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Abstract
We prove limit laws for infinite horizon planar periodic Lorentz gases when, as time
n tends to infinity, the scatterer size ρ may also tend to zero simultaneously at a
sufficiently slow pace. In particular we obtain a non-standard Central Limit Theorem
as well as a Local Limit Theorem for the displacement function. To the best of our
knowledge, these are the first results on an intermediate case between the two well-
studied regimes with superdiffusive

√
n log n scaling (i) for fixed infinite horizon

configurations—letting first n → ∞ and then ρ → 0—studied e.g. by Szász and
Varjú (J Stat Phys 129(1):59–80, 2007) and (ii) Boltzmann–Grad type situations—
letting first ρ → 0 and then n →∞—studied by Marklof and Tóth (Commun Math
Phys 347(3):933–981, 2016) .
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1 Introduction

In this paper we are interested in limit laws for infinite horizon planar periodic Lorentz
gases with small scatterers. The Lorentz gas, a popular model of mathematical physics
introduced by Lorentz in 1905 [23], is a dynamical system on the infinite billiard table
obtained by removing strictly convex scatterers fromR

2. We study the periodic model
when these scatterers are round disks of radius ρ ∈ (0, 1/2) positioned at the points of
the Euclidean lattice Z2. This table can be split up into countably many compact cells,
each congruent to the unit square, which can be also regarded as the 2-dimensional
flat torus. As usual, a point particle on the table moves with a unit velocity vector
along straight lines inside the table, and collides elastically—angle of incidence equals
angle of reflection—at the scatterers. This billiard flow produces a billiard map for
the Poincaré section of outgoing collisions. The phase space of the billiard map in
a single cell is M = ∂O × [−π2 , π2 ], where O is a round disk at the origin with
radius ρ. The phase space representing all cells together is ̂M = M × Z

2 and the
displacement function κρ :M→ Z

2 indicates the difference in cell numbers going
from one collision to the next. As O is strictly convex, the billiard is dispersing, and
the dynamics has good hyperbolicity properties.

For any ρ ∈ (0, 1/2), the horizon is infinite which means that the time between
two consecutive collisions—and accordingly, κρ : M → Z

2—is unbounded. This
corresponds to corridors, that is, infinite strips on R

2 parallel to some direction ξ ∈
Z
2 \ {0} which do not intersect any of the scatterers of the infinite billiard table. Both

the number and the geometry of these corridors depend on ρ. Hence, the value of
the parameter ρ strongly affects the asymptotic properties of the dynamics, and in
particular, plays a central role in our exposition.

1.1 Recalling limit laws for fixed� ∈ (0, 1/2) as time n → ∞

A consequence of the infinite horizon is the superdiffusive behaviour of κρ with ρ ∈
(0, 1/2) fixed, captured in the first place in the Central Limit Theorem (CLT)with non-
standard normalization. To recall this result along with its refinements, we introduce
some notation to be used throughout this paper. Let Tρ : M → M be the billiard
map, recall that it preserves the canonical invariant probability measure μ. Set

κn,ρ =
n−1
∑

j=0
κρ ◦ T j

ρ , � = 1

π

(

1 0
0 1

)

. (1)

Choosing the initial point on M according to μ, we can regard κn,ρ as a family of
random variables. Throughout we let �⇒ stand for convergence in distribution. We
recall the CLT with non-standard normalization: for every ρ ∈ (0, 12 ) there exists a
positive definite matrix �ρ such that:

For fixed ρ ∈ (0, 1/2), κn,ρ√
n log n

�⇒ N (0, �ρ) as n→∞. (2)
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Periodic Lorentz gas with small scatterers

This result was conjectured byBleher [5] and proved rigorously via two differentmeth-
ods: Szász and Varjú [31], and Chernov and Dolgopyat [11]. In the setting above, the
requirement of having two non-parallel corridors (present in [11, 31]) is automatically
satisfied because the scatterers are positioned at the lattice points.

It is important to note that there is an explicit formula for �ρ , which involves the
scatterer geometry for fixed ρ, see for example [11, Formula (2.1)]. A computation
(similar to our proof of Lemma A.4) shows that

lim
ρ→0

(4πρ2)�ρ = �, (3)

where � is the diagonal matrix given in (1). To compare these results with our Theo-
rem A below, we point out the following direct consequence of (2) and (3):

κn,ρ

(
√
4πρ)−1

√
n log n

�⇒ N (0, �) as first n→∞ and then ρ → 0. (4)

The method of proof in [31] relies on the existence of a Young tower for Tρ as in
[9, 34] and an abstract result of Bálint and Gouëzel [4] along with several additional
properties of (κρ, Tρ) established in [31]. One notable feature of this method is that it
provides a refinement of the CLT (2), namely the Local Limit Theorem (LLT):

For fixed ρ ∈ (0, 1/2), (n log n)μ(κn,ρ = 0)→ ��ρ (0) as n→∞, (5)

where ��ρ is the density of the Gaussian random variable on the r.h.s of (2).
The method of proof in [11] exploits exponential mixing for the sequence {κρ ◦

T n
ρ }n≥1. The authors of that work develop an argument based on standard pairs to

establish a bound on the correlations for κρ :

For fixed ρ ∈ (0, 1/2), there exist ϑ̂ρ ∈ (0, 1) and Ĉρ > 0
so that

∣

∣

∫

M κρ · κρ ◦ T n
ρ dμ

∣

∣ ≤ Ĉρ · ϑ̂n
ρ for all n ≥ 1.

(6)

Using (6), the CLT (2) is proved in [11, Proof of Theorem 8 a)] via blocking type
arguments; we refer to Denker [17] for a classical reference. Furthermore, as shown
in [11, Proof of Theorem 8], the limit law (2) together with a tightness argument for
a truncated version of κρ provides another refinement of the CLT, namely, the Weak
Invariance Principle (WIP):

For fixed ρ ∈ (0, 1/2) and s ∈ (0, 1), κ�ns�,ρ+{ns}(κ�ns�+1,ρ−κ�ns�,ρ )√
n log n

converges as

n→∞ to a Brownian motion with mean 0 and variance �ρ.
(7)

Similar versions of the CLT (2) and theWIP (7) hold for the flight time function taking
values in R2, see [11].

In a different direction, a further important consequence of the LLT (5) established
in [31] is that it allows one to study mixing of the infinite measure preserving billiard
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dynamics on the entire lattice ̂M =M×Z
2. This can be modelled by aZ2 extension

T̂ n
ρ (θ, φ, �) = (T n

ρ (θ, φ), �+ κn,ρ(θ, φ)), (θ, φ) ∈M, � ∈ Z
2.

The dynamics T̂ρ preserves the measure μ̂ = μ × LebZ2 , where LebZ2 denotes the
counting measure. Let us introduce the notation Mξ :=M× {ξ} ⊂ ̂M for ξ ∈ Z

2,
and furthermore, for brevity, let M0 :=M × {(0, 0)}, where the label 0 refers here
to the origin in Z2. An immediate consequence of (5) is:

For fixed ρ ∈ (0, 1/2), (n log n)μ(κn,ρ = 0) = (n log n)μ̂(M0 ∩ T̂−nρ M0)

→ ��ρ (0) as n→∞. (8)

A first refinement of the LLT (5) and of the mixing statement (8) was obtained by
Pène [28] who proved the analogue of these statements for the class of dynamically
Hölder observables. Later on, Pène and Terhesiu [29], building on the results in [4],
obtained sharp error rates in the LLT and the mixing for dynamically Hölder observ-
ables, including observables supported on compact sets. Furthermore, [29] establish
optimal error rates for mean zero observables.

1.2 Recalling results as first� → 0 and then n → ∞ (Boltzmann–Grad limit)

In [24, 25], Marklof and Strömbergsson studied the Boltzmann–Grad limit of the peri-
odic Lorentz gas. This corresponds to letting the scatterer size ρ → 0 and investigating
the displacement in the rescaled continuous time T = ρt (so that the mean free path
remains bounded). In particular, [24] proves that, in this Boltzmann–Grad limit, the
displacement of the particle converges, on any finite time interval, to an explicitly given
Markov process. Marklof and Tóth [26] then studied the large time asymptotic of this
Markov process, and obtained the CLT and the WIP with non-standard normalization√
T log T .
These results on the Boltzmann–Grad limit scenario hold in any dimension, not just

in d = 1, 2 as the results mentioned in the previous subsection. For more details, we
refer to the original references. What is most relevant for us is that [26, Theorem 1.1]
and [26, Theorem 1.3] are reduced to discrete time statements that can be formulated
in terms of the behavior of κn,ρ in the limits ρ → 0 first and then n→∞. In particular,
[26, Theorem 1.2] states for d = 2 that:

κn,ρ

(
√
4πρ)−1

√
n log n

�⇒ N (0, �) as ρ → 0 followed by n→∞, (9)

where κn,ρ and � are as in (1),1 while [26, Theorem 1.4] is the corresponding WIP
which, when d = 2, reads as (7) with the main difference of the limit paths: ρ → 0
followed by n→∞, as opposed to fixed ρ.

1 Actually, [26, Theorem 1.2] is stated for the flight time function taking values in R
2, as opposed to

the displacement function taking values in Z
2, but these are equivalent as the difference between the two

processes is uniformly bounded, see Remark 6.5.
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Periodic Lorentz gas with small scatterers

In [26], the authors state that an open problem is to consider the joint limit ρ → 0
and n → ∞. In the Boltzmann–Grad limit scenario with diffusive behaviour, this
type of question is answered by Lutsko and Tóth in [22] for random Lorentz gases, in
dimension d = 3, where, on top of the initial condition, additional randomness comes
from the random placement of the scatterers. However, their model is very different
from the model considered in [26] and it is characterized by diffusion (Brownian
motion with standard normalization).

1.3 Main results as� → 0 and n → ∞ in the joint limit

Our main result takes a step in answering the open question in [26] for the planar
periodic Lorentz gas. It reads as follows.

Theorem A Let κn,ρ and � be as in (1), and let

bn,ρ =
√

n log(n/ρ2)√
4π ρ

.

There exists a function M(ρ) with M(ρ)→∞ as ρ → 0 such that,

κn,ρ

bn,ρ
�⇒ N (0, �), as n→∞ and ρ → 0 such that M(ρ) = o(log n).

A precise expression of M(ρ) is given in Theorem 7.1 in Sect. 7. At this stage we
mention that M(ρ) depends on the rate of correlation decay for Hölder observables
as ρ → 0. How this decay rate depends on ρ is not known and we do not attempt
to study this in the present paper. However, we comment on some relevant aspects of
correlation decay below.

In the remainder of this section, wemake some further comments on how our results
compare to various other works, and on some key ingredients of our argument.

Comments on the rate of correlation decay Statistical limit laws in dynamical set-
tings in general, and our results in particular, are strongly related to effective bounds
on time correlations. For several decades, it has been a major problem to prove expo-
nential decay of correlations for Hölder observables in dispersing billiards, that is,
bounds of the form:

∣

∣

∣

∣

∫

M
ψ1 · ψ2 ◦ T n

ρ dμ

∣

∣

∣

∣

≤ Cρ(ψ1, ψ2) · θ̂nρ for all n ≥ 0, (10)

where ψ1 :M→ R and ψ2 :M→ R are centered, Hölder continuous observables,
and θ̂ρ < 1 may depend on the Hölder exponent, whileCρ(ψ1, ψ2) > 0 on the Hölder
norm of these functions, and both constants depend also on ρ (i.e. on the billiard
table). Several powerful methods have been designed to prove bounds of the form
(10), in particular using quasi-compactness of the transfer operator on Young towers
[34] or anisotropic Banach spaces [14], coupling of standard pairs [10, Chapter 7]
or most recently, Birkhoff cones [13]. However, each of these methods involve some
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non-constructive compactness argument which is the reason why there is no explicit
information available on how the rate of decay (i.e. Cρ and θ̂ρ) depends on ρ. For
instance, in the framework of quasi-compact transfer operators, this corresponds to
having effective bounds on the essential spectral radius, but not on the spectral gap.

In fact, depending on the method, ψ1 and ψ2 may belong to a larger space (that
contains Hölder functions), however, these spaces do not contain the unbounded
observable κρ . Hence, even for fixed ρ, it requires additional effort to obtain cor-
relation bounds for unbounded observables, in particular, to derive (6). As mentioned
above, in our context of the infinite horizon Lorentz gas, (6) was proved by Chernov
and Dolgopyat in [11, Proposition 9.1], which is an important reference for our work.
Let us also mention [3, Lemma 3.2] on a similar bound for the induced return time
arising in dispersing billiards with cusps, and the more recent paper [32] where corre-
lation bounds for unbounded observables are studied in an axiomatic framework that
includes further billiard models. Nonetheless, all these works consider the large time
asymptotics of a fixed billiard system. To treat the simultaneous scaling of ρ → 0
and n → ∞, in Appendix C of the present paper we extend [11, Proposition 9.1] in
two directions. On the one hand, on top of the mere existence of some Ĉρ > 0 and
ϑ̂ρ < 1 in (6), we explicitly relate these constants to Cρ and θ̂ρ of (10), as expressed
in (66).2 On the other hand, to exploit correlation bounds of the type (6) when taking
the joint limit, these have to be combined with the action of the perturbed transfer
operator Rρ(t) (introduced below) as stated in our Proposition C.1.

Comparison with results on the random Lorentz gas To compare our Theorem A
with the results of Lutsko and Tóth on the random Lorentz gas, it is important to
emphasize that although both [22] and our paper consider a joint limit of scatterer
radius tending to 0 and time tending to infinity simultaneously, the settings of these
two papers are quite different. In particular, the starting point of Lutsko and Tóth
is the Boltzmann–Grad limit of the random Lorentz gas, and accordingly, [22] can
handle situations when time tends to infinity at a sufficiently slow pace in relation
to the scatterer size tending to 0. In contrast, the starting point of our work is the
superdiffusive limit in the infinite horizon periodic Lorentz gas with fixed scatterer
size (see Sect. 1.1 for a summary of previous results), and accordingly we can handle
situationswhen time tends to infinity at a sufficiently fast pace in relation to the scatterer
size tending to 0.

It is also important to note that under the condition M(ρ) = o(log n) we have

bn,ρ

(
√
4πρ)−1

√
n log n

→ 1,

which shows that our Theorem A is indeed a direct analogue of both (4) and (9). To
simplify the exposition, we omit the case d = 1 (i.e., the Lorentz tube), but believe
that similar results can be obtained by the same arguments.

Further comments on some corollaries of our result and some elements of our proofs
Amain advantage of the current method of proof via spectral methods is that it allows
us to obtain (with no additional effort) the LLT (5) and the mixing statement (8) with

2 We will also use the notations γρ = 1− θ̂ρ and γ̂ρ = 1− ϑ̂ρ .
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Periodic Lorentz gas with small scatterers

appropriate limit paths ρ → 0 simultaneously with n→∞, as opposed to fixed ρ. For
the LLT we refer to Theorem 7.3 and for the mixing result we refer to Corollary 7.5.

We mention up front that unlike in the fixed ρ scenario with main results recalled in
Sect. 1.1, we cannot exploit the existence of a Young tower because it seems undoable
to build such a tower in a fashion that it depends continuously on ρ. Instead, we prove
Theorem A via the Nagaev method on Banach spaces of distributions introduced by
Demers and Zhang [14–16] in the spirit of the spaces constructed in Demers and
Liverani [12]. See Aaronson and Denker [1, 2] for a classical reference on the Nagaev
method in (Gibbs Markov) dynamics beyond the CLT with standard normalization
(that is

√
n). However, as we shall explain below, the standard pairs argument in [11]

plays a crucial role in our proof.
We end this introduction summarizing the main steps and challenges of our proofs.

A main difficulty comes from the fact that as ρ → 0, more and more corridors open
up and controlling their number and geometry is a non-trivial task. Another challenge
for the proofs of Theorem A and the LLT in Theorem 7.3 comes from the fact that the
spaces in [14–16] cannot be used in a straightforward way even in the infinite horizon
case with fixed ρ.

The Nagaev method requires: (1) the existence of a Banach space (B, ‖ ‖B) on
which the transfer operator Rρ of Tρ has a spectral gap; (2) that the perturbed transfer
operator (Rρ(t)ψ = R(eitκρ ·ψ) forψ ∈ B) has sufficiently good continuity estimates
‖Rρ(t)− Rρ(0)‖B ≤ C |t |ν ; the larger ν > 0, the better.

Regarding 1), using a Lasota–Yorke inequality on a strong space B and a weak
space Bw, Demers and Zhang [14–16] established the spectral gap for every fixed ρ,
see Sect. 4. This is the main reason why we resorted to the use of such Banach spaces.

Regarding 2), as in Keller and Liverani [20], one could work with the weak space.
For infinite horizon billiards, continuity estimates in the strong or weak Banach spaces
in [14–16] have not been obtained previously. In Sect. 5.2, we give continuity estimates
in such Banach spaces (strong or weak); the estimates there rely heavily on a version
of the growth lemma, namely Proposition 3.1. These continuity estimates are O(|t |ν)
for ν < 1/2 with explicit dependence on ρ, in both the strong and the weak spaces.
This exponent ν is too small to obtain the asymptotics of the leading eigenvalue of
Rρ(t) directly. Therefore we resort to a decomposition of the eigenvalue in several
pieces (see the proof of Proposition 6.3) and exploit the standard pairs arguments in
[11] to deal with some parts of the estimate, see Appendix C. Along the way, we give
a new proof of the LLT (5) for fixed ρ which is new at an abstract level as well, namely
by working on the Banach spaces [14–16] in the absence of good continuity estimates
but in the presence of exponential decay of correlations.

The paper is organised as follows: In Sect. 2 we recall some basic properties of
hyperbolic billiards and also estimate widths of corridors that open up as ρ → 0. Sec-
tion3 gives the Growth Lemmas, following [14–16] but with estimates made explicit
in terms of ρ, and including sums over unbounded number of corridors (this is the
reason why the estimates are worse than for the usual Growth Lemmas). Section4
introduces the Banach spaces and recalls the proof of the spectral gap property for the
unperturbed transfer operator Rρ , showing that the ρ-dependence can be controlled.
Section5 is devoted to the continuity estimates of the perturbed transfer operator Rρ(t)
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and Sect. 6 gives the asymptotics of the corresponding leading eigenvalue. The precise
statements and proofs of the limit theorems are gathered in Sect. 7.

The appendices give further technical details on corridor sums (Appendix A), dis-
tortion (Appendix B) and decay of correlations by a combination of tower and standard
pair arguments (Appendix C).

2 Preliminaries on Lorentz gas on Z
2

Our general reference on hyperbolic billiards is Chernov and Markarian [10], the con-
ventions of which are followed in our exposition, except for some minor differences.
In particular, we use coordinates (θ, φ) ∈ S

1 × [−π2 , π2 ] on M, where

• θ ∈ S
1 in clockwise orientation describes the collision point on the scatterer (so

the corresponding point on ∂O is (ρ sin θ, ρ cos θ));
• φ ∈ [−π2 , π2 ] denotes the outgoing angle that the billiard trajectory makes after a
collision at a point with coordinate θ with the outward normal vector Nθ at this
point (so φ = π

2 corresponds to an outgoing trajectory tangent to O in the positive
θ -direction).

In these coordinates (θ, φ), the measure μ has the same form dμ = 1
4π cosφ dφ dθ

for all values of the radius ρ > 0. Integrals involving the displacement function κρ ,
however, do depend on ρ. If the flight between (x, �) and (Tρ(x), � + κρ(x)) goes
through a corridor for a long time before hitting a scatterer at the boundary of this
corridor, then the angle at which the second scatterer is hit is close to±π2 . This sparks
another long flight in the same corridor, i.e., ‖κρ(Tρx)‖ is large, too.

