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Abstract
We present an algorithm aimed to recognize if a given tensor is a non-identifiable rank-3
tensor.

Mathematics Subject Classification 14N07 · 15A69

1 Introduction

Over the last 60 years multilinear algebra made its way in the applied sciences. As a conse-
quence, tensors acquired an increasingly central role in the applications and the problem of
tensor rank decomposition has started to be studied by several non-mathematical communities
(cf. e.g. [2–4, 6, 9, 11, 13, 40, 52]).

Fix C-vector spaces V1, . . . , Vk of dimensions n1, . . . , nk respectively. A tensor T ∈
V1 ⊗ · · · ⊗ Vk is called elementary if T = v1 ⊗ · · · ⊗ vk for some vi ∈ Vi with i = 1, . . . , k.
Elementary tensors are the building blocks of the tensor rank decomposition and the rank
r(T ) of a tensor T ∈ V1 ⊗ · · · ⊗ Vk is the minimum integer r such that we can write T as a
combination of r elementary tensors:

T =
r∑

i=1

v1,i ⊗ · · · ⊗ vk,i , where all v j,i ∈ Vj for j = 1, . . . , k.

A rank-r tensor T is identifiable if admits a unique rank decomposition up to reordering the
elementary tensors and up to scalar multiplication. Remark that since the notion of rank does
not depend on scalar multiplication, it is well defined for projective classes of tensors too.
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The first modern contribution on identifiability of tensors has been given by Kruskal [41]
and, starting from Kruskal’s result, over the years there have been many contributions on the
identifiability problem (cf. e.g. [8, 12, 14, 18, 21–25, 31, 36, 44, 48]). In particular, working in
the applied fields, one may also be interested in the identifiability of specific tensors. Indeed,
when translating an applied problem into the language of tensors one may be forced to deal
with a very specific tensor that has a precise structure by reasons related to the nature of the
applied problem itself. Working with specific tensors, the literature review becomes more
scattered and most of the results can be considered extensions or generalizations of Kruskal’s
result (cf. [1, 16, 17, 25–27, 46, 54]).

The first complete classification on the identifiability problem appeared in [10] where,
together with E. Ballico and A. Bernardi, we completely characterize all identifiable tensors
of rank either 2 or 3. The classification is based on the classical Concision Lemma (cf. [42,
Prop. 3.1.3.1] and also Sect. 2.1 below) and, in particular, for r = 2 it has been proved
that the only non-identifiable rank-2 tensors are 2× 2 matrices (cf. [10, Proposition 2.3]). A
more interesting situation occurs for the rank-3 case, where there have been found 6 different
families of non-identifiable concise rank-3 tensors (cf. [10, Theorem 7.1]).

In this manuscript we present an algorithm aimed to recognize if a given tensor falls into
one of the 6 families above mentioned or not.

The paper is organized as follows. Section2 is devoted to recollect basic notions needed
to develop the algorithm. We start by recalling [10, Theorem 7.1] and explaining each case
of the classification working in coordinates. In Sect. 2.1 we recall the coordinate description
of the concision process for a tensor while Sect. 2.2 is devoted to review basic facts on matrix
pencils. In Sect. 3 is presented the algorithm itself. In particular, Sect. 3.1 focuses on the
3-factors case, while Sect. 3.2 considers the general case of k ≥ 4 factors.

We end themanuscriptwith an appendixwritten togetherwithE.Ballico andA.Bernardi in
which we fix an imprecision in the statement of [10, Proposition 3.10] and consequently in an
item in [10, Theorem 7.1]. In the following, if needed, we will refer to the correct statement
of [10, Proposition 3.10 and Theorem 7.1] given in the forthcoming Proposition 4.5 and
Theorem 4.1 respectively.

2 Preliminary notions

In the following we will work with tensors over C.

Definition 2.1 Fix k vector spaces V1, . . . , Vk of dimension n1 + 1, . . . , nk + 1 respectively
and let N =∏k

i=1(ni + 1) − 1. By ν we denote the Segre embedding

ν : PV1 × · · · × PVk −→ P(V1 ⊗ · · · ⊗ Vk) = P
N

([v1], . . . , [vk]) �→ [v1 ⊗ · · · ⊗ vk]
When dealing with complex projective spaces we will denote by Xn1,...,nk = ν(Yn1,...,nk ) the
Segre variety of the multiprojective space Yn1,...,nk = P

n1 × · · · × P
nk .

We recall that the r th secant variety σk(Xn1,...,nk ) of a Segre variety Xn1,...,nk ⊂ P
N is

defined as

σr (Xn1,...,nk ) = {q ∈ PN : r(q) = r}.
The variety Xn1,...,nk is said to be r-defective if

dim(σr (Xn1,...,nk )) < min{r(dim Xn1,...,nk + 1) − 1, N }.
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Since the algorithm we are going to present is based on the classification [10, Theorem
7.1], we briefly recall it here in the revised version of our Theorem 4.1.

The classification. [10, Theorem 7.1 revised]-Theorem 4.1 in the present paper.A concise
rank-3 tensor T ∈ C

n1⊗· · ·⊗C
nk is identifiable except if T is in one of the following families.

a) [Matrix case] The first trivial example of non-identifiable rank-3 tensors are 3 × 3
matrices, which is a very classical case.

b) [Tangential case] The tangential variety of a variety is the tangent developable of the
variety itself. A point q essentially lying on the tangential variety of the Segre X1,1,1

is actually a point of the tangent space T[p]X1,1,1 for some p = u ⊗ v ⊗ w ∈ (C2)⊗3.
Therefore there exists some a, b, c ∈ C

2 such that T can be written as

T = a ⊗ v ⊗ w + u ⊗ b ⊗ w + u ⊗ v ⊗ c

and hence q is actually non-identifiable.
c) [Defective case] We recall that the third secant variety of a Segre variety Xn1,...,nk

is defective if and only if (n1, . . . , nk) = (1, 1, 1, 1), (1, 1, a) with a ≥ 3 (cf. [5,
Theorem 4.5]). We will see that the latter case will not play a role in the discussion and
hence we can focus on the case k = 4. By defectivity, the dimension of σ3(X1,1,1,1) is
strictly smaller than the expected dimension and this proves that the generic element
of σ3(X1,1,1,1) has an infinite number of rank-3 decompositions and therefore all the
rank-3 tensor of this variety have an infinite number of decompositions.

