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Abstract
We propose an efficient mesh adaptive method for the numerical solution of time-dependent
partial differential equations considered in the fixed space-time cylinder Ω × (0, T ). We
employ the space-time discontinuous Galerkin method which enables us to use different
meshes at different time levels in a natural way. The mesh adaptive algorithm is based on
control of the interpolation error in the L∞(0, T ; Lq(Ω))-norm. The goal is to construct a
sequence of conforming triangular meshes in such a way that the interpolation error bound
is under a given tolerance and the number of degrees of freedom is minimal. The resulting
grids consist of anisotropic mesh elements with varying polynomial approximation degrees
with respect to space. We present a theoretical framework of this approach as well as several
numerical examples demonstrating the accuracy, efficiency, and applicability of the method.

Keywords Anisotropic hp-mesh adaptation · Time-dependent problems · Interpolation
error estimates · Space-time discontinuous Galerkin method · Mesh element optimization

Mathematics Subject Classification 65N50 · 65N15 · 65D05

1 Introduction

Mesh adaptive methods exhibit an efficient tool for the numerical solution of partial differ-
ential equations (PDEs) since they are able to significantly reduce the computational cost
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necessary to achieve a given error tolerance [3, 5, 11, 32, 45]. Themesh adaptivemethodology
is well established for time-independent problems, where the current mesh is adapted based
on suitable error estimates of the available approximate solution. This process is repeated
several times until the required accuracy is achieved. If any inaccuracy appears during the
computational process, it can be compensated by the computations on next adaptive levels,
i.e., the error does not propagate. On the other hand, the numerical solution of time-dependent
problems is more complicated since the computation is performed step-by-step and any inac-
curacy propagates in the physical time.

Among the most efficient adaptive techniques belong the hp-methods which admit
refinement (and coarsening) of the mesh elements and variation of the local polynomial
approximation degrees. Under some assumptions, an exponential rate of convergence of the
computational error with respect to the number of degrees of freedom can be achieved [4,
12, 32, 38, 40].

Moreover, the so-called anisotropic mesh adaptation techniques exhibit an efficient tool
for the solution of problems containing interior or boundary layer and/or line discontinuities,
see, e.g., [1, 8, 29–31, 44, 48] and the references mentioned therein. For a review, we refer to
[34, 46]. In contrast to the standard mesh refinement method, where the mesh elements are
merely split (isotropically and/or anisotropically), the current grid is completely re-meshed.

In recent years, we have developed the anisotropic hp-mesh adaptation method for the
numerical solution of time-independent boundary value problems, which combines both
aforementioned approaches [14, 19, 20]. This technique offers sufficient flexibility in the
minimization of the number of degrees of freedom (and reduction of the computational time)
necessary to achieve a given error tolerance. In particular, we derived interpolation error
estimates employing the geometry ofmesh elementswhich are used for the local optimization
of the element shape and the polynomial approximation degrees. Further, using the so-called
continuous mesh and error models (cf. [19, 29, 30]) the size of mesh elements is optimized,
and the corresponding metric field, used for the mesh construction, is defined. For further
details, see the references given above.

The extension of the anisotropic hp-mesh adaptation technique to the solution of time-
dependent problems is not straightforward. The use of non-matching and non-nested, possibly
anisotropic meshes at different time levels can produce inaccuracies, which propagate in
time and can degrade the accuracy of the approximate solution. An adaptive finite element
method employing isotropic but non-nested grids was proposed in [35] for a linear parabolic
problem. In [27], a piecewise linear finite element approximation with anisotropic mesh
adaptation controlling the error in L∞(0, T ; Lq(Ω))-norm was proposed for the simulation
of an unsteady bi-fluid model. Further, these techniques were developed and applied mostly
to unsteady flow simulation, see, e.g., [2, 6, 26]. Finally, additional aspects of the adaptive
methods for time-dependent problems on unstructured grids were developed, e.g., [9, 10,
37]. For theoretical aspects, we refer [7] and the references cited therein.

In this paper, we develop an anisotropic hp-mesh adaptive method for the numerical
solution of the time-dependent partial differential equation written the form

∂tϑ(w) + Lw = f in Ω × (0, T ), (1)

where Ω ⊂ R
2 is the computational domain, T > 0 is the time to be reached and w :

Ω × (0, T ) → R
n , n ≥ 1 is the sought unknown function. Moreover, ∂t denotes the partial

derivative with respect to t ∈ (0, T ),L is a (possibly nonlinear) differential operator acting
onw and f : Ω ×(0, T ) → R

n is a source term. Finally, ϑ : Rn → R
n is a function given by

the physical model. In many cases it is an identity (i.e., ϑ(w) = w), but one of the numerical
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examples presented below addresses the simulation of variably saturated flow through a
porous medium, where ϑ is a nonlinear function of w. We assume that Ω is polygonal, for
simplicity. Equation (1) is accompanied by the initial condition w(x, 0) = w0(x), x ∈ Ω ,
wherew0 : Ω → R

n is a prescribed function. Moreover, (1) has to be equipped with suitable
boundary conditions depending on the properties of L .

We discretize (1) by the space-time discontinuous Galerkin method, which treats different
meshes at different time levels in a natural way.We adopt the aforementioned anisotropic hp-
mesh adaptation technique to the solution of (1). The resulting space-time adaptive scheme
admits hp-adaptation in space, as well as the adaptive choice of the size of the time step,
but the time polynomial approximation degree is kept fixed. However, an adaptive choice
of the time polynomial degree is possible in principle. We demonstrate the potential of the
proposed scheme by a set of numerical experiments. In particular, we show that the use of non-
matching, non-nested anisotropic hp-meshes at different time instances does not negatively
affect the accuracy of numerical solution.

The content of the paper is the following. In Sect. 2 we describe the mesh optimization
process for a given sufficiently regular function defined on a space domain Ω . We present
a theoretical framework leading to the hp-variant of the error equi-distribution, which is
directly used in the adaptive algorithm. This is the first novelty of the paper. In Sect. 3 we
briefly recall the discontinuous Galerkin discretization of problem (1). The main novelty is
given in Sect. 4, where we extend our mesh adaptation technique to the numerical solution
of (1). Several implementation aspects are presented and discussed. The performance of the
proposed algorithm is demonstrated by several experiments in Sect. 5. A summary of the
results is given in Sect 6.

2 Anisotropic hp-mesh Optimization Process for a Given Function

Let Ω ⊂ R
2 be the computational domain. In this section, we briefly describe the mesh

optimization process for a given, sufficiently regular functionw : Ω → R. In this discussion,
time dependence plays no role. The proposed method draws from our previous work on mesh
optimization methods, based on interpolation error control using continuous mesh models.
More details on this theoretical framework, including the possible extension to the 3D case,
can be found in our recent monograph [18].

By Thppp = {Th, ppp}, we denote an hp-mesh of Ω , where Th = {K } is a conforming
grid of Ω consisting of triangles K with mutually disjoint interiors, and the set of integers
ppp = {pK ∈ I, K ∈ Th} represents the polynomial approximation degrees for each K ∈ Th .
In general, elements K ∈ Th are anisotropic but hanging nodes are not admitted.

To each hp-meshThppp there exists the unique space of discontinuous piecewise polynomial
functions

Shppp := {
ϕh : Ω → R; ϕh |K ∈ PpK (K ), K ∈ Th

}
, (2)

where PpK (K ) is the space of polynomial functions over K ∈ Thppp with total degree at most
pK . The dimension of Shppp is given by dim Shppp = ∑

K∈Th
(pK + 1)(pK + 2)/2. This value

is called the number of degrees of freedom (DoF).
Let C∞(Ω) denote the space of infinitely differentiable functions. We introduce a projec-

tion Πhppp : C∞(Ω) → Shppp such that

DαΠhpppw(xK ) = Dαw(xK ) ∀α, 0 ≤ |α| ≤ pK , K ∈ Th, (3)
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whereα = (α1, α2) is amulti-index, Dα denotes the partial derivative of degree |α| = α1+α2

and xK is the barycenter of xK , K ∈ Th .
The projection Πhpppw is easy to construct element-wise and the difference w − Πhpppw is

called the interpolation error. We are ready to formulate the main problem of this section.

Problem 1 Let w ∈ C∞(Ω) be a given function and let ω > 0 be a given tolerance. We seek
an hp-mesh such that

(i)
∥∥w − Πhpppw

∥∥ ≤ ω,
(ii) dim Shppp(= DoF) is minimal,

where ‖·‖ denotes the Lebesgue norm for some q ∈ [1,∞].
The existence (but not the uniqueness) of the solution of Problem 1 is guaranteed by Zorn’s
lemma [28]: Since the set of hp-meshes satisfying (i) is nonempty and dim Shppp > 0, this
set has a minimal element. However, the practical search of an (approximate) solution of
Problem 1 is not an easy task. One possible solution is the local setting of an optimal shape
of mesh elements and the determination of the element size distribution using the continuous
mesh and error models. These steps are briefly described in the rest of this section.

