . , an comes from a suc-
cessful application of the Newton–Kantorovich type theorem (Theorem 3.5) applied
to F : X → X ′ given in (3.9) with X = (
1)2 = (
11)

2, namely ν = 1 (cf. Sect. 5.1.3).
More precisely, denote by ā1, . . . , ān the numerical approximations (of order N ) and
r0 > 0 such that the true coefficients satisfy

‖a − ā‖X = max
j=1,...,n

‖a j − ā j‖1 ≤ r0.

Denote b = a − ā and note that

tmax =
∑
|α|>0

(
n∑

i=1

(ai ∗ ai )α

)
θα
0

α · λ
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=
2N∑

|α|=0

(
n∑

i=1

(āi ∗ āi )α

)
θα
0

α · λ
+ 2

∑
|α|>0

(
n∑

i=1

(āi ∗ bi )α

)
θα
0

α · λ

+
∑
|α|>0

(
n∑

i=1

(bi ∗ bi )α

)
θα
0

α · λ
.

Denote the spectral gap of the stable eigenvalues by

σgap
def= min

j=1,...,ns
|λ j | > 0

and note that σgap = min|α|>0 |α · λ|. Hence, for all θ0 ∈ Bns
1 ,

∣∣∣∣∣∣
2
∑
|α|>0

(
n∑

i=1

(āi ∗ bi )α

)
θα
0

α · λ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
2

n∑
i=1

⎛
⎝ ∑

|α|>0

(āi ∗ bi )α
θα
0

α · λ

⎞
⎠
∣∣∣∣∣∣

≤ 2

σgap

n∑
i=1

∑
|α|>0

|(āi ∗ bi )α|

= 2

σgap

n∑
i=1

‖āi ∗ bi‖1

≤
(

2

σgap

n∑
i=1

‖āi‖1
)
r0.

Similarly, we can show that

∣∣∣∣∣∣
∑
|α|>0

(
n∑

i=1

(bi ∗ bi )α

)
θα
0

α · λ

∣∣∣∣∣∣
≤ nr20

σgap
.

Denoting

δ̃
def=

(
2

σgap

n∑
i=1

‖āi‖1
)
r0 + nr20

σgap
,

then a rigorous enclosure of tmax is given by the computable formula

tmax ∈
2N∑

|α|=0

(
n∑

i=1

(āi ∗ āi )α

)
θα
0

α · λ
+ [−δ̃, δ̃].
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Fig. 8 Distribution of tmax in (6.4). a Distribution of tmax around p1. b Distribution of tmax around
p2. Surfaces are validated local stable manifolds of equilibria (black dots). Only positive values of tmax
make sense as blow-up times of blow-up solutions for (6.1), and hence, these surfaces are drawn only
in the regions where tmax ≥ 0. In both figures, yellow curves and red curves denote P({θ2 = 0}) and
P({θ1 = 0}), respectively. The graphs of P({θ2 = 0}) are drawn outside the horizon (red curves) because
these curves correspond to coordinate axes of local stable manifolds. The red curves are located in the
horizon E , reflecting the invariant structure of E . According to eigendirections at equilibria, asymptotic
behavior of trajectories on these manifolds are essentially governed by dynamics on P({θ1 = 0}). On the
other hand, dynamics in this direction makes little contributions to tmax (Color figure online)

6.2 Distribution of tmax Near Blow-Up

In the present example, saddle equilibria p1 and p2 on the horizon both have
two-dimensional stable manifolds. Once the parameterization method is applied to
validating these invariant manifolds, the blow-up time tmax defined by (6.4) is obtained
as a function of the parameter θ determining local stable manifolds. In particular, we
can validate distributions of tmax on local stable manifolds.

Figure8 shows the distributions of tmax. Because the vector field (6.3) itself can
be defined outside D, namely in {‖x‖ > 1} also, tmax can attain negative values.
Nevertheless, from the viewpoint that (6.3) is obtained from (6.1) through the com-
pactification, only the positive values make sense as the blow-up time of solutions to
(6.1). Now we pay attention to the following facts, which follow from fundamental
arguments of compactifications (cf. Matsue 2018):

• The horizon E is a codimension one invariant submanifold of R3.
• The integrand determining tmax (e.g., (6.4)) is identically zero on E .
Results in Fig. 8 indeed reflect the above nature. For example, one-dimensional

submanifold of two-dimensional stable manifolds of p1 and p2 are located on the
horizon where tmax is identically zero. Our computations further indicate that the
region {tmax > 0} is included in {‖x‖ < 1}. Looking at the region {tmax > 0}, like
Fig. 3 in the previous example, we can discuss the distribution of blow-up times.

From our present observations, we have an interesting result about the distribution
of blow-up times. In the present example, eigenvalues determining stable submani-
folds on the horizon have smaller moduli than the transverse direction. In other words,
the leading (stable) eigendirections are directed tangent to the horizon (red curves
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in Fig. 8) in both manifolds. Asymptotic behavior of trajectories around equilibria is
therefore essentially determined by the exponential decay behavior in the direction
parallel to the horizon. On the other hand, level sets of tmax are distributed so that they
are foliated parallel to the horizon, equivalently the level set tmax = 0, in both cases.
These observations may look strange from the viewpoint of the asymptotic behav-
ior around (hyperbolic) equilibria. Indeed, dynamics around hyperbolic equilibria of
interest are essentially governed by leading eigendirection, implying that the behavior
along the leading eigendirection should mainly contribute to estimate tmax. However,
the integrand in (6.4) is almost zero near the horizon. More precisely, according to the
proof of the blow-up criterion theorem (Theorem 2.8 whose proof is found in Matsue
2018), the integrand as a function of τ decays exponentially fast near the horizon.16

Therefore, asymptotic behavior of solution trajectories near the horizon does little
contributions to tmax. As a consequence, blow-up time is essentially foliated parallel
to the horizon, no matter where the leading eigendirection is distributed. This is a
reason why the level set of tmax is distributed parallel to the horizon.