d), e) [Conic cases] In this case one works with the Segre variety X2,1,1 given by the image
of a projective plane and two projective lines.
Let Y2,1,1 = P

2 × P
1 × P

1. Consider the Segre variety X1,1 ⊂ P
3 given by the last two

factors of Y2,1,1 and take a hyperplane section which intersects X1,1 in a conic C. Let
LC be the Segre given by the product of the first factor P

2 of Y2,1,1 and the conic C,
therefore LC ⊂ X2,1,1. The family of non-identifiable rank-3 tensors are points lying in
the span of LC . In this case, the non-identifiability comes from the fact that the points
on 〈C〉 are not identifiable and the distinction between the two cases reflects the fact
that the conic C can be either irreducible or reducible. The distinction between the two
cases can be expressed as follows working in coordinates:

d) The non-identifiable tensor T ∈ C
3⊗C

2⊗C
2 and there exists a basis {u1, u2, u3} ⊂

C
3 and a basis {v1, v2} ⊂ C

2 such that T can be written as

T = u1 ⊗ v⊗2
1 + u2 ⊗ v⊗2

2 + u3 ⊗ (αv1 + βv2)
⊗2,

for some α, β 
= 0;
e) The non-identifiable tensor T ∈ C

3⊗C
2⊗C

2 and there exists a basis {u1, u2, u3} ⊂
C
3 and a basis {v1, v2} ⊂ C

2 such that T can be written as

T = u1 ⊗ v1 ⊗ p̃ + u2 ⊗ v2 ⊗ p̃ + u3 ⊗ q̃ ⊗ w,

for some q̃ ∈ 〈v1, v2〉, where p̃, w ∈ C
2 must be linearly independent;

f) [General case] The last family of non-identifiable rank-3 tensors relates the Segre
variety Xn1,n2,1k−2 that is the image of the multiprojective space Yn1,n2,1k−2 = P

n1 ×
P
n2 × (P1)(k−2), where either k ≥ 4 and n1, n2 ∈ {1, 2} or k = 3 and (n1, n2, n3) 
=

(2, 1, 1). The non-identifiable rank-3 tensors of this case are as follows. Let Y ′ :=
P
1 × P

1 × {u3} × · · · × {uk} be a proper subset of Yn1,n2,1k−2 , take q ′ in the span of the
Segre image of Y ′ with the constraint that q ′ is not an elementary tensor. Therefore q ′ is
a non-identifiable tensor of rank-2 since it can be seen as a 2× 2 matrix of rank-2. Let
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p ∈ Xn1,n2,1k−2 be a rank-1 tensor taken outside the Segre image of Y ′. Now any point
q ∈ 〈{q ′, p}〉\{q ′, p} is a rank-3 tensor (cf. Proposition 4.5) and it is not identifiable
since q ′ has an infinite number of decompositions and each of these decompositions
can be taken by considering p together with a decomposition of q ′.
For a coordinate description of this case, we take T ∈ C

m1 ⊗C
m2 ⊗ (C2)⊗(k−2), where

k ≥ 3, m1,m2 ∈ {2, 3} such that m1 +m2 + (k − 2) ≥ 4. Moreover there exist distinct
a1, a2 ∈ C

m1 , distinct b1, b2 ∈ C
m2 and for all i ≥ 3 there exists a basis {ui , ũi } of the

i th factor such that T can be written as

T = (a1 ⊗ b1 + a2 ⊗ b2) ⊗ u3 ⊗ · · · ⊗ uk + a3 ⊗ b3 ⊗ ũ3 ⊗ · · · ⊗ ũk,

where if m1 = 2 then a3 ∈ 〈a1, a2〉 otherwise a1, a2, a3 are linearly independent.
Similarly, if m2 = 2 then b3 ∈ 〈b1, b2〉, otherwise b1, b2, b3 form a basis of the second
factor.

For a more detailed overview of the next couple of sections we refer to [53].

2.1 Concision

Fix a tensor T ∈ C
n1 ⊗ · · · ⊗ C

nk , where k ≥ 2 and n1, . . . , nk ≥ 1. For all � = 1, . . . , k,
denote by B� = {e�

1, . . . , e
�
n�

} an ordered basis of C
n� and by B∗

� = {η�
1, . . . , η

�
n�

} the
corresponding dual basis. Let T = (ti1,i2,··· ,ik ) be the coordinates of T with respect to those
bases.

A useful operation that allows to store the elements of a tensor as a matrix is the flattening
(cf. [42, Section 3.4]) and the oldest reference we found for a definition of this operation is
[35, Section 7].

Definition 2.2 The �th flattening of a tensor T ∈ C
n1 ⊗ · · · ⊗ C

nk whose coordinates in the
canonical basis {e1i1 ⊗ · · · ⊗ ekik } are ti1,...,ik is the linear map

ϕ� : (Cn1 ⊗ · · · ⊗ C
n�−1 ⊗ C

n�+1 ⊗ · · · ⊗ C
nk )∗ → C

n�

f �→
∑

i1,...,ik

ti1...ik f (e
1
i1 ⊗ · · · ⊗ e�−1

i�−1
⊗ e�+1

i�+1
· · · ⊗ ekik )e

�
i� .

We denote by T� the n� × (
∏

i 
=� ni ) associated matrix with respect to bases B� and {η11 ⊗
· · · ⊗ η�−1

1 ⊗ η�+1
1 ⊗ · · · ⊗ ηk1, η

1
1 ⊗ · · · ⊗ η�−1

1 ⊗ η�+1
1 ⊗ · · · ⊗ ηk2, . . . , η

1
n1 ⊗ · · · ⊗ η�−1

n�−1
⊗

η�+1
n�+1

⊗ · · · ⊗ ηknk }.
Definition 2.3 [35] Let T ∈ C

n1 ⊗· · ·⊗C
nk . For all � = 1, . . . , k let T� be the �th flattening

of T as in Definition 2.2 and denote by r� := r(T�). The multilinear rank of T is the k-uple

mr(T ) := (r1, . . . , rk)

containing the ranks of all the flattenings of T .