In the remainder of this section, we record some properties of Tρ and κρ . In Sect. 2.1
the geometry of corridors is described, with special emphasis on the asymptotics
of small ρ. In Sect. 2.2 we focus on the singularities, which, in addition to strong
hyperbolicity, are the other main feature of the map Tρ :M→M. In Sect. 2.3, the
hyperbolic properties of Tρ : M → M are discussed. Some lemmas of technical
character are moved to Appendices A and B.
Notation:For functions (or sequences) f and g, we use theVinogradovnotation f � g
and the Landau big O notation interchangeably: there is a constant C > 0 such that
f ≤ Cg. Similarly f � g means that there exists C > 1 such that C−1g ≤ f ≤ Cg.

2.1 Corridors and their widths

Let O� denote the circular scatterer of radius ρ placed at lattice point � ∈ Z
2. The

computation of μ(x ∈ ∂O0 × [−π2 , π2 ] : κρ(x) = (p, q)) is based on the division of
the phase space in corridors. These are infinite strips in rational directions given by ξ ∈
Z
2\{0} for ρ sufficiently small, that are disjoint from all scatterers (but maximal with

respect to this property), and they are periodically repeated under integer translations.
As soon as ρ < 1

2 , there are infinite corridors parallel to the coordinate axes. If
ρ < 1

4

√
2, then corridors at angles of ±45◦ open up, and the smaller ρ becomes, the

more corridors open up at rational angles.

123



Periodic Lorentz gas with small scatterers

Fig. 1 Corridors tangent to the scatterers at 0 and ξ = (3, 2)

Given 0 �= ξ ∈ Z
2 and ρ > 0 sufficiently small, there are two corridors simultane-

ous tangent to O0 and Oξ , one corridor on either side of the arc connecting 0 and ξ .
The widths of the corridors are denoted by dρ(ξ) and d̃ρ(ξ), see Fig. 1.

Lemma 2.1 If ρ = 0 and ξ = (p, q) ∈ Z
2 is expressed in lowest terms, then

d0(ξ) = d̃0(ξ) = 1

|ξ | .

For ρ > 0, the actual width of the corridor is then dρ(ξ) = d̃ρ(ξ) = max{0, |ξ |−1 −
2ρ}.
Remark 2.2 Let us call these two corridors in the direction ξ the ξ -corridors. They open
up only when ρ < d0(ξ)/2 = d̃0(ξ)/2. For ρ = 0, the common boundary (called
ξ -boundary) of the two ξ -corridors is the line through 0 and ξ . The other boundaries
are lines parallel to the ξ -boundary, going through lattice points that are called ξ ′ and
ξ ′′ in the below proof. For ξ = (p, q) (with gcd(p, q) = 1), these points ξ ′ = (p′, q ′),
ξ ′′ = (p′′, q ′′) are uniquely determined by ξ in the sense that p′/q ′ and p′′/q ′′ are
convergents preceding p/q in the continued fraction expansion of p/q. In particular
|ξ ′|, |ξ ′′| ≤ |ξ |. In the sequel, we usually only need one of these two ξ -corridors, and
we take the one with ξ ′ in its other boundary.

Proof If (p, q) = (0,±1) or (±1, 0), then clearly d0(ξ) = d̃0(ξ) = 1, so we can
assume without loss of generality that p ≥ q > 0. Let L be the arc connecting (0, 0)
to (p, q). The corridors associated to ξ intersect [0, p] × [0, q] in diagonal strips on
either side of L .

Let q
p = [0; a1, . . . , an = a] be the standard continued fraction expansion with

a ≥ 1, and the previous two convergents are denoted by q ′/p′ and q ′′/p′′, say q ′′/p′′ <
q/p < q ′/p′ (the other inequality goes analogously). Therefore q ′ p − qp′ = 1 and
q ′′ p′ − q ′ p′′ = −1. Also
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(a − 1)q ′ + q ′′

(a − 1)p′ + p′′
<

q

p
<

q ′

p′

are the best rational approximations of q/p, belonging to lattice points ξ ′ above L
and ξ ′′ below L . The vertical distance between ξ ′ and the arc L is |q ′ − p′ qp | =
1
p |q ′ p − p′q| = 1

p . The vertical distance between L and ξ ′′ is

((a − 1)p′ + p′′) q
p
− ((a − 1)q ′ + q ′′) = 1

p
((a − 1)(qp′ − q ′ p)+ qp′′ − q ′′ p)

= 1

p
(1−a+(aq ′ + q ′′)p′′−(ap′ + p′′)q ′′)

= 1

p
(1− a + a(q ′ p′′ − q ′′ p′)) = 1

p
.

The corridor’s diameter is perpendicular to ξ , so d0(ξ) is computed from this vertical
distance as the inner product of the vector (0, 1/p)T and the vector ξ = (p, q)T

rotated over 90◦:

1
√

p2 + q2

〈(

0
1/p

) (−q
p

)〉

= 1
√

p2 + q2
= 1

|ξ | .

The computation for d̃0(ξ) = |ξ |−1 is the same. ��

2.2 Singularities of the billiardmap

In the coordinates (θ, φ, �) ∈ S
1 × [−π2 , π2 ] × Z

2 (or ×Z if it is a Lorentz tube), the
size of the scatterers ρ doesn’t appear, but it comes back in the formula of the billiard
map Tρ and in its hyperbolicity. Also the curvature of the scatterers is K ≡ 1/ρ. We
recall some notation from the Chernov and Markarian book [10] (going back to the
work of Sinaı̆), bearing in mind that we have to redo several of their estimates to track
the precise dependence on ρ. The phase space is ̂M =M×Z

2 =⋃�∈Z2 M�, where
each M� is a copy of the cylinder S1 × [−π2 , π2 ], see Fig. 2.

Let S0 = {φ = ±π2 } be the discontinuity of the billiard map corresponding to
grazing collisions. The forward and backward discontinuities are

Sn = ∪ni=0T−iρ (S0) and S−n = ∪ni=0T i
ρ(S0),

so that T n
ρ : M \ Sn → M \ S−n is a diffeomorphism. We line the curve S0 with

homogeneity stripsHk boundedby curves |±π2−φ| = k−r0 and |±π2−φ| = (k+1)−r0 ,
k ≥ k0, for a fixed number r0 > 1. The standard value is r0 = 2, but as distortion
results and some other estimates improve when r0 is larger, we choose the optimal
value of r0 later.

The set S−1 consists of multiple curves inside M0, one for each scatterer from
which a particle can reach O0 in the next collision. In Fig. 2 we consider the corridor
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Fig. 2 The parameter subset M0 with singularity lines and κρ = ξ ′ − Mξ

Fig. 3 A corridor collision map from O−ξ and O−κρ to O0

in the direction of ξ ∈ Z
2, and drew the parts of S−1 coming from scatterers Oξ , O−ξ

and O−κρ for some scatterer on the other side of this corridor.

Lemma 2.3 For the ξ -corridor, let (θ−ξ , π2 ) ∈M0 be the point of intersection of S0
and thepart ofS−1 associated to the scatterer O−ξ , and (θκρ , π2 ) ∈M0,κρ = ξ ′−Mξ ,
be the point of intersection of S0 and the part of S−1 associated to the scatterer
Oκρ = Oξ ′−Mξ at the other side (i.e., the ξ ′-boundary) of the ξ -corridor, see Fig.3.
Let (θ ′κρ , φ

′
κρ
) be the intersection of the parts of S−1 associated to the scatterers O−ξ

and the scatterer Oκρ , see Fig.2. Then

|θ−ξ − θκρ | =
dρ(ξ)

|ξ |M
(

1+O
(

ρ

|ξ |M
))

and

π

2
− φ′κρ =

√

2dρ(ξ)

ρM

(

1−O
(

ρ

|ξ | −
1

M
+
√

dρ(ξ)ρ

|ξ |√M

))

.
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Fig. 4 Illustration of the proof of Lemma 2.3

Proof The angle θ−ξ refers to the point where the common tangent line of O0 and
O−ξ touches O0. For the value θκρ , κρ = ξ ′ − Mξ , we take the common tangent line

to O0 and Oκρ which has slope dρ(ξ)
M|ξ |

(

1+O( ρ
|ξ |M )

)

. This is then also |θ−ξ − θκρ |.
Now for the other endpoint of this piece of S−1, consider the common tangent line

to O−ξ and Oκρ which has slope tan α := dρ(ξ)
(M−1)|ξ | (1 + O( ρ

|ξ |(M−1) )), hitting the
scatterer O0 in point P and when extended inside O0 hits the vertical line through the
center O0 in point Q. Let also R be the tangent point of O0 to the corridor, and Q′ is
the point on O0R at the same horizontal height as P , see Fig. 4. Then |RQ| = |ξ | sin α
whereas |O0Q′| = ρ − (|ξ | − ρ sin θ ′κρ ) sin α = ρ cos θ ′κρ . The latter gives

θ ′κρ =
√

2|ξ |
ρ

sin α

(

1−O( ρ|ξ | sin θ)
)

=
√

2dρ(ξ)

ρM

(

1−O( ρ|ξ | −
1

M
)

)

.

The triangle �PO0Q has angles φ′κρ , α + π
2 and θ ′κρ , which add up to π . Hence

π

2
− φ′κρ = α + θ ′κρ =

√

2dρ(ξ)

ρM

(

1−O
(

ρ

|ξ | −
1

M
+
√

dρ(ξ)ρ

|ξ |√M

))

(11)

as claimed. ��

2.3 Hyperbolicity of the Lorentz gas with small scatterers

The derivative DTρ : T M→ T M preserves the unstable cone field

Cux =
{

(dθ, dφ) ∈ TxM : 1 ≤ 1

2π

dφ

dθ
≤ 1+ ρ

τmin

}

. (12)

This is [10, p. 74] in the coordinates θ = r/2πρ, and we can sharpen this cone by
replacing τmin by τ(x), the flight time at x before the next collision. The derivative of
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the inverse of the billiard map preserves the stable cone field

Csx = {(dθ, dφ) ∈ TxM : −1− ρ

τmin
≤ 1

2π

dφ

dθ
≤ −1}. (13)

Clearly, these cone-fields are transversal uniformly over M, and Sn is a unstable (or
stable) curve if n > 0 (or n < 0).

In the billiard literature it is common to use a pseudo-norm, the p-norm for unstable
vectors, defined as ‖dx‖p = cosφ dr . When restricted to the unstable cone, the p-
norm is non-degenerate. With the notation R(x) = 2

ρ cosφ , the expansion/contraction
factor � on unstable vectors in the p-norm satisfies

� ≥ 1+ τ(x)R(x) ≥ 1+ τminRmin = 1+ 2τmin

ρ
.

This proves uniform hyperbolicity of the billiard map.
In our coordinates the p-norm can be also expressed as ‖dx‖p = 2π ρ cosφ dθ ,

and it is related to the standard Euclidean norm as

‖dx‖ =
√

1+ ( dφdr )2
cosφ

‖dx‖p =
√

4π2ρ2 + ( dφdθ )2
2πρ cosφ

‖dx‖p.

The expansion of DTρ of unstable vectors is uniform in the p-norm, see [10, Formula
(3.40)]:

‖DTρ(dx)‖p
‖dx‖p = 1+ τ(x)

cosφ
(K + dφ

dr
) = τ(x)

ρ cosφ

(

1+ 1

2π

dφ

dθ
+ ρ cosφ

τ(x)

)

.

Expressed in Euclidean norm, this gives, for DTρ(dx) = (dθ1, dφ1),

‖DTρ(dx)‖
‖dx‖ =

√

√

√

√

4π2ρ2 + ( dφ1dθ1
)2

4π2ρ2 + ( dφdθ )2
τ(x)

ρ cosφ1

(

1+ 1

2π

dφ

dθ
+ ρ cosφ

τ(x)

)

. (14)

For later use, if Tρ(x) is in the homogeneity strip Hk , then cosφ1 ≈ k−r0 .

3 Growth lemmas

As already mentioned in the introduction, the main line of our argument uses per-
turbed transfer operators acting on the Banach spaces constructed in [14] and [16].
These works, as essentially all other methods studying statistical properties of hyper-
bolic billiards, rely on appropriately formulated growth lemmas, which quantify the
competition of the two main dynamical effects, singularities and expansion, in these
systems. The constructions of [14] and [16] involve several exponents, which thus are
present in our setting, too. Additionally, we have to introduce some further exponents
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as we study perturbed transfer operators. Before stating the growth lemmas, here we
include a table summarizing the role and the interrelation of these exponents. Essen-
tially, we use the same notation as in [14] except for some subscripts 0, and in fact
some of the constants reduce to their value in [14] if r0 = 2.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

r0 ≥ 2 is the exponent of the homogeneity strips:

H±k = {| ± π
2 − ϕ| ∈ [(k + 1)−r0 , k−r0 )},

0 < ν < 1
2 − 1

2r0
the exponent of κρ in the continuity estimate for the

transfer operator,

ς0 = 1− 2r0ν
r0−1 upper bound on ς in the Jensenized growth lemma, see (25),

α0 < min
(

1
2(r0+1) , ς0

)

needed for [[14], Lemma 3.7] for general r0,

s0 = 1−α0(r0+1)
2r0

> 0 used in Lemma 6.1,

0 < q0 < p0 <
1

r0+1 cf. Lemma B.2,

0 < β0 < min{ α02 , p0 − q0}.
(15)

We use a classWs of admissible stable leaves defined as C2 leavesW in the phase
space such that all its tangent lines are in the stable cone bundle, their second derivative
is uniformly bounded,W is contained in a single homogeneity strip, κρ(x) is constant
on W and there is a ρ-dependent upper bound on |W |, namely

sup
W∈Ws

|W | = δ0 := cρν, (16)

where the small c > 0, to be fixed below, is independent of ρ.
Let W ∈ Ws be an admissible stable leaf. The preimage T−1ρ (W ) is cut by the

discontinuity lines S1 and boundaries of homogeneity strips into at most countably
many pieces Vi . Note that we may have to cut the pieces Vi further into curves Wi of
length ≤ δ0.

3.1 The growth lemma in terms of Vi

The particle can reach the scatterer O0 at the origin from corridors in all directions,
indexed by (ξ, ξ ′) ∈ �, see Fig. 3. If the previous scatterer is ±ξ itself, we call this
a trajectory from the ξ -boundary; if the previous scatterer is at lattice point ξ ′ − Mξ ,
the trajectory comes in from the ξ ′-boundary, see Remark 2.2. To each such scatterer
and homogeneity strip Hk belongs at most one Vi , and the contraction |TρVi |/|Vi | is
governed by (14), where the distortion Tρ : Vi → TρVi is uniformly bounded, see
Appendix B.

Proposition 3.1 Assume 0 ≤ ν < 1
2 − 1

2r0
. Then there is a constant C > 0, uniform

in ρ, ν and r0 such that

∑

i

|κρ(Vi )|ν |TρVi ||Vi | ≤ C
(

ρ + ρ−ν δ0
)
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for every stable leaf W ∈Ws .

Remark 3.2 (i) Since |W | ≤ δ0 ≤ cρν , there is θ∗ < 1 such that

∑

Vi

|κρ(Vi )|ν |TρVi ||Vi | ≤ 3C(ρ + c) ≤ θ∗,

for ρ sufficiently small, and c chosen appropriately small. In addition, we assume that

δ1 ∈ (0, δ0/2) is such that θ∗eCdδ
1/(r0+1)
1 =: θ1 < 1 (17)

for distortion constant Cd from Lemma B.2;
(ii) As later we will need ν > 1

3 , we can take r0 = 5 and ν = 3
8 .

Proof The homogeneous admissible preimage curves T−1ρ W = ∪i Vi are obtained by
partitioning according to

• incoming corridors ξ ;
• for a fixed corridor ξ , the scatterer on which Vi is located. Accordingly, κρ(Vi ) =

Mξ − ξ ′ for some M ∈ N, and the summation is over M ;
• for a fixed scatterer, the homogeneity strip containing Vi , that is, Vi ⊂ Hk for
some k.

If W is on the scatterer O0 and Vi is on the scatterer Oξ ′−Mξ , then both of these

scatterers are tangent to the same corridor. The trajectory makes and angle ∼ dρ(ξ)
M|ξ |

with the corridor and there is a lower bound on the collision angle given by (11). This
puts restrictions on how M is related to k; as reflected by allowed intersections of
homogeneity strips and M-cells on Fig. 2. In particular

k ≥ C(ρdρ(ξ)
−1M)

1
2r0 (18)

which determines the range of k for M fixed.
We sum over the homogeneity strips for ξ and M fixed on the ξ ′ boundary.

∑

Vi∈Mξ ′−Mξ

|κρ(Vi )|ν |TρVi ||Vi | �
ρ|ξ |νMν

|ξ |M
∑

k≥(max{C( ρMdρ (ξ)
,1})

1
2r0

1

kr0

� ρ
1
2r0
+ 1

2 |ξ |ν−1dρ(ξ)
1
2− 1

2r0 M
ν− 3

2+ 1
2r0

� ρ
1
2r0
+ 1

2 |ξ |ν− 3
2+ 1

2r0 M
ν− 3

2+ 1
2r0 ,

where we used that the exponent 1
2 − 1

2r0
of dρ(ξ) is non-negative. By our assumption

that ν < 1
2 − 1

2r0
, this expression is summable over M , and therefore the sum over the

ξ ′-boundary of the entire ξ -corridor is

∑

corridor ξ

|κρ(Vi )|ν |TρVi ||Vi | � ρ
1
2+ 1

2r0 |ξ |ν− 3
2+ 1

2r0 .
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The sum over homogeneity strips for ξ fixed on the ξ -boundary is no different:

∑

Vi∈M−ξ

|κρ(Vi )|ν |TρVi ||Vi | �
ρ|ξ |ν
|ξ |

∑

k≥1

1

kr0
� ρ|ξ |ν−1.

Next we sum over all opened-up corridors, indexed by all the “visible” lattice points
inside a sector of angle |W |/√1+ 4π2, because only trajectories from scatterers
within such a narrow sector can hit O0 at coordinates in W . The “visible” corridors
will be denoted by �W . It can happen that a single corridor, or even a single scatterer
in a corridor blocks the entire sector, and we reserve one term for |ξ | ≥ 1 (which is
the worst case because the contraction of Tρ is the weakest). Apart from this corridor,
and since we need an upper bound, we can replace we replace |W | by a stable curve
of length δ0, and apply Lemma A.6 for a = 1− ν and a = 3

2 − ν − 1
2r0

. This gives

∑

Vi

|κρ(Vi )|ν |TρVi ||Vi | � ρ +
∑

(ξ,ξ ′)∈�W

ρ|ξ |ν−1 + ρ 1
2+ 1

2r0 |ξ |ν− 3
2+ 1

2r0

� ρ + ρ−νδ0 + ρ1−ν log(1/ρ)+ ρ1−νδ−10

+ ρ−νδ0 + ρ1−ν log(1/ρ)+ ρ2−νδ−10

� ρ + ρ−νδ0 + ρ1−ν log(1/ρ)+ ρ1−νδ−10 .

Since δ0 = cρν and ν < 1
2 , this completes the proof. ��

3.2 The growth lemma in terms ofWi

The pieces of preimage leaf Vi ⊂ T−1ρ (W ) emerge by natural cutting at the disconti-
nuity set S1 and the homogeneity strips, but even so, their lengths can be larger than
δ0, the bound of admissible stable leaves. We therefore need to cut them into shorter
pieces, denoted asWi . In the worst case, each Vi needs to be cut into δ

−1
0 pieces, which

gives the estimate

∑

i

|κρ(Wi )|ν |TρWi |
|Wi | ≤ C

(

ρδ−10 + ρ−ν
)

� ρ−ν . (19)

Although this estimate suffices for some purposes, it is not always good enough for
larger iterates T n

ρ . The next lemma (which follows [14, Lemma 3.2] or [16, Lemma
3.3]) achieves an estimate, uniform in n, for ν = 0.