6.3 Extension of Blow-Up Solutions

As demonstrated in Sect. 5, we can extend local stable manifolds globally by rigorous
integration of (6.3) in backward timedirection. In the present case,wehave a (bounded)
source equilibrium pb and we have succeeded in validating connecting orbits between
three equilibria on the horizon and pb. The validated global stable manifolds are
drawn in Fig. 9. These stable manifolds separate the asymptotic behavior of solution
trajectories outside the manifolds, although we omit the detailed description of phase
portraits because it is hard to clearly visualize.

Note that the present validation of connecting orbits is done by themethod typically
used in the similar works (e.g., Matsue and Takayasu 2020a). In particular, solutions
approaching to trapping regions of equilibria are validated for the existence of global-
in-time existence of solutions. In the present work, trapping regions of sink equilibria
are validated by means of local Lyapunov functions (cf. Matsue and Takayasu 2020a),
while the parameterization for sink equilibria can be also applied to constructing
trapping regions.

7 Example 3: Presence of Separatrix Involving Blow-Ups

The final example is {
u′ = u2 − v,

v′ = 1
3u

3 − u.
(7.1)

The present vector field originally comes from the Keyfitz–Kranzer model (Kranzer
and Keyfitz 1990) demonstrating a non-trivial example of system of conservation laws
including singular shock waves. See Kranzer and Keyfitz (1990) or references therein

16 Hyperbolicity of equilibria is used for the proof, implying that the dynamical property of equilibria,
and potentially general invariant sets, plays a key role in determining the distribution of tmax around 0.
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Fig. 9 Rigorously computed
trajectories on global stable
manifolds of hyperbolic
equilibria for (6.3). Local stable
manifolds for (6.3) colored by
pink and red are validated by the
parameterization method
(Fig. 7). The green dot denotes
the (bounded) source
equilibrium pb (Color figure
online)

for details. A brief introduction of the model is also shown in Matsue (2018) (see also
Sect. 8.1.1). Our purpose here is to validate blow-up solutions for (7.1) as well as
bounded heteroclinic connections among bounded equilibria toward the global phase
portrait. The present study unravels a significant characteristic of saddle-type blow-up
solutions.

Firstly, a direct calculation yields the following.

Lemma 7.1 The vector field (7.1) is asymptotically quasi-homogeneous of type (1, 2)
and order 2.

Note that (7.1) is not quasi-homogeneous. On the other hand, the system (7.1)
possesses the symmetry

(t, u, v) 
→ (−t,−u, v). (7.2)

Namely, if (u(t), v(t)) is a solution to (7.1), then so is (−u(−t), v(−t)). This property
is used to understand the global phase portrait of (7.1) including infinity.

To study the dynamics at infinity, we introduce the quasi-parabolic compactification
of type (1, 2) given by

u = x1
1 − p(x)4

, v = x2
(1 − p(x)4)2

, p(x)4 = x41 + x22 .

Then the corresponding desingularized vector field g is given by the following:

{
ẋ1 = g1(x)

def= (x21 − x2)H1(x) − x1H2(x)

ẋ2 = g2(x)
def= { 1

3 x
3
1 − (1 − p(x)4)2x1

}
H1(x) − 2x2H2(x),

(7.3)

where˙= d
dτ and

H1(x) = 1

4

{
1 + 3p(x)4

}
, H2(x) = x31(x

2
1 − x2) + x2

2

{
1

3
x31 − (1 − p(x)4)2x1

}
.

Fortunately, we know that all equilibria (including the origin) are hyperbolic, and
hence, we do not need additional desingularization. Detailed information of our tar-
geting equilibria is as follows:
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Fig. 10 A global phase portrait of (7.3) through rough numerical simulations. Black squares, circles and
triangles denote sink, saddle and source equilibria, respectively. Note that all objects here are obtained by
(non-rigorous) numerical integration of (7.3). The flow directions are shown by black arrows. The boundary
of the collection of curves (dotted curve) is the horizon E . The whole regionD is separated into four regions;
points admitting global-in-time trajectories (red), points admitting blow-up only in positive time direction
(blue), points admitting blow-up only in negative time direction (purple) and points admitting blow-up
in both positive and negative time directions (green). There are two connecting orbits between equilibria
determining saddle-type blow-up solutions (Color figure online)

• The origin p0 = (x1, x2) = (0, 0), which is saddle.
• A bounded equilibrium p+

b = (x1, x2) ≈ (0.7328506362011802, 0.5370700549
804747), which is source.

• A bounded equilibrium p−
b = (x1, x2) ≈ (−0.7328506362011802, 0.537070054

9804747), which is sink.
• Equilibrium on the horizon p±∞,s = (x1, x2) ≈ (±0.8861081289780320, 0.6192
579489210105), which are saddle.