We remark that (cf. [20, Theorem 7]) for all � = 1, . . . , k

r� ≤ r(T ) ≤
∏

i 
=�

ri (1)

and moreover it is classically known that

r(T ) = 1 ⇐⇒ the multilinear rank of T is (1, . . . , 1).
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We are now ready to recall the concision process for a tensor. The following Lemma is
the base step also for the algorithm we are going to construct in order to test the possible
identifiability of a given tensor T .

Lemma 2.4 (Concision/Autarky, [42, Prop. 3.1.3.1], [7, Lemma 3.3]) For any T ∈ C
n1 ⊗

· · · ⊗ C
nk one can uniquely determine minimal integers k′ ≤ k and n′

1, . . . , n
′
k′ with n′

i ≤ ni
such that

• T ∈ C
n′
1 ⊗ · · · ⊗ C

n′
k′ ⊆ C

n1 ⊗ · · · ⊗ C
nk ;

• the rank of T as an element of Cn1 ⊗· · ·⊗C
nk is the same as the rank of T as an element

of C
n′
1 ⊗ · · · ⊗ C

n′
k′ ;

• any rank decomposition of T can be found in C
n′
1 ⊗ · · · ⊗ C

n′
k′ .

We denote by Tn′
1,...,n

′
k′

:= C
n′
1 ⊗· · ·⊗C

n′
k′ and we will call it the concise tensor space of T .

The lemma states that for any tensor T ∈ C
n1 ⊗ · · · ⊗ C

nk there exists a unique minimal
tensor space included in C

n1 ⊗ · · · ⊗ C
nk that contains both the tensor and all its possible

rank decompositions. Let us review more in details a procedure that computes the concise
tensor space Tn′

1,...,n
′
k′
of a given tensor T ∈ C

n1 ⊗ · · · ⊗ C
nk working in coordinates.

After having fixed basis of C
n1 ⊗ · · · ⊗ C

nk , let T = (ti1,...,ik ) ∈ C
n1 ⊗ · · · ⊗ C

nk be its
coordinate representation, where all ni ≥ 1 and k ≥ 2. For all � = 1, . . . , k consider the �-th
flattening T� of T as in Definition 2.2. For the sake of simplicity take � = 1. The first column
of T1 is

(t1,1,...,1, t2,1,...,1, . . . , tn1,1,...,1)
T =

n1∑

i=1

ti,1,...,1u
1
i =

n1∑

i, j=1

ti,1,...,1α
1
j (u

1
i ),

which is referred to u21 ⊗ · · · ⊗ uk1. The same holds for the other columns of T1. Once we
have computed n′

1 := r(T1) we can extract n′
1 linearly independent columns from T1, say

u11, . . . , u
1
n′
1
. Since Im(ϕ1) = 〈u11, . . . , u1n′

1
〉 ∼= C

n′
1 ⊆ C

n1 , we rewrite the other columns as

a linear combination of the independent ones. The resulting tensor T ′ will therefore live in
a smaller space C

n′
1 ⊗ C

n2 ⊗ · · · ⊗ C
nk . By continuing this process for each flattening we

arrive to the concise tensor space

Tn′
1,...,n

′
k′

= C
n′
1 ⊗ · · · ⊗ C

n′
k′

where we may assume n′
i > 1 for all i = 1, . . . , k′ and k′ ≤ k since C

n′
1 ⊗ · · · ⊗ C

n′
k′ ⊗

{u1} ⊗ · · · ⊗ {uk−k′ } ∼= C
n′
1 ⊗ · · · ⊗ C

n′
k′ .

We remark that the above procedure to perform concision is essentially the way in which
the sequentially truncated high order singular value decomposition (ST-HOSVD) works (cf.
[58, Section 6]). The difference between this process and the ST-HOSVD is that in the ST-
HOSVD is used a specific, numerically suitable basis of left singular vectors, rather than an
arbitrary basis. We also remark that the standard way to compute concision would be using
the ST-HOSVD (cf. [28]).

2.2 Matrix pencils

In this subsection we review some basic facts on matrix pencils that will be useful for the
construction of the algorithm. We will briefly describe how to achieve the Kronecker normal
form of any matrix pencil and we refer to [29, Vol. 1, Ch. XII] for a detailed exposition.
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For the rest of this subsection, unless specified, we will work over an arbitrary field K of
characteristic 0.

Fix integersm, n > 0.Apolynomialmatrix A(λ) is amatrixwhose entries are polynomials
in λ, namely

A(λ) = (ai, j (λ))i=1,...,m, j=1,...,n, where ai, j (λ) := a(0)
i, j + a(1)

i, j λ + · · · + a(l)
i, jλ

l ,

for some l > 0. If we set Ak := (a(k)
i, j ), then we can write A(λ) as

A(λ) = A0 + λA1 + · · · + λl Al .

The rank r(A(λ)) of A(λ) is the positive integer r such that all r + 1 minors of A(λ) are
identically zero as polynomials in λ and there exists at least one minor of size r which is not
identically zero. A matrix pencil is a polynomial matrix of type A(λ) = A0 + λA1. Given
two matrix pencils A(λ) = A0 + λA1 and B(λ) = B0 + λB1, we say that A(λ) and B(λ)

are strictly equivalent if there exist two invertible matrices P, Q such that

P(A0 + λA1)Q = B0 + λB1.

We shall see that the Kronecker normal form of a matrix pencil is determined by a complete
system of invariants with respect to the strict equivalence relation defined above.

Any matrix pencil A0 + λA1 of size m × n can be either regular or singular:

Definition 2.5 Let A0, A1 ∈ Mm,n(K). A pencil of matrices A0 + λA1 is called regular if

(1) both A0 and A1 are square matrices of the same order m;
(2) the determinant det(A0 + λA1) does not vanish identically in λ.

Otherwise the matrix pencil is called singular.

We now recall how to find the normal form of a pencil A0 + λA1 depending on whether
it is regular or not.

2.2.1 Normal form of regular pencils

In the case of regular pencils, normal forms can be found by looking at the elementary divisors
of a given matrix pencil. In order to introduce them, it is convenient to consider the pencil
A0 + λA1 with homogeneous parameters λ,μ, i.e. μA0 + λA1.