For the next lemmawe recall some notation used in [16]. ForW ∈Ws , we construct
the components Gk(W ) of T−kρ W inductively on k = 0, . . . , n. That is G0(W ) = {W },
and to obtain Gk+1(W ) first we apply Proposition 3.1 to each curve in Gk(W ), and
then we partition curves that are longer then δ0 into pieces of length between δ0 and
δ0/2. We enumerate the leaves of the k-th generation Gk(W ) as Wk

i .
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Lemma 3.3 There is a constant Cs > 0, independent of ρ, such that

∑

Wn
i ∈Gn(W )

|T n
ρ W

n
i |

|Wn
i |
≤ Cs, (20)

and

∑

Wn
i ∈Gn(W )

|Wn
i |ς
|W |ς

|T n
ρ W

n
i |

|Wn
i |
≤ C1−ς

s , (21)

for all ς ∈ [0, 1).
Proof Define Lk as the collection of indices such that Wk

i ∈ Gk(W ) is long, i.e.,
|Wk

i | ≥ δ1 for i ∈ Lk , and In(Wk
j ) as the collection indices ofW

n
i such that their most

recent long ancestor is Wk
j ∈ Gk(W ). If for some Wn

i1
no such long ancestor exists,

then set k(i1) = 0 and Wn
i1
belongs to In(W ); if Wn

i2
is itself long, then set k(i2) = n.

Fix some j ∈ Lk . As for Wi
n ∈ In(Wk

j ) the preimages under T n−k
ρ of T n−k

ρ Wi
n need

not be cut artificially (they are already short), and due to the distortion bound from
Lemma B.2,

∑

i∈In(Wk
j )

|T n−k
ρ Wn

i |
|Wn

i |
≤ θn−k1 , for θ1 = θ∗eCd |δ1|

1
r0+1
. (22)

Recall that by our assumption δ1 is so small that θ1 < 1. In the estimate below, we
group Wn

i ∈ Gn(W ) according to their most recent long ancestors.

∑

i

|T n
ρ W

n
i |

|Wn
i |
=

n
∑

k=1

∑

Wk
j ∈Lk (W )

∑

i∈In(Wk
j )

|T n
ρ W

n
i |

|Wn
i |
+

∑

i∈In(W )

|T n
ρ W

n
i |

|Wn
i |

≤
n
∑

k=1

∑

Wk
j ∈Lk (W )

⎛

⎜

⎝

∑

i∈In(Wk
j )

|T n−k
ρ Wn

i |
|Wn

i |

⎞

⎟

⎠ eδ
1/r0+1
1 Cd

|T k
ρW

k
j |

|Wk
j |
+ θn1

≤
n
∑

k=1

∑

Wk
j ∈Lk (W )

θn−k1 δ−11 |T k
ρW

k
j | + θn1

≤ Cδ−11 |W |
n
∑

k=1
θn−k1 + θn1 ≤ Cs, (23)

where we have used that for fixed k and Wk
j ∈ Lk(W ), (i) |Wk

j | ≥ δ1, (ii) the T k
ρW

k
j

are pairwise disjoint subcurves of W , and (iii) |W | ≤ δ1. By Jensen’s inequality and
(23),
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∑

i

|Wn
i |ς
|W |ς

|T n
ρ W

n
i |

|Wn
i |
=
∑

i

( |W |
|Wn

i |
)1−vs |T n

ρ W
n
i |

|W | ≤
(

∑

i

|T n
ρ W

n
i |

|Wn
i |

)1−ς
� C1−ς

s ,

which proves the second statement. ��

It is worth including the following bound, which follows from (22) by Jensen
inequality:

∑

i∈In(W )

|Wn
i |ς
|W |ς

|T n
ρ W

n
i |

|Wn
i |
≤ θ(1−ς)n1 , for all ς ∈ [0, 1). (24)

Remark 3.4 For further reference, we state a version of (21) for ν > 0, n = 1. Let
ς0 = 1− 2r0ν

r0−1 .

∑

i

|κρ(Wi )|ν |TρWi |
|Wi |

|Wi |ς
|W |ς � ρ−ν, for all ς ∈ [0, ς0). (25)

This follows by Jensen’s inequality from (19), applied with ν
1−ς in place of ν. The

condition ς < ς0 ensures that ν
1−ς <

1
2 − 1

2r0
. For the choices r0 = 5, ν = 3

8 we have

ς0 = 1
16 .

4 Banach spaces and spectral gap

For the exponents p0 and q0 defined in (15) we define the Banach spaces (of distribu-
tions) C p0 ,B,Bw, (Cq0)′ in analogy to [16],3 We recall that (Cq0)′ is the topological
dual of Cq0 .

Given W ∈Ws , let mW be the Lebesgue measure on W , and define

|ψ |W ,α,p0 := |W |α cosW |ψ |C p0 , |ψ |C p0 := |ψ |C0 + H p0
W (ψ), s

for α ≥ 0, cosW = |W |−1 ∫W cosφ dmW (note that cosW � k−r0 if W ⊂ H±k),
and H p0

W (ψ) the Hölder constant of ψ along W . Also let dW (W1,W2) stand for the
distance between leaves as in [14, Sect. 3.1] or [16, Sect. 3.1]; in particular, if W1 and
W2 belong to the same homogeneity strip, dW (W1,W2) is the C1 distance of their
graphs in the (θ, φ) coordinates, and otherwise infinite.

3 Note that our set-up fits the conditions (H1)-(H5) in [16, Sect. 2.1] with f (x) = f (θ, φ) = cosφ and
κρ = 1 in (H1), rh = r0 + 1 in (H2), ξ = 1

2 and t0 = 1 in (H3), p0 = 1
r0+1 in (H4) and γ0 = 0 in (H5).
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Given W ∈Ws and h ∈ C1(W ), define the weak norm.4

‖h‖Bw := sup
W∈Ws

sup
|ψ |∈C p0 (W )
|ψ |W ,0,p0≤1

∫

W
hψ dmW . (26)

With q0 < p0 fixed we define the distance between functions d(ψ1, ψ2) in the same
way as in [14, Sect. 3.1]. We define the strong stable norm by

‖h‖s := sup
W∈Ws

sup
ψ∈Cq0 (W )
|ψ |W ,α0,q0≤1

∫

W
hψ dmW . (27)

Choosing ε0 ∈ (0, δ0) and β0 ∈ (0,min{α0, p0 − q0}), we define the strong unstable
norm by

‖h‖u := sup
ε≤ε0

sup
W1,W2∈Ws

d(W1,W2)≤ε
sup

1ψi∈C p0 (W ),
|ψi |C1(W )≤1
dq0 (ψ1,ψ2)≤ε

1

εβ0

∣

∣

∣

∣

∫

W1

hψ1 dmW −
∫

W2

hψ2 dmW

∣

∣

∣

∣

. (28)

The strong norm is defined by ‖h‖B = ‖h‖s + cu‖h‖u , where we will fix cu � 1 (but
independent of ρ) at the beginning of Sect. 5.2.

SinceC p0 ⊂ B ⊂ Bw ⊂ (Cq0)′ (see Sect. 4.1), we have ‖h‖Bw+‖h‖B ≤ C‖h‖C1 .
As in [16], we define B to be the completion of C1 in the strong norm and Bw to be
the completion in the weak norm.

4.1 Transfer operator onB

Throughout we let Rρ : L1(m) → L1(m) be the transfer operator of the billiard
map Tρ . We recall that [14, Lemmas 3.7−3.10] ensure that: i) Rρ(C1) ⊂ B and as a
consequence R is well defined on B; Bw; ii) the unit ball of B is compactly embedded
in Bw, and iii) C p0 ⊂ B ⊂ Bw ⊂ (Cq0)′.

It follows that Rρ is well defined on B and Bw, and we also let Rρ denote the
extension of this transfer operator to Bw.

4.2 Lasota–Yorke inequalities

Using Proposition 3.1 with ν = 0 and Lemma 3.3 we obtain the analogue of the
Lasota–Yorke inequality [16, Proposition 2.3]. As our set-up fits [16], our only concern

4 In the definition of the weak norm [16] uses test functions with |ψ |W ,γ,p ≤ 1 for some γ > 0, and
requires p < γ . However, this is needed only to ensure that the inclusion Bw ↪→ (C p)′ is injective, cf.
[16, Lemma 3.8] Since we do not use this property, we can take γ = 0 in the definition of the weak norm,
and avoid additional restrictions on p0.
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is the dependence on ρ. It is important to point out that our all estimates in Sect. 3 and
Appendix B are independent of ρ, except that δ1 < δ0 � ρν .

Lemma 4.1 (Weak norm) There exists a uniform constant C > 0 so that for all h ∈ B
and for all n ≥ 0,

‖Rn
ρh‖Bw ≤ C · Cs ‖h‖Bw ,

where Cs is given by (20).

Proof For W ∈Ws , h ∈ C1(M0), ψ ∈ C p0(W ) with |ψ |W ,α0,p0 ≤ 1,

∫

W
Rn
ρhψ dmW =

∑

Wn
i ∈Gn(W )

∫

Wn
i

h
JWn

i
T n
ρ

|DTn
ρ |
ψ ◦ T n

ρ dmW .

Using the present definition of the weak norm,

∫

W
Rn
ρhψ dmW ≤

∑

Wn
i ∈Gn(W )

∫

Wn
i

‖h‖Bw
|JWi Tρ |C p0 (Wi )

|DTρ | |ψ ◦ Tρ |C p0 (Wi ) cos(W
n
i ) dmW .

From here on the argument goes almost word for word as the argument in [16, Sect.
4.1], except for the use of equation (20) (the analogue of [16, Lemma 3.3(a)] with
ς = 0). ��
Lemma 4.2 (Strong stable norm) Take δ1 as in (17) and θ1 as in (22). There exists a
uniform constant C > 0 so that for all h ∈ B and all n ≥ 0,

‖Rn
ρh‖s ≤ C

(

θ
(1−α0)n
1 + C1−α0

s �−q0n
)

‖h‖s + Cδ−α01 ‖h‖Bw .

Remark 4.3 The compact term Cδ−α01 ‖h‖Bw in Lemma 4.2 is the only point in the
Lasota–Yorke inequalities where a ρ-dependence arises, via δ1 = cρν .

Proof The argument goes almost word for word as the [16, Argument in Sect. 4.2],
except for the differences:

i) We use of equation (21) with ς = α0 instead of [16, Lemma 3.3 (b)] (also with
ς = α0) in [16, Equation (4.5)]. In particular, using the present definition of the stable
norm, with the same notation as in [16, Sect. 4.2], we have the following analogue of
[16, Equation (4.5)]:

∑

Wn
i ∈Gn(W )

∫

Wn
i

h
JWn

i
T n
ρ

|DTn
ρ |
(

ψ ◦ T n
ρ − ψ̄i

)

dmW

� �−q0n‖h‖s
∑

Wn
i ∈Gn(W )

|Wn
i |α0
|W |α0

|T n
ρ W

n
i |

|Wn
i |

� �−q0n‖h‖s,
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where we have used the distortion bounds of Appendix B and Formula (21) (with
ς = α0).

ii) To obtain the analogue of [16, Equation (4.6)], as in [16, Sect. 4.2], we split the
sum

n
∑

k=0

∑

j∈Lk

∑

i∈In(Wk
j )

|W |−α0(cosW )−1
∫

Wn
i

h
JWn

i
T n
ρ

|DTn
ρ |

dmW

into a term for k = 0 and further terms for k = 1, . . . , n. For k = 0, we use the strong
stable norm and (24) (the analogue of [16, Lemma 3.3(a)]) with ς = α0, giving a
contribution� ‖h‖sθn(1−α0)1 . For the terms k = 1, . . . n, we use the weak norm, (21)
(the analogue of [16, Lemma 3.3(b)]) with ς = α0, and the fact that |Wk

j | ≥ δ1 for

j ∈ Lk(W ), resulting in a contribution of O(‖h‖Bwδ−α01 ). ��

As in [16], dealing with the strong unstable norm is the most delicate part of the
Lasota–Yorke inequality. The only difference from [16, Argument in Sect. 4.3] is that
we apply (20) (instead of [16, Lemma 3.3 (b)]) multiple times. Note that our bound
in (20) is independent of ρ, so no ρ-dependence arises here.

Lemma 4.4 (Strong unstable norm) There exists a uniform constant C > 0 so that
for all h ∈ B and for all n ≥ 0,

‖Rn
ρh‖u ≤ C · Cs ·�−β0n‖h‖u + C · Cs · n‖h‖s .

Proof Given W1,W2 ∈ Ws with d(W1,W2) ≤ ε, we may identify matched and
unmatched pieces in T−nρ W�, � = 1, 2. The estimates of [16] on the length of the
unmatched pieces apply, thus we may estimate their contribution by the strong stable
norm using (20) (instead of [16, Lemma 3.3 (b)]). As the length estimates give εα0/2,
β0 < α0/2 is essential here (cf. [16, Formulas (4.10) and (4.11)], noting that γ = 0
in our case).

To bound the contribution of thematched pieceswe use, on the one hand, the strong
unstable norm (as in [16, Formula (4.14)]) and, on the other hand, the strong stable
norm (as in [16, Formula (4.17)]). Here again we rely on equation (20) which plays
the role of [16, Lemma 3.3 (b)]. β0 < p0 − q0 ensures that after division by εβ0 the
proof of Lemma 4.4 can be completed. ��

5 Perturbed transfer operators

A standard way of obtaining limit theorems for dynamical systems is via the perturbed
transfer operator method. In Sect. 7 we will use the spectral properties of the family
of perturbed transfer operators R̂ρ(t), t ∈ R with R̂ρ(t)h = R(eitκρh), h ∈ L1(m).

123



P. Bálint et al.

5.1 Continuity properties

By definition, R̂ρ(0) = Rρ . Take 0 ≤ ν < 1
2 − 1

2r0
as in Proposition 3.1. In this

subsection we show the following continuity estimate:

‖(R̂ρ(t)− R̂ρ(0))h‖B ≤ Cρ−ν |t |ν‖h‖B (29)

for some uniform constant C .
The argument goes parallel to Sect. 4.2, except that this time we need the estimates

(i) for ν > 0 and (ii) only for n = 1, we rely on (19) and (25) instead of Lemma 3.3.

Lemma 5.1 Assume (16). Then there exists a uniform constant C > 0 so that for all
h ∈ B,

‖Rρ(eitκρ − 1)h)‖Bw ≤ Cρ−ν |t |ν‖h‖Bw .

Proof The argument goes similarly to the argument in [16, Sect. 4.1] restricted to
the case n = 1. More precisely, for W ∈ Ws , h ∈ C1(M0), ψ ∈ C p0(W ) with
|ψ |W ,α0,p0 ≤ 1,

∫

W
Rρ(e

itκρ − 1)hψ dmW =
∑

i∈G1(W )

∫

Wi

(eitκρ − 1)h
JWi Tρ
|DTρ |ψ ◦ Tρ dmW .

Using the definition of the weak norm and the inequality |eix − 1| ≤ xν ,

∫

W
Rρ(e

itκρ − 1)hψ dmW ≤ |t |ν
∑

i∈G1(W )

∫

Wi

‖h‖Bw |κρ(Wi )|ν

× |JWi Tρ |C p0 (Wi )

|DTρ | |ψ ◦ Tρ |C p0 (Wi ) cos(Wi ) dmW .

From here on the proof goes the same as the argument in [16, Sect. 4.1] except for the
use of equation (19) instead of [16, Lemma 3.3 (b)]. ��
Lemma 5.2 There exists a uniform constant C > 0 so that for all h ∈ B and for all
n ≥ 0,

‖Rρ(eitκρ − 1)h)‖s ≤ C |t |νρ−ν‖h‖s .

Proof This time we are only concerned with n = 1, and do not need a contraction
of the strong stable norm. Hence, an argument analogous to the proof of Lemma 5.1
suffices, with the weak norm replaced by the strong stable norm. Accordingly, we
use (25) with ς = α0 instead of [16, Lemma 3.3 (b)]. ��
Lemma 5.3 There exists a uniform constant C > 0 so that for all h ∈ B,

‖Rρ(eitκρ − 1)h)‖u ≤ C |t |ν (ρ−ν · ‖h‖u + ρ−ν · ‖h‖s
)

.
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Proof As with the proof of Lemma 4.4, the argument goes similar to [16, Argument
in Sect. 4.3], restricted to the case n = 1. The matched and unmatched pieces can be
again identified, this time for T−1ρ W�, � = 1, 2. Then, as in the proof of Lemma 5.1,
the factors |t |ν and |κρ |ν arise. Clearly κρ is constant on each of the (matched or
unmatched) pieces, and takes the same value on any two pieces that are matched.
Accordingly, the various contributions can be estimated in the same way as in proof
of Lemma 4.4, with the only difference that, by the presence of the factor |κρ |ν ,
throughout the argument (19) is used instead of (20). ��

Equation (29) follows from the definition of the norm in B together with Lem-
mas 5.1, 5.2 and 5.3.

5.2 Peripheral spectrum and spectral gap

Choose 1 > σ > max{�−β0 , θ(1−α0)1 ,�−q0}. ByLemmas 4.1, 4.2 and 4.4 and arguing
as in [16, Eq. (2.14)], we obtain the traditional Lasota–Yorke inequality for some
N ≥ 1, provided cu in the definition of ‖ ‖B (below (28)) is chosen small enough in
terms of N . That is,

‖RN
ρ h‖B ≤ σ N‖h‖B + Cδ−α01 ‖h‖Bw . (30)

Combined with the properties collected in Sect. 4.1 (that is, the relative compactness
of the unit ball of B in Bw), equation (30) shows that the essential spectral radius of
Rρ is bounded by σ and that the spectral radius is 1.

Let �ρ be the eigenprojection (that is, the projection on the eigenspace of Rρ)
corresponding to the eigenvalue 1. In particular, �ρμ = μ is the invariant measure
for Tρ . Since for everyρ, Tρ ismixing, the peripheral spectrumof Rρ consists of just the
simple eigenvalue at 1. Thus, for every ρ > 0, the eigenprojection�ρ corresponding
to the eigenvalue 1 of Rρ can be also characterized by

�ρh = lim
m→∞ Rm

ρ h, (31)

for all h ∈ B.
Let Qρ be complementary spectral projection. From here onwards, we exploit that

for every ρ > 0, there exist γρ ∈ (0, 1) and Cρ > 0 so that

‖Qm
ρ ‖B ≤ Cρ(1− γρ)m (32)

for every m ≥ 1. Altogether, Rm
ρ = �ρ + Qm

ρ , where Qρ satisfies (32).

6 Asymptotics of the dominant eigenvalue

To establish limit theorems (such as Theorem 7.1 below) we study the asymptotics
of Eμ(eitκm,ρ1) = Eμ(R̂ρ(t)m1), as t → 0 and m → ∞ via the properties of
R̂ρ(t)h = Rρ(eitκρh), h ∈ B.
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We already know that for every ρ ∈ ( 13 , 12 ), 1 is a simple eigenvalue of R̂ρ(0) = Rρ
when viewed as an operator from B to B. Due to (29), R̂ρ(t) is Cν (in t) from B to B.
It follows that for t in a neighbourhood of 0, R̂ρ(t) has a dominant eigenvalue λρ(t)
(with λρ(0) = 1).