• Equilibria on the horizon p±∞ = (x1, x2) ≈ (±0.989136995894977, 0.2067585
57005180). The point p+∞ is sink, while p−∞ is source.

Sample (non-rigorous) numerical computations indicate that there is a chain of global
trajectories connecting p0 and p+

b , and p+
b and p+∞,s , respectively. The numerically

computed global phase portrait including the horizon is shown in Fig. 10. The figure
indicates that thewhole phase space is separated into two subdomains by a heteroclinic
chain among equilibria, including those on the horizon.

Remark 7.2 Here we have chosen the parabolic-type compactification in the present
argument for the following reasons. First, our objective here is the global phase
portrait for (7.1), which is insufficient to study only one local chart, namely direc-
tional compactifications. The change of coordinates by numerics (both in rigorous
and non-rigorous sense) requires unnecessary and difficult tasks. Second, Poincaré-
type compactifications are inappropriate to study (7.1) including dynamics at infinity,
because (7.1) is quasi-homogeneous only in the asymptotic sense, and the application
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to Poincaré-type compactifications to such a system cause the loss of regularity of the
desingularized vector field on the horizon, as mentioned in Sect. 2.3.4.

One of ourmain goals here is to construct the chain,mainly connecting orbits among
{p+∞,s, p

+
b , p0}. Like in the previous examples, the local stable manifold Ws

loc(p
+∞,s)

of the saddle p+∞,s on the horizon can be validated by the parameterization method.
Validated local stable manifolds of p+∞,s as well as p0 are shown in Fig. 11. These
are validated through the parameterization method in the same way as Sects. 5 and 6.
We omit the detailed implementation of the method applied to the present problem
because the basic idea is identical, while we need lengthy calculations of terms we
should enclose.

We then extend the manifold inside D ≡ {p(x) < 1} by the rigorous integration
of (7.3). According to numerical simulations (Fig. 10), Ws

loc(p
+∞,s) is connected to

the source p+
b . Rigorous integration of (7.3) in backward time direction provide the

computer-assisted validation of the connecting orbit from p+∞,s to p+
b by constructing

a trapping region of p+
b in backward time, which is a standard techniques for validating

global-in-time trajectories and applied in, e.g., Matsue and Takayasu (2020a). On the
other hand, we have another bounded equilibrium; the origin p0. Eigenvalue validation
indicates that p0 is a saddle, and the global trajectory connecting the source p+

b and
the origin p0 is also validated by extending the local stable manifold Ws

loc(p0) of
p0 via the parameterization and the rigorous integration of (7.3) in backward time
direction. By symmetry, we obtain the chain of connecting orbits among the points
{p±∞,s, p

±
b , p0}. Note that all these points are validated with rigorous errors through

the parameterization method. Also note that the connecting orbit between p±∞,s exists
through the fact that the horizon E is invariant and there are no equilibria between
them (cf. Matsue 2018).

As a consequence, an invariant closed curve consisting of connecting orbits among
equilibria {p±∞,s, p

±
b , p0} is constructed, as indicated in Fig. 10, with computer-

assisted proof. The well-known Jordan’s closed curve theorem indicates that the
invariant closed curve decomposes the phase spaceD into two regions.17 In the sequel,
we study the nature of solutions through points on these separated regions from the
viewpoint of blow-up behavior.

7.1 Blow-Up Time Computation

The maximal existence time of the solution (y1(t), y2(t)) for the original vector field
is given as follows (see (2.19) and Matsue and Takayasu 2020a):

17 Numerically observed phase portrait in Fig. 10 implies the existence of chains of connecting orbits
providing a finer decomposition of the phase space. But we omit such a precise decomposition because the
process is basically identical and the essential consequence is similar.
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Fig. 11 Local stable manifolds Ws
loc(p

+∞,s ) and Ws
loc(p0) for (7.3). Black dots are equilibria p0, p

+
b

and p+∞,s from the left, respectively. Red curves are validated local stable manifolds with rigorous error

bounds ‖P − P(N )‖∞ ≤ r = 5.171 × 10−14 for p0 and ‖P − P(N )‖∞ ≤ r = 1.381 × 10−10 for
p+∞,s , respectively. The black curve denotes the horizon E . Although validated local stable manifolds are
characterized for (7.3) which themselves make sense outside the horizon also, they make sense inside the
horizon as the corresponding objects to the original vector field (7.1). In both validations, the approximation
order N is chosen as N = 100. Because p+

b is source, it does not admit a non-trivial stable manifold (Color
figure online)

tmax =
∫ ∞

0

1

4

{
1 + 3

(
x1(τ )4 + x2(τ )2

)}
(1 − x1(τ )4 − x2(τ )2)dτ.

Let x∗ = (x∗,1, x∗,2) ∈ E be a saddle equilibrium. Note that x4∗,1 + x2∗,2 = 1 by
definition of the present parabolic-type compactification.

As in the previous case, let P be a parameterization whose image of Bns determines
the local stable manifold of x∗ such that P(0) = x∗. P is assumed to have a power
series expression (4.3) satisfying a0 = x∗. Assume that the trajectory {(x1(τ ), x2(τ ))}
is included in Ws

loc(x∗) for the desingularized vector field. In the present case, n = 2,
and we consider only the case ns = 1. Calculations below are slightly simplified by
introducing u = eλτ θ0, where λ be the stable eigenvalue at x∗. Indeed, we have

x(τ ) = P(eλτ θ0) = P(u) =
∑
j≥0

a ju
j ∈ R

2, u ∈ R, a j ≡ ((a1) j , (a2) j )
T ∈ R

2.