Let μA0 + λA1 be the rank r homogeneous matrix pencil associated to A0 + λA1. For
all j = 1, . . . , r , denote by D(λ, μ) j the greatest common divisor of all the minors of order
j in μA0 + λA1 and set D0(λ, μ) = 1. Define the following polynomials

i j (λ, μ) := Dr− j+1(λ, μ)

Dr− j (λ, μ)
, for all j = 1, . . . , r .

Note that all i j (λ, μ) ∈ K[λ,μ] can be split into products of powers of irreducible homoge-
neous polynomials that we call elementary divisors. Elementary divisors of the form μq for
some q > 0 are called infinite elementary divisors.

One can prove that two regular pencils A0 + λA1 and B0 + λB1 are strictly equivalent if
and only if they have the same elementary divisors and infinite elementary divisors (cf. [29,
Vol. 2, Ch. XII, Theorem 2]). Therefore elementary divisors and infinite elementary divisors
are invariant with respect to the strict equivalence relation. Moreover they form a complete
system of invariants for the strict equivalence relation since they are irreducible elements
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with respect to the fixed field K. This is the reason why the polynomials i j (λ, μ) defined
above are actually called invariant polynomials for all j = 1, . . . , r .

We recall that the companion matrix of a monic polynomial g(λ) = a0 + a1λ + · · · +
an−1λ

n−1 + λn is

L =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1 0
0 . . . . . . 0 1

−a0 −a1 . . . . . . −an−1

⎤

⎥⎥⎥⎥⎥⎦
.

Theorem 2.6 [29, Vol. 2, Ch. XII, Theorem 3] Every regular pencil A0+λA1 can be reduced
to a (strictly equivalent) canonical block diagonal form of the following type

[N (u1); . . . ; N (us ); Jv1; . . . ; Jvt ; Lw1; . . . ; Lwp ],
where

• The first s diagonal blocks are related to infinite elementary divisors μu1 , . . . , μus of the
pencil A0 + λA1 and for all i = 1, . . . , s

N (ui ) =

⎡

⎢⎢⎢⎣

1 λ

. . .
. . .

1 λ

1

⎤

⎥⎥⎥⎦ ∈ Mui (K).

• The blocks Jvi are the Jordan blocks related to elementary divisors of type (λ − λi )
vi .

• The last p diagonal blocks Lw1 , . . . , Lwp are the companion matrices associated to the
remaining elementary divisors of A0 + λA1.

2.2.2 Normal form of singular pencils

In the previous case, a complete system of invariants was made by both elementary divisors
and infinite ones. We shall see that, in case of singular pencils, this is not sufficient to
determine a complete system of invariants with respect to the strict equivalence relation. Fix
m ≤ n and let A0 + λA1 be a singular pencil of rank r , where A0, A1 ∈ Mm,n(K). Since the
pencil is singular, the columns of A0 + λA1 are linearly dependent, therefore the system

(A0 + λA1)x = 0 (2)

has a non-zero solution with respect to x . Note that any solution x̃ of the above system is a
vector whose entries are polynomials in λ, i.e. x̃ = x̃(λ). It has been proven in [29, Vol. 2,
Ch. XII, Theorem 4] that if equation (2) has a solution of minimal degree ε 
= 0 with respect
to λ, the singular pencil A0 + λA1 is strictly equivalent to

[
Lε

Â0 + λ Â1

]
,

where

Lε =
⎡

⎢⎣
λ 1

. . .
. . .

λ 1

⎤

⎥⎦ ∈ Mε,ε+1(K),
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and Â0 +λ Â1 is a pencil of matrices for which the equation analogous to (2) has no solution
of degree less than ε.

By applying the previous result iteratively, a singular pencil A0+λA1 is strictly equivalent
to the block diagonal matrix

[Lε1; . . . ; Lεp ; A0,p + λA1,p],

where 0 
= ε1 ≤ · · · ≤ εp and the last block is such that (A0,p + λA1,p)x = 0 has no non
zero solution, i.e. the columns of A0,p + λA1,p are linearly independent. Then one looks at
the rows of A0,p + λA1,p . If these are linearly dependent, one can apply the same procedure
just described by considering the associated system of the transposed pencil.

Now let us treat the case in which there are some relations of degree zero (with respect to
λ) between the rows and the columns of the given pencil A0 + λA1. Denote by g and h the
maximal number of independent constant solutions of equations

(A0 + λA1)x = 0 and (AT
0 + λAT

1 )x = 0 respectively.

Let e1, . . . , eg ∈ K
n be linearly independent solutions of the system (A0 + λA1)x = 0,

completing them to a basis of K
n and rewriting the pencil with respect to this basis, we get

Ã0,1+λ Ã1,1 = [0m×g Ã0,1 + λ Ã1,1
]
. One can do the same by taking h linearly independent

vectors that are solutions of the transpose pencil and hence the first h rows of Ã0,1 + λ Ã1,1

are zero with respect this new basis. Thus we obtain

[
0h×g

Â0 + λ Â1

]
,

where Â0 +λ Â1 does not have any degree zero relation, and hence either Â0 +λ Â1 satisfies
the assumptions of [29, Vol. 2, Ch. XII, Theorem 4] or it is a regular pencil.

There is a quicker way, due to Kronecker, to determine the canonical form of a given
pencil, avoiding the iterative reduction just explained. It involves the notion of minimal
indices. These last, together with elementary divisors (possibly infinite) will form a complete
system of invariants for non singular pencils.

Let A0 +λA1 be a non singular pencil and let x1(λ) be a non zero solution of least degree
ε1 for (A0+λA1)x = 0. Take x2(λ) as a solution of least degree ε2 such that x2(λ) is linearly
independent from x1(λ). Continuing this process, we get a so called fundamental series of
solutions of the system

x1(λ), . . . , xp(λ), of degrees ε1 ≤ · · · ≤ εp, for some p ≤ n.