2.1 Interpolation Error Function and its Anisotropic Bound

We approximate the interpolation error w − Πhpppw on K ∈ Th by the Taylor polynomial
of degree pK + 1 evaluated at the barycenter xK = (xK ,1, xK ,2). Hence, we define the
interpolation error function at xK by

ew
xK ,pK (x) :=

∑

|α|=pK+1

(|α| − 1)!
α1!α2!

∂ |α|w(xK )

∂xα1
1 ∂xα2

2
(x1 − xK ,1)

α1(x2 − xK ,2)
α2 (4)

for x = (x1, x2) ∈ Ω . Obviously, ew
xK ,pK approximates w − Πhpppw on K ∈ Th and also

on its neighbourhood (including the whole domain Ω). According to [14, Lemma 3.12], we
have the following result: There exist Aw > 0, ρw ≥ 1 and ϕw ∈ [0, 2π] such that

|ew
xK ,pK (x)| ≤ Aw

(
(x − xK )TQϕwDρwQ

T
ϕw

(x − xK )
)(pK+1)/2

, x ∈ Ω, (5)

where Dρw = diag(1, ρ−2/(pK+1)
w ) is a 2 × 2 diagonal matrix and Qϕw is a rotation matrix

through the angle ϕw . The triple {Aw, ρw, ϕw} is called the anisotropic bound of the inter-
polation error ew

xK ,pK at xK , and it depends on the partial derivatives of w at xK appearing in
(4). This triple can be determined by the procedure described in [14, Section 3.2].

Remark 1 The values Aw, ρw and ϕw depend only on the derivatives of degree pK + 1 of w

at xK . Therefore, it is possible to evaluate them at any x ∈ Ω and for any integer pK , hence
we write

Aw = Aw(x, pK ), ρw = ρw(x, pK ), ϕw = ϕw(x, pK ), x ∈ Ω, pK ∈ I (6)

and call them the anisotropic bound functions.
They are employed in Sect. 2.5 in the framework of the continuous error model.
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2.2 Geometry of Mesh Element

Let K̂ denote an equilateral reference triangle having the barycenter at the origin of the
coordinate system and let K̂ be circumscribed by a unit circle. For each K ∈ Th there exists
an affine mapping FK which maps K̂ on K and can be written as FK x̂ = FK x̂ + xK , where
FK is a 2 × 2 matrix. The singular value decomposition of FK gives

FK = QφKLKQ
T
ψK

, (7)

where QφK and QψK are rotation matrices through the angles φK and ψK , respectively, and
LK = diag(K ,1, K ,2) is a diagonal matrix with the singular values K ,1 ≥ K ,2 > 0. We
define the geometry of triangle K by the triplet

{μK , σK , φK }, where μK := √
K ,1K ,2, σK := √

K ,1/K ,2, (8)

and φK is the angle of rotation from (7). We note that μK ∼ |K |1/2 where |K | is the area of
K ∈ Th .

2.3 Interpolation Error Estimates Employing the Geometry of Mesh Elements

We formulate the estimate of the interpolation error function which takes into account the
geometry of mesh elements. For brevity, we consider the case 1 ≤ q < ∞, the case q = ∞
is easier to treat and we refer to [18, Chapter 3].

Lemma 1 Let q ∈ [1,∞), K ∈ Th with the geometry {μK , σK , φK } (cf. (8)), w ∈ P pK (K )

and ew
xK ,pK be the corresponding interpolation error function (4) with the anisotropic bound

{Aw, ρw, ϕw} at the barycenter xK satisfying (5). Then

∥∥∥ew
xK ,pK

∥∥∥
q

Lq (K )
≤ Aq

w μ
q(pK+1)+2
K

q(pK + 1) + 2
G(q(pK + 1)/2, pK + 1, ρw, ϕw; σK , φK ) (9)

where

G(s1, s2, ρ, ϕ; σ, φ) =
∫ 2π

0

(
σ 2[cos2(φ − ϕ) + ρ−2/s2 sin2(φ − ϕ)] cos2 t

− 2 sin(φ − ϕ) cos(φ − ϕ)(1 − ρ−2/s2) sin t cos t

+ σ−2[sin2(φ − ϕ) + ρ−2/s2 cos2(φ − ϕ)] sin2 t
)s1

dt . (10)

Proof For the proof we refer to [18, Lemma 3.21] or [20, Lemma 5.6], where the case q = 2
is treated. The idea is to integrate the q-power of (5) over K , transform the integral to the
reference K̂ and bound the integral over K̂ by the integral over the circumscribed unit ball.
By a direct computation, we obtain (9). ��

The minimization of function G from (10) with respect to σK and φK allows us to find the
optimal shape of triangle K with fixed area which minimizes the interpolation error bound
in the Lq -norm. In particular, we have the following result:

Lemma 2 [18, Theorem 5.4] Let 1 ≤ q < ∞, K be a triangle with size μK and barycenter
xK . Let w ∈ P pK and ew

xK ,pK be the corresponding interpolation error function (4) with the
anisotropic bound {Aw, ρw, ϕw} at xK satisfying (5). Then triangle K , having the size μK

and minimizing the upper bound of the interpolation error from Lemma 1, has the geometry

σK = ρ1/(2pK+2)
w , φK = π/2 + ϕw. (11)
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Moreover, the corresponding interpolation error bound is
∥∥∥ew

xK ,pK

∥∥∥
q

Lq (K )
≤ 2π

q(pK + 1) + 2
Aq

w ρ−q/2
w μ

q(pK+1)+2
K , 1 ≤ q < ∞. (12)

2.4 Continuous MeshModel

The idea of the continuous mesh model was first introduced in [29, 30] for the h-variant of
anisotropic mesh adaptation for piecewise linear approximation. It was extended to higher
order piecewise polynomial approximation in [36] and to the hp-version in [19] . Let Thppp

be an hp-mesh characterized by the values {μK , σK , φK , pK }, K ∈ Th , cf. (8). The idea
of the continuous mesh model is to define a continuous analogue of Thppp by the functions

μ : Ω → (0,∞), σ : Ω → [1,∞), φ : Ω → [0, 2π), p : Ω → [1,∞) (13)

such that

μ|K ≈ μK , σ |K ≈ σK , φ|K ≈ φK , p|K ≈ pK . (14)

We call the functionμ the element size distribution and p the polynomial degree distribution.
Further, we define the complexity of the continuous mesh by

N (μ, p) :=
∫

Ω

d(x)μ(x)−2 dx, where d(x) := (p(x) + 1)(p(x) + 2)

2
, (15)

the integrand of the previous integral exhibits the density of DoF.

Remark 2 Using (14), we have from (15)

N = 1

2

∑

K∈Th

∫

K
(p(x) + 1)(p(x) + 2)μ(x)−2 dx

≈ 1

2

∑

K∈Th

∫

K
(pK + 1)(pK + 2)μ−2

K dx ≈ 1

2

∑

K∈Th

(pK + 1)(pK + 2), (16)

where we have used the fact that that |K | ∼ μ2
K . The value on the right-hand side of (15) is

equal to the dimension of the space Shppp corresponding to Thppp .

2.5 Continuous Error Model

In the same spirit we introduce the continuous error model related to the interpolation error
estimate (12). Let p : Ω → [1,∞) be the polynomial degree distribution function from
(13). In virtue of Remark 1, for w ∈ C∞(Ω), we set functions Aw(x) = Aw(x, [p(x)]) and
ρw(x) = ρw(x, [p(x)]), x ∈ Ω , cf. (6), where the symbol [·] denotes the nearest integer
of its argument. In particular, for x ∈ Ω , the values Aw(x) and ρw(x) are computed by the
same procedure as the values in estimate (5) for xK := x and pK := [p(x)].

Then, we define the total continuous interpolation error estimate by

E(μ, p) :=
∫

Ω

(e(x))q dx, (17)

where

e(x) := B(x) μ(x)(p(x)+1), B(x) :=
(

2π
q(p(x)+1)+2

) 1
q
Aw(x) ρw(x)−

1
2 (18)
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and μ : Ω → (0,∞) is the element size distribution function, cf. (14).

Remark 3 Employing (14), we have from (17), (18) and (12) the relations

E =
∑

K∈Th

∫

K
(e(x))q dx ≈

∑

K∈Th

∫

K

2π
q(pK+1)+2

(
Aw ρ−1/2

w

)q
μ
q(pK+1)
K dx

≈
∑

K∈Th

2π
q(pK+1)+2

(
Aw ρ−1/2

w

)q
μ
q(pK+1)+2
K ≥

∑

K∈Th

∥∥∥ew
xK ,pK

∥∥∥
q

Lq (K )
, (19)

where we have used again that |K | ∼ μ2
K . Hence, relation (19) gives an analogue between

the (discrete) interpolation error estimate (12) and its continuous variant (17).

2.6 hp-mesh Optimization Problem and its Solution

The continuous interpolation error estimate (17) depends on the element size and polynomial
degree distributions μ and p, respectively. We recall that the estimate (12) (and therefore
(17)) makes sense if the mesh is locally optimized, i.e., (11) is valid. Now, we formulate the
continuous analogue of the mesh-optimization Problem 1.

Problem 2 Let ω > 0 and w ∈ C∞(Ω) be given.
We seek functions μ : Ω → (0,∞) and p : Ω → [1,∞) such that

(P1) E(μ, p) ≤ ω, where E is given by (17),
(P2) N (μ, p) given by (15) is minimal.