Letting ai = {(ai ) j } j≥0 for i = 1, 2, we have

tmax =
∫ 0

θ0

1

4

(
1 + 3(P4

1 (u) + P2
2 (u))

) (
1 − P4

1 (u) − P2
2 (u)

) du

λu

= −
∫ θ0

0

1

4

⎛
⎝1 + 3

∑
j≥0

(
(a41) j + (a22) j

)
u j

⎞
⎠

⎛
⎝1 −

∑
j≥0

(
(a41) j + (a22) j

)
u j

⎞
⎠ du

λu
.

Using that

P4
1 (u) + P2

2 (u) =
∑
j≥0

(
(a41) j + (a22) j

)
u j = 1 +

∑
j≥1

(
(a41) j + (a22) j

)
u j ,
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we have the following exact formula for tmax:

tmax =
∫ θ0

0

⎛
⎝1 + 3

4

∑
j≥1

(
(a41) j + (a22) j

)
u j

⎞
⎠

⎛
⎝∑

j≥1

(
(a41) j + (a22) j

)
u j

⎞
⎠ du

λu

=
∫ θ0

0

⎛
⎝∑

j≥1

(
(a41) j + (a22) j

)
u j−1

+3

4

∑
j≥2

(
(a42) j + 2(a41 ∗ a22) j + (a81) j

)
u j−1

⎞
⎠ du

λ

= 1

λ

⎛
⎝∑

j≥1

(
(a41) j + (a22) j

) θ
j
0

j
+ 3

4

∑
j≥2

(
(a42) j + 2(a41 ∗ a22) j + (a81) j

) θ
j
0

j

⎞
⎠ .

(7.4)

7.2 Chain of Connecting Orbits as Separatrix

Inwhat follows, we discuss a global nature of saddle-type blow-up solutions in dynam-
ical systems. In Fig. 10, we numerically observe that the compactified phase space is
separated into four domains, one of which consists of points whose trajectories tend
to the origin as τ → ±∞, while another consists of points whose trajectories tend to
equilibria on the horizon as either both τ → ±∞, or only τ → −∞ or τ → +∞.
Namely, the latter sets consist of initial points which solutions through these points
blowup in finite times in the original coordinate.A significant importance of this obser-
vation is that these four domains are divided by sequences of trajectories including
ones inducing blow-up solutions. In particular, saddle-type blow-up solutions them-
selves or bounded global-in-time trajectories connecting blow-up solutions can locally
divide initial points into the above domains.

As demonstrated in Sect. 6.3 and mentioned previously, connecting orbits between
equilibria can be validated through the parameterization, extension of local (un)stable
manifolds and construction of trapping regions (namely, local stable manifolds of sink
equilibria). In two-dimensional systems like (7.1), the detailed nature of global dynam-
ics can be easily considered by studying asymptotic behavior of solutions through
neighborhoods of connecting orbits.Moreover, our validated connecting orbits involve
blow-up solutions, and the characteristic value tmax is associated with all points on
validated connecting orbits and solutions close to them. Here we study connecting
orbits involving hyperbolic saddles on the horizon and global-in-time solutions for the
desingularized vector field, and the corresponding characteristics in the original vector
field, yielding significantly different nature of asymptotic behavior. In particular, we
investigate the following issues:

• Dependence of blow-up characterizations on magnitude of initial points.
• Continuous dependence of tmax on initial points.
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(Local) stable manifolds of saddle equilibria locally separate neighborhoods of the
equilibria, as well as those asymptotic behavior, unlike sink and source equilibria. The
first issue is then equivalent to a non-trivial question here iswhether such a separation
around the horizon can significantly change the asymptotic behavior of solutions for
the original vector field.

Nowwe have a hyperbolic saddle on the horizon p+∞,s , a bounded source p
+
b and the

origin p0 as a hyperbolic saddle. As shown in Figs. 10 and 11, local stable manifolds
of p+∞,s and p+

b are validated through the parameterization method and extended
through the integration of (7.3) like connecting orbits in Fig. 9. Let Csep be the union
of validated connecting orbits:

Csep :=
(
Wu(p+

b ) ∩ Ws(p0)
)

∪
(
Wu(p+

b ) ∩ Ws(p+∞,s)
)

. (7.5)

7.2.1 Dependence of Blow-Up Characterizations on Magnitude of Initial Points

First we consider the following issue.

Problem 7.3 Does the blow-up behavior depend on magnitudes of initial points?

In arguments of blow-up criteria, magnitudes (equivalently, norms) or values of
several functionals of initial points are typically concerned for determining whether
or not the corresponding solutions blow up. In many cases, there are mathematical
arguments showing that initial points whose norms or associated functionals are suf-
ficiently large induce finite-time blow-up. On the other hand, there are also several
mathematical results of blow-up behavior which do not mention the magnitude of ini-
tial points. The aim of the present issue here is to reveal a qualitative characterization
of asymptotic behavior around saddle-type blow-up solutions, which partially gives
an answer to the above question.