We remark that a fundamental series of solution is not uniquely determined, but one can
show that the degrees ε1, . . . , εp are the same for any fundamental series associated to a
given system (A0 + λA1)x = 0. The minimal indices for the columns of A0 + λA1 are the
integers ε1, . . . , εp . Similarly, theminimal indices for the rows are the degrees η1, . . . , ηq of
a fundamental series of solutions of (AT

0 + λAT
1 )x = 0. Strictly equivalent pencils have the

same minimal indices (cf. [29, Vol. 2, Ch. XII, Sec. 5, Par. 2]).
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Now let A0 + λA1 be a singular pencil and consider its normal form
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0h×g

Lεg+1

. . .

Lεp

LT
ηh+1

. . .

LT
ηq

Â0 + λ Â1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

Remark 2.1 The system of indices for the columns (rows) of the above block diagonal matrix
is obtained by taking the union of the corresponding system of minimal indices of the indi-
vidual blocks.

We want to determine minimal indices for the above normal form (3). By the previous
remark, it is sufficient to determine the minimal indices for each block. Clearly the regular
block Â0 + λ Â1 has no minimal indices, the zero block 0h×g has g minimal indices for
columns and h minimal indices for rows all equal to zero respectively, namely ε1 = · · · =
εg = η1 = · · · = ηh = 0. The block Lεi ∈ Mεi ,εi+1(K) has linearly independent rows,
therefore it has just one minimal index for column εi for all i = 1, . . . , p. Similarly, for all
j = 1, . . . , q the block Lη j has just one minimal index for rows η j .

We conclude that the canonical form (3) is completely determined by both the minimal
indices ε1, . . . , εp, η1, . . . , ηq and the elementary divisors.

Two arbitrary pencils A0+λA1 and B0+λB1 of rectangularmatrices are strictly equivalent
if and only if they have the same minimal indices and the same elementary divisors (possibly
infinite); this result is classically attributed to Kronecker.We conclude this part by illustrating
with an example how to construct the Kronecker normal form of a matrix pencil.

Example 2.1 Consider the pencil

A0 + λA1 =

⎡

⎢⎢⎣

1 0 λ 3λ + 1 1 2
2λ λ λ 3 λ 0
0 0 0 1 1 1

2λ + 1 λ 2λ + 1 3λ + 4 λ + 1 2

⎤

⎥⎥⎦ .

The kernel of the system (A0 + λA1)x = 0 is generated by

Ker(A0+λA1)=
〈[
1 1 −3 1 0 −1

]T
,
[
1 −3 0 0 1 −1

]T
,
[−λ2 2λ2 − λ − 1 λ 0 0 0

]T 〉
.

Since the minimum index of the non-constant solution is ε = 2, we know that the normal
form of the pencil contains the following block

L2 =
[
λ 1 0
0 λ 1

]
.

Moreover, we see that there are g = 2 linearly independent constant solutions. Considering
the transpose pencil, then

Ker((A0 + λA1)
T ) =

〈[−1 −1 0 1
]T 〉

,
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so there is just one constant solution. Therefore, keeping the above notation, η = 0 and
h = 1. Moreover the invariant polynomials of the pencil are i4(λ, μ) = 0, i3(λ, μ) = μ and
all the others are equal to 1. Therefore the Kronecker normal form of A0 + λA1 is

⎡

⎢⎢⎣

0 0
λ 1 0
0 λ 1

1

⎤

⎥⎥⎦ .

2.2.3 3-Factors tensor spaces andmatrix pencils

From now on we work again over C. Any tensor T ∈ C
2 ⊗ C

m ⊗ C
n can be seen as a matrix

pencil via the isomorphism

C
2 ⊗ (Cm)∗ ⊗ (Cn)∗ ∼−→ {Cm × C

n �−→ C
2}.

We can easily pass from a tensor T ∈ C
2 ⊗C

m ⊗C
n to its associated matrix pencil (and vice

versa) by fixing a basis on each factor and looking at T in its coordinates with respect to the
fixed bases. For example, let us fix the canonical basis on each factor and let T = (ti jk) ∈
C
2 ⊗ C

m ⊗ C
n . We can associate to T the map

�T : C
m × C

n −→ C
2

(v,w) �→ (vT A0w, vT A1w)

where

A0 = (t1i j )i=1,...,m, j=1,...,n and A1 = (t2i j )i=1,...,m, j=1,...,n .

Fixing the integer m equal to either 2 or 3 in C
2 ⊗ C

m ⊗ C
n leads us to consider very

special tensor formats, namely C
2 ⊗ C

2 ⊗ C
n and C

2 ⊗ C
3 ⊗ C

n . In these cases there is
a finite number of orbits with respect to the action of products of general linear groups (cf.
[39]). Such cases have been widely studied in [50], where the author gave a complete orbit
classification working in the affine setting.

Remark that for any tensor belonging to either C
2 ⊗ C

2 ⊗ C
n or C

2 ⊗ C
3 ⊗ C

n one
can consider the associated matrix pencil and, by computing its Kronecker normal form, it
is possible to understand its rank. This last result comes from the following more general
statement that is historically attributed toGrigoriev, JáJá andTeichert.We refer to [15,Remark
5.4] for a historical note on the theorem.

Theorem 2.7 [32, 37, 38, 57] Let T ∈ C
2 ⊗ C

m ⊗ C
n and let A be the corresponding pencil

with minimal indices ε1, . . . , εp, η1, . . . , ηq and regular part C = Â0 + λ Â1 of size N. Let
δ(C) be the number of non-squarefree invariant polynomials of C. Then T is a tensor of rank

p∑

i=1

(εi + 1) +
q∑

i=1

(η j + 1) + N + δ(C). (4)

In [15] the authors reviewed the orbits classification made in [50] and gave a geometric
interpretation of the projectivization of all the orbits closures appearing in both cases. In the
following section we will refer to the classification of [15] when necessary.
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3 Algorithm for the non-identifiability of rank-3 tensors

The purpose of this section is to write Algorithm 3 where we can determine if a rank-3 tensor
is not identifiable.

All possible cases of non-identifiabile rank-3 tensors are collected in Theorem 4.1.

• The input of the algorithm we propose is a tensor T = (ti1,i2,··· ,ik ) ∈ C
n1 ⊗ · · · ⊗ C

nk

presented in its coordinate description with respect to canonical basis, where k ≥ 3, all
n j ≥ 1 and all i j = 1, . . . , n j , j = 1, . . . , k.