In principle, Problem 2 can be solved by the tools of constrained optimization. However, the
presence of the unknown function p in the exponent of E (cf. (18)) prevents us fromfinding an
analytical solution, see Appendix. Therefore, in [19], we proposed a semi-analytical solution
of Problem 2, which consists of two steps that can be repeated until a (pseudo-)convergence
is achieved:

(S1) fix the polynomial distribution function p and, by the tools of variational calculus, find
an optimal distribution of the element size distribution μ;

(S2) having function μ, modify locally the polynomial approximation degree pK for each
K ∈ Th by selecting the degree giving the minimal error estimate for fixed density of
DoF, cf. Sect. 2.6.2.

The step (S1) is resolved by the following Lemmas.

Lemma 3 Let ω > 0 and w ∈ C∞(Ω) be given.
Further, let p : Ω → [1,∞) be the polynomial distribution function. Then element size

distribution functionμ, which fulfils conditions (P1) –(P2) of Problem 2, satisfies the relation

qB(x)q(p(x) + 2)−1(μ(x)
)q(p(x)+1)+2 = const =: Z , ∀x ∈ Ω, (20)

where B(x) = B(x, p(x)) is defined by (18).

Proof We set the Lagrangian corresponding to (P2) with constraint (P1) as

L (μ, λ) := N − λ(ω − E)

=
∫

Ω

d(x)μ(x)−2 dx − λ

(
ω −

∫

Ω

(
B(x) μ(x)(p(x)+1)

)q
dx

)
, (21)
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where 0 �= λ ∈ R is the Lagrange multiplier. Function μ is the solution of Problem 2 (with
fixed p) if

d

dt
L (μ + tμ̃, λ)|t=0 = 0 for any perturbation μ̃. (22)

Then, from (21) – (22), we obtain by differentiation

d

dt
L (μ + tμ̃, λ)|t=0

=
∫

Ω

(
−2d(x)

(
μ(x)

)−3 + λq(p(x) + 1)B(x)q
(
μ(x)

)q(p(x)+1)−1
)

μ̃(x) dx . (23)

The right-hand side of (23) is equal to 0 for all perturbations μ̃ if

0 = −2d(x)
(
μ(x)

)−3 + λq(p(x) + 1)B(x)q
(
μ(x)

)q(p(x)+1)−1

⇐⇒ 1

λ
= q(p(x) + 1)B(x)q

2d(x)

(
μ(x)

)q(p(x)+1)+2
, (24)

which together with (15) implies (20) since λ is a constant. ��
A consequence of Lemma 3 is the following result, which can be employed in practical

realization:

Lemma 4 Let p be the polynomial distribution function andμ be the element size distribution
function satisfying (20). Then the interpolation error is equi-distributed over Ω in the sense

(pK + 2)−1
∥∥u − Πhpppu

∥∥q
Lq (K )

≈ const ∀K ∈ Th (25)

where pK ≈ p|K .
Proof In virtue of (20), we have the identity related to the continuous mesh model

∫

K
(e(x))q dx =

∫

K
B(x)q μ(x)q(p(x)+1) dx

=
∫

K

qB(x)q

p(x) + 2

(
μ(x)

)q(p(x)+1)+2

︸ ︷︷ ︸
=Z due to(20)

p(x) + 2

qμ(x)2
dx = Z

q

∫

K

p(x) + 2

qμ(x)2
dx . (26)

The “transformation” of identity (26) to its discrete form by p(x)|K ≈ pK , μ(x)2 ∼ |K |
and

∥∥w − Πhpppw
∥∥q
Lq (K )

�
∫
K (e(x))q dx (due to (19)) gives (25). ��

2.6.1 Setting the Size of the Mesh Elements (Step (S1))

We employ the error equi-distribution (25) for the optimization of the size of mesh elements.
Obviously, we have to set μK , K ∈ Th such that the corresponding interpolation error
estimates satisfy

∑

K∈Thppp

eqK = ωq , where eK := ∥∥w − Πhpppw
∥∥
Lq (K )

. (27)

From (25) we deduce that eqK (pK + 2)−1 ≈ C for some C > 0 and consequently eqK ≈
C(pK + 2), K ∈ Th . This relation together with (27) implies

ωq =
∑

K∈Th

eqK = C
∑

K

(pK + 2) ⇒ C = ωq
∑

K (pK + 2)
. (28)
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Fig. 1 Example of function κ = κ(eK /ωK )

Hence, we define the local tolerances

ωK := ω

(
pK + 2

∑
K∈Th

(pK + 2)

)1/q

, K ∈ Th, (29)

and the aim is to modify the element size μK such that eK ≈ ωK ∀K ∈ Th .
Therefore, we set the new size of mesh elements μ�

K by the relation

μ�
K = μK κ(eK /ωK ), K ∈ Th, (30)

where κ > 0 is a scaling function continuously depending on eK /ωK such that κ(eK /ωK ) >

1 for eK < ωK and κ(eK /ωK ) < 1 for eK > ωK . A suitable choice is shown in Fig. 1, where
κ attains the minimum 0.25 for large values eK /ωK (= the maximal reduction of an element
size in one level of mesh adaptation) and κ attains its maximum 2.5 for small values eK /ωK

(= the maximal increase of an element size in one level of mesh adaptation). The function κ

is almost constant for eK /ωK ≈ 1, which makes the algorithm more stable.

2.6.2 Setting of the Polynomial Approximation Degrees (Step (S2))

The polynomial approximation degrees are adapted locally for each K ∈ Th . From the set
QK := {pK − 1, pK , pK + 1}, we select the new degree p�

K which gives the smallest
interpolation error bound for the same density of DoF (cf. (15)). In particular, for each
 ∈ QK , we evaluate the anisotropic bound functions Aw,, ρw, and ϕw,, cf. (5) (depending
on the  + 1-th derivatives of w). In order to fix the density of DoF, we set the element sizes
μK ,,  ∈ QK

μK , := μ�
K

(
( + 1)( + 2)

(pK + 1)(pK + 2)

)1/2

,  ∈ QK . (31)

Then we evaluate the corresponding right-hand side of (12) as

E ()
K (w) := 2π

q( + 1) + 2
Aw, (ρw,)

−q/2 (μK ,)
q(+1)+2,  ∈ QK , (32)

and chose  ∈ QK minimizing this interpolation error bound, i.e.,

p�
K = arg min

∈QK
E ()
K , K ∈ Th . (33)
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2.7 Mesh Adaptive Algorithm

Employing the setting of optimal shape (Lemma2), optimal size (Sect. 2.6.1), and polynomial
degree (Sect. 2.6.2) of mesh elements, we define Algorithm 1, which exhibits one iteration
of a modification of the given hp-mesh Thppp to produce a new (better) hp-mesh T �

hppp .

Algorithm 1: hpAMA(w, ω,Thppp,T
�
hppp)

1: input data: tolerance ω > 0, w ∈ C∞(Ω), initial hp-mesh Thppp

2: for K ∈ Th do
3: set ωK using (29)
4: set ηK := ∥∥w − Πhpppw

∥∥
Lq (K ))

5: set new size μ�
K using (30) (the error equi-distribution)

6: set new shape σ�
K and orientation φ�

K by (11)
7: set new polynomial degree p�

K by (32) – (33)
8: end for
9: using {μ�

K , σ �
K , φ�

K , p�
K ; K ∈ Th} construct new hp-mesh T �

hppp

The technique of the construction of T �
hppp from {μ�

K , σ �
K , φ�

K , p�
K ; K ∈ Th} (Step 9 of

Algorithm 1) is carried out by a definition of a metric field overΩ and performing a sequence
of local operations in order to construct an uniform triangulation under this metric.

Remark 4 The aforementioned metric is usually represented by a set of ellipses centered at
barycentres of triangles of the mesh to be optimized. Each ellipse is defined as the smallest
circumscribed ellipse of the triangle with geometry {μ�

K , σ �
K , φ�

K }. For more detail, see, e.g.,
[18]. We use the in-house code Angener [13] to generate meshes from a prescribed metric.

Problem 1 can be solved approximately by performing several loops of Algorithm 1, see
Algorithm 2. We note that sometimes it is necessary to carry out a high number of loops in
Algorithm 2 in order to fulfil condition (i) of Problem 1. The number of loops can be reduced
by calling subroutine hpAMA with a smaller tolerance ω. Typically we choose one half or
one quarter of the prescribed tolerance. Then condition (i) of Problem 1 is achieved earlier
but the corresponding number of DoF is naturally larger.

Algorithm 2: Solution of Problem 1

1: input data: tolerance ω > 0, w ∈ C∞(Ω), initial hp-mesh Thppp

2: while
∥∥w − Πhpppw

∥∥
Lq (Ω)

> ω do
3: call hpAMA(w, ω,Thppp,T

�
hppp), cf. Algorithm 1

4: set Thppp := T �
hppp

5: end while
6: output: hp-mesh T �

hppp
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3 Space-Time Discontinuous Galerkin Method

In this section, we formulate the approximate solution of problem (1) by the time-
discontinuous Galerkin method. By (·, ·)0, we denote the L2(Ω)-scalar product.