Let γρ be as in equation (32). The continuity properties together with (32) ensure
that for any δ ∈ (0, γρ) and t ∈ Bδ(0),

R̂ρ(t)
m = λρ(t)m�ρ(t)+ Qρ(t)

m, ‖Qρ(t)m‖B ≤ Cρ(1− γρ)m, (33)

for some Cρ > 0 and�ρ(t)2 = �ρ(t),�ρ(t)Qρ(t) = Qρ(t)�ρ(t) = 0. Further, for
all t ∈ Bδ(0),

�ρ(t) =
∫

|u−1|=δ
(u − R̂ρ(t))

−1 du, (34)

for all t small enough. A standard consequence of (29) and (32) is that for every
δ ∈ (0, γρ) and for all u so that |u − 1| = δ,

‖(u − R̂ρ(t))
−1 − (u − R̂ρ(0))

−1‖B ≤ Cρ−ν |t |ν‖(u − R̂ρ(t))
−1‖B‖(u − R̂ρ(0))

−1‖B
≤ Cρ−νγ−2ρ |t |ν . (35)

Hence, ‖�ρ(t)−�ρ(0)‖B ≤ Cρ−ν |t |νρ−νγ−2ρ |t |ν .
The rest of this section is allocated to the study the asymptotics of λρ(t) as t → 0.
The following property was used in [6, 7, 21] (see [7, assumption (H2)]) for the

study of eigenvalues of perturbed transfer operators in the Banach spaces introduced
in [12]. Here we use it to obtain an adequate analogue for the present set-up.

Lemma 6.1 Take s0 = 1−α0(r0+1)
2r0

as in (15). Let h ∈ B and v ∈ C p0 . For every
corridor with boundaries determined by Oξ and Oξ ′ , there exists a constant C > 0
independent of ρ and ξ so that

∣

∣

∣

∣

∫

hv1{κρ=ξ ′+Nξ} dm
∣

∣

∣

∣

≤ C‖h‖s |v|Cq0 dρ(ξ)
3
2−s0 |ξ |−1ρ− 1

2+s0N−
5
2+s0 .

Proof Let {W�}�∈L be the foliation of the set {κρ = ξ ′+ξN } into stable leaves.We can
parametrise these leaves by their endpoints (�, π2 ) in S0, then L is an interval of length

c � dρ(ξ)
N2|ξ | according to Lemma 2.3. The lengths of these stable leaves |W�| ≤ c′ for

another constant c′ �
√

2dρ(ξ)
ρN , again by Lemma 2.3. The measure dmW� is Lebesgue

on the C1 stable leafW�, and it can be parametrised as (w�(φ), φ)wherew is C1 with
− 1

2π
ρ+τmin
τmin

< w′(φ) < − 1
2π because of the direction of the stable cones, see (13).

Let ν be a measure on L that produces the decomposition of Lebesgue measure m
on {κρ = ξ ′ + ξN } along stable leaves. We have ν � mL (and dν/dmL is bounded
above). Since we need to partition stable leavesW� by the homogeneity stripsHk near
S0 into pieces W�,k := W� ∩Hk , we get an extra sum over k ≥ k(c′) := �(c′)−1/r0�.
Then
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∣

∣

∣

∣

∫

hv1{κρ=Nξ+ξ ′} dm
∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∣

∫

L

∑

k≥k(c′)

∫

W�,k
h v dmW� dν(�)

∣

∣

∣

∣

∣

∣

�
∣

∣

∣

∣

∣

∣

∫

L
|v|Cq0

∑

k≥k(c′)

∫

W�,k
h

v

|v|Cq0
dmW� d�

∣

∣

∣

∣

∣

∣

≤ |v|Cq0 ‖h‖s
∫

L

⎛

⎝

∑

k≥k(c′)
|W�,k |α0−1

∫

W�,k
cosφ

√

1+ |w′(φ)|2 dφ
⎞

⎠ d�

� |v|Cq0 ‖h‖s
∫

L

∑

k≥k(c′)
|W�,k |α0k−r0−(r0+1)α0 d�

≤ |v|Cq0 ‖h‖s c k(c′)1−α0(r0+1)−r0
� |v|Cq0 ‖h‖s |ξ |−1dρ(ξ) 32−s0ρ− 1

2+s0N−
5
2+s0 ,

for s0 = 1−α0(r0+1)
2r0

, as claimed. ��
Using (35), Lemmas A.2 and 6.1 we obtain the asymptotics of the eigenvalue in

Proposition 6.3 below.

Lemma 6.2 For t ∈ R
2, let Ā(t, ρ) =∑|ξ |≤1/(2ρ) dρ(ξ)

2〈t,ξ〉2
|ξ | . Then

lim
ρ→0

ρ

2
Ā(t, ρ) = |t |

2

π
= 〈�t, t〉 for � =

( 1
π

0
0 1
π

)

as defined in (1).

Proof The coordinate axes p = 0 and q = 0, and the two diagonals p = q and
p = −q divide the plane into eight sectors. Here we count counter-clockwise with
the first sector �1 directly above the positive p-axis. Let γ = γ (t, ξ) be the angle
between the vectors t and ξ . Let α = arctan q/p and θ be the polar angles of ξ and
t ∈ R

2 respectively, so γ = θ − α. For the first sector�1, taking into account that for
every ξ there are two ξ ′, we have

∑

(ξ,ξ ′)∈�1

dρ(ξ)2〈t, ξ 〉2
|ξ | = 2|t |2

∑

(ξ,ξ ′)∈�1

dρ(ξ)2(|ξ | cos γ )2
|ξ |

= 2|t |2
∑

(ξ,ξ ′)∈�1

dρ(ξ)2(cos θ cosα|ξ | + sin θ sin α|ξ |)2
|ξ |

= 2|t |2
∑

(ξ,ξ ′)∈�1

dρ(ξ)2(p cos θ + q sin θ)2

|ξ | .

The eighth sector�8 directly below the positive p-axis gives the same result with−q
instead of q, and sectors �4 and �5 above and below the negative p-axis give the
same results as sectors �8 and �1. Therefore

∑

(ξ,ξ ′)∈�1∪�4∪�5∪�8

dρ(ξ)2

|ξ | = 4|t |2
∑

(ξ,ξ ′)∈�1

dρ(ξ)2

|ξ | (p
2 cos2 θ + q2 sin2 θ).
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The same result holds the remaining sectors with cos θ replaced by sin θ and vice
versa. Putting the results on all eight sectors together, we get by Lemma A.4

∑

(ξ,ξ ′)∈�

dρ(ξ)2〈t, ξ 〉2
|ξ | = |t |2

∑

(ξ,ξ ′)∈�

(|ξ |−1 − 2ρ)2

|ξ | (p2 + q2)

= |t |2
∑

(ξ,ξ ′)∈�
|ξ |−1 − 4ρ + 4ρ2|ξ |

= |t |2 2π

ζ(2)

1

2ρ
(1− 2

2
+ 1

3
)(1+ o(1)) = 2|t |2

ρπ
(1+ o(1)).

Hence 〈�t, t〉 = limρ→0
ρ
2 Ā(t, ρ) = |t |

2

π
, as required. ��

For the result on the asymptotics of the eigenvalue in Proposition 6.3, we will
also assume some correlation decay type results. Namely, we assume that there exist
ρ-dependent constants γ̂ρ ∈ (0, 1) and Ĉρ > 0 so that for every j ≥ 1,

∣

∣

∣

∣

∫

M0

(eitκρ−1) (eitκρ−1) ◦ T j
ρ dμ−

(

∫

M0

(eitκρ − 1) dμ
)2
∣

∣

∣

∣

≤ Ĉρ |t |2(1− γ̂ρ) j .
(36)

More generally, we assume that that there exist ρ-dependent constants γ̄ρ ∈ (0, 1) and
C̄ρ > 0 so that for every j ≥ 1 and every m ≥ 0

∣

∣

∣

∫

M0

(eitκρ − 1) · Rρ(0)m(eitκρ − 1) (eitκρ − 1) ◦ T j
ρ dμ

−
∫

M0

(eitκρ − 1)Rρ(0)
m(eitκρ − 1) dμ

∫

M0

(eitκρ − 1) dμ

− C
(

∫

M0

(eitκρ − 1) dμ
)

∫

M0

(eitκρ − 1) (eitκρ − 1) ◦ T j
ρ dμ

+ C
(

∫

M0

(eitκρ − 1) dμ
)3∣
∣

∣ ≤ C̄ρ |t |2(1− γ̄ρ)m+ j , (37)

where C = 0 if m = 0 and C = 1 if m ≥ 1. As justified in Proposition C.1 in
Appendix C via the argument used in [11, Proof of Proposition 9.1], assumptions (36)
and (37) are natural.

Proposition 6.3 Assume (32), (36) and (37), and let Ā(t, ρ) be as defined in
Lemma 6.2. Let ν ∈ ( 13 , 12 ) and δ ∈ (0, 12 min{γρ, γ̂ρ}), ensuring that (33) holds.
Then for any δ0 ≤ δ4/(3ν−1) and t ∈ Bδ0(0),

1− λρ(t) = Ā(t, ρ)
log(1/|t |)

8πρ
+ E(t, ρ),

123



Periodic Lorentz gas with small scatterers

where |E(t, ρ)| ≤ C̄ρ γ̄−2ρ |t |2+C |t |2ρ−2 for C̄ρ and γ̄ρ as in (37) and some uniform
constant C.

Remark 6.4 It is possible to shrink δ0 further to δ0 < e−max{C̄ρ γ̄−2ρ ,ρ−2} leading to
E(t, ρ) = o(|t |2 log |1/t |). This would mean that in the proof of main results in
Sect. 7 we would work on this very small neighborhood and obtain the same range of
n andρ in the final statements.Wefind itmore convenient towork on the neighborhood
Bδ0(0) as in the statement above.

Remark 6.5 Let qρ be the flight function taking values in R
2 as opposed to the dis-

placement function κρ taking values inZ2. A similar statement holds for the dominant
eigenvalue of the perturbed operator Rρ(eitqρ ). The proof is similar to the one below
using that |qρ − κρ | ≤ 1.

Proposition 6.3 In the notation of Banach spaces of distributions (see, for instance,
[21]) for h ∈ Cq0 we write 〈h, 1〉 = 〈1, h〉 = ∫ h1 dm and 〈m, h〉 = ∫ h dm, where 1

is both an element ofB and of (Cq0)′. Let vρ(t) = �ρ(t)1
〈�ρ(t)1,1〉 and recall that vρ(0) = 1.

Recall also that for every ρ, λρ(t)vρ(t) = R̂ρ(t)vρ(t) for t small enough, and that
λρ(0) = 1. Since 〈vρ(t), 1〉 = 1,

1− λρ(t) = 1− 〈R̂ρ(t)vρ(t), 1〉 = μ(1− eitκρ )+ 〈(R̂ρ(t)− R̂ρ(0))(vρ(t)− 1), 1〉
=: μ(1− eitκρ )+ V (t, ρ).

With the meaning of inner product clarified, for ease of notation from here on we
will write V (t, ρ) = ∫

M(e
itκρ − 1)(vρ(t) − 1) dm. We recall the terminology in

Remark 2.2. For ξ = (p, q) with gcd(p, q) = 1, we let ξ ′ = (p′, q ′) be the point
uniquely determined by ξ in the sense that p′/q ′ is convergent preceding p/q in the
continued fraction expansion of p/q; in particular |ξ ′| ≤ |ξ |. Recall that � is the set
of all such pairs (ξ, ξ ′) with |ξ | ≤ 1/(2ρ). With this specified, we write

μ(1− eitκρ ) =
∑

(ξ,ξ ′)∈�

∞
∑

N=1
(eit(ξ

′+Nξ) − 1)μ({κρ = ξ ′ + Nξ}).

Using the fact that
∫

κρ dμ = 0, we compute that

μ(1− eitκρ ) =
∑

(ξ,ξ ′)∈�

∞
∑

N=1

(

eit(ξ
′+Nξ) − 1− i t(ξ ′ + Nξ)

)

μ({κρ = ξ ′ + Nξ})

=
∑

(ξ,ξ ′)∈�

1/|t |
∑

N=1

(

eit(ξ
′+Nξ) − 1− i t(ξ ′ + Nξ)

)

μ({κρ = ξ ′ + Nξ})

+ O

⎛

⎝|t |
∑

(ξ,ξ ′)∈�
|ξ |

∑

N>1/|t |
Nμ({κρ = ξ ′ + Nξ})

⎞

⎠
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=
∑

(ξ,ξ ′)∈�

1/|t |
∑

N=1

1

2
〈t, ξ ′ + Nξ 〉2μ({κρ = ξ ′ + Nξ})+ O(|t |2)

:= I (t, ρ)+ O(|t |2),

where the involved constants in the last big O are independent of ρ. Further, using
Lemma A.4,

I (t, ρ) = 1

4πρ

∑

|ξ |≤1/(2ρ)

dρ(ξ)2

|ξ | 〈t, ξ 〉
2

1/|t |
∑

N=max{1,dρ(ξ)/(2ρ)}

1

N

+ O

⎛

⎝|t |2
∑

(ξ,ξ ′)∈�

1

4π |ξ |ρ
∑

N<max{1,dρ(ξ)/(2ρ)}
4ρ2 N |ξ |

⎞

⎠

= 1

4πρ

∑

|ξ |≤1/(2ρ)

dρ(ξ)2

|ξ | 〈t, ξ 〉
2

1/|t |
∑

N=max{1,dρ(ξ)/(2ρ)}

1

N
+ O

(

|t |2ρ−1
)

= log(1/|t |)
4πρ

∑

|ξ |≤1/(2ρ)

dρ(ξ)2

|ξ | 〈t, ξ 〉
2 + O

(

|t |2ρ−1 log(1/ρ)
)

.

Hence, with Ā(t, ρ) as in Lemma 6.2,

μ(1− eitκρ ) = Ā(t, ρ)
log(1/|t |)

4πρ
+ O

(

|t |2ρ−1 log(1/ρ)
)

.

Thus, 1−λρ(t) = Ā(t, ρ) log(1/|t |)4πρ +E(t, ρ),where E(t, ρ) = O
(|t |2ρ−1 log(1/ρ))+

V (t, ρ). It remains to estimate V (t, ρ). Note that

vρ(t)− 1 = μ((�ρ(t)−�ρ(0))1)
μ(�ρ(t)1)

�ρ(0)1+ (�ρ(t)−�ρ(0))1
μρ(�ρ(t)1)

.

Hence,

V (t, ρ) = μ((�ρ(t)−�ρ(0))1)
μ(�ρ(t)1)

∫

M0

(eitκρ − 1) dμ

+
∫

M0
(eitκρ − 1)(�ρ(t)−�ρ(0))1 dm

μ(�ρ(t)1)
= I1(t, ρ)+ I2(t, ρ).

Estimating I1(t, ρ). Since
∫

M0
κρ dμ = 0, we have

I1(t, ρ) = μ((�ρ(t)−�ρ(0))1)
μ(�ρ(t)1)

∫

M0

(eitκρ − 1− i tκρ) dμ.
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Now, by (35) and Lemma 6.1,

∫

M
|(�ρ(t)−�ρ(0))1| dμ =

∑

(ξ,ξ ′)∈�

∞
∑

N=1

∫

M
1{κρ=ξ ′+Nξ}|(�ρ(t)−�ρ(0))1|

≤
∑

(ξ,ξ ′)∈�
|ξ |− 5

2+s0ρ−
1
2+s0‖�ρ(t)−�ρ(0)‖s

∞
∑

N=1
N−

5
2

≤ Cρ−νγ−2ρ |t |ν (38)

for some uniform C . Using also that |eix − 1− i x | ≤ x y , for any y ∈ (0, 2],

|I1(t, ρ)| ≤ Cρ−νγ−2ρ |t |ν |t |2−ν/2
∫

M0

|κρ |2−ν dμ ≤ Cρ−ν−1γ−2ρ |t |ν/2+2,

where in the last inequality we have used Lemma A.5. Note that for |t | ∈ Bδ0(0) with

δ0 ≤ γ 4/(3ν−1)ρ , as in the statement, |t |ν/2 < γ 2ν/(3ν−1)ρ < γ 2ρ for all ν ∈ ( 13 , 12 ). Thus,
|I1(t, ρ)| ≤ Cρ−ν−1|t |2.

Estimating I2(t, ρ) Recall that (32) holds and that δ is chosen so that (34) holds.
Using the definition of�ρ(t) and noting that for every ρ, (u− R̂ρ(0))−11 = (1−u)−1,

(�ρ(t)−�ρ(0)1 =
∫

|u−1|=δ
(u − R̂ρ(t))

−1(R̂ρ(t)− R̂ρ(0))(u − R̂ρ(0))
−11 du

=
∫

|u−1|=δ
(1− u)−1(u − R̂ρ(t)

−1(R̂ρ(t)− R̂ρ(0))1 du.

Thus,

I2(t, ρ) =
∫

M0

(eitκρ − 1)
∫

|u−1|=δ
(1− u)−1(u − R̂ρ(t))

−1(R̂ρ(t)− R̂ρ(0))1 du dm

:= J1(t, ρ)+ J2(t, ρ), (39)

for

J1(t, ρ) :=
∫

M0

(eitκρ − 1)
∫

|u−1|=δ
(1− u)−1(u − R̂ρ(0))

−1(R̂ρ(t)− R̂ρ(0))1 du dm

and

J2(t, ρ) :=
∫

M0

(eitκρ − 1)
∫

|u−1|=δ
(1− u)−1

(

(u − R̂ρ(t))
−1 − (u − R̂ρ(0))

−1)

(R̂ρ(t)− R̂ρ(0))1 du dm

=
∫

M0

(eitκρ − 1)
∫

|u−1|=δ
(1− u)−1(u − R̂ρ(t))

−1(R̂ρ(t)− R̂ρ(0))(u − R̂ρ(0))
−1
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× (R̂ρ(t)− R̂ρ(0))1 du dm =: K1(t, ρ)+ K2(t, ρ),

where

K1(t, ρ) =
∫

M0

(eitκρ − 1)
∫

|u−1|=δ
(1− u)−1(u − R̂ρ(0))

−1(R̂ρ(t)− R̂ρ(0))

× (u − R̂ρ(0))
−1(R̂ρ(t)− R̂ρ(0))1 du dm

(40)

and

K2(t, ρ) =
∫

M0

(eitκρ − 1)
∫

|u−1|=δ
(1− u)−1

(

(u − R̂ρ(t))
−1 − (u − R̂ρ(0))

−1)

× (R̂ρ(t)− R̂ρ(0))(u − R̂ρ(0))
−1(R̂ρ(t)− R̂ρ(0))1 du dm.

Wefirst treat K2(t, ρ). Note that for u in the chosen contour, ‖(u−Rρ(t))−1‖B ≤ γ−1ρ .
Using (35), for all such u,

∥

∥

∥

(

(u − R̂ρ(t))
−1 − (u − R̂ρ(0))

−1) (R̂ρ(t)− R̂ρ(0))(u − R̂ρ(0))
−1(R̂ρ(t)− R̂ρ(0))

∥

∥

∥B
≤ Cρ−2ν |t |3νγ−3ρ .

This together with Lemma 6.1 gives that

|K2(t, ρ)| ≤
∑

(ξ,ξ ′)∈�

∞
∑

N=1

∫

M0

∫

|u−1|=δ
|1− u|−11{κρ=ξ ′+Nξ}|eitκρ − 1|

×
∣

∣

∣(u − R̂ρ(t))
−1 − (u − R̂ρ(0))

−1(R̂ρ(t)− R̂ρ(0)(u − R̂ρ(0))
−1(R̂ρ(t)− R̂ρ(0))1

∣

∣

∣ du dm

≤ |t |3νρ−3νγ−3ρ
∑

(ξ,ξ ′)∈�
|ξ |− 5

2+s0ρ−
1
2+s0

∞
∑

N=1
|t |N− 3

2 ≤ Cρ−3νγ−3ρ |t |3ν+1.