Now we choose two pairs of initial points. One pair is located close to p+∞,s ,
while another pair is located close to the origin. In both pairs, two initial points are
located at the opposite side to each other across Csep. More precisely, the former
pair is chosen close to (x1, x2) = (0.83, 0.53), while the latter pair is chosen close
to (x1, x2) = (0.32, 0.32). The corresponding points in the original coordinate are
approximately

(u, v) = (3.39444993, 4.69501202) and (u, v) = (0.36072017, 0.40662201),
(7.6)

respectively. Details are drawn in Fig. 12. Themethodology shown in Sect. 4 is applied
to validating global-in-time trajectories for (7.3) through each point, showing that the
asymptotic behavior of trajectories are completely separated for both pairs of initial
points. More precisely,

• across saddle-type blow-up solutions, the asymptotic behavior of solutions as those
for (7.1) significantly change, one ofwhich attains tmax = ∞, while another attains
tmax < ∞.

Moreover, we also observe that
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Fig. 12 Chain Csep and
asymptotic behavior of solutions
near Csep. A nature of the chain
Csep defined by (7.5), the
collection of black (solid and
dotted) curves, is drawn. Red
curves correspond to
global-in-time solutions for
(7.1), while blue curves
correspond to blow-up solutions
for (7.1). Colors correspond to
Fig. 10. Initial points are indeed
separated by Csep, no matter
how large they are. See also
Fig. 13 (Color figure online)

• such a nature can be observed even near the origin, where another connecting
orbit between p0 and p+

b locally separates the phase space and is connected to the
saddle-type blow-up solution generated by p+∞,s .

See Figs. 12 and 13. From the above observation, we can say that the magnitude
of initial points is not always essential to determine the blow-up behavior. In other
words, the chain Csep plays a role as the separatrix dividing global-in-time solutions
and blow-up solutions. The key point is that the chain Csep including the saddle on the
horizon locally separates the phase space and that there are sinks p+∞ ∈ E and p−

b ∈ D
inducingglobal-in-time solutions for (7.3) approaching to them.The significant change
of solutions in the original vector field is then responsible for the existence of saddle-
type blow-up solutions, in particular Csep, sinks on the horizon and another sinks on
the other side of Csep. Nevertheless, saddle-type blow-up solutions themselves plays
a role as the trigger of the above nature. Finally note that the present observation can
be applied to other dynamical systems like (6.1), where the global extension of stable
manifolds characterizing saddle-type blow-up solutions is validated in Sect. 6.3 (cf.
Fig. 9).

7.2.2 Continuous Dependence of tmax on Initial Points

Next we investigate the continuous dependence of tmax on initial points across Csep
given in (7.5). Here we consider a line segment 
 which is transverse to Csep. See
Fig. 14. The segment 
 is chosen so that Csep and 
 are orthogonal to each other at the
boundary p0,s of Ws

loc(p
+∞,s) validated by the parameterization method (cf. Fig. 11).

The boundary p0,s ofWs
loc(p

+∞,s) inD is then uniquely determined as the intersection
Csep ∩ 
 ≡ {p0,s}. Our problem here is then stated as follows.

Problem 7.4 Does the blow-up time vary continuously on 
? If not, study whether tmax
is discontinuous only in each side of Csep on 
, or discontinuous in both sides of Csep.

Indeed, the concrete dependence of tmax cannot be unraveled unless explicit formu-
lae (or both lower and upper bounds) for tmax as functions of initial points are obtained.
Our present methodology enables us to unravel this hidden nature in a reasonable way.

To study the above problem, the following steps are operated.

123



   46 Page 66 of 76 Journal of Nonlinear Science            (2023) 33:46 

Fig. 13 Enlarged view of initial points in Fig. 12. Endpoints of colored curves in (a) denote initial points of
the global-in-time solution (red) and the blow-up solution (blue) going to the direction toward the origin,
respectively, while those in (b) denote initial points of the global-in-time solution (red) and the blow-up
solution (blue) going to the direction toward the saddle p+∞,s , respectively (Color figure online)

1. Set a line segment 
 transverse to the chain Csep.
2. Compute the blow-up time tmax of the solution through {p0,s} ≡ Csep ∩ 
.
3. Choose several points on 
 in the blue region, shown in Fig. 14, and validate

blow-up times through these points.
4. Plot all validated blow-up times and study the distribution.
5. Investigate if the distribution provides continuous dependence on initial points.

The point p0,s decomposes the line segment 
 into two pieces, denoted by 
l and

r consisting of points on 
 in the left side (red in Fig. 14) and the right side (blue in
Fig. 14) of p0,s , respectively. Our validations, rigorous integrations of (7.3) in forward
time direction, show that all sample points on 
r converge to p+∞ as τ → ∞, which
correspond to a family of sink-type blow-up solutions. Their validated blow-up times
as well as the blow-up time of the solution through p0,s are shown in Fig. 15 with their
rigorous error bounds. Looking at Fig. 15, the corresponding blow-up times increase
as sectional points on 
r become close toWs

loc(p∞,s). On the other hand, all points on

l converge to the sink equilibrium p−

b (Fig. 10). Because the preimage of p−
b under

the compactification is bounded, the corresponding solution in the original timescale
exists for all t ≥ 0. This fact is easily confirmed by showing that tmax(p) = ∞ for
p ∈ 
l . These observations show that tmax is discontinuous as a function of points on

 at p0,s from 
l .