• The output of the algorithm is a statement telling if the given tensor is a rank-3 tensor
that falls into one of the cases mentioned above or not.

The first step of Algorithm 3 is to compute the concise tensor space Tn′
1,...,n

′
k′

= C
n′
1 ⊗

· · · ⊗ C
n′
k′ of T that we have already detailed in Sect. 2.1, hence from now on we will

work with concise tensors. Based on the resulting concise tensor space Tn′
1,...,n

′
k′
, we split the

algorithm into two different parts depending on whether Tn′
1,...,n

′
k′
is made by three factors

or not. Section 3.1 is devoted to the 3-factors case while we refer to Sect. 3.2 for the other
case.

Remark 3.1 Fix a tensor T ∈ C
n1 ⊗ · · · ⊗ C

nk and compute the multilinear rank of T . By
using the left inequality in (1) on each flattening ϕ�, we are able to exclude some of the cases
in which r(T ) is higher than 3. In those cases the algorithm stops since we are interested in
rank-3 tensors. Moreover, if the multilinear rank of T contains more than k − 3 positions
equal to 1 then T is either a rank-1 tensor or a matrix and we can also exclude these cases.
Lastly, we remark that since the concise Segre of a rank-3 tensor is ν(Pm1 ×· · ·×P

mk )where
all mi ∈ {1, 2} for all i = 1, . . . , k, if one of the values in mr(T ) = (dim(Cmi+1))i=1,...,k

is different from either 2 or 3 then we can immediately stop the algorithm. Therefore, at the

end of the concision process, we deal only with a tensor T ′ ∈ C
n′
1

1 ⊗ · · · ⊗ C
n′
k′

k′ such that

• r(T ′) ≥ 2,
• 3 ≤ k′ ≤ k
• all n′

i ∈ {2, 3}.
Now, depending on whether k′ = 3 or k′ ≥ 4, we split the algorithm in two different parts.

3.1 Three factors case

This subsection is devoted to treat the case in which the concise tensor space of the tensor T
given in input has three factors. By Remark 3.1, the concise space Tn1,...,nk = C

n1 ⊗· · ·⊗C
nk

of a tensor T is such that all ni ∈ {2, 3}. Moreover, if k = 3 the only possibilities for Tn1,n2,n3 ,
up to a reordering of the factors, are:

• T2,2,2 = C
2 ⊗ C

2 ⊗ C
2;

• T3,2,2 = C
3 ⊗ C

2 ⊗ C
2;

• T3,3,2 = C
3 ⊗ C

3 ⊗ C
2;

• T3,3,3 = C
3 ⊗ C

3 ⊗ C
3.

Remark 3.2 The presence of a C
2 in T2,2,2, T3,2,2, T3,3,2 allows to see all their elements as

a matrix pencil (cf. Sect. 2.2), in these cases we are also able to compute the rank of one of
those tensors by classifying their at its associated matrix pencils (cf. Theorem 2.7).

All the considerations made in the following will be summed up in Algorithm 1 at the end
of the subsection to which Algorithm 3 will refer for the case of 3-factors.
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Table 1 Concise rank-3 tensors in C
2 ⊗ C

2 ⊗ C
3

Matrix pencil Tensor representative

[
λ μ 0
0 0 λ

]
a1 ⊗ (b1 ⊗ c1 + b2 ⊗ c3)+
a2 ⊗ b1 ⊗ c2

Case 7 of [15], [10, Ex. 3.7], case e)

[
λ μ 0
0 λ μ

]
a1 ⊗b1 ⊗ c1 +a2 ⊗b1 ⊗ c2+
a1 ⊗ b2 ⊗ c2 + a2 ⊗ b2 ⊗ c3

Case 8 of [15], [10, Ex. 3.6], case d)

3.1.1 T2,2,2 = C
2 ⊗ C

2 ⊗ C
2

The second secant variety of X1,1,1 = ν(P1 × P
1 × P

1) ⊂ P
7 fills the ambient space, i.e.

dim σ2(X1,1,1) = 7. Consequently, any tensor [T ] ∈ P
7\X1,1,1 is either an element of the

open part σ 0
2 (X1,1,1) or an element of the tangential variety τ(X1,1,1) of X1,1,1. Therefore if

the concise tensor space of T is T2,2,2 = C
2 ⊗ C

2 ⊗ C
2, rank-1 is excluded and T has rank

either 2 or 3. To detect the rank of T one can use the Cayley’s hyperdeterminant which is the
defining equation of τ(X1,1,1) (cf. [30]). Hence, if T is a concise tensor in T2,2,2 and satisfies
the hyperdeterminant equation, then T has rank 3 and it is not identifiable, otherwise it has
rank 2.

3.1.2 T3,2,2 = C
3 ⊗ C

2 ⊗ C
2

The non-identifiable rank-3 tensors of T3,2,2 = C
3 ⊗ C

2 ⊗ C
2 come from cases d) and e) of

Theorem 4.1.
If T3,2,2 is the concise tensor space of T , then obviously r(T ) ≥ 3.Moreover, by [42, The-

orem 3.1.1.1], one can show that actually r(T ) = 3 (cf. also [15, Table 1]). Therefore every
concise T ∈ T3,2,2 is a rank-3 tensor.Moreover, since the dimension of the third secant variety
of X2,1,1 = ν(P2×P

1×P
1) ⊂ P

11 is min{14, 11}, the generic fiber of the projection from the

abstract secant varietyAbσ3(X1,1,1) := {((p1, p2, p3), q) ∈ X3
1,1,1 × P7 : q ∈ 〈p1, p2, p3〉}

to the secant variety has projective dimension 2, so the generic element of σ3(X2,1,1) has
an infinite number of decompositions. Therefore, by [34, Chapter II, Ex 3.22, part (b)], any
rank-3 tensor in σ3(X2,1,1) is not identifiable, from which follows that any tensor whose
concise tensor space is T3,2,2 = C

3 ⊗ C
2 ⊗ C

2 is a non-identifiable rank-3 tensor.

Remark 3.3 Rank-3 tensors can also live in σ2(X2,1,1) but a concise rank-3 tensor T ∈ T3,2,2
lies only on the third secant variety of X2,1,1.