3.1 Weak Solution

First, we formally introduce a weak formulation of (1). For simplicity, we assume that ϑ is
continuously differentiable. Let W and V be suitable spaces of the trial and test functions,
respectively, related to the operator L . We denote by w(t)(x) := w(x, t) a function on Ω

for any t ∈ (0, T ). We say that function w is the weak solution of (1) if w(t) ∈ W for almost
all t ∈ W and

(∂tϑ(w), v)0 + a(w, v) = 0 ∀v ∈ V , a.e. t ∈ (0, T ),

(w(·, 0), v)0 = (w0, v)0 ∀v ∈ L2(Ω), (34)

where a(·, ·) represents the weak form of the operator L . The right-hand side of (1) is
included in a, which is nonlinear with respect its first argument, in general. We assume that
there exists a unique weak solution of (34).

3.2 Space-Time Discretization

We approximate the solution of (34) by a space-time piecewise polynomial function defined
on varying meshes for different time levels. Let 0 = t0 < t1 < t2 < . . . tr = T be a
partition of [0, T ], and we set the size of the time steps τm := tm − tm−1 and the intervals
Im := (tm−1, tm) for m = 1, . . . , r . Obviously, this partition is not known a priori, but the
time steps are chosen adaptively.

For each m = 0, . . . , r , we consider a conforming triangular mesh Th,m of Ω and hp-
mesh Thppp,m = {Th,m, ppp}, where ppp = {pK ∈ I, K ∈ Th,m}, and pK denotes again the
polynomial approximation degree assigned to K ∈ Th,m . Then, for each m = 0, . . . , r , we
define the space

SSSh,ppp,m := {
ϕϕϕh : Ω → R

n; ϕϕϕh |K ∈ [PpK (K )]n, K ∈ Th,m
}
, (35)

where [PpK (K )]n denotes the space of vector-valued polynomial functions over K ∈ Th,m

whose total degree is at most pK in each component of ϕϕϕh = (ϕ1, . . . , ϕn)
T. We recall that

n ≥ 1 denotes the number of equations in (1).
Whereas we consider a varying polynomial approximation degree pK with respect to

space, the polynomial approximation degree q ≥ 0 is kept fixed. Hence, for any space-time
element K× Im , K ∈ Th,m, m = 1, . . . , r , we introduce the spaces of space-time polynomial
functions

Pq
pK (K× Im) :=

{
vh(x, t) =

∑q

j=0
t j ψψψ j (x), ψψψ j ∈ [PpK (K )]n, t ∈ Im

}
. (36)

Further, we define the space of piecewise polynomial functions over the space-time layer
Ω × Im by

SSSτ,q
h,ppp,m := {

vh : Ω × Im → R
n; vh |K×Im ∈ Pq

pK (K× Im), K ∈ Th,m
}
, (37)

which consists of polynomials of degree q ≥ 0 with respect to time. Later, we will employ
the functional spaces SSSτ,q

h,ppp+111,m , SSS
τ,q+1
h,ppp,m and SSSτ,q+1

h,ppp+111,m defined as (37) by the increase of
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polynomial approximation degrees pK , K ∈ Th,m and/or q by one. Finally, we define the
space of polynomial functions over the whole space-time cylinder Ω × (0, T ) by

SSSτ,q
h,ppp :=

{
vh : Ω × (0, T ) → R

n; vh |Ω×Im ∈ SSSτ,q
h,ppp,m ∀m = 1, . . . , r

}
. (38)

Obviously, functions from SSSτ,q
h,ppp are discontinuous with respect to space as well as time

coordinates.
Let whτ ∈ SSSτ,q

h,ppp . For each m = 0, . . . , r − 1, we define the traces of whτ at tm and the
jumps of whτ on tm by

whτ (x)|±m := lim
t→t±m

whτ (x, t), {{whτ (x)}}m := whτ (x)|+m − whτ (x)|−m (39)

for x ∈ Ω . Hence, {{whτ }}m−1 is a piecewise polynomial function on the “intersection” of
meshes Thppp,m−1 and Thppp,m , m = 1, . . . , r .

For m = 1, . . . , r , we define the form Ah,m : SSSτ,q
h,ppp × SSSτ,q

h,ppp → R by

Ah,m(whτ , v)

:=
∫

Im

(
(∂tϑ(whτ ), v)0 + ah(whτ , v)

)
dt + ({{ϑ(whτ )}}m−1, v|+m−1

)
0 , (40)

where the form ah represents the discretization of the form a from (34). For more detail see,
e.g., [16, Chapters 2-4]. Then the space-time discontinuous approximate solution reads:

Definition 1 We say that whτ ∈ SSSτ,q
h,ppp is the approximate solution of (34) if

Ah,m(whτ , v) = 0 ∀v ∈ SSSτ,q
h,ppp,m, m = 1, . . . , r , (41a)

(
whτ |−0 , vh

)
0 = (w0, vh)0 ∀vh ∈ SSSh,ppp,0. (41b)

Relations (41) represent systems of nonlinear algebraic equations of the size equal to the
dimension of the space SSSτ,q

h,ppp,m for each time level m = 1, . . . , r . We assume that there exists
a unique approximate solution whτ . We refer to [16, Chapter 6] for some theoretical results
related to the existence and a priori error analysis for a convection-diffusion equation. In
particular, for fixed polynomial approximation degree pK = p, K ∈ Th,m, m = 1, . . . , r ,
τ := maxm=1,...,r τm and h := maxm=1,...,r maxK∈Th,m diam(K ), we have

max
t∈(0,T )

‖w(t) − whτ (t)‖L2(Ω)
≤ C

(
h p+1 + τ q+1) , (42)

provided that the exact weak solution w is sufficiently regular.

3.3 Recomputation BetweenMeshes on Two Consecutive Time Levels

As mentioned above, the approximate solution is discontinuous with respect to time. The
solution on two successive time intervals Im−1 and Im is joined together in the weak sense
by the last term on the left-hand side of (40), i.e.,

({{ϑ(whτ )}}m−1, v|+m−1

)
0 = (

ϑ(whτ )|+m−1, v|+m−1

)
0 − (

ϑ(whτ )|−m−1, v|+m−1

)
0 . (43)

Obviously, whτ |+m−1, v|+m−1 ∈ SSSh,ppp,m but whτ |−m−1 ∈ SSSh,ppp,m−1. Therefore, the first term on
the right-hand side of (43) is easy to evaluate by a numerical quadrature, but the evaluation of
the second term is rather delicate since its arguments whτ |−m−1 and v|+m−1 are given element-
wise on different meshes Th,m−1 and Th,m , respectively. See Fig. 2, left, for an illustration.
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Fig. 2 Example of the non-nested triangular meshes Th,m−1 (red) and Th,m (blue) (left), “ill-conditioned”
intersection of K ∩ K ′, K ∈ Th,m , K

′ ∈ Th,m−1 (center), and inter-element splitting of K ∈ Th,m onto
k ∈ D(K ) (right)

If the test function v|+m−1 ∈ SSSh,ppp,m has support on one element K ∈ Th,m (the blue triangle
outlined in bold in Fig. 2, left), then it intersects several triangles K ′ ∈ Th,m−1.

One possibility how to evaluate the last integral in (43) is to determine all intersections
of any K ∈ Th,m with K ′ ∈ Th,m−1, split the arising polygons onto triangles, and perform
the integration over them. Although this approach is mathematically rigorous, its numerical
implementation is rather complicated. Moreover, if the intersection of K ∩ K ′ for some
K ′ ∈ Th,m−1 is very small and it has an obtuse shape then the numerical evaluation is
ill-conditioned, see Fig. 2, center.

A more robust (and less accurate) approach is the evaluation of the last integral in (43)
by a composite quadrature rule. In particular, let v be a basis function of SSSh,ppp,m having a
support on K ∈ Th,m . Then

(
ϑ(whτ )|−m−1, v|+m−1

)
0 ≈

∑

k∈D(K )

N∑

i=1

γiϑ(whτ (xk,i ))|−m−1v(xk,i )|+m−1, (44)

where D(K ) denotes a non-overlapping partition of K onto simplexes k (cf. Figure 2, right),
and the integrals over k ∈ D(K ) are approximated by a quadrature with weights γi and
nodes xk,i , i = 1, . . . , N . In practice, K is split on 4, 9, or 16 self-similar sub-elements
k and the Dunavant quadratures [22] are employed. In the experiments presented in this
paper, the splitting on 9 sub-elements is employed, the use of more sub-elements has only
a slight influence on the solution. Obviously, the quadrature nodes can belong to different
K ′ ∈ Th,m−1, and the order of any quadrature is low since the restriction of ϑ(whτ )|−m−1
is discontinuous on K ∈ Th,m . However, we demonstrate in Sect. 5 that this approach is
sufficiently accurate, namely that there is not an essential difference between the matching
and non-matching grids.