Next we discuss the continuity of tmax at p0,s on {p0,s} ∪ 
r . Our validations show
that

tmax(p0,s) ∈ 3.109637008441572391221,

which is much higher than tmax = tmax(p) through p ∈ 
r , according to Fig. 15.
However, tmax = tmax(p) drastically increases as p ∈ 
r approaches to p0,s . At
the point p ∈ with |p0,s − p| = 1.0 × 10−13, validation of blow-up solutions did
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Fig. 14 Enlarged view of Fig. 10: choice of the segment 
. The black ball is the saddle p+∞,s , while the
black triangle is the source p+

b . The black dotted curve is the horizon E . The red curve connecting p+∞,s and

p+
b is a component of the chain Csep. Recall that trajectories through points in the red region correspond to

global-in-time solutions for (7.1), while trajectories through points in the blue region correspond to blow-up
solutions for (7.1). A line 
 is chosen so that it is transverse to Csep and is divided into two segments 
l
(purple line) and 
r (black line) across Csep and it is orthogonal to Csep at p0,s mentioned below. The
intersection point {p0,s } ≡ 
 ∩ Csep is denoted by the green star (Color figure online)

(a) (b)

Fig. 15 Blow-up times of solutions with initial points on 
. We have totally chosen 10,000 points on 
r for
validating tmax. a Relationship of points on 
r and the blow-up times of solutions through those points.
Horizontal: distance from p0,s on 
. Vertical: blow-up time tmax of the corresponding solution. The value
0 on the horizontal axis corresponds to p0,s . The blow-up time tmax = tmax(p) looks discontinuous at
p = p0,s . The red point denotes tmax(p0,s ), while green points denote tmax = tmax(p) at p ∈ 
r \{p0,s }.
All plotted blow-up times here except tmax(p0,s ) have rigorous error bounds less than 3.7235×10−5, while
the rigorous error bound of tmax(p0,s ) is 2.5175×10−11. b Enlarged view of the graph (a) for points within
the distance ≤ 1.0×10−8 from p0,s . All plotted blow-up times here except tmax(p0,s ) have rigorous error
bounds less than 1.8288× 10−2. As p ∈ 
r approaches to p0,s , tmax significantly increases. In the present
study we do not have validations for tmax associated with points p ∈ 
r within the distance ≤ 1.0× 10−13

(Color figure online)
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not succeed. As long as we have validated, we cannot conclude the discontinuity of
tmax at p0,s in both sides. Nevertheless, we can still conclude that tmax behaves in a
singular manner around p0,s where the trajectory approaches to different invariant sets
as τ → ∞.

Remark 7.5 Rigorous enclosures of tmax onWs(p+∞), namely sink-type blow-up solu-
tions, are validated by local Lyapunov functions and rigorous integrations of (7.3),
which are exactly machineries applied in Matsue and Takayasu (2020a), and hence,
the detailed validation methodology is omitted. The difference of orders of (the worst)
rigorous error bounds of tmax on and off Ws(p∞,s) shown in Fig. 15 comes from that
of the methodology for validating rigorous bounds of tmax. Nevertheless, there is no
significant influence on the qualitative tendency of tmax in the present study.

Remark 7.6 (Different choice of 
 can provide different distributions of tmax) If we
choose a line segment 
 acrossWs

loc(p0) instead ofW
s
loc(p

+∞,s), then tmax at the unique
intersection pointWs

loc(p0)∩
 is+∞, which provide the different distribution of tmax
from Fig. 15.

Remark 7.7 (Behavior of tmax: a numerical experiment) We have numerically calcu-
lated the behavior of tmax as a function of distance to the stable manifold in Fig. 15b.
Let x be the distance of a point p from p0,s in 
r and tmax(x) be the corresponding
blow-up time. As far as we have calculated, we could not match tmax(x) by functions
of the form xa , eax , c(ln x)a and Cxa(ln x)b for constants a, b, c. It is needless to say
that this asymptotic form can be different for smaller x and a different choice of 
.

7.2.3 Short Summary of Our Observations

Our observations here are summarized as follows.

• Blow-up characterizations such as the asymptotic behavior and blow-up times do
not always depend continuously on initial points in the presence of saddle-type
blow-up solutions.

• The blow-up time tmax varies in a singular manner near the chain of connecting
orbits involving saddle-type blow-ups, like Csep.

Note that these features cannot be unraveled only from local information around
invariant objects, because local invariant manifolds themselves do not determine the
asymptotic behavior of solutions through all points around the manifolds. In other
words, global information of solutions are necessary to investigate this issue. It should
be also noted that the above nature is observed not only by the presence of invariant
sets like Csep, but also by the presence of another invariant sets like p+∞ and p−

b , at
least one of which is included in the horizon E . This consequence strongly supports the
importance of investigations of global dynamical structure to unravel the significantly
different asymptotic behavior of solutions for the original vector field. Computer-
assisted proofs provide a systematic and mathematical rigorous way to investigate
such global information of solutions. Moreover, the presence of saddle-type blow-up
solutions provides an easy prediction of the existence of the above nature.
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8 Concluding Remarks

In this paper, we have shown several characteristics of blow-up solutions for
autonomous ODEs which are unstable under perturbations of initial points, referred
to as saddle-type blow-up solutions, with the computer-assisted proofs of their exis-
tence and analytic characterization of blow-up times. Combining compactifications,
timescale desingularizations of vector fields, parameterization of invariant manifolds
and their extensions via ODE integrations with computer-assisted proofs, blow-up
solutions and their extensions are validated systematically, no matter how stable equi-
libria on the horizon characterizing these blow-up solutions are. It should be noted
that, as seen in all examples, our methodology does not require a priori information
about the existence of blow-up solutions. This is a big advantage so that the present
methodology can be applied to various dynamical systems and blow-up problems
under mild assumptions.