Both cases d) and e) of Theorem 4.1 can be treated by looking at the matrix pencil
associated to the corresponding tensor.

Remark 3.4 In order to be consistent with the matrix pencil notation used in Sect. 2.2 in
which the first factor is used as a parameter space for the pencil, we swap the first and third
factor of T3,2,2, working now on T2,2,3 = C

2 ⊗ C
2 ⊗ C

3.

[15, Table 1] offers a complete description of all orbits in C
2 ⊗ C

2 ⊗ C
3, providing

also the orbit closure in each case together with the Kronecker normal form of each orbit
representative and its rank. Since we are working with concise rank-3 tensors of T2,2,3, we
are interested in cases 7 and 8 of [15, Table 1], i.e.

where we considered all ai , b j , ck are linearly independent elements of the corresponding
factors and λ,μ represent homogeneous coordinates with respect to the first factor of T2,2,3.
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Let us see what is the relation between the above Kronecker normal forms and our examples
of non-identifiable rank-3 tensors in T2,2,3.

Lemma 3.1 The matrix pencil associated to any tensor T ∈ C
2 ⊗ C

2 ⊗ C
3 belonging to e)

is of the following form:
[
λ μ 0
0 0 λ

]
∼
[
λ μ 0
0 0 μ

]
.

Proof Let T ∈ C
2 ⊗ C

2 ⊗ C
3 be as in case e), so

T = p̃ ⊗ v1 ⊗ u1 + p̃ ⊗ v2 ⊗ u2 + w ⊗ (αv1 + βv2) ⊗ u3.

The matrix pencil associated to T with homogeneous parameters λ,μ referred to the basis
{ p̃, w} ⊂ C

2 is

A =
[
λ 0 αμ

0 λ βμ

]
.

Since A is a singular pencil (cf. Definition 2.5), in order to achieve the normal form of A, we
have to look at the minimum degree ε of the elements in

Ker(A) =
〈[−αμ −βμ λ

]T 〉

with respect to λ,μ (cf. Sect. 2.2). Since ε = 1, the normal form of A should contain a block
of size ε × (ε + 1) of this type

⎡

⎢⎣
λ μ

. . .
. . .

λ μ

⎤

⎥⎦ .

Therefore we can conclude that

A =
[
λ μ 0
0 0 λ

]
. ��

Corollary 3.2 Let T ∈ C
2⊗C

2⊗C
3. The tensor T is a non-identifiable rank 3 tensor coming

from case e) of Theorem 4.1 if and only if the pencil associated to T is of the form
[
λ μ 0
0 0 λ

]
∼
[
λ μ 0
0 0 μ

]
.

Proof By Lemma 3.1, the matrix pencil associated to any tensor that belongs to case e) is

either

[
λ μ 0
0 0 λ

]
or

[
λ μ 0
0 0 μ

]
.

The vice versa also holds since actually the left above pencil corresponds to the tensor

a1 ⊗ b1 ⊗ c1 + a1 ⊗ b2 ⊗ c3 + a2 ⊗ b1 ⊗ c2

(considering the first factor as a parameter space for the pencil) which is as in case e). ��
Lemma 3.3 The matrix pencil associated to a tensor T ∈ C

2 ⊗ C
2 ⊗ C

3 that is as in case d)
is

[
λ μ 0
0 λ μ

]
.
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Proof Let T ∈ C
2 ⊗ C

2 ⊗ C
3 be as in case d), i.e. there is a basis {ui }i≤3 ⊂ C

3 and a basis
{v1, v2} ⊂ C

2 such that

T = v1 ⊗ v1 ⊗ u1 + v2 ⊗ v2 ⊗ u2 + (αv1 + βv2) ⊗ (αv1 + βv2) ⊗ u3,

for some (α, β) ∈ C
2 \ {0}. The matrix pencil associated to T with homogeneous parameters

λ,μ referred to the basis {v1, v2} ⊂ C
2 is

A =
[
λ 0 α2λ + αβμ

0 μ αβλ + β2μ

]
.

The kernel of A is

Ker(A) =
〈[

α2λμ + αβμ2 αβλ2 + β2λμ −λμ
]T 〉

,

so the minimum degree ε of the elements in Ker(A) with respect to λ,μ is 2. Therefore, the
normal form of A is

[
λ μ 0
0 λ μ

]
��

Corollary 3.4 Let T ∈ C
2⊗C

2⊗C
3. The tensor T is a non-identifiable rank-3 tensor coming

from case d) of Theorem 4.1 if and only if the pencil associated to T is of the form
[
λ μ 0
0 λ μ

]
.

Proof By Lemma 3.3, the matrix pencil associated to any tensor that belongs to case d) is
[
λ μ 0
0 λ μ

]
.

The converse also holds since actually the above pencil corresponds to the tensor

e1 ⊗ e1 ⊗ e1 + (e1 ⊗ e2 + e2 ⊗ e1) ⊗ e2 + e2 ⊗ e2 ⊗ e3

which is as in case d). ��

3.1.3 T3,3,2 = C
3 ⊗ C

3 ⊗ C
2

Let T3,3,2 be the concise tensor space of the input tensor T . We recall that the only non-
identifiable rank-3 tensors in this case are the ones of case f) of Theorem 4.1 (cf. also
Proposition 4.5). More precisely, let Y ′ = P

1 × P
1 × {w} ⊂ Y2,2,1 = P

2 × P
2 × P

1. Take
q ′ ∈ 〈ν(Y ′)〉\ν(Y2,2,1) and p ∈ Y2,2,1\Y ′. Then [T ] ∈ 〈q ′, ν(p)〉 is a rank-3 tensor and it is
not identifiable. If we take {ui }i≤3 ⊂ C

3 as a basis of the first factor, {vi }i≤3 ⊂ C
3 as a basis

of the second factor and {w, w̃} ⊂ C
2 as a basis of the third factor, then T is of the form

T = u1 ⊗ v1 ⊗ w + u2 ⊗ v2 ⊗ w + u3 ⊗ v3 ⊗ w̃. (5)

Again we can look at this case by considering the associated matrix pencil of T . As before
(cf. Remark 3.4), to be consistent with the matrix pencil notation we already introduced, we
swap the first and third factor of T3,3,2, working now on T2,3,3 = C

2 ⊗ C
3 ⊗ C

3.
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In [15, Table 3] all Kronecker normal forms contained in T2,3,3 are collected. Since we
are interested in rank-3 tensors having T2,3,3 as concise tensor space, the only possibilities
in terms of matrix pencils are

⎡

⎣
λ 0 0
0 λ 0
0 0 μ

⎤

⎦ and

⎡

⎣
λ 0 0
0 λ + μ 0
0 0 μ

⎤

⎦ . (6)

Remark 3.5 The matrix pencil associated to (5) is the first one in (6) and it is easy to check
that the tensor corresponding to the first matrix pencil in (6) is actually T .