4 Anisotropic hp-mesh Adaptation for Time-Dependent PDEs

In this section, we extend the mesh adaptive algorithm from Sect. 2 to the numerical solution
of time-dependent problems. In Sect. 4.1, we introduce an analogue of Problem 1 and in
Sect. 4.2, we describe the whole space-time adaptive procedure including several implemen-
tation issues.
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4.1 Problem Formulation

Letw(t) ∈ W , t ∈ (0, T ) be the weak solution of (34) and {Im}rm=1 be the partition of (0, T )

introduced in Section 3.2. Let Πmw(t) ∈ SSSh,ppp,m be the projections of w(t), t ∈ Im, m =
1, . . . , r , cf. (35). In virtue of (42), we introduce the following problem:

Problem 3 Let ω > 0 be a given tolerance and {Im}rm=1 be the given partition of (0, T ). We
seek the finite sequence of spaces SSSh,ppp,m , m = 1, . . . , r (i.e., meshes Th,m, m = 1, . . . , r
with the polynomial approximation degrees pK , K ∈ Th,m) such that

(i) maxm=1,...,r maxt∈Im ‖w(t) − Πmw(t)‖Lq (Ω) ≤ ω,
(ii)

∑r
m=1 Nm is minimal, where Nm := dim SSSh,ppp,m .

Problem 3 means that we control the interpolation error w − Πmw for any time t ∈ (0, T ).
However, for practical reasons, it makes sense to consider the interpolation error only for
a finite set of time levels, typically at the integration nodes used for the evaluation of the
time integral over Im in (41a) and at the endpoints of each Im . We denote such sets by Jm ,
m = 1, . . . , r . Therefore, we replace Problem 3 by

Problem 4 Let ω > 0 be a given tolerance and {Im}rm=1 be the given partition of (0, T ). We
seek the spaces SSSh,ppp,m , m = 1, . . . , r such that

(i) maxm=1,...,r maxt∈Jm ‖w(t) − Πmw(t)‖ ≤ ω,
(ii) Nhppp := ∑r

m=1 Nm is minimal, where Nm := dim SSSh,ppp,m .

Similar to Problem1, the space-time problemProblem4 has a (possibly non-unique) solution.
However, the practical solution of Problem 4 is rather difficult and we solve it approximately
by the adopting the technique introduced in Sect. 2, which is described in the following
section.

4.2 Full Space-Time Adaptive Method

4.2.1 Higher-Order Reconstruction

Condition 4 in Problem 4 contains the exact solution w(t), t ∈ Jm , which is not available
in practice. Therefore, we replace w in this condition by a higher-order reconstruction ŵhτ ,
computable from the approximate solution whτ .

In [14, 19, 20], we developed a higher-order reconstruction technique based on the least
squares approximation. Here, we present its space-time variant. Let Im , m = 1, . . . , r be an
interval andwhτ |Ω×Im ∈ SSSτ,q

h,ppp,m be the space-time piecewise polynomial function satisfying

(41a) for all v ∈ SSSτ,q
h,ppp,m . Let N (K ), K ∈ Th,m be a set of K ′ ∈ Th,m sharing at least a vertex

with K . We define the function ŵK ,m ∈ Pq+1
pK+1(N (K )× Im) (cf. (36)) such that

ŵK ,m = arg min
u∈Pq+1

pK +1(N (K )×Im )

∑

K ′∈N (K )

δK ′ ‖u − whτ‖2L2(Im ,H1(K ′)), (45)

where‖·‖L2(Im ,H1(K ′)) is theBochner normover the space-time element K ′×Im, K ′ ∈ N (K )

and δK ′ ≥ 0 are the weights. We set δK ′ = 1 for K ′ sharing a face with K , and δK ′ = ε for
K ′ ∈ N (K ) sharing only a vertex with K . A typical value is ε = 0.25. The reconstruction
(45) is local, and ŵK ,m approximates whτ in the weighted least-square sense. Having the
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local reconstructions ŵK ,m , K ∈ Th,m , we set the global one ŵhτ ∈ SSSτ,q+1
h,ppp+111,m by gluing

them together, i.e.,

ŵhτ ∈ SSSτ,q+1
h,ppp+111,m, ŵhτ |K×Im := ŵK ,m |K×Im ∀K ∈ Th,m . (46)

4.2.2 Adaptive Choice of the Time Step

In Problem 4 we considered an a priori given partition of the time interval (0, T ). In practical
computations, the choice of the size of time steps τm := tm−tm−1,m = 1, . . . , has to be done
adaptively based on the available approximate solution. It is necessary to balance the accuracy
(too large time steps cause increase of the computational error) and the efficiency (too small
time steps increase the number of time steps and can prolongate the computational time). A
reasonable strategy is to choose the time step in such a way that the errors arising from the
spatial and temporal discretizations are comparable. We employ the approach proposed in
[21], where the space and time errors are estimated by residual-based estimators ηmS and ηmT ,
respectively. The numerical examples in [21] show that, whereas ηmS is (almost) independent

on τm , m = 1, . . . , r , the time estimator fulfills ηmT = O(τ
q+1
m ). Then τm is chosen such that

ηmT ≈ cT ηmS , m = 1, . . . , r , (47)

where 0 < cT ≤ 1 is the chosen safety factor. Typicallywe put cT = 0.1. The aforementioned
estimators are defined for each m = 1, . . . , r , using (37), by

ηmS (uhτ ) := max
vh∈SSSτ,q

h,ppp+111,m

Ah,m(whτ , v)

‖v‖S
, ηmT (uhτ ) = max

vh∈SSSτ,q+1
h,ppp,m

Ah,m(whτ , v)

‖v‖S
, (48)

where the norm is chosen element-wise as

‖v‖2S :=
∑

K∈Th,m

(‖v‖2L2(K×Im )
+ ‖∇v‖2L2(K×Im )

+ ‖∂tv‖2L2(K×Im )

)
. (49)

Due to the choice (49), both estimators in (48) are computable element-wise and therefore
their setting is cheap.

In order to fulfill (47), we have developed in [21] the adaptive choice of the time step by
the relation ηmT = O(τ

q+1
m ), cf. (42). However, this technique is not sufficiently efficient, e.

g., for porous media flow problems, probably by the lack of regularity of the weak solution.
Therefore, we present here a more robust and efficient technique. We set the parameter

ξm := log(ηmT /(cT ηmS )) for m = 1, . . . , r . Obviously, the optimal size of the time step gives
ξm ≈ 0. Moreover, if ξm > 0 the time step should be decreased, and if ξm < 0 the time step
should be increased. The new size of the time step is set according to the following empirical
formula

τ newm = βτm, (50)

where

β = β(ξm) :=

⎧
⎪⎪⎨

⎪⎪⎩

smax if ξm ≤ −S,

smax−smin
2

(
cos(π ξm+S

2S ) + 1
)

+ smin if − S < ξm < S,

smin if S ≤ ξm,

and S, smax and smin are user-defined parameters. Obviously, β(ξm) is continuously differ-
entiable with respect to ξm . The values smax > 1 and smin > 0 describe the maximal relative
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increase and the maximal relative decrease of the time step, respectively, and S > 0 is the
threshold. We use the values S = 1, smax = 1.25, and smin = 0.5.

The idea of the adaptive choice of the time step during the computational procedure is
the following: We perform the m-th step by the solution of (41a) and evaluate ηmS and ηmT . If
condition ηmT > cT ηmS (cf. (47)), the current time step is refused and we repeat it with a new
time step size τ new given by (50). Otherwise, we proceed to the next time step, again using
τ new from (50). Alternatively, although not considered here, it would be possible to increase
the time polynomial degree or repeat several last time steps.

Finally, let us note that based on numerical experience, we automatically reduce the size
of the time step by a factor β = smin after each re-meshing. This typically helps us to avoid
several time steps which are rejected. The whole adaptive algorithm is explained in the next
section.

4.2.3 Adaptive Algorithm

The whole adaptive procedure for the solution of time-dependent PDEs is summarized in
Algorithm 3. At each time step, we check if the error estimator ηm is under the given tolerance
(cf. step 14 ofAlgorithm3). If this condition is satisfied,we use the hp-mesh from the previous
time step(s). Otherwise, we perform a re-meshing. We employ the anisotropic hp-mesh
adaptation technique from Sect. 2, namely we call the subroutine hpAMA (cf. Algorithm 1)
for the solution at t |+m−1 and t |−m in each time step m = 1, . . . , r , see steps 17 and 18 of

Algorithm 3. Then we obtain two hp-meshes, denoted as T (L)
hppp and T

(R)
hppp , and then we apply

the so-called intersection of metrics T (L)
hppp ∩ T

(R)
hppp (Step 19 of Algorithm 3). For the relation

between a metric and a mesh, see Remark 4.
The intersection of twometrics are defined through the geometrical intersection of two cor-

responding ellipses having the same barycenter as the ellipse which is a subset of both ellipses
and having the maximal possible area. Moreover, concerning the choice of the polynomial
approximation degree, we adopt technique (31)–(33) in such a way that in step (32), we take
the maximal value from E ()

K (ŵhτ |+m−1) and E ()
K (ŵhτ |−m) for each  ∈ QK , K ∈ Th,m .

Finally, we note that it is possible to reduce the number of re-meshing operations by
using a smaller input tolerance in the calls of Algorithm 1, cf. steps 17-18 of Algorithm 3.
However, the resulting hp-grids have naturally higher number of DoF, and then the reduction
of computational cost is questionable.