Hence, |K2(t, ρ)| ≤ Cρ−1γ−3ρ |t |2 t3ν−1 = Cρ−1γ−3ρ |t |2 γ 4ρ for all |t | ∈ Bδ0 with

δ0 < γ
4/(3ν−1)
ρ . It follows that |K2(t, ρ)| ≤ Cρ−1|t |2.

Estimating J1(t, ρ) in (39) and K1(t, ρ) in (40) These terms are in, some sense,
independent of the Banach space B (see the explanation below) and can be analysed
either via the correlation function (36) or its generalization (37). The rest of the proof
is allocated to this type of analysis.

We startwith J1(t, ρ)defined in (39),which is easier using (36).Recall that R̂ρ(0) =
Rρ and

∫

|u−1|=δ(1− u)−2 du = 0 due to Cauchy’s theorem. This gives

J1(t, ρ) =
∫

M0

(eitκρ − 1)
∫

|u−1|=δ
(1− u)−1

∞
∑

j=0
u− j−1R j

ρ Rρ(e
itκρ − 1)1 du dm
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−
(∫

M0

(eitκρ − 1) dμ

)2 ∫

|u−1|=δ
(1− u)−1

∞
∑

j=0
u− j−1 du

=
∫

|u−1|=δ
(1− u)−1

∞
∑

j=0
u− j−1

∫

M0

(eitκρ − 1)R j
ρ Rρ(e

itκρ − 1)1 dm du

−
(∫

M0

(eitκρ − 1) dμ

)2 ∫

|u−1|=δ
(1− u)−1

∞
∑

j=0
u− j−1 du.

Swapping the order of the integrals is allowed due to (36). The quantity

(

∫

M0

(eitκρ − 1)R j+1
ρ (eitκρ − 1) dμ−

∫

M0

(eitκρ − 1) dμ
)2

decays exponentially fast. Hence, we can write

J1(t, ρ) =
∫

|u−1|=δ
(1− u)−1

∞
∑

j=0
u− j−1

×
(

∫

M0

(eitκρ − 1) (eitκρ − 1) ◦ T j+1
ρ dμ−

(∫

M0

(eitκρ − 1) dμ

)2 )

du.

Using Lemma A.5 to control the dependence on ρ,
(

∫

M0
(eitκρ − 1) dμ

)2 ≤
C |t |2ρ−2. Next, recall that (32) holds and that δ < 1

2 min{γρ, γ̂ρ}. Note that for
|u − 1| = δ, we have |u|−( j+1) � (1− γ̂ρ/2)−( j+1). This together with (36) gives

|J1(t, ρ)| ≤ Cρ |t |2
∫

|u−1|=δ
|1− u|−1

∞
∑

j=0
|u|− j−1 (1− γ̂ρ

) j+1

� Ĉρ |t |2
∞
∑

j=1

(

1− γ̂ρ
1− γ̂ρ/2

) j+1
≤ 2Ĉρ |t |2 γ̂−1ρ .

An argument similar to the one above used in estimating J1(t, ρ)with (37) instead
of (36) allows us to deal with K1(t, ρ) defined in (40). Compute that

K1(t, ρ) =
∫

M0

(eitκρ − 1)
∫

|u−1|=δ
(1− u)−1

∑

m≥1
u−m

∑

j≥1
u− j R̂ρ(0)

j (eitκρ − 1)

× R̂ρ(0)
m(eitκρ − 1) du dm.

Let

E(t, ρ) =
∫

M0

(eitκρ − 1) dμ
∫

|u−1|=δ
(1− u)−1
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×
∑

j≥1
u− j

∑

m≥1
u−m

∫

M0

(eitκρ − 1)Rρ(0)
m(eitκρ − 1) dμ du

−
∫

|u−1|=δ
(1− u)−1

∑

j≥1
u− j

∑

m≥1
u−m

∫

M0

(eitκρ − 1) dμ

×
∫

M0

(eitκρ − 1) (eitκρ − 1) ◦ T j
ρ dμ du

−
(

∫

M0

(eitκρ − 1) dμ
)3
∫

|u−1|=δ
(1− u)−1

∑

j≥1
u− j

∑

m≥1
u−m du

= (E1(t, ρ)− E2(t, ρ))
∫

M0

(eitκρ − 1) dμ− E3(t, ρ).

Using (37), we obtain

∣

∣

∣K1(t, ρ)− E(t, ρ)
∣

∣

∣ ≤ C̄ρ |t |2
∑

m≥1
|u|−m

∑

j≥1
|u|− j (1− γ̄ρ)m+ j ≤ 4C̄ρ |t |2γ̄−2ρ ,

where in the last inequality we proceeded as in estimating J1 above.
Finally, we need to argue that E is bounded by |t |2. First,

E1(t, ρ) =
∫

|u−1|=δ
(1− u)−1

∑

j≥1
u− j

∑

m≥1
u−m

∫

M0

(eitκρ − 1)Rρ(0)
m(eitκρ − 1) dμ du

=
∫

|u−1|=δ
(1− u)−2

∑

m≥1
u−m

∫

M0

(eitκρ − 1) (eitκρ − 1) ◦ Tm
ρ dμ du

=
∫

|u−1|=δ
(1− u)−2

∑

m≥1
u−m

×
(

∫

M0

(eitκρ − 1) (eitκρ − 1) ◦ Tm
ρ dμ du −

(∫

M0

(eitκρ − 1) dμ

)2

dμ

)

+
(∫

M0

(eitκρ − 1) dμ

)2 ∫

|u−1|=δ
(1− u)−2

∑

m≥1
u−m du = E1

1(t, ρ)+ E2
1(t, ρ).

Using (36), we have that |E1
1(t, ρ)| ≤ 2Ĉρ |t |2 γ̂−1ρ .

Also, E2(t, ρ) =
∫

|u−1|=δ(1− u)−2
∑

j≥1 u− j
∫

M0
(eitκρ − 1) (eitκρ − 1) ◦ T j

ρ dμ

and again by (36) and Cauchy’s theorem, |E2(t, ρ)| ≤ 4Ĉρ |t |2 γ̂−2ρ . Finally,
E3(t, ρ) = 0. Altogether, |K1(t, ρ)| ≤ 8C̄ρ |t |2 γ̄−2ρ . ��

7 Limit theorems andmixing as � → 0

The first result below is the non-standard Gaussian limit law, known to hold when the
horizon is infinite. It is a precise version of Theorem A stated in Sect. 1.3.
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Periodic Lorentz gas with small scatterers

Our main contribution lies in characterizing the limit paths allowed as ρ → 0; this
is done up to the unknown γρ , Cρ in (32) and C̄ρ , γ̄ρ as in (37).

Throughout this section, the notation is the same in Sect. 1.1. In particular,

bn,ρ =
√

n log(n/ρ2)√
4π ρ

, and the variance matrix � are defined as in (1), in agreement

with Lemma 6.2. We recall that �⇒ stands for convergence in distribution with
respect to the invariant measure μ.

Theorem 7.1 Let γρ , Cρ be as in (32), let γ̄ρ , C̄ρ be as in (37) and let C be as in
Proposition 6.3.

Set M(ρ) = max{Cργ−2ρ , ρ2C̄ργ̄−2ρ }+C. Let ρ → 0 and simultaneously n→∞
in such a way that M(ρ) = o(log n). Then

κn,ρ

bn,ρ
�⇒ N (0, �).

Remark 7.2 A similar statement holds for the flight function qρ . The only change in
the proof is the use of Remark 6.5 instead of Proposition 6.3.

Proof Throughout we let δ < 1
2 min{γρ, γ̂ρ}, so that we can use Proposition 6.3 with

δ0 = δ4/(3ν−1). By (33), for t ∈ Bδ0(0),

Eμ(e
itκn,ρ1) = Eμ(R̂ρ(t)

n1) = λρ(t)n
∫

M0

�ρ(t)1 dμ+
∫

M0

Qρ(t)
n1 dμ

= λρ(t)n
∫

M0

�ρ(t)1 dμ+ O(Cρ (1− γρ)n).

Note that the assumption M(ρ) = o(log n) ensures that, for ρ small enough, t
bn,ρ
∈

Bδ0(0) for all t ∈ R
2. Hence, as n → ∞ and given the range of n, equivalently as

ρ → 0,

∣

∣

∣

∣

Eμ

(

exp

(

i t
κn,ρ

bn,ρ

))

− λρ
(

t

bn,ρ

)n ∫

M0

�ρ

(

t

bn,ρ

)

1 dμ

∣

∣

∣

∣

→ 0,

for all t ∈ R
2.

Also, it follows from (35) that ‖�ρ
(

t
bn,ρ

)

− �ρ(0)‖B → 0, as n → ∞ and

given the range of n, equivalently as ρ → 0. Thus, a standard argument based on the
dominated convergence theorem shows that as n→∞, equivalently as ρ → 0,

∣

∣

∣

∣

Eμ

(

exp

(

i t
κn,ρ

bn,ρ

))

− λρ
(

t

bn,ρ

)n∣
∣

∣

∣

→ 0.

It remains to understand λρ
(

t
bn,ρ

)n
as ρ → 0. Since δ0 = δ4/(3ν−1), we can apply

Proposition 6.3 to obtain

n

(

1− λρ
(

t

bn,ρ

))
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= n

8πρ
Ā

(

t

bn,ρ
, ρ

)

log(bn,ρ/|t |)+ n O

(

(

C̄ργ̄
−2
ρ + Cρ−2

)

( |t |
bn,ρ

)2
)

.

By assumption, M(ρ) = o(log n). Hence, as ρ → 0,

n
(

C̄ργ̄
−2
ρ + Cρ−2

)

( |t |
bn,ρ

)2

=
(

C̄ργ̄
−2
ρ + Cρ−2

) 4π |t |2ρ2
log(n/ρ2)

= O

(

M(ρ)

log n

)

· |t |2 = o(1) · |t |2 → 0.

Now, given that Ā is as in Lemma 6.2,

n

4πρ
Ā

(

t

bn,ρ
, ρ

)

= 1

log(n/ρ2)

1

ρ
ρ2 Ā (t, ρ) = ρ Ā(t, ρ)

log(n/ρ2)
.

Also, using Lemma 6.2 and recalling the range of n,

lim
ρ→0

n

4πρ
Ā

(

t

bn,ρ
, ρ

)

log

(

bn,ρ
|t |
)

= lim
ρ→0

ρ Ā (t, ρ)

log(n/ρ2)
log

(

bn,ρ
|t |
)

= lim
ρ→0

ρ

2

Ā(t, ρ)

log
(√

n
ρ

) log

(√
n

ρ

√

log(n/ρ2)√
4π |t |

)

= 〈�t, t〉,

where in the last equality we have used Lemma 6.2 and the uniform convergence
theorem for slowly varying functions. Putting the above together,

lim
ρ→0

λρ

(

t

bn,ρ

)n

= lim
ρ→0

exp

(

−n
(

1− λρ
(

t

bn,ρ

)))

= exp

(

−1

2
〈�t, t〉

)

, (41)

for any t ∈ R
2. This completes the proof of Theorem7.1 byLevy’s continuity theorem.

��
The next result gives a local limit theorem as ρ → 0, again up to the unknown γρ ,

Cρ and γ̄ρ , C̄ρ . This is possible due to the present proof based on spectral methods
which produces the fine control of the eigenvalue in Proposition 6.3. The present proof
of local limit theorem for the infinite horizon is new even for ρ fixed.We recall that the
only proof of such a local limit is given in [31] via the abstract results in [4] for Young
towers. Our proof relies on Proposition 6.3, which is new in the set-up of the Banach
spaces considered here and it relies heavily on Appendix C and on Proposition 3.1
(which provides useful continuity estimates).

In the notation of Theorem 7.1 we let �� be the density of a Gaussian random
variable distributed according to N (0, �) and recall from Sect. 4.1 that C p0 ⊂ B.

Theorem 7.3 Assume the assumptions and notation of Theorem 7.1; in particular
M(ρ) is defined in the same way. Let v ∈ C p0(M) and w ∈ La(M), for a > 1.
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Let ρ → 0 and simultaneously n→∞ in such a way that M(ρ) = o(log n). Then

∣

∣

∣

∣

∫

M
v1{κn,ρ=N }w ◦ T n

ρ dμ− Eμ(v)Eμ(w)

(bn,ρ)2
��

(

N

bn,ρ

)∣

∣

∣

∣

→ 0.

uniformly in N ∈ Z
2.

Remark 7.4 Asimilar statement holds for the flight function qρ . By a similar argument,
using Remark 6.5 instead of Proposition 6.3, we obtain (bn,ρ)2μ({qn,ρ ∈ V }) →
��(0)LebR2(V ), for any compact neighborhood V ∈ R

2 with LebR2(∂V ) = 0. A
uniform LLT for qρ can be obtained by, for instance, a straightforward adaptation of
the argument used in [27, Proof of Theorem 2.7].

It is known that for every ρ > 0, κρ is aperiodic, i.e., there exists no non-trivial
solution to the equation eitκρ g ◦ Tρ = g. The aperiodicity of κρ has been used in [31]
(in fact, in [30]) to provide LLT for fixed ρ. Given Proposition 6.3 and the aperiodicity
of κρ , the proof of Theorem 7.3 is classic, see [1] and for a variation of it that provides
the uniformity in N , see, for instance, [28, First part of Proof of Theorem 2]. The proof
below recalls the main elements needed to obtain the range of n in the statement.

Theorem 7.3 Let δ0 = δ4/(3ν−1) be so that (34), (32) and Proposition 6.3 hold for all
|t | ∈ Bδ0(0). Since κρ is aperiodic, a known argument (see [Lemma 4.3 and Theorem
4.1] [1]) shows that ‖R̂ρ(t)n‖B ≤ Cρ(1 − γρ)n , for all |t | ≥ δ0. It follows that
|Eμ(R̂ρ(t)n1)| ≤ ‖R̂ρ(t)n‖B ≤ Cρ (1− γρ)n for every |t | ∈ (δ0, π). Thus, using that
v ∈ C p0 ⊂ B,
∫

M
v1{κn,ρ=N }w ◦ T n

ρ dμ = 1

4π2

∫

[−π,π ]2
e−i t N

∫

M
R̂ρ(t)

nv w dμ dt

= 1

4π2

∫

[−δ0,δ0]2
e−i t N

∫

M
R̂ρ(t)

nv w dμ dt + O
(

Cρ (1− γρ)n
)

= 1

4π2

∫

[−δ0,δ0]2
e−i t Nλρ (t)n

∫

M
�ρ(t)v w dμ dt + O

(

Cρ (1− γρ)n + Ĉρ (1− γ̂ρ)n
)

= 1

4π2 I (ρ, t)+ O
(

Cρ (1− γρ)n
)

. (42)

Recall that w ∈ La , a > 1 and set b = a/(a − 1). Using the Hölder inequality,

I (ρ, t) =
∫

[−δ,δ]2
e−i t Nλρ (t)n dt

∫

M
v dμ

∫

M
w dμ

+
∫

[−δ,δ]2
e−i t Nλρ (t)n

∫

M
(�ρ(t)−�ρ(0))v w dμ dt

=
∫

[−δ,δ]2
e−i t Nλρ (t)n dt

∫

M
v dμ

∫

M
w dμ

+O
(

‖w‖La(μ)

∫

[−δ,δ]2
∣

∣λρ (t)
n
∣

∣

(∫

M
|(�ρ(t)−�ρ(0))v|b dμ

)1/b

dt

)

.
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Recall v ∈ B. Using (35), (29) and Lemma 6.1 and proceeding as in equation (38),

(

∫

M
|(�ρ(t)−�ρ(0))v|b dμ

)1/b ≤ Cρ−νγ−2ρ |t |ν ≤ Cρ−2|t |ε,

for some uniform C and some ε > 0. In the last inequality we have used that |t | < δ0.
Thus,

I (ρ, t) =
∫

[−δ0,δ0]2
e−i t Nλρ (t)n dt

∫

M
v dμ

∫

M
w dμ

+ O

(

‖w‖La(μ)ρ
−2
∫

[−δ0,δ0]2
|t |ε ∣∣λρ (t)n

∣

∣ dt

)

.

With a change of variables,

I (ρ, t) = 1

(bn,ρ)2

∫

[−δ0bn,ρ ,δ0bn,ρ ]2
e
−iu N

bn,ρ λρ

(

u

bn,ρ

)n

du
∫

M
v dμ

∫

M
w dμ

+ O

(

‖w‖La(μ)

ρ−2

(bn,ρ)3

∫

[−δ0bn,ρ ,δ0bn,ρ ]2
|u|ε

∣

∣

∣

∣

λρ

(

u

bn,ρ

)n∣
∣

∣

∣

du

)

. (43)

Given the range of n in the statement, we use (41) to obtain

lim
ρ→0

∣

∣

∣

∣

∣

4π2
∫

[−δ0bn,ρ ,δ0bn,ρ ]2
e
−iu N

bn,ρ λρ

(

u

bn,ρ

)n

du −��
(

N

bn,ρ

)

∣

∣

∣

∣

∣

= 0.

To deal with the big O term in (43), we use that by (41) there exists a uniform constant
C so that

ρ−2

(bn,ρ)3

∫

[−δ0bn,ρ ,δ0bn,ρ ]2
|u|ε

∣

∣

∣

∣

λρ

(

u

bn,ρ

)n∣
∣

∣

∣

du ≤ ρ−2

(bn,ρ)2+ε

∫

[−δ0bn,ρ ,δ0bn,ρ ]2
|u|εe−C |u|2 du.

Since M(ρ) = o(log n), we have n  exp
(

Cρ−2
)

. Thus, ρ−2
(bn,ρ )2+ε �

log n
(bn,ρ )2+ε =

o
(

1
(bn,ρ )2

)

as ρ → 0. Putting these together and using (43),

lim
ρ→0

∣

∣

∣

∣

4π2 I (ρ, t)−��
(

N

bn,ρ

) ∫

M
v dμ

∫

M
w dμ

∣

∣

∣

∣

= 0.

This together with (42) gives that as ρ → 0,
∣

∣

∣

∣

∫

M
v1{κn,ρ=N }w ◦ T n

ρ dμ− 1

(bn,ρ)2
��

(

N

bn,ρ

) ∫

M
v dμ

∫

M
w dμ

∣

∣

∣

∣

= O
(

(bn,ρ)
2 Cρ (1− γρ)n

)

= o(1),

where in the last equation we used that M(ρ) = o(log n). This concludes the proof. ��
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It is known that the local limit theorem for κρ and the billiard map Tρ (with ρ fixed)
implies mixing for the planar Lorentz map T̂ρ (again ρ fixed), see [28]. In fact, sharp
error rates in local limit theorems and mixing are also known, see [28] for the finite
horizon case and [29] for the infinite horizon case.

We recall from Sect. 1 that the Lorentz map T̂ρ defined on ̂M = M × Z
2 is

given by T̂ρ(θ, φ, �) = (Tρ(θ, φ), � + κρ(θ, φ)) for (θ, φ) ∈M, � ∈ Z
2. Let μ̂ =

μ× LebZ2 , where LebZ2 is the counting measure on Z2. An immediate consequence
of Theorem 7.3 is

Corollary 7.5 Assume the assumptions and notation of Theorem 7.3. Let ρ → 0 and
simultaneously n→∞ in such a way that M(ρ) = o(log n). Then

lim
ρ→0

∣

∣

∣

∣

(bn,ρ)
2
∫

̂M
v w ◦ T̂ρ dμ̂−

∫

̂M
v dμ̂

∫

̂M
w dμ̂

∣

∣

∣

∣

= 0.