Characteristics we have unraveled in the present paper are just examples of intrinsic
natures which saddle-type blow-up solutions induce. But it is not an easy task to
predict the presence of such features theoretically, because these are observed as the
composite of multiple structures. For example, distribution of tmax can be investigated
by the combination of an analytic expression of tmax and explicit distribution of local
stablemanifolds of equilibria on the horizon for desingularized vector fields. As for the
separatrix nature among global-in-time solutions and blow-up solutions, it cannot be
characterized without concrete distribution of global-in-time solutions, sink-type and
saddle-type blow-up solutions. Computer-assisted proofs, on the other hand, connect
features of explicitly validated objects to extract global nature as the composite of
local characteristics, like the above features. These computation techniques efficiently
work to gain insights into blow-up solutions.

We end this paper by leaving comments about topics involving saddle-type blow-
up solutions, which can relate to the present study toward further insights into global
nature of blow-up solutions, dynamics at infinity and general finite-time singularities.

8.1 Remarks on Saddle-Type Blow-Up Solutions in Science and Engineering

Saddle-type blow-up solutions can arise in scientific and engineering studies. We
review several preceding studies to assert the importance of saddle-type blow-up solu-
tions and believe that our presentmethodologywill contribute to unravel the dynamical
nature of finite-time singularities involving saddle-type blow-up solutions in the fol-
lowing kinds of problems.

8.1.1 Singular Shock Waves

In the Riemann problem of the systems of conservation laws

Ut + f (U )x = 0 (8.1)
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for some smooth f : Rn → R
n , namely the initial value problem of (8.1) with

U (0, x) =
{
UL x < 0,

UR x > 0,
for UL ,UR ∈ R

n,

shock waves are characterized by locally integrable (weak) solutions with discontinu-
ities with the constraints called jump conditions or the Rankine–Hugoniot conditions.
With the assumption of viscous shock criterion, the Riemann problem is reduced to
find connecting orbits of the traveling wave ODE associated with (8.1) connecting
UL and UR . In the 1980s and 1990s, shock waves with a singular nature on the front
were observed for a simple system of conservation laws, which are referred to as delta
shocks or singular shocks. Roughly speaking, singular shocks are characterized by
shocks with Dirac’s delta singularity on the shock front (see, e.g., Keyfitz et al. 2003;
Kranzer and Keyfitz 1990; Sever 2007 for precise discussions of delta shocks and
singular shocks). A typical feature of singular shocks with the presence of the delta-
like singularity is that several constraints in jump conditions are violated,18 which
is referred to as the presence of the Rankine–Hugoniot deficit of a shock measuring
the magnitude of singularity on the shock front. From the viewpoint of dynamical
systems, there is a characterization of singular shocks (e.g., Schaeffer et al. 1993),
showing that singular shocks can consist of a collection of blow-up solutions and
“invariant sets at infinity”. In several concrete problems such as the Keyfitz–Kranzer
model (Kranzer and Keyfitz 1990) and the two-phase model (Keyfitz et al. 2003),
the geometric singular perturbation theory plays a key role in characterizing singu-
lar shocks as a singular perturbation of blow-up connections for the traveling wave
problems associated with the original conservation laws with the regularization keep-
ing the self-similarity of waves (well known as Dafermos regularization). Preceding
studies with blowing up (desingularization) of singularities and the geometric singu-
lar perturbation theory indicate that singular shocks are characterized by trajectories
approaching to normally hyperbolic invariant manifolds, corresponding to the infinity
for appropriately transformed dynamical systems (Hsu 2016; Schecter 2004).19 We
believe that saddle-type blow-up solutions can play key roles in characterizing such
singular nature both qualitatively and quantitatively (e.g., Rankine–Hugoniot deficits).

8.1.2 Suspension Bridge

The equation of the following form is well studied as a model expressing scientific
and engineering phenomena:

w′′′′(t) + kw′′(t) + f (w(t)) = 0 (t ∈ R), (8.2)

18 In n-dimensional systems of conservation laws, jump conditions are characterized by n (non)linear
equations.
19 It is also indicated that the Rankine–Hugoniot deficit is measured by trajectories at infinity connecting
blow-up solutions (Keyfitz et al. 2003). When the Rankine–Hugoniot deficit is absent, the corresponding
shock wave is characterized in the ordinary sense.
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where k ∈ R is a parameter and f is a locally Lipschitzian. This equation arises in
the dynamical phase space analogy of a nonlinearly supported elastic structure (Hunt
et al. 1989) and a model characterizing pattern formations in physical, chemical and
biological systems (Bonheure and Sanchez 2006). See also, e.g., Peletier and Troy
(2012). In Berchio et al. (2011), a possible finite-time blow-up for the solution of (8.2)
is discussed with a mild assumption

f ∈ Liploc(R), f (t)t > 0 for every t ∈ R\{0}.