5 Numerical Verification

In this section, we present several numerical experiments demonstrating the ability of the pro-
posed anisotropic hp-mesh method to solve various problems of type (1). First, we consider
a scalar nonlinear convection-diffusion equation with known analytical solution where the
exact error and its estimate can be compared. Moreover, we consider several more compli-
cated test examples, namely the isentropic vortex propagation (inviscid compressible flow),
the Kelvin-Helmholtz instability (viscous compressible flow) and the simulation of a flow
though a variably saturated porous media described by the Richards equation. In all cases,
we employ the space-time discontinuous Galerkin method. For the description of the method
together with the implementation detail, we refer to [16] and for the porous media problem
to [17].
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Algorithm 3: Space-time adaptive algorithm.

1: inputs: ω > 0, initial time step τ1, hp-mesh Thppp,1 and space SSS
τ,q
h,ppp,1

2: set m = 1
3: while t < T do
4: repeat
5: repeat
6: solve Ah,m(whτ , v) = 0 ∀v ∈ SSSτ,q

h,ppp,m , cf. (41)
7: evaluate ηmS (whτ ) and ηmT (whτ ) by (48)
8: if ηmT > cT ηmS then
9: propose new size of the time step τm using (50)
10: end if
11: until ηmT ≤ cT ηmS
12: evaluate ŵhτ ∈ SSSτ,q+1

h,ppp+111,m by the reconstruction (45) – (46)
13: set ηm := ‖ŵhτ − whτ‖L∞(Im ;Lq (Ω))

14: if ηm ≤ ω then
15: set t := t + τm , propose τm+1 using (50),

set Thppp,m+1 := Thppp,m and SSSτ,q
h,ppp,m+1 := SSSτ,q

h,ppp,m , set m := m + 1
16: else
17: call hpAMA(ŵhτ |+m−1, ω,Thppp,T

(L)
hppp ), cf. Algorithm 1

18: call hpAMA(ŵhτ |−m, ω,Thppp,T
(R)
hppp ), cf. Algorithm 1

19: set Thppp,m := T
(L)
hppp ∩ T

(R)
hppp and the space SSSτ,q

h,ppp,m

20: reduce the size of the time step τm := τm smin

21: end if
22: until ηm ≤ ω

23: end while

5.1 Moving Interior Layer

We solve the viscous Burgers equation written as

∂tw + w
∂w

∂x1
+ w

∂w

∂x2
− ε�w = 0 in Ω × (0, T ), (51)

where Ω = (−1, 1) × (−1, 1), T = 1 and ε > 0 is the diffusion coefficient. We prescribe
the Dirichlet boundary condition on Γ := ∂Ω and the initial condition such that the exact
solution reads

w(x1, x2, t) = (1 + exp ((x1 + x2 + 1 − t)/2ε))−1 , (x1, x2) ∈ Ω, t ∈ (0, T ). (52)

This problem exhibits a propagation of an interior layer in the diagonal direction (1, 1). The
width of the layer is proportional to ε. We consider the values ε = 10−2 and ε = 10−3.

Since the exact solution is available, we are able to evaluate the exact error and compare it
to the proposed error estimate. To produce reference data, we carried out the computation on
fixed uniform triangular grids consisting of rectangular triangles with element size h = 1/6,
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h = 1/12, and h = 1/24. We employ the polynomial approximations p = 1, 2, 3 with
respect to space and q = 1, 2 with respect to time. The time step was fixed at τ = 10−2.

The computations on the fixed grids are compared to the anisotropic hp-mesh adaptation,
Algorithm 3, with several tolerances ω. The initial mesh was a coarse uniform (h = 1/6)
and the initial polynomial degree was set to pK = 2, K ∈ Th . The corresponding results are
shown in Tables 1–4, where

– DoF is the average number of degrees of freedom per time step,
– #τm is the number of time steps needed to reach the final time T ,
– eh := ‖w − whτ‖L∞(0,T ;L2(Ω))

is the error of the approximate solution whτ ,
– Eh := ‖ŵhτ − whτ‖L∞(0,T ;L2(Ω))

is the corresponding error estimate obtained by the
higher-order reconstruction,

– the quantities

J aver = 1

r

r∑

m=1

‖{whτ }m‖L2(Ω), Jmax = max
m=1,...,r

‖{whτ }m‖L2(Ω) (53)

measure the jumps with respect to time (the “time-inconsistency”) due to the time dis-
continuous approximation,

– iN is the total number of nonlinear iteration for all time levels,
– iL is the total number of linear (GMRES) iteration for all nonlinear iterations and all time

levels,
– “time” is the total computational time in seconds. It depends on the implementation so

it has only an informative character.

Some outputs from these tables are also shown for q = 2 in Fig. 3, namely the convergence
of the error eh and its estimate Eh with respect to DoF and computational time.

As one might expect, we observe that higher polynomial approximation degree on fixed
meshes leads to faster decay of the errors and higher efficiency in terms of DoF as well as
computational time. The use of mesh adaptation significantly reduces the computational cost
required to achieve the given error tolerance. Moreover, the error estimate using the higher
order reconstruction does not provide an upper bound of the error, but the approximation is
reasonable, as the rates of eh and Eh are quite similar. Finally, comparing the values J aver and
Jmax, we arrive at the conclusion that the use of non-nested meshes with the recomputation
from Sect. 3.3 does not bring any essential increase of the inaccuracies. These values depend
on the polynomial approximation degree with respect to time (for q = 2 they are much
smaller than for q = 1), but there are minor differences between the computation with and
without mesh adaptation.

Moreover, Fig. 4 demonstrates the performance of Algorithm 3. The left-hand-side figure
shows the error estimate ηm of all computed time steps (blue square boxes). The time steps
having ηm > ω are refused, while the accepted time steps are marked by black crosses.
The right-hand side figure shows the comparison of the error ‖w − whτ‖L∞(Im ,L2(Ω))

and
its estimate ηm for all (accepted as well as refused) time steps m = 1, . . . , r . We observe a
reasonable approximation of the error locally in time.

Finally, Figs. 5 and 6 show the achieved hp-meshes and the corresponding isolines of the
solution at time instants t = 0.2, t = 0.6, and t = 1.0.We observe a strong anisotropic refine-
ment along the interior layers, the refinement is stronger for the case with ε = 10−3. Outside
of the layer, the mesh consists of large elements with the lowest polynomial approximation
degree. The isolines show a perfect capturing without any oscillations.
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Table 1 Moving interior layer (51)–(52) with ε = 10−2, computations without adaptation and with fixed time
step

q p DoF #τm eh Eh J aver Jmax iN iL time

1 1 1728 100 7.25E-02 4.78E-02 5.63E-04 1.89E-03 232 232 8.1

1 1 6912 100 3.08E-02 1.86E-02 9.27E-04 2.36E-03 327 654 39.1

1 1 27648 100 7.98E-03 6.14E-03 1.14E-03 1.74E-03 397 1191 189.7

1 2 3456 100 3.29E-02 4.11E-02 9.53E-04 1.49E-03 308 401 17.9

1 2 13824 100 7.79E-03 9.24E-03 1.15E-03 1.36E-03 449 898 90.9

1 2 55296 100 1.58E-03 1.55E-03 1.21E-03 1.40E-03 588 1740 431.7

1 3 5760 100 1.46E-02 2.62E-02 1.09E-03 1.35E-03 367 522 38.1

1 3 23040 100 2.31E-03 4.63E-03 1.21E-03 1.39E-03 509 1018 184.7

1 3 92160 100 1.41E-03 3.61E-04 1.24E-03 1.43E-03 616 1806 910.3

2 1 2592 100 7.25E-02 4.76E-02 1.90E-05 2.16E-04 232 232 10.0

2 1 10368 100 3.08E-02 1.84E-02 2.90E-05 5.59E-04 327 654 49.7

2 1 41472 100 7.84E-03 6.03E-03 5.05E-05 8.27E-04 397 1022 241.0

2 2 5184 100 3.29E-02 4.04E-02 2.56E-05 2.57E-04 306 362 23.2

2 2 20736 100 7.72E-03 8.94E-03 4.73E-05 1.72E-04 445 890 122.9

2 2 82944 100 1.30E-03 1.50E-03 5.15E-05 9.96E-05 555 1442 615.1

2 3 8640 100 1.45E-02 2.56E-02 3.89E-05 1.06E-04 364 441 60.2

2 3 34560 100 2.06E-03 4.43E-03 5.15E-05 7.63E-05 509 1018 301.0

2 3 138240 100 2.37E-04 3.54E-04 5.12E-05 5.97E-05 668 1591 1520.4

Table 2 Moving interior layer (51)–(52) with ε = 10−2, computations using anisotropic hp-mesh adaptation

q ω DoF #τm eh Eh J aver Jmax iN iL time

2 2.0E-03 2173 54 2.87E-03 1.87E-03 4.23E-04 1.22E-03 784 1856 46.6

2 1.0E-03 2956 64 1.56E-03 9.93E-04 2.38E-04 4.49E-04 816 1876 67.7

2 5.0E-04 4013 75 8.28E-04 4.99E-04 1.50E-04 3.88E-04 930 2284 113.3

2 2.5E-04 5376 94 3.53E-04 2.48E-04 7.46E-05 2.87E-04 1061 2526 183.7

2 1.3E-04 7276 113 2.60E-04 1.25E-04 4.46E-05 2.48E-04 1226 3300 304.7

2 6.3E-05 9727 132 1.25E-04 6.15E-05 2.65E-05 7.88E-05 1380 3613 477.9

5.2 Isentropic Vortex Propagation

The propagation of an isentropic vortex through the periodic domain is a classical benchmark
proposed in [39]. This problem is described by the compressible Euler equations where the
sought solution vector isw = (ρ, v, e)T ∈ R