Remark 7.6 The class of functions in Corollary 7.5 is rather restrictive as the functions
v,w are supported on the cell M. Given the work [28] (see also [29, Sect. 6]), it is
very plausible that the present mixing result can be generalized to a suitable class
of dynamically Hölder functions supported on the whole of ̂M. Since the involved
argument is rather delicate and not a main concern of the present work, we omit this.
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A Estimates on corridors

A.1 Estimating P(�� = �′ + N�)

Given a corridor associated to ξ , there a neighborhood U0 of x0 = x0(ξ) in ∂O0 ×
[−π2 , π2 ] of initial conditions x such that the next collision occurs at a scatterer on the
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Fig. 5 A corridor and coordinates (α, θ)

opposite side of the corridor. For this situation, [31] use the coordinates (α, z), where
α is the angle the trajectory of some x ∈ ∂O0 makes with the tangent line at x0, and
the intersection point is y = x0 + zξ , see Fig. 5.

Lemma A.1 In coordinates (z, α) the volume form in a neighborhood of x0 = x0(ξ)
is

|ξ |
4πρ

sin α dα dz = 1

4π
cosφ dθ dφ.

Proof The part sin α dα dz can be understood because the Liouville measure of the
billiard flow projects to a form cosϕ dϕ dr for any transversal section parametrised by
arc-length r and with ϕ the angle of the trajectory to the normal vector at the collision
point.When this section is the line y = x0+xξ , we have α = π

2 −ϕ, so cosϕ = sin α.
But to get the correct normalizing constant, we give a more extensive argument. From
Fig. 5 we have

π

2
= θ + α + φ, tan α = ρ(1− cos θ)

z|ξ | − ρ sin θ . (44)

After making α and z subject of these equations, we see that the change of coordinates
involved is

(α, z) = F(θ, φ) =
(

π

2
− θ − φ, ρ|ξ |

(

1− cos θ

tan(π2 − θ − φ)
+ sin θ

))

.

The Jacobian determinant is

| det(dF)| =
∣

∣

∣

∣

det

(−1 −1
∂F2
∂θ

∂F2
∂φ

)∣

∣

∣

∣

=
∣

∣

∣

∣

∂F2
∂θ
− ∂F2
∂φ

∣

∣

∣

∣

= ρ

|ξ |
(

cos θ

tan(π2 − θ − φ)
+ cos θ

)

.

Thus, using (44) and some trigonometric formulas,

|ξ |
4πρ

sin α dα dz = |ξ | sin α
4πρ

ρ

|ξ |
(

sin θ

tan(π2 − θ − φ)
+ cos θ

)

dθ dφ

= 1

4π
(cosα sin θ + sin α cos θ) dθ dφ

= 1

4π
sin(α + θ) dθ dφ = 1

4π
cos(φ) dθ dφ,
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Periodic Lorentz gas with small scatterers

Fig. 6 [z0, z1] given by two tangent lines for 2ρ > dρ(ξ)
N (blue) or 2ρ <

dρ(ξ)
N (red)

as claimed. ��

The following is [31, Proposition 6] in more detail:

Lemma A.2 Suppose that the scatterers have radius ρ > 0 and the width of the
corridor given by ξ is dρ(ξ). Then

μ({x ∈ ∂O0 × [−π
2
,
π

2
] : κρ(x)

= N |ξ | + ξ ′}) = 1

4πN |ξ |ρ min{4ρ2, dρ(ξ)2N−2}(1+O(N−1)),

where ξ ′ as in Remark 2.2 is the integer vector on the boundary of the corridor opposite
to the ξ -boundary.

Proof We take the region in (z, α)-coordinates where κρ = Nξ+ξ ′. In the z-direction
this is an interval [z0, z1], where for z = z0, there is only one line connecting O0 and
Oκρ , namely the common tangent line of O0 and Oκρ−ξ . For z = z1 there is also is
only one line, namely the common tangent line of Oξ and Oκρ , see Fig. 6. These two
lines are obtained from each other by translation over one unit ξ , so z1ξ − z0ξ = |ξ |.
However, if ρ is small compared to N , these two tangent lines are the common tangent
lines at the upper sides of O0 and Oκρ and at the lower sides of O0 and Oκρ . In this
case

|z1ξ − z0ξ | = 2ρ

sin α
= 2ρ(N |ξ | + |ξ ′|)

dρ(ξ)+ 2ρ
+O

(

ρ

dρ(ξ)+ 2ρ

)

. (45)

This also shows that the transition between the two cases is when 2ρ = dρ(ξ)
N .

For each z ∈ [z0, z1], the range of possible values of α is again bounded by the α’s
obtained at the tangent lines to Oκρ−ξ and Oκρ . Therefore, see Fig. 7,

α ∈ [α0(z), α1(z)] :=
[

arctan

(

dρ(ξ)

N |ξ | + |ξ ′| − z

)

arctan

(

dρ(ξ)

N |ξ | − |ξ | + |ξ ′| − z

)]

.
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Fig. 7 The parameter interval [α0(z), α1(z)] given by angles between two tangent lines

Since |ξ ′| ≤ |ξ | (see Remark 2.2) and z ≤ |ξ | as well, each α in this interval satisfies
α = dρ(ξ)

N |ξ | (1+O(N−1)) and

α1(z)− α0(z) = dρ(ξ)

N 2|ξ | (1+O(N−1)). (46)

Integrating the density given in LemmaA.1 for the case 2ρ ≥ dρ(ξ)
N (so |z1−z0| = |ξ |)

and using |z1−z0| = |ξ | and the approximation cosα0−cosα1 ∼ 1
2 (α1+α0)(α1−α0)

gives:

∫ z1

z0

∫ α1(z)

α0(z)

|ξ |
4πρ

sin α dα dz = |ξ |
4πρ

∫ z1

z0
cos(α0(z))− cos(α1(z)) dz

= |ξ |
4πρ

dρ(ξ)

N |ξ |
dρ(ξ)

N 2|ξ | (1+O(N−1))

= 1

4πNρ

dρ(ξ)2

|ξ |N 2

(

1+O(N−1)
)

.

Now for the case 2ρ < dρ(ξ)
N , see Fig. 7 with small version of Oκρ , we have

α ∈ [α0(z), α1(z)]
:=
[

arctan

(

dρ(ξ)

N |ξ | + Q − z − 2ρ sin α

)

arctan

(

dρ(ξ)+ 2ρ cosα1(z)

N |ξ | + Q − z − 2ρ sin α

)]

,

so still α = dρ(ξ)
N |ξ | +O(N−2) and α1(z)− α0(z) = 2ρ

N |ξ | (1+O(N−1).
Integrating as before gives, using (45) and the fact that dρ(ξ) + 2ρ = |ξ |−1 from

Lemma 2.1:

∫ z1

z0

∫ α1(z)

α0(z)

|ξ |
4πρ

sin α dα dz = |ξ |
4πρ

∫ z1

z0
cos(α0(z))− cos(α1(z)) dz

= |ξ |
4πρ

2ρN

dρ(ξ)+ 2ρ

dρ(ξ)

N |ξ |
2ρ

N |ξ | (1+O(N−1))

= 4ρ2

4π |ξ |Nρ
(

1+O(N−1)
)
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as required. ��

A.2 Corridors sums

Let ϕ be Euler’s totient function, i.e., the number of integers 1 ≤ q ≤ p coprime with
p. The following lemma is classical number theory, but we couldn’t locate a proof of
the full statement.

Lemma A.3 For every a > −2, we have

N
∑

n=1
naϕ(n) = Na+2

a + 2

1

ζ(2)
(1+ o(1)),

where ζ is the Riemann ζ -function, so ζ(2) = π2

6 .

Proof Let μ be the Möbius function. A standard equality is ϕ(n) = ∑d|n μ(d) nd .
Therefore

N
∑

n=1
naϕ(n) =

N
∑

n=1

∑

d|n
naμ(d)

n

d
=

N
∑

n=1

∑

d|n
daμ(d)

(n

d

)a+1

=
N
∑

d=1

N
d
∑

m=1
daμ(d)ma+1 =

N
∑

d=1
daμ(d)

1

a + 2

(

N

d

)a+2
(1+ o(1))

= Na+2

a + 2

N
∑

d=1

μ(d)

d2
(1+ o(1)) = Na+2

a + 2

1

ζ(2)
(1+ o(1)),

where we used the Dirichlet series identity
∑∞

d=1
μ(d)
ds = 1

ζ(s) for s = 2.
As an aside, there are asymptotic formulas for s > 2

∑

p≥1

ϕ(p)

ps
= ζ(s − 1)

ζ(s)
and

N
∑

p=1

ϕ(p)

p
= N

ζ(2)
+O((log N ) 23 (log log N ) 43 ), (47)

see [19, Theorem 288]. ��
In the course of this paper we denote, for a fixed value of ρ, the set of corridors

that are “visible” from the origin by �. As described in Lemma 2.1, these can be
characterized by pairs (ξ, ξ ′) ∈ Z

2 × Z
2 where ξ = (p, q), gcd(p, q) = 1 and

|ξ | ≤ (2ρ)−1, while ξ ′ may denote either the first or the second convergent preceding
ξ in the continued fraction expansion of p/q, see Remark 2.2. Sums of the type in the
following lemma are used throughout the paper.
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Lemma A.4 We have

∑

(ξ,ξ ′)∈�
|ξ |a

⎧

⎪

⎨

⎪

⎩

∼ 2
a+2

2π
ζ(2) (2ρ)

−(a+2) if a > −2;
� | log ρ| if a = −2;
≤ − 4π

a+2 if a < −2.

Proof Using the two coordinate axes and their bisectrices, we divide the plane into
eight sectors and for each sector, we sum the scatterers in S. Circular sections of
radius R have asymptotically π

4 as many points as triangular sectors with base R.
Also, every corridor direction in this sector comes with two corridors (ξ, ξ ′) and
(ξ, ξ ′′). By Lemma A.3, their sum is, for a > −2,

∑

(ξ,ξ ′)∈�
|ξ |a ∼ 16π

4

∑

0≤q≤p≤(2ρ)−1
|ξ |a = 4π

∑

1≤p≤(2ρ)−1
φ(p)pa ∼ 4π

2+ a

1

ζ(2)
(2ρ)−(2+a).

If a = −2, then a similar computation gives � | log ρ|, and for a < −2, the series is
summable: 4π

∑

1≤p≤(2ρ)−1 φ(p)pa ≤ 4π
∫∞
1 xa dx = − 4π

2+a . ��
Lemma A.5 For p ∈ [1, 2), the p-norm of the displacement function satisfies

‖κρ‖L p � (p(2− p))−1/p ρ−1.

Proof Take p ∈ [1, 2). We estimate over all ξ -corridors similarly as in Lemma A.4:

∫

|κρ |p dμ � 2
∑

|ξ |≤(2ρ)−1

∑

N≥1
|ξ |pN p 1

4π |ξ |Nρ min{4ρ2, dρ(ξ)2N−2}

≤ 1

2πρ

∑

|ξ |≤(2ρ)−1
|ξ |p−1

⎛

⎝

�dρ (ξ)/(2ρ)�
∑

N=1
4ρ2N p−1 +

∞
∑

N=�dρ (ξ)/(2ρ)�
dρ(ξ)

2N p−3
⎞

⎠

≤ 1

2πρ

(

1

p
(2ρ)2−p + 1

2− p
(2ρ)2−p

)

∑

|ξ |≤(2ρ)−1
|ξ |−1

∼ 2

ζ(2)

(

1

p
+ 1

2− p

)

(2ρ)−p.

Taking the p-th root gives the result. ��
Lemma A.6 Let W ∈ Ws be a stable leaf, and let �W stand for all lattice points
ξ = (p, q) ∈ � that can be reached from O0 with coordinates in W. Then for every
a ∈ ( 12 , 1),

∑

(ξ,ξ ′)∈�W

|ξ |−a � ρa−2|W | + ρa−1 log(1/ρ)+ ρa−1|W |−1.

Proof There is an arc W̃ ∈ S
1 of length |W̃ | � |W | such that every lattice point that

can be reached from O0 with coordinates in W has its polar angle in W̃ . Due to the
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symmetries in theZ2, it suffices to study W̃ ⊂ [0, π/2], so the lattice point ξ = (p, q)
in this sector satisfy 0 ≤ q ≤ p and tan(W̃ ) ⊂ [0, 1]. In fact, wewill start by assuming
that tan(W̃ ) ∈ [ 110 , 9

10 ].
Because p2 + q2 ≥ 2pq for all (p, q) = ξ , we have

∑

(ξ,ξ ′)∈�W
|ξ |−a �

2−a/2
∑

(ξ,ξ ′)∈� 1
(pq)a/2

1W̃ (
q
p ). We will apply an estimate from [33, Theorem 2.2],

which, in our terminology, reduces to

∑

(ξ,ξ ′)∈�

1

(pq)a/2
ψ

(

p

q

)

= Ca ρ
a−2

∫

ψ(x) dx + O(ρ1−a log(1/ρ))

+ O

⎛

⎜

⎜

⎝

∑

� �=0
cψ(�)

∑

d≤(2ρ)−1
d|�

d1−a
∑

k≤(2ρd)−1

μ(k)

ka

⎞

⎟

⎟

⎠

, (48)

where Ca is a constant depending only on a, and cψ(�) is the �-th Fourier coefficient
of x !→ ψ(x)x−a .

If ψ = 1W̃ , then these Fourier coefficients are not summable, so we first smoothen
1W̃ to a function ψ with supp(ψ) concentric to W̃ and | supp(ψ)| = |W̃ | = 3|W |.
On W̃ itself, ψ ≡ 1 and on the two interval components ψ is a translated copy of the
function fW : [− |W |2 , |W |2 ] → R defined by

fW (x) = 1

2
− 1

2π
sin

2πx

|W | +
x

|W | .

Then
∫

ψ dx = 2|W | and integrating by parts twice gives an estimate of the Fourier
coefficients of x !→ ψ(x)x−a .

|cψ(�)| �
∣

∣

∣

∣

∫

(ψ(x)x−a)′′

(2π�)2
e2π i�x dx

∣

∣

∣

∣

� 1

|W |�2

because supp(ψ) is bounded away from {0, 1} (so x−a doesn’t blow up) and
(ψ(x)x−a)′′ = 0 outside supp(ψ).

TheDirichlet series of theMöbius function canbe estimated as
∣

∣

∣

∑�1/(2ρd)�
k=1 μ(k)k−a

∣

∣

∣

≤ (2ρd)1−a . We use this and the fact that � ∈ N has O(�1/2) divisors to estimate the
last big O-term in (48).

∑

�∈N
|cψ(�)|

∑

d≤(2ρ)−1
d|�

d1−a
∑

k≤(2ρd)−1

μ(k)

ka
� (2ρ)a−1

|W |
∑

�∈N
|cψ(�)|

∑

d≤(2ρ)−1
d|�

1

� (2ρ)1−a

|W |
∑

� �=0
|�|− 3

2 ≤ (2ρ)
a−1

|W | .
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Hence (48) becomes

∑

(ξ,ξ ′)∈�

1

(pq)a/2
1W̃

(

q

p

)

≤
∑

(ξ,ξ ′)∈�

1

(pq)a/2
ψ

(

q

p

)

� ρa−2|W | + ρa−1 log(1/ρ)+ ρa−1|W |−1,

as required.
It remains to consider the cases that tan(W̃ ) �⊂ [ 110 , 9

10 ]. Suppose instead that
tan(W̃ ) ⊂ (0, 1

10 ] (we ignore ξ = (0, 1) and ξ = (1, 0)). In this case, we give an
injection between the lattice points in the W̃ -sector with coprime coordinates to the
set of lattice points (with coprime coordinates and comparable norm) in a sector of
comparable width, but near polar angle 1

2 . Indeed, set Qcp = {q/p : 0 �= p, q ∈
Z, gcd(p, q) = 1} ∪ {0} and Zcp := {(p, q) ∈ Z

2 : gcd(p, q) = 1}, and define the
Calkin-Wilf map f : Qcp → Qcp as well as g : Zcp → Zcp by

f : x !→ 1

1− x − 2�x� , g : (p, q) !→ (p − q + 2p�q/p� p).

The f -orbit of 0 enumerates all non-negative lowest-term rationals, see [8], and g is the
same map expressed on the collection of lattice points. Since f 2((0, 1

10 ]) ⊂ ( 12 , 1021 ]
and |g(ξ)| ≤ 4|ξ |, the second iterate g2 provides the required injection. In case
tan(W̃ ) ⊂ [ 910 , 1) we use g3. ��

B Distortion properties

Throughout, a uniform constant is a constant that is independent of ρ.
Let us recall some terminology and notations from [10, Chapter 4]. Unstable curves

generate dispersing wavefronts, which are evolved by the free flight, and then leave
traces of unstable curves on the scatterer at the next collision. For wavefronts it is
convenient to use the Jacobi coordinates (dξ, dω), and an important quantity5� = dω

dξ ,

the curvature of the wavefront. Let �− and �+ denote its value immediately before
and after a particular collision, respectively.

On the scatterer, the traditional coordinates are (r , φ) yet, we prefer to use the
ρ-independent (θ, φ) and take advantage of

d

dθ
= (2πρ) d

dr
.

5 Usually called B in billiard literature such as [10], but we write� to avoid confusion with Banach spaces
B.
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First we relate �− to the slope of the unstable curve: 1
2π

dφ
dθ = ρ�− cosφ + 1.

Differentiating with respect to θ gives

1

2π

d2φ

dθ2
= d�−

dθ
ρ cosφ − ρ�− sin φ dφ

dθ
. (49)

Lemma B.1 There exists a uniform constant C > 0 such that for any C2 smooth
unstable curve W there exists nW such that for n ≥ nW on all components of T n

ρ W
we have

∣

∣

∣

∣

d2φ

dθ2

∣

∣

∣

∣

≤ Cρ. (50)

Thus we may restrict to the class of regular unstable curves for which (50) holds.
Also, this shows that as ρ → 0, the unstable curves limit in a C2 sense to straight
lines of slope 2π .

Proof The properties of the free flight are not effected by shrinking the scatterers or
using the θ -coordinate. Thus

0 ≤ �− ≤ (τmin)
−1

and, by (49), it is enough to show

∣

∣

∣

∣

d�−

dθ

∣

∣

∣

∣

≤ C

to prove the lemma. Now d�−
dθ = (2πρ) d�

−
dr , and the evolution of d�−

dr is discussed
in [10, section 4.6]. Following the notation there, introduce

E1 = d�

dξ
; F1 = E1

�3

and use superscripts − and + to denote pre- and post-collision values of these quan-
tities, respectively. [10, Formula (4.37)] states

−F+1 =
(

�−

�+

)3

F−1 + H1,

where

H1 = 6ρ−2 sin φ + 6ρ−1�− cosφ sin φ
(2ρ−1 +�− cosφ)3

and by the analysis of [10, page 81]:

• F1 remains constant between collisions
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• there exists a uniform constant  < 1 such that �
−
�+ ≤  ,• there exists a uniform constant C1 > 0 such that |H1| ≤ C1. This remains valid

for shrinking ρ as the denominator scales with ρ−3 while the numerator scales
with ρ−2.

Hence it follows that |F1(n + 1)| ≤  3|F1(n)| + C , where F1(n) is the value of F1
between the n-th and the (n+ 1)st collision. This implies that there exists C2 > 0 and
nW (depending on the curve W ) such that for any n ≥ nW we have |F1(n)| ≤ C2.