A fundamental result involving blow-up is that the existence of a blow-up solution
w(t) for (8.2) as t → tmax < ∞ implies that

lim inf
t→tmax

w(t) = −∞ and lim sup
t→tmax

w(t) = +∞, (8.3)

namely a blow-up with oscillation. Moreover, the existence of the above oscillatory
blow-up for (8.2) with a specific nonlinearity f is proved. There are several reports
about the relationship between the system (8.2) to traveling waves for the model
equation of a suspension bridge

utt + uxxxx + γ u+ = W (t, x),

proposed by Lazer–McKenna (Lazer andMcKenna 1990). According tomany preced-
ing works and historical sources, one of the most interesting behaviors for suspension
bridges (including the Tacoma Narrow Bridge where was collapsed in November
1940) is the following:

Large vertical oscillations can rapidly change, almost instantaneously, to a tor-
sional oscillation (quotation from Gazzola and Pavani 2011).

Preceding works involving this catastrophic phenomenon discuss the mechanism of
torsional oscillations in detail,20 one of which is considered to be the oscillatory blow-
up behavior mentioned above. It should be noted that there is another direction to the
origin of such torsional oscillations. In Arioli and Gazzola (2015), it is explained that
internal resonances can trigger the torsional instability.

Later successiveworks (e.g.,Gazzola andPavani 2013) have reported the qualitative
nature of the above blow-up such as infinitely many change of signs before blow-up,
vanishing intervals of oscillations via several quantitative estimates. In order to obtain
the nature, several growth conditions of f (but generalized under these conditions
unlike Gazzola and Pavani 2011), restrictions to k and an inequality for derivatives
of solution w at an initial time are assumed. It should be noted that norms of initial
points are not essential to characterize the above behavior. See Gazzola and Pavani
(2013) for details. Recently, the first author and collaborators (D’Ambrosio et al. 2015)
have characterized the above blow-up nature for particular nonlinearity f in (8.2) by

20 In Gazzola and Pavani (2013), there are several additional comments about the case of London’s Mil-
lennium Bridge (April 2007) and the Assago metro Bridge in Milan (February 2011). See the reference
papers therein for details about these engineering topics.
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constructing a concrete asymptotic form of blow-up profiles and validating a periodic
solutionwith computer-assisted proofs. InD’Ambrosio et al. (2015), it is also validated
that the periodic solution for an auxiliary equation is unstable, which indicates that the
corresponding blow-up solution is unstable under perturbations of initial points. It is
thus expected that the blow-up nature which is unstable under perturbations of initial
points plays a key role in describing rich and interesting, sometimes catastrophic,
scientific and engineering nature.

Remark 8.1 InMatsue (2018), it is proved that blow-up behaviorwithwide oscillations
like (8.3) can be characterized by periodic orbits at infinity, which is referred to as
a periodic blow-up. More precisely, global trajectories on the stable manifold of a
hyperbolic periodic orbit on the horizon for the desingularized vector field correspond
to blow-up solutions with oscillations whose asymptotic behavior, such as the blow-up
rate and the oscillatory nature, are uniquely determined by the order of the original
vector field and the periodic orbit on the horizon. The fundamental machinery for this
characterization is the same as that shown in Sect. 2. Arguments in the present paper
will also contribute to reveal universal mechanisms of this kind of blow-up solutions
which are saddle-type both quantitatively and qualitatively, and their validations.

8.1.3 More Comments

We leave several comments about the link to blow-upbehavior arising in the suspension
bridge problem. As noted, it is proved in D’Ambrosio et al. (2015) with the computer
assistance that there is an unstable hyperbolic periodic orbit � = {w(t)} expressing
an asymptotic behavior of blow-up behavior for (8.2) with specific k and f . It is
then conjectured in D’Ambrosio et al. (2015) that, for the appropriately transformed
dynamics from the problem of the form (8.2), the boundary of the basin of attraction
of the origin coincides with Ws(�). A consequence of the conjecture is the existence
of a three-dimensional manifold which “separates” the phase space and for which
solutions with initial points taken on one side of the manifold blow-up in finite time
while on the other side, solutions converge to the origin. In the present paper, we have
focused on unstable, in particular saddle-type, blow-up solutions which can extract the
above nature. We have revealed here that saddle-type blow-up solutions, even with the
simpler asymptotic behavior than (D’Ambrosio et al. 2015), can separate the phase
space so that initial points on one side determine global-in-time solutions, while those
on the other side induce blow-up solutions. We have mainly investigated asymptotic
behavior of solutions near a chain of connecting orbits for desingularized vector fields
including saddles on the horizon, like Csep given in (7.5) for (7.3), and shown that
Csep triggers the above significantly different asymptotic behavior among solutions.
In particular, Csep have played a role as a separatrix among solutions for the original
vector field. We believe that such invariant objects can characterize the “boundary” of
the basin of attraction mentioned in D’Ambrosio et al. (2015).

Note that the above object is characterized only for stationary blow-up (Theo-
rems 2.4, 2.8 and 2.12) so far. On the other hand, a computer-assisted proof of the
existence of (un)stable manifolds of hyperbolic periodic orbits is already established
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in, e.g., (Castelli et al. 2018), and the treatment of blow-up solutions involving periodic
orbits at infinity is also established in Matsue (2018, 2019). In other words, the same
machinery as shown in Sect. 2 can be applied. Going back to the suspension bridge
problem, combination of preceding works with the arguments in the present paper can
contribute to unravel the nature of blow-up behavior in (8.2) only with a few mild
assumptions.
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