4: ρ is the density, v is the velocity vector, and e
is the energy. This system is accompanied by the state equation defining the relation between
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Table 3 Moving interior layer (51)–(52) with ε = 10−3, computations without adaptation and with fixed time
step

q p DoF #τm eh Eh J aver Jmax iN iL time

1 1 1728 100 1.66E-01 1.63E-01 2.21E-03 3.57E-03 238 238 9.0

1 1 6912 100 1.03E-01 1.11E-01 4.77E-03 6.60E-03 375 375 43.7

1 1 27648 100 5.71E-02 7.24E-02 7.90E-03 1.03E-02 495 965 238.9

1 2 3456 100 1.31E-01 1.91E-01 4.10E-03 1.01E-02 289 289 21.3

1 2 13824 100 8.05E-02 1.29E-01 7.94E-03 1.56E-02 427 451 103.8

1 2 55296 100 3.98E-02 8.10E-02 1.34E-02 2.07E-02 643 1286 566.9

1 3 5760 100 1.40E-01 1.91E-01 6.14E-03 1.71E-02 340 340 49.7

1 3 23040 100 6.21E-02 1.27E-01 1.07E-02 2.41E-02 515 638 254.8

1 3 92160 100 3.15E-02 7.52E-02 1.70E-02 2.41E-02 830 1660 1794.3

2 1 2592 100 1.66E-01 1.62E-01 1.03E-04 2.22E-04 238 238 11.2

2 1 10368 100 1.02E-01 1.06E-01 4.58E-04 8.90E-04 376 376 55.9

2 1 41472 100 5.69E-02 6.63E-02 1.06E-03 1.75E-03 495 789 296.2

2 2 5184 100 1.31E-01 1.88E-01 3.88E-04 1.75E-03 308 308 27.3

2 2 20736 100 7.94E-02 1.20E-01 1.16E-03 3.73E-03 433 444 128.8

2 2 82944 100 3.82E-02 7.17E-02 2.25E-03 5.14E-03 573 1080 696.6

2 3 8640 100 1.39E-01 1.81E-01 7.30E-04 3.80E-03 341 341 67.1

2 3 34560 100 6.12E-02 1.12E-01 1.87E-03 6.87E-03 494 548 321.2

2 3 138240 100 2.75E-02 6.22E-02 3.39E-03 7.15E-03 699 1351 1797.8

Table 4 Moving interior layer (51)–(52) with ε = 10−3, computations using anisotropic hp-mesh adaptation

q ω DoF #τm eh Eh J aver Jmax iN iL time

2 8.0E-03 7340 109 1.62E-02 7.91E-03 6.54E-03 1.59E-02 4507 13254 949.2

2 4.0E-03 9988 129 1.13E-02 3.93E-03 4.37E-03 1.08E-02 4748 15429 1433.2

2 2.0E-03 12862 167 4.51E-03 1.90E-03 2.29E-03 4.73E-03 5574 19346 2091.4

2 1.0E-03 16214 208 4.25E-03 9.84E-04 1.34E-03 4.50E-03 6126 21164 3081.8

2 5.0E-04 21942 238 2.10E-03 4.98E-04 9.59E-04 2.23E-03 6162 20797 4679.4

the energy and pressure p, namely e = p/(γ − 1) + 1
2ρ|v|2, where γ = 1.4 is the adiabatic

Poisson constant. For details, we refer to, e.g., [25, 47].
We consider the computational domain Ω := [0, 10] × [0, 10] which is extended peri-

odically in both directions. The mean flow is defined by ρ̄ = 1, v̄ = (1, 1)T and p̄ = 1. An
isentropic vortex is added to the mean flow, i.e., there is a perturbation in v and the tempera-
ture θ = p/ρ, but no perturbation in the entropy S = p/ργ , where γ is the Poisson constant.
For analytical relations we refer to [39] or [16, Chapter 8].
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Fig. 3 Moving interior layer (51)–(52) with ε = 10−2, the convergence of the error eh (full lines) and its
estimate Eh (dashed lines) with respect to DoF (left) and computational time (right), comparison of the
computations without mesh adaptation using Pp, p = 1, 2, 3 and the computation with hp-mesh adaptation

Fig. 4 Moving interior layer (51)–(52) with ε = 10−2, performance of Algorithm 3, error estimate for all
and the accepted time steps (left) and the comparison of the error and its estimate (right) with respect to the
physical time

The aforementioned problem setting leads to the passive convection of the vortex with
the mean velocity, hence the analytical solution is available and the error can be evaluated.
In particular, the flow is time-periodic with the period t̄ = 10, i.e., we have w(x, t) =
w(x, t + 10) for all x ∈ Ω and t > 0. We carried out the computation till T = 30, hence 3
time-periods have been computed.

We applied Algorithm 3 with several tolerances. The corresponding results are shown in
Table 5. The symbols are the same as in the previous example. Obviously, for decreasing
tolerances, the error as well as its estimates are decreasing. Similar to the scalar example from
Sect. 5.1, we observe a reasonable approximation of the error by the interpolation error in the
L∞(0, T ; L2(Ω))-norm. The time inconsistency quantities J aver and Jmax are decreasing
for decreasing tolerances.

Figure 7 shows the error and its estimates for all time steps (including the refused time
steps). We observe that although the error approximation during the first period (t ∈ (0, 10))
is reasonable, the error starts to increase during the second period, whereas the error estimate
is under the toleranceω. This is caused by the fact that the computational error is accumulated
for the long time interval, whereas the higher-order reconstruction is local in time.
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Fig. 5 Moving interior layer (51)–(52)with ε = 10−2,hp-meshes obtainedbyAlgorithm3withω = 2.5·10−4

(top) and the corresponding isolines of the solution (right) at t = 0.2, t = 0.6 and t = 1.0 (from left to right)

Fig. 6 Moving interior layer (51)–(52) with ε = 10−3, hp-meshes obtained by Algorithm 3 withω = 5 ·10−4

(top) and the corresponding isolines of the solution (right) at t = 0.2, t = 0.6 and t = 1.0 (from left to right)

Moreover, Fig. 8 shows the hp-meshes and the isolines of the Mach number M :=
|v|/√γ p/ρ at the time levels t = 10, t = 20 and t = 30. As mentioned above, the exact
solution fulfills w(·, 10) = w(·, 20) = w(·, 30), and we observe that the graphs of isolines
are very similar. This effect is also demonstrated by Fig. 9 where the distribution of the
density and the Mach number along the diagonal cut through the vortex at t = 10, t = 20,
and t = 30 are shown. We observe almost identical results. Hence the use of non-nested
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Table 5 Isentropic vortex propagation, computations using Algorithm 3

q ω DoF #τm eh Eh J aver Jmax iN iL time

1 2.5E-03 21946 300 1.18E-02 2.49E-03 2.51E-02 4.52E-02 2312 4537 1049.4

1 1.0E-03 40854 378 3.83E-03 9.97E-04 1.52E-02 2.44E-02 2725 5469 2459.2

1 5.0E-04 64776 449 1.76E-03 5.00E-04 1.05E-02 1.55E-02 3149 6308 5017.1

1 2.5E-04 101131 537 7.77E-04 2.49E-04 7.28E-03 1.07E-02 3737 7577 9404.2

Fig. 7 Isentropic vortex propagation, performance of Algorithm 3, error estimate for all time steps with respect
to the physical time (left) and the comparison of the error and its estimate (right)

Fig. 8 Isentropic vortex propagation, hp-meshes obtained by Algorithm 3 with ω = 5 · 10−4 (top) and the
corresponding isolines of the solution (bottom) at t = 10, t = 20 and t = 30 (from left to right)

anisotropic hp-meshes in combination with space-time DGM does not cause any essential
lost of accuracy.
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Fig. 9 Isentropic vortex propagation, diagonal cuts of the density (top) and the Mach number (bottom) at
t = 10, t = 20 and t = 30 (from left to right)

5.3 Kelvin-Helmholtz Instability

The next example exhibits the simulation of the Kelvin-Helmholtz instability, which appears
when a velocity difference across the interface between two fluids is presented. Then there
appear the typical Kelvin-Helmholtz roll-ups, which are challenging to simulate numerically.
The problem is described by the compressibleNavier-Stokes equation having the same sought
vector w = (ρ, v1, v2, e) as in Sect. 5.2. For details, we refer again to [25, 47].