Now |E−1 | = |F−1 |·(�−)3 ≤ C3 for some uniformC3 > 0, and finally [10, Formula
(4.24)] states

d�−

dr
= E−1 cosφ − (�−)2 sin φ,

which thus implies that
∣

∣

∣

d�−
dr

∣

∣

∣ ≤ C4 for some uniform constant C4 > 0. This bound

completes the proof of the lemma. ��
It follows that regular unstable curves can be parametrised by the coordinate θ , and

for any smooth function f : W → R, d f
dθ � d f

dx , where x is (Euclidean) arc-length
along the curve—dx2 = dθ2 + dφ2 (not to be confused with the arc-length r along
the scatterer).

Let us also recall that an unstable curve is homogeneous if it is regular and contained
in one of the homogeneity strips Hk = {(θ, φ) : π2 − k−r0 < φ < π

2 − (k + 1)−r0}.
For such curves, analogous to [10, Formula (5.13)], we have

|W | ≤ C cos
r0+1
r0 φ (51)

for some uniform constant C > 0, where φ corresponds to any point of W . (This
follows as the slope of the curve is uniformly bounded away from 0 and∞.)

Distortion bounds are stated as follows. Let W be a homogeneous unstable curve,
and assume that for some N ≥ 1, Wn = T−nρ W is a homogeneous unstable curve for
n = 0, 1, . . . , N . For x ∈ W , let xn = T−nρ x ∈ Wn . Let JW T−nρ (x) and JWn T

−1
ρ (xn)

denote the respective Jacobians.

Lemma B.2 Consider W and N as above and y, z ∈ W arbitrary. There exists a
uniform constant Cd > 0 such that

| log JW T−Nρ (y)− log JW T−Nρ (z)| ≤ Cd |W |
1

r0+1 .

Proof The lemma relies on the inequality

∣

∣

∣

∣

d

dxn
log JWn T

−1
ρ (xn)

∣

∣

∣

∣

≤ C

cosφn
(52)

for some uniform C > 0, cf. [10, Formula (5.8)].
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Using this formula the argument in the proof of [10, Lemma 5.27] can be repeated
literally:

| log JW T−Nρ (y)− log JW T−Nρ (z)| ≤
N−1
∑

n=0
| log JWn T

−1
ρ (yn)− log JWn T

−1
ρ (zn)|

≤
N−1
∑

n=0
|Wn|max

∣

∣

∣

∣

d

dxn
log JWn T

−1
ρ (xn)

∣

∣

∣

∣

≤ C
N−1
∑

n=0

|Wn|
cosφn

≤ C
N−1
∑

n=0
|Wn|

1
r0+1 ≤ C |W | 1

r0+1 ,

(53)

where we have used the chain rule, (52), and (51) and the uniform hyperbolicity.
It remains to prove (52). Here we essentially follow [10, pp. 106–107]. We have

log JWn T
−1
ρ (xn) = log cosφn + 1

2
log

(

4π2ρ2 +
(

dφn
dθn

)2
)

−1

2
log

(

4π2ρ2 +
(

dφn+1
dθn+1

)2
)

− log
(

2ρ−1τn+1 + cosφn+1(1+ τn+1�−n+1)
)

.

We consider the derivatives of these terms separately. As noted above, differentiation
with respect to θn and xn can be interchanged. By Lemma B.1, the derivative of the
second term w.r.t. θn is uniformly bounded. The same applies to the derivative of the
third term with respect to θn+1, while

dxn+1
dxn

= JWn T
−1
ρ (xn)

is uniformly bounded from above. The first term gives the main contribution: as cosφn
is not bounded away from 0, the derivative of its logarithm is

∣

∣

∣

∣

d(log cosφn)

dxn

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

d(log cosφn)

dθn

∣

∣

∣

∣

≤ C

cosφn
.

The fourth term is the logarithm of the quantity

2ρ−1τn+1 + cosφn+1(1+ τn+1�−n+1)

which is bounded from below, but not from above. It is thus (more than) enough to
show that, when taking the derivative, all contributions to the numerator are uniformly
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bounded. This holds immediately by the previous discussion for all the terms except
2
ρ
dτn+1
dxn

which requires further investigation. Note that

τn+1 = dist(P(xn), P(xn+1))

where P(xn) and P(xn+1) are points on the billiard table (and thus on R2) associated
to the points xn ∈ Wn and xn+1 ∈ Wn+1 on the two scatterers, respectively. In an
appropriate reference frame P(xn) = (ρ cos θn, ρ sin θn) hence the θn-derivatives
of both coordinates are � ρ, and the same holds for the θn+1-derivatives of the
coordinates of P(xn+1). Thus

∣

∣

∣

∣

dτn+1
dxn

∣

∣

∣

∣

≤ Cρ,

which is sufficient for our purposes. ��

C Decay of correlation for ��.

The main result of this section is the justification of (37), that is

Proposition C.1 There exist Ĉρ > 0 and ϑ̂ρ < 1 such that

• for any j ≥ 1 we have

∣

∣

∣

∫

M0

(eitκρ − 1) (eitκρ − 1) ◦ T j
ρ dμ−

∫

M0

(eitκρ − 1) dμ
∫

M0

(eitκρ − 1) dμ
∣

∣

∣

≤ Ĉρ |t |2ϑ̂ j
ρ , (54)

• furthermore, there exist C̄ρ > 0 and ϑ̄ρ < 1 such that for any j, � ≥ 1 we have

∣

∣

∣

∫

M0

(eitκρ − 1)R�ρ(e
itκρ − 1) (eitκρ − 1) ◦ T j

ρ dμ

−
∫

M0

(eitκρ − 1)R�ρ(e
itκρ − 1) dμ

∫

M0

(eitκρ − 1) dμ

−
(

∫

M0

(eitκρ − 1) dμ
)

∫

M0

(eitκρ − 1) (eitκρ − 1) ◦ T j
ρ dμ

+
(

∫

M0

(eitκρ − 1) dμ
)3∣
∣

∣ ≤ C̄ρ |t |2ϑ̄�+ j
ρ . (55)

Theρ-dependence of this exponential rate gives themain source of unknown depen-
dence on ρ in the main results of our paper. During the proof we will point out the
exact sources of unknown dependence of C̄ρ > 0 and ϑ̄ρ < 1 on ρ.

Let usmake some comments on the relations of the two estimates of PropositionC.1.
We will first prove (54) with some Ĉρ > 0 and ϑ̂ρ < 1 that we can explicitly relate
to the correlation decay rates of the map Tρ on Hölder functions, as expressed in
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(66) below. Then we extend our argument to obtain (55) for some C̄ρ > Ĉρ and
ϑ̄ρ ∈ (ϑ̂ρ, 1). Obtaining relations similar to (66) for the constants C̄ρ and ϑ̄ρ seems
quite difficult and we do not push this point.

The proof of Proposition C.1 consists in: a) reconsider [11, Proposition 9.1]; b) only
for (55), work with a version of Rρ with spectral gap in a Banach space embedded in
some L p space with p > 1. Item a) is needed in order to obtain the bound |t |2 and the
decay of correlation in j . Item b) is needed to obtain the joint decay in j and �. Item
b) is possible because for every ρ > 0, there exists a Young tower !ρ and a tower
map T!ρ associated with the billiard map Tρ ; this is ensured by the construction in
[9, 34]. We emphasize that we will not exploit any fine dependence on ρ of T!ρ (the
mere existence is enough), which is why this part of our arguments can be worked on
the Young tower !ρ .

C.1 Standard pair argument

In this section we reconsider [11, Proposition 9.1]. Let us introduce truncation levels
H , Ĥ > 0 to be fixed later and

κ ′ρ = κρ · 1|κρ |≤H κ ′′ρ = κρ − κ ′ρ;
κ ′′′ρ = κρ · 1|κρ |≤Ĥ κ ′′′′ρ = κρ − κ ′′′ρ .

As |κρ | � |ξ |m on Dξ,m , the truncation κ ′ρ restricts κρ to the cells Dξ,m with m ≤
H |ξ |−1.

The result we will use in the proof of Proposition C.1 below is

Lemma C.2 For any c0 > 2 we have

(i)’
∫ |κ ′ρ | · |κ ′′′′ρ | ◦ T j

ρ dμ ≤ CH2 Ĥ−1ρ−3,

(ii)’
∫ |κ ′′ρ | · |κρ | ◦ T j

ρ dμ ≤ C | log ρ| ·
(

H
− 1

2+ 1
2r0 log H ρ−3−ν + H2−c0ρ−2−c0

)

.

Furthermore, for any q ∈
(

1, 87 − 6
7(7r0−1)

)

and c ∈ ( q+12−q ,
1−1/r0
2q−2 − 1),

(i)
∫ |κ ′ρ |q · |κ ′′′′ρ |q ◦ T j

ρ dμ ≤ CHq+1 Ĥq−2ρ−3,

(ii)
∫ |κ ′′ρ |q · |κρ |q ◦ T j

ρ dμ ≤ C
(

H
− 3

2+q+c(q−1)+ 1
2r0 ρc(q−1)−q−2−ν + Hc(q−2)+q+1

ρ−1−q−c(2−q)
)

.

Remark C.3 Let q(r0) = 8
7 − 6

7(7r0−1) , the upper bound on q for r0 fixed. Furthermore,

let c1(q) = q+1
2−q and c2(q) = 1−1/r0

2q−2 −1, the lower and upper bounds on c for q fixed.
Note that c1(q) is increasing in q, while c2(q) is decreasing in q, and c1(q(r0)) =
c2(q(r0)). Also c1(1) = 2 and c2(1) = ∞, which is in accordance with the conditions
on c0. Note also that:

• The condition c < c2(q) = 1− 1
r0

2q−2 − 1 is equivalent to q + c(q − 1) < 3
2 − 1

2r0
.

This ensures that the power of H in the first term of (ii) is negative.
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• Since c > c1(q) = q+1
2−q , the power of H in the second term of (ii) is negative.

• Choosing Ĥ = Hc, the power of H in (i) is also negative, again for c > c1(q) =
q+1
2−q .

Standard pairs and families Let us recall some terminology related to standard
pairs, see also [11, page 29]. A standard pair � = (W , hW ) is a regular unstable
curve W that supports a dynamically log-Hölder continuous probability density hW .
As such, it can be regarded as a probability measure on the phase space M, which
will be denoted by �, too.

A standard family is a collection of standard pairs G = {�a}, a ∈ A equipped with
a probability factor measure λG on A. This induces a probability measure PG on M.

For a standard pair � = (W , hW ) any x ∈ W splits W into two subcurves, let
rW (x) denote the length of the shorter, and let Z� = supε>0 ε

−1�(rW ≤ ε). By
Hölder continuity of log hW , � is equivalent to the normalized Lebesgue measure on
W and thus Z� � |W |−1. This generalizes for the Z -function of a standard family
ZG �

∫ λG(a)
|Wa | dmW .

The Tρ-image of a standard pair is a countable collection of standard pairs. Hence,
the image of a standard family is a standard family. Given a standard family G, for n ≥
1, Gn denotes the T n

ρ -image of G. It follows from the growth lemma (Proposition 3.1)
that there exists ϑ < 1 and C1,C2 > 0 such that

ZGn ≤ C1ϑ
nZG + C2δ

−1
0

where δ0 � ρν (see (16) and Remark 3.2, part (i)). As consequence, for any standard
pair and n ≥ 1

ZGn ≤ C max(ZG1 , ρ
−ν). (56)

Cells For ξ ∈ Z
2 such that the corridor is opened up, and form ∈ Z let Dξ,m ⊂M

denote the set of points for which κρ = mξ + ξ ′. The geometric properties of Dξ,m
and its image TρDξ,m will play an important role in the argument. TρDξ,m is depicted
in Fig. 2. A similar description applies to Dξ,m ; it is delimited by a long singularity
curve, decreasing in the (θ, ϕ) coordinates, which is connected to the boundary ofM
by two shorter decreasing singularity curves, of length � (|ξ |ρm)−1/2, running at a
distance � (|ξ |m)−2 from each other. Further properties:

• μ(Dξ,m) = μ(TρDξ,m) � ρ−1|ξ |−3m−3 (due to the factor cosφ in the measure);
• an unstable curve may intersect Dξ,m in a subcurve of length ≤ C(|ξ |m)−2;
• TρDξ,m intersects homogeneity strips of index k ≥ C(ρ|ξ |m) 1

2r0

If � = (W , hW ) is a standard pair, then it can intersect Dξ,m in a subcurve
of length ≤ C(|ξ |m)−2, thus the intersection has probability bounded above by
C(|ξ |m)−2|W |−1 � Z�(|ξ |m)−2. It follows that for a standard family G we have

PG(Dξ,m) ≤ C(|ξ |m)−2ZG . (57)
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Our argument below follows the proof of [11, Proposition 9.1] taking into account
that the corridor structure depends on ρ.

Proof of Lemma C.2 For item (i), using μ(T− j
ρ D

ξ̂ ,m̂) � ρ−1m̂−3|ξ̂ |−3 as well as
Lemma A.4 several times, we get

∫

|κ ′ρ |q · |κ ′′′′ρ ◦ T j
ρ |q dμ ≤ C

∑

ξ

∑

ξ̂

|ξ |q |ξ̂ |q
H
|ξ |
∑

m=1

∞
∑

m̂= Ĥ
|ξ̂ |

mqm̂qμ(Dξ,m ∩ T−nρ D
ξ̂ ,m̂)

≤ Cρ−1
∑

ξ

∑

ξ̂

|ξ |q |ξ̂ |q
H
|ξ |
∑

m=1
mq

∞
∑

m̂= Ĥ
|ξ̂ |

m̂q−3|ξ̂ |−3

≤ Cρ−1
∑

ξ

Hq+1|ξ |−1
∑

ξ̂

Ĥq−2|ξ̂ |−1 ≤ CHq+1 Ĥq−2ρ−3.

We will take Ĥ = Hc for c > 0 to be determined. To get a negative power of H , we
need q < 2 and c > q+1

2−q .
For the proof of (ii), we need to estimate

∫

|κ ′′ρ |q · |κρ ◦ T j
ρ |q dμ ≤ C

∑

ξ

∑

ξ̂

|ξ |q |ξ̂ |q
∞
∑

m= H
|ξ |

mq
∞
∑

m̂=1
m̂qμ(Dξ,m ∩ T− j

ρ D
ξ̂ ,m̂).

(58)

For different ranges of the indices, we will use two different estimates to bound
μ(Dξ,m ∩ T− j

ρ D
ξ̂ ,m̂). On the one hand, as before, we have

μ(Dξ,m ∩ T−nρ D
ξ̂ ,m̂) ≤ μ(Dξ̂ ,m̂) ≤ Cρ−1|ξ̂ |−3m̂−3. (59)

For the other estimate, foliate Dξ,m with unstable curves |W | of length� (|ξ |m)−2.
The image of any such curve stretches along TρDξ,m , crossing homogeneity stripswith

indices k ≥ C(ρ|ξ |m) 1
2r0 . The piece of TρW in the k-th homogeneity strip will be

denoted by TρWk , it has length � k−r0−1, and its preimage has length

|Wk | � k−r0−1 ρ

|ξ |mkr0
= ρ

|ξ |mk2r0+1

as the expansion factor of Tρ on Wk is � ρ−1|ξ |mkr0 . Equipped with the conditional
measure induced by μ, W is a standard pair � = (W , hW ), and its image is a standard
family Tρ� associated to the curves TρWk . To obtain the Z function, we use that the
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weight of |TρWk | within this family is |Wk ||W | , thus

ZTρ� �
∑

k≥C(ρ|ξ |m)
1
2r0

|Wk |
|W | |TρWk |−1 �

∑

k≥C(ρ|ξ |m)
1
2r0

ρ|ξ |2m2

|ξ |mk2r0+1
kr0+1

� ρm|ξ |
∑

k≥C(ρ|ξ |m)
1
2r0

k−r0 � (ρm|ξ |) 12+ 1
2r0 .

This analysis applies to all the curves in the foliation. Accordingly, μ conditioned
on Dξ,m can be regarded as a standard family G, and the Z-function of its Tρ-image
satisfies

ZG1 � C(ρm|ξ |) 12+ 1
2r0 .

For further iterates, it follows form (56) that

ZGn ≤ Cρ−ν(m|ξ |) 12+ 1
2r0 .

Now we apply (57) to get

μ(Dξ,m ∩ T−nρ D
ξ̂ ,m̂) = μ(Dξ,m)PGn (Dξ̂ ,m̂) ≤ Cμ(Dξ,m)ZGn |ξ̂ |−2m̂−2

≤ C |ξ̂ |−2m̂−2|ξ |− 5
2+ 1

2r0 m
− 5

2+ 1
2r0 ρ−1−ν . (60)

We split (58) into two parts. If m̂ ≤ mc (for some c > 0 to be determined), we use
(60) and get

∑

ξ

∑

ξ̂

|ξ |q |ξ̂ |q
∞
∑

m= H
|ξ |

mq
mc
∑

m̂=1
m̂qμ(Dξ,m ∩ T−nρ D

ξ̂ ,m̂)

≤ Cρ−1−ν
∑

ξ

∑

ξ̂

|ξ |− 5
2+q+ 1

2r0 |ξ̂ |q−2
∞
∑

m= H
|ξ |

m
− 5

2+q+ 1
2r0 mc(q−1)

≤ Cρ−1−νH−
3
2+q+c(q−1)+ 1

2r0

⎛

⎝

∑

ξ

|ξ |−1−c(q−1)
⎞

⎠

⎛

⎝

∑

ξ̂

|ξ̂ |q−2
⎞

⎠

≤ CH
− 3

2+q+c(q−1)+ 1
2r0 ρc(q−1)−q−2−ν,

where we have used that because q + c(q − 1) < 3
2 − 1

2r0
, the contribution of m is

summable (this condition is equivalent to c < c2(q) = 1− 1
r0

2q−2 , cf. Remark C.3). Note
that if q = 1 then this contribution is independent of c; however, there is an additional
factor of | log ρ| · log H .
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For m > mc we use (59) and get

∑

ξ

∑

ξ̂

|ξ |q |ξ̂ |q
∞
∑

m= H
|ξ |

mq
∞
∑

m̂=mc

m̂qμ(Dξ,m ∩ T−nρ D
ξ̂ ,m̂)

≤ Cρ−1
∑

ξ

∑

ξ̂

|ξ |q |ξ̂ |q−3
∞
∑

m= H
|ξ |

mq
∞
∑

m̂=mc

m̂q−3

≤ Cρ−1
∑

ξ

∑

ξ̂

|ξ |q |ξ̂ |q−3
∞
∑

m= H
|ξ |

mc(q−2)+q

≤ CHc(q−2)+q+1ρ−1
⎛

⎝

∑

ξ

|ξ |c(2−q)−1
⎞

⎠

⎛

⎝

∑

ξ̂

|ξ̂ |q−3
⎞

⎠

≤ CHc(q−2)+q+1ρ−1−q−c(2−q),

and in case q = 1 we still have an additional | log ρ| factor. The condition of summa-
bility c(q − 2)+ q < −1 is satisfied because c > q+1

2−q . Summarizing, we need

1 ≤ q < 2, q + c(q − 1) <
3

2
− 1

2r0
,

q + 1

2− q
< c.

First we may fix q such that

3

2
− 1

2r0
> q + q + 1

2− q
(q − 1) = 2q − 1

2− q
⇔ q < 2− 6

7− 1/r0

and then we can fix c slightly larger than q+1
2−q , such that the conditions are still met.

The range of allowed q depends on r0, it can never exceed 8
7 ; for the traditional r0 = 2

the upper bound is 14
13 , while for r0 = 5 the upper bound is 19

17 . ��

C.2 Exploiting the existence of a Young tower for T�

Let (!̄ρ, T!̄ρ , μ!̄ρ ) be the corresponding one-sided Young tower (i.e., with stable
leaves quotiented out) and let R!̄ρ be the transfer operator of T!̄ρ . Let κ̂ρ be the

version of κρ on !̄ρ . We will also use the notations κ̂ ′ρ, κ̂ ′′ρ , κ̂ ′′′ρ , κ̂ ′′′′ρ for the Young
tower versions of the truncations κ ′ρ, κ ′′ρ , κ ′′′ρ , κ ′′′′ρ , respectively, hence for example
κ̂ ′ρ = κ̂ρ · 1|κ̂ρ |≤H . Since κρ is constant on stable leaves, we have for any j, � ≥ 0,

∫

M0

(eitκρ − 1) R�ρ(e
itκρ − 1) (eitκρ − 1) ◦ T j

ρ dμ

=
∫

!̄ρ

(eit κ̂ρ − 1) R�
!̄ρ
(eit κ̂ρ − 1) (eit κ̂ρ − 1) ◦ T j

!̄ρ
dμ!̄ρ . (61)
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Let r be the roof function of the tower (!̄ρ, μ!̄ρ ).We recall that if d := gcd(r) > 1,
then for every ρ > 0, R!̄ρ , when viewed as an operator acting on the Young Banach
space B!̄ρ ⊂ L p(μ!̄ρ ), p > 1, has a spectral gap (see [9, 34]). As clarified in
Remarks C.4 and C.5, the decomposition of R!̄ρ we shall need in the proof below
holds when d > 1.

Before proceeding to the proof of Proposition C.1, we recall one property of the
norm the Young space B!̄ρ ⊂ L p(μ!̄ρ ), p > 1 that we shall need in the proof below.
(The precise definition of B!̄ρ is not important in the proof below, and we omit it.)
For any function that is constant on the partition elements of the Young tower, the
involved seminorm is zero. This is the case for κ̂ ′ρ and thus, ‖κ̂ ′ρ‖B!̄ρ ≤ H (and a

similar version holds for κ̂ ′′′ρ ).

Proof of Proposition C.1 Wefirst prove the statement for the case when � = 0 and point
out the required modifications when � ≥ 1.

Case � = 0. Given (61), in this case we need to show that

∣

∣

∣

∣

∣

∫

!̄ρ

(eit κ̂ρ − 1) (eit κ̂ρ − 1) ◦ T j
!̄ρ
μ!̄ρ −

(

∫

!̄ρ

(eit κ̂ρ − 1) μ!̄ρ

)2
∣

∣

∣

∣

∣

≤ Ĉρ |t |2ϑ̂ j
ρ ,

(62)

for some ρ-dependent constants ϑ̂ρ < 1 and Ĉρ > 0.
Throughout this proof, we let κ ′ρ, κ ′′ρ , κ ′′′ρ , κ ′′′′ρ also denote their corresponding ver-

sions on the tower !ρ and the context in which they appear will make it clear which
version we are referring to.

Write

∫

!̄ρ

(eit κ̂ρ − 1) (eit κ̂ρ − 1) ◦ T j
!̄ρ

dμ!̄ρ =
∫

!̄ρ

(ei κ̂ρ t − eiκ
′
ρ t ) · (ei κ̂ρ t − 1) ◦ T j

!̄ρ
dμ!̄ρ

+
∫

!̄ρ

(eiκ
′
ρ t − 1) · (ei κ̂ρ t − eiκ

′′′
ρ t ) ◦ T j

!̄ρ
dμ!̄ρ

+
∫

!̄ρ

(eiκ
′
ρ t − 1) · (eiκ ′′′ρ t − 1) ◦ T j

!̄ρ
dμ!̄ρ

=
∫

!̄ρ

eiκ
′
ρ t · (eiκ ′′ρ t − 1) · (ei κ̂ρ t − 1) ◦ T j

!̄ρ
dμ!̄ρ

+
∫

!̄ρ

(eiκ
′
ρ t − 1) · eiκ ′′′ρ t ◦ T j

!̄ρ
· (eiκ ′′′′ρ t − 1) ◦ T j

!̄ρ
dμ!̄ρ

+
∫

!̄ρ

(eiκ
′
ρ t − 1) · (eiκ ′′′ρ t − 1) ◦ T j

!̄ρ
dμ!̄ρ = I1(t, ρ)+ I2(t, ρ)+ I3(t, ρ).

For I3(t, ρ) we use the exponential decay of correlation (see Remark C.4 below
for the case that the roof function r of the tower has gcd(r) > 1). This gives the only
source of unknown dependence on ρ in the case m = 0. More precisely, for every
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ρ > 0, there exists θ̂ρ < 1 and Cρ > 0 so that

∣

∣

∣

∣

∣

I3(t, ρ)−
∫

!̄ρ

(eiκ
′
ρ t − 1) dμ!̄ρ

∫

!̄ρ

(eiκ
′′′
ρ t − 1) dμ!̄ρ

∣

∣

∣

∣

∣

≤ Cρ θ̂
j
ρ ‖eitκ

′
ρ t − 1‖B!ρ ‖eitκ

′′′
ρ t − 1‖B!ρ

≤ Cρ θ̂
j
ρ H Ĥ |t |2. (63)

Thus,

∣

∣

∣

∣

∣

I3(t, ρ)−
(

∫

!̄ρ

(eit κ̂ρ − 1) μ!̄ρ

)2
∣

∣

∣

∣

∣

≤ Cρ θ̂
j
ρ H Ĥ |t |2

+
∣

∣

∣

∫

!̄ρ

(eiκ
′
ρ t − 1) dμ!̄ρ

∫

!̄ρ

(eiκ
′′′
ρ t − 1) dμ!̄ρ

−
∫

!̄ρ

(ei κ̂ρ t − 1) dμ!̄ρ

∫

!̄ρ

(ei κ̂ρ t − 1) dμ!̄ρ

∣

∣

∣

= Cρ θ̂
j
ρ H Ĥ |t |2 + |J (t, ρ)|.

By definition,

|J (t, ρ)| =
∣

∣

∣

∫

M0

(eiκ
′
ρ t − 1) dμ

∫

M0

(eiκ
′′′
ρ t − 1) dμ

−
∫

M0

(ei κ̂ρ t − 1) dμ
∫

M0

(ei κ̂ρ t − 1) dμ
∣

∣

∣

and we note that J (t, ρ) is bounded by the sum of

∫

M0

|eiκ ′ρ t · (eitκ ′′ρ − 1)| dμ
∫

M0

|eitκ ′′′ρ t − 1| dμ ≤ |t |2
∫

|κρ |1{κρ>H} dμ
∫

M0

|κ ′′′ρ | dμ

and a similar term with Ĥ instead of H . Using the Hölder inequality (with exponents
2

1+δ and
2

1−δ ), the tail behaviour of κρ and Lemma A.5, we obtain that

∫

M0

|κρ |1{|κρ |>H} dμ ≤ ‖κρ‖L2/(1+δ) μ(|κρ | > H)(1−δ)/2 � ρ−1H−(1−δ).

Also
∫

M0
|κ ′′′ρ |dμ ≤ ‖κρ‖L1(μ) � ρ−1. Hence,

|J (t, ρ)| � |t |2ρ−2
(

H−(1−δ) + Ĥ−(1−δ)
)

. (64)
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Finally, note that

|I1(t, ρ)+ I2(t, ρ)| ≤ |t |2
∫

!̄ρ

|κ ′′ρ | · |κρ | ◦ T j
!̄ρ

dμ!̄ρ + |t |2
∫

!̄ρ

|κ ′ρ | · |κ ′′′′ρ | ◦ T j
!̄ρ

dμ!̄ρ

= |t |2
(∫

M0

|κ ′′ρ | · |κρ | ◦ T j
!̄ρ

dμ+
∫

M0

|κ ′ρ | · |κ ′′′′ρ | ◦ T j
!̄ρ

dμ

)

. (65)

For this � = 0 case, if we fix any r0 ≥ 2 (taking into account that Ĥ = Hc0 ), then
we may bound the coefficients of |t |2 in |J (t, ρ)| from (64), |I1(t, ρ)| and |I2(t, ρ)|
from (65), respectively by

ρ−2H−(1−δ); H−
1
5 ρ−4 + H2−c0ρ−

11
5 −c0 , H2−c0ρ−3,

where in the bound for |I1(t, ρ)| the exponents of H and ρ have been slightly
decreased to bound the logarithmic factors. Fixing c0 = 11

5 and δ = 4
5 , all these

are dominated by H− 1
5 ρ− 22

5 . On the other hand the coefficient of |t |2 in |I3(t, ρ)| is
Cρ θ̂

j
ρ Hc0+1 = Cρ θ̂

j
ρ H

16
5 . Thus letting H =

(

C−1ρ θ̂
− j
ρ ρ

− 22
5

) 5
17
we conclude that all

terms are dominated by

ρ−
352
85 C

1
17
ρ (θ̂

1
17
ρ )

j ; thus we let Ĉρ = ρ− 352
85 C

1
17
ρ , ϑ̂ρ = θ̂

1
17
ρ . (66)

Case � ≥ 1. The main differences in this case come down to dealing with integrals
containing unbounded terms κ ′′ρ and κ ′′′′ρ in such a way that can gain exponential decay
in � and then proceed as in the case � = 0 treated above. To do this, we exploit that
B!̄ρ ⊂ L p(μ!̄ρ ).

Using (61), we need to estimate

J (t, ρ) :=
∫

!̄ρ

(eit κ̂ρ − 1) R�
!̄ρ
(eitκρ − 1) (eit κ̂ρ − 1) ◦ T j

!̄ρ
dμ!̄ρ

−
∫

!̄ρ

(eit κ̂ρ − 1)R�
!̄ρ
(eit κ̂ρ − 1) dμ!̄ρ

∫

!̄ρ

(eit κ̂ρ − 1) dμ!̄ρ

−
∫

!̄ρ

(eit κ̂ρ − 1) dμ!̄ρ

∫

!̄ρ

(eit κ̂ρ − 1) (eit κ̂ρ − 1) ◦ T j
ρ dμ!̄ρ

+
(

∫

!̄ρ

(eit κ̂ρ − 1) dμ!̄ρ

)3
.

By Remark C.4, for every ρ > 0 and for every � ≥ 1,

R�
!̄ρ
(eit κ̂ρ − 1)−

∫

!̄ρ

(eitκρ − 1) dμ!̄ρ = Q�
!̄ρ
(eitκρ − 1), ‖Q�

!̄ρ
(eit κ̂ρ − 1)‖B!̄ρ

≤ Cρ θ̂
�
ρ, (67)
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for some ρ-dependent Cρ and θ̂ρ < 1. This is the first source of unknown dependence
on ρ. Since B!̄ρ ⊂ L p(μ!̄ρ ),

‖Q�
!̄ρ
(eit κ̂ρ − 1)‖L p(μ!̄ρ )

≤ C0
ρ θ̂
�
ρ, (68)

for some ρ-dependent C0
ρ . This is the second source of unknown dependence on ρ.

With these specified, we can write

J (t, ρ) =
∫

!̄ρ

(eit κ̂ρ − 1) Q�
!̄ρ
(eit κ̂ρ − 1) (eit κ̂ρ − 1) ◦ T j

!̄ρ
dμ!̄ρ

−
∫

!̄ρ

(eit κ̂ρ − 1)Q�
!̄ρ
(eit κ̂ρ − 1) dμ!̄ρ

∫

!̄ρ

(eit κ̂ρ − 1) dμ!̄ρ

= E(t, ρ)− G(t, ρ).

Rearranging as in the case � = 0,

E(t, ρ) =
∫

!̄ρ

(ei κ̂ρ t − ei κ̂
′
ρ t ) Q�

!̄ρ
(eitκρ − 1) (ei κ̂ρ t − 1) ◦ T j

!̄ρ
dμ!̄ρ

+
∫

!̄ρ

(eiκ
′
ρ t − 1) Q�

!̄ρ
(eit κ̂ρ − 1) (ei κ̂ρ t − eiκ

′′′
ρ t ) ◦ T j

!̄ρ
dμ!̄ρ

+
∫

!̄ρ

(eiκ
′
ρ t − 1) Q�

!̄ρ
(eit κ̂ρ − 1) (eiκ

′′′
ρ t − 1) ◦ T j

!̄ρ
dμ!̄ρ

=
∫

!̄ρ

eiκ
′
ρ t Q�

!̄ρ
(eit κ̂ρ − 1) (eiκ

′′
ρ t − 1) · (ei κ̂ρ t − 1) ◦ T j

!̄ρ
dμ!̄ρ

+
∫

!̄ρ

(eiκ
′
ρ t − 1) Q�

!̄ρ
(eit κ̂ρ − 1) eiκ

′′′
ρ t ◦ T j

!̄ρ
· (eiκ ′′′′ρ t − 1) ◦ T j

!̄ρ
dμ!̄ρ

+
∫

!̄ρ

(eiκ
′
ρ t − 1) Q�

!̄ρ
(eit κ̂ρ − 1) (eiκ

′′′
ρ t − 1) ◦ T j

!̄ρ
dμ!̄ρ

= E1(t, ρ)+ E2(t, ρ)+ E3(t, ρ).

Let q ∈ (1, 87 − 6
7r0−1 ) so that Lemma C.2 holds. By the Hölder inequality with

1
p + 1

q = 1 and (68),

|E1(t, ρ)+ E2(t, ρ)| ≤ ‖Q�!̄ρ (e
it κ̂ρ − 1)‖L p(μ!̄ρ )

|t |2‖ |κ ′′ρ | · |κ̂ρ | ◦ T j
!̄ρ
‖Lq (μ!̄ρ )

+ ‖Q�
!̄ρ
(eit κ̂ρ − 1)‖L p(μ!̄ρ )

|t |2‖ |κ ′ρ | · |κ ′′′′ρ | ◦ T j
!̄ρ
‖Lq (μ!̄ρ )

≤ C0
ρ θ̂

�
ρ |t |2

(

‖|κ ′′ρ | · |κ̂ρ | ◦ T j
!̄ρ
‖Lq (μ!̄ρ )

+ ‖|κ ′ρ | · |κ ′′′′ρ | ◦ T j
!̄ρ
‖Lq (μ!̄ρ )

)

.

Similar to estimating (65), using Lemma C.2 and Remark C.3 and without trying for
optimal bounds, we can pick q close to 1 and c0 < 5

2 such that c0(q−2)+q+1 = − 1
5 .
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For these values,

|E1(t, ρ)+ E2(t, ρ)| ≤ C C0
ρ θ̂
�
ρ |t |2 H−

1
5q ρ

−5
q . (69)

Next, let

L1(t, ρ) =
∫

!̄ρ

(eiκ
′
ρ t − 1) Q�

!̄ρ
(eit κ̂ρ − 1) (eiκ

′′′
ρ t − 1) ◦ T j

!̄ρ
dμ!̄ρ

−
∫

!̄ρ

(eitκ
′
ρ − 1)Q�

!̄ρ
(eit κ̂ρ − 1) dμ!̄ρ

∫

!̄ρ

(eitκ
′′′
ρ − 1) dμ!̄ρ

and note that

E3(t, ρ)− G(t, ρ) = L1(t, ρ)−
∫

!̄ρ

(eit κ̂ρ − eitκ
′
ρ )Q�

!̄ρ
(eit κ̂ρ − 1) dμ!̄ρ

∫

!̄ρ

(eit κ̂ρ − 1) dμ!̄ρ

−
∫

!̄ρ

(eit κ̂ρ − 1)Q�
!̄ρ
(eit κ̂ρ − 1) dμ!̄ρ

∫

!̄ρ

(eit κ̂ρ − eitκ
′′′
ρ ) dμ!̄ρ

= L1(t, ρ)− L2(t, ρ)− L3(t, ρ).

By the exponential decay of correlations as in (63) as well as (68):

|L1(t, ρ)| ≤ Cρ θ̂
j
ρ H Ĥ |t |2‖Q�

!̄ρ
(eit κ̂ρ − 1)‖L p(μ!̄ρ )

≤ Cρ C
0
ρ θ̂
�
ρ |t |2 H1+c0 ,

where as before c0 < 5
2 . Finally, by the equation before (64), we have

|L2(t, ρ)| ≤ |t2| ρ−1H−(1−δ)‖Q�!̄ρ (e
it κ̂ρ − 1)‖L p(μ!̄ρ )

≤ Cρ C0
ρ θ̂
�
ρ |t2| ρ−1H−(1−δ).

A similar argument applies to L3(t, ρ).
The conclusion follows with a similar choice of H as in the case � = 0 treated

above. ��
Remark C.4 Let r be the roof function of the one-sided tower map (!̄ρ, μ!̄ρ ). If
d := gcd(r) > 1, then T!̄ is not mixing on the Banach space B!̄ρ . However, the
underlying billiard map Tρ is mixing and thus,

∫

M
Rn
ρφ · ψ dμ→ 0 as n→∞, (70)

for φ,ψ ∈ B with
∫

M φ dμ = 0. If gcd(r) = d > 1, then the eigenvalues on the unit
circle are the d-th roots of unity. Hence,

R!̄ρ = �!̄ρ + Q!̄ρ :=
∑

λd=1
λ�λ + Q!̄, �!̄ρQ!̄ρ = Q!̄ρ�!̄ρ = 0,
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where�λ denotes the projection on the (generalised) eigenspace B!̄ρ ,λ of eigenvalue
λ, and Q!̄ρ is the complementary projection. The Banach space B!̄ρ on !̄ρ can be
written as the direct sum

B!̄ρ = B� ⊕ BQ for B� := ⊕λd=1B!̄ρ ,λ = ker(Q!̄ρ ) and BQ = ker(�!̄ρ ),

(71)

As the kernels of projections, B� and BQ are closed R!̄ρ -invariant subspaces of B!̄ρ ,
and hence Banach spaces themselves. Also, as clarified below, for every ρ > 0, the
restriction R!̄ρ to BQ has spectral radius less than 1. That is, for every ρ > 0, there

exists θ̂ρ < 1 so that

‖Rn
ρφ‖B!̄ρ � θ̂nρ ‖φ‖B!̄ρ . (72)

Consider the lifted version of φ: φ!̄ρ (x) =
∫

�(x) φ ◦ π dμ!ρ,�(x) where �(x) is the

stable leaf through x ∈ !̄ and μ!ρ,�(x) the measure on this leaf emerging from the
disintegration of the measure μ!ρ of the two-sided tower. The transfer operator R!̄ρ
on the one-sided tower satisfies

∫

M
Rnφ · ψ dμ =

∫

!̄

Rn
!̄ρ
φ!̄ρ · ψ!̄ρ dμ!̄ρ . (73)

If�!̄ρφ!̄ρ �= 0, then there exists ψ!̄ρ ∈ B!̄ρ such that
∫

M Rn
!̄ρ
φ!̄ρ · ψ!ρ dμ!ρ �→

0. (In fact, taking ψ!̄ρ = �!̄ρφ!̄ρ , we get
∫

M Rdn
!̄ρ
φ!̄ρ · ψ!̄ρ dμ!̄ρ →

∫

M�!̄ρφ!̄ρ�!̄ρφ!̄ρ dμ!̄ρ �= 0.) This contradicts (70) and/or (73).Henceφ!̄ρ ∈ BQ

and, for the operator norm ‖Rn
!̄ρ
φ!̄ρ‖BQ ≤ ‖ R!̄ρ |BQ ‖n ‖φ!̄ρ‖BQ � θ̂nρ ‖φ!̄ρ‖BQ .

Property (72) follows.

Remark C.5 We note that mixing of the underlying map Tρ is not required for a useful
version of (67) to hold. Indeed the property of Q!̄ρ in (67) holds independently of
mixing and for this we just need to work with (72), which holds for d > 1. The
downside of using (72) directly is that in assumption (37) we would have to extract
∑

λd=1 λ�λ(eitκρ − 1) instead of
∫

M(e
itκρ − 1) dμ. We found it more convenient to

work with the ’clean’ assumption (37).
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