We consider exactly the same setting as in [42]. The computational domain Ω = (0, 1)2

is extended periodically in both directions and the final time is T = 2. The initial conditions
are given by

{
ρ = 2, v1 = −0.5 + ε, v2 = ε, p = 2.5 if 0.25 < x2 < 0.75,

ρ = 1, v1 = 0.5 + ε, v2 = ε, p = 2.5 if 0.25 ≥ x2 or x2 ≥ 0.75,
(54)

where we set ε = 0.01 sin(4πx1) to trip the instability. We consider the fluid viscosity
μ = 2 · 10−4, the heat capacity at constant pressure cp = 1005, the adiabatic Poisson
constant γ = 1.4, and the Prandtl number Pr = 0.72.

Figure 10 shows the hp-meshes and the density distribution obtained by Algorithm 3 at
several time instants. We observe the development of the roll-ups and the expectable hp-
mesh adaptation. High polynomial degrees are generated within the roll-ups, the shapes of
elements follow their directions. The lowest polynomial degrees (p = 1) are outside the
interfaces where the solution is almost constant.
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Fig. 10 Kelvin-Helmholtz instabilities arising from the initial condition (54), hp-meshes obtained by Algo-
rithm 3 and the corresponding density distribution at t = 0, 0.4, 0.8, 1.2, 1.6 and t = 2 (from left to right and
from top to bottom)

5.4 Simulation of the Single Ring Infiltration

The last example exhibits a simulation of the flow through a variably saturated medium
described by the Richards equation, written in the form

∂t (ϑ(ψ)) − ∇ · (K(ψ)∇Ψ ) = 0 in Ω × (0, T ), (55)
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Fig. 11 Single ring infiltration,
the computational domain with
the input (Dirichlet) boundary
ΓD and the rest of the boundary
(red and magenta), where the
homogeneous Neumann
boundary condition is used

whereψ andΨ denote the pressure and hydraulic heads, respectively, related byΨ = ψ+x2,
and x2 is the vertical coordinate. Moreover, K(ψ) is the unsaturated hydraulic conductivity
given byK(ψ) = Kr (ψ)Ks , where Kr (ψ) is the relative hydraulic conductivity, andKs is the
saturated hydraulic conductivity tensor. Furthermore, ϑ(ψ) denotes the active pore volume
given byϑ(ψ) := θ(ψ)+ Ss

θS

∫ ψ

−∞ θ(ξ) dξ , where θ(ψ) is thewater content function, θS is the
limited saturated water content, and Ss is the specific storativity. The function θ(ψ) is given
by the van Genuchten’s law [43], and the relative conductivity Kr (ψ) is given by theMualem
function [33]. For a more detailed description we refer to, e.g., [17, 41]. Both functions, ϑ
and K, depend nonlinearly on their arguments, and they are not continuously-differentiable
at ψ = 0, which causes difficulties in the convergence of the solvers.

We consider the simulation of the single-ring infiltration. The computational domain is
shown in Fig. 11. At the time t = 0, a dry medium with Ψ = −2 is prescribed. On the
boundary part ΓD we set the Dirichlet boundary condition Ψ = 1.05, and on ∂Ω \ ΓD we
consider the homogeneousNeumann boundary condition.Wenote that the smaller “magenta”
vertical lines starting at ΓD also belong to the boundary and they are impermeable. The
inconsistency of the initial and boundary condition on ΓD makes the computation rather
difficult for t ≈ 0.

We carried out the computation until the physical time T = 2 hours, and we are interested
in the water flux through the boundary ΓD . Hence, we consider two quantities, the actual
flux and the total (accumulated) flux given by

F(t) := −
∫

Γ2

K(ψ)∇Ψ (x, t) · n dS, t ∈ [0, T ],

and F(t) := −
∫ t

0

∫

Γ2

K(ψ)∇Ψ (x, t ′) · n dSdt ′, t ∈ [0, T ], (56)

respectively. The results obtained by Algorithm 3 for several tolerances are shown in Table 6.
Besides the quantities measuring the jumps with respect to the time, the number of algebraic
iterations, and computational time, we present the accumulated flux F(T ) and also the quan-
tity δ(T ) indicating the conservativity of the numerical method. Namely, δ(t) is the relative
difference between the increase of the water contents

∫
Ω

(ϑ(x, t) − ϑ(x, 0)) dx and the total
flux − ∫ t

0

∫
∂Ω

K(ψ)∇Ψ (x, t ′) · n dSdt ′ (≈ F(t) due to the prescribed boundary conditions).
Table 6 shows that δ(T ) is about 1% which is an acceptable inaccuracy.

Furthermore, Fig. 12 presents the dependence of the actual flux F(t) on t ∈ (0, T ) for the
treated tolerance. The left figure shows the global view and the other ones the details close
t = 0 and t = T . We observe that the computations with lower tolerances do not capture the
behavior well. On the other hand, this inaccuracy affects the total flux only slightly.
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Table 6 Single ring infiltration, computations using anisotropic hp-mesh adaptation

q ω DoF #τm F(T ) δ(T ) J aver Jmax time(s)

1 2.E-02 1657 293 4.089E-02 2.274E-02 2.514E-05 3.275E-04 2560.3

1 1.E-02 2243 415 4.058E-02 1.861E-02 1.247E-05 1.272E-04 5052.0

1 8.E-03 2801 476 4.066E-02 1.104E-02 1.024E-05 1.182E-04 8316.0

1 5.E-03 3556 526 4.071E-02 1.196E-02 7.402E-06 9.605E-05 16193.0

Fig. 12 Single ring infiltration, dependence of the actual flux F(t) on t ∈ (0, T ) for the treated tolerance, total
view (left), the details near t = 0 (center) and t = T (right)

Fig. 13 Single ring infiltration, hp-meshes obtained by Algorithm 3 with ω = 5 · 10−4 (top) and the cor-
responding hydraulic head distribution (right) at t = 0.4, t = 0.8 and t = 2 hours (from left to right)

Moreover, Fig. 13 shows the hp-meshes and the distribution of the hydraulic head at
selected time levels obtained from Algorithm 3 with ω =5E-03. Finally, we note that com-
putational times observed for this example (last column in Table 6) are very large, which is
caused by the high number of linear and nonlinear iterations. This is caused in turn by the
non-regularity of the constitutive relations for ϑ andK in (55). Hence, the use of an efficient
adaptation method, which significantly reduces the number of DoF, is an essential tool which
can accelerate the computational process.
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6 Summary

We proposed an adaptive space-time discontinuous Galerkin method for the numerical solu-
tion of time-dependent PDEsbased on the control of the interpolation error,which is estimated
by the space-time variant of a higher-order reconstruction. If the interpolation error estimate is
over the prescribed tolerance in the particular time step, the computational grid is completely
re-meshed including the shape of elements and the polynomial approximation degrees, and
the time step is repeated. Thus the anisotropic methodology reliably aligns the grid with dom-
inant solution features leading to significant error reduction. Although the grids employed at
the different time steps are non-nested and non-matching, a simple recomputation technique
among them does not lead to any essential decrease of accuracy. This effect was demonstrated
by the presented numerical examples.

One downside of the current approach is that the interpolation error estimates employed
do not provide an upper bound of the error. One possibility is to use the approach developed,
e.g., in [23, 24]. However, from a practical point of view, a better option seems to be the
development of goal-oriented error estimates. We dealt with this technique in [15, 20] for
time-independent problems. Nevertheless, the goal-oriented anisotropic hp-mesh adaptation
method for time dependent problems is currently completely open.

Finally, the presented approach is based on the minimization of the number of degrees of
freedom. However, the reduction of DoF does not imply the reduction of the computational
cost at the same rate. The presence of anisotropic elements, as well as the varying polynomial
approximation degrees, typically increase the difficulty in the solution of the arising algebraic
systems. The effect requires a deeper numerical analysis which will be the subject of further
research.
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Appendix

In spirit of Lemma 3, we formulate the hypothetical solution of Problem 2 by the means of
variational calculus. We set the Lagrangian corresponding to (P2) with constraint (P1) for
the sought functions μ : Ω → (0,∞) and p : Ω → [1,∞) as

L (μ, p, λ) := N − λ(ω − E)
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=
∫

Ω

(p(x) + 1)(p(x) + 2)

2μ(x)2
dx − λ

(
ω −

∫

Ω

(
B(x) μ(x)(p(x)+1)

)q
dx

)
,

(57)

where 0 �= λ ∈ R is the Lagrange multiplier. Functionsμ and p are the solution of Problem 2
if

d

dt
L (μ + tμ̃, p, λ)|t=0 = 0 for any perturbation μ̃,

and
d

dt
L (μ, p + t p̃, λ)|t=0 = 0 for any perturbation p̃. (58)

Adirect calculation (cf. proof of Lemma3) yields a systemof nonlinear exponential-algebraic
relations

0 = − (p(x) + 1)(p(x) + 2)

μ(x)3
+ λq(p(x) + 1)B(x)q

(
μ(x)

)q(p(x)+1)−1
,

0 = − p(x) + 3
2

2μ(x)3
+ λqB(x)q ln(μ(x))

(
μ(x)

)q(p(x)+1)
. (59)

However, it is not clear if functions μ(x) and p(x) can be eliminated from (59).
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