Therefore, if the concise tensor space of T is T2,3,3,, it is sufficient to consider the normal
form of the concise tensor T ′ related to T and check if it corresponds to

⎡

⎣
λ 0 0
0 λ 0
0 0 μ

⎤

⎦ .

Moreover, as in the previous case, we are able to detect the rank of any tensor having
T2,3,3 as a concise tensor space (cf. Remark 3.2).

3.1.4 T3,3,3 = C
3 ⊗ C

3 ⊗ C
3

By Theorem 4.1, all rank-3 tensors whose concise tensor space is T3,3,3 are identifiable.
Therefore if the concise tensor space of T is T3,3,3 we can immediately say that T does not
belong to one of the 6 families of non-identifiable rank-3 tensors.

We collect all the considerations made in this subsection in Algorithm 1.
Listing 1 contains an implementation Algorithm 1 with the algebra software Macaulay2

[33]. The input of the function is a concise 3-factors tensor T ∈ C
n1 ⊗ C

n2 ⊗ C
n3 , with

2 ≤ n1 ≤ n2 ≤ n3 ≤ 3. In practice T must be given as a list of matrices {A1, . . . , An1},
where each Ai ∈ Mn2×n3(C) as displayed in the following image.

A1

An1

For the case (n1, n2, n3) = (2, 2, 2) the algorithm evaluates the Cayley’s hyperdeterminant
in the entries of the tensor, while for the remaining cases it computes the Kronecker normal
form of the matrix pencil associated to the given T .

3.2 More than three factors

We are now ready to develop the case in which a concise tensor space of a tensor has more
than 3 factors, i.e.

Tn1,...,nk = C
n1 ⊗ · · · ⊗ C

nk

where k > 3 and all ni ∈ {2, 3}. We will first treat the case in which k = 4 and n1 = n2 =
n3 = n4 = 2 and then we will treat all together the remaining cases.
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Algorithm 1 (Three factors case)

Input: Concise tensor T = (ti1,i2,i3 ) ∈ C
n1 ⊗ C

n2 ⊗ C
n3 , with ni = 2, 3 for all i = 1, 2, 3 and

n1 ≤ n2 ≤ n3.
Output: A statement on whether T belongs to one of the six cases of non-identifiable rank-3 tensors or not.

(1) Case (n1, n2, n3) = (2, 2, 2).
If T satisfies Cayley’s hyperdeterminant equation

Hdet(T ) :=
(∣∣∣∣

t0,0,0 t0,0,1
t1,0,0 t1,1,1

∣∣∣∣+
∣∣∣∣
t0,1,0 t0,0,1
t1,1,0 t1,0,1

∣∣∣∣

)2
− 4

∣∣∣∣
t0,0,0 t0,0,1
t1,0,0 t1,0,1

∣∣∣∣ ·
∣∣∣∣
t0,1,0 t0,1,1
t1,1,0 t1,1,1

∣∣∣∣

the output is T belongs to case b) of Theorem 4.1 therefore it is not identifiable.
Otherwise the output is T is an identifiable rank-2 tensor.

(2) Case (n1, n2, n3) = (2, 2, 3) (Remark that we already know that T is not identifiable (cf. Subsec-
tion 3.1.2), so we only need to classify it).
Compute the Kronecker normal form of T .

• If the Kronecker normal form of T is
[
λ μ 0
0 0 μ

]

then the output is T belongs to case e) of Theorem 4.1, therefore it is not identifiable.
• Else, T is as in case d) and the output is T belongs to case d) of Theorem 4.1 and it is not identifiable.

(3) Case (n1, n2, n3) = (2, 3, 3).
Compute the normal form of T .

• If the Kronecker normal form of T is

⎡

⎣
λ 0 0
0 λ 0
0 0 μ

⎤

⎦then the output is T belongs to case f) of Theorem 4.1,

therefore it is not identifiable.
• Else the output will be the rank of T computed via (4) of Theorem 2.7 and T is not on the list of

non-identifiable rank-3 tensors.

(4) Otherwise (n1, n2, n3) = (3, 3, 3) and the output is T is not on the list of non-identifiable rank-3 tensors,
hence T is either identifiable or its rank is greater than 3.

3.2.1 Non-identifiable tensors with at least 4 factors

Consider for the moment the 4-factors case, i.e.

Tn1,n2,n3,n4 = C
n1 ⊗ C

n2 ⊗ C
n3 ⊗ C

n4 ,

where all ni ∈ {2, 3}. Following the classification of Theorem 4.1, working with 4 factors
there are only two families of non-identifiable tensors, namely items c) and f). Case f) is
referred to non-identifiable rank-3 tensors of [10, Proposition 3.10] adapted to the 4-factors
case, while case c) contains any rank-3 tensor in C

2 ⊗ C
2 ⊗ C

2 ⊗ C
2. Let us first treat the

case of T24 = C
2 ⊗ C

2 ⊗ C
2 ⊗ C

2.

3.2.2 T24 = C
2 ⊗ C

2 ⊗ C
2 ⊗ C

2

As already recalled, the third secant variety of the Segre variety X14 is defective (cf. [5,
Theorem 4.5]). Moreover, at the end of Section 6 and in Section 7 of [19] is explicitely
stated that every element of σ3(X14) \ σ2(X14) is a rank-3 tensor. Therefore any tensor in
σ3(X14)\σ2(X14) is a non-identifiable rank-3 tensor.
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Listing 1 M2 implementation of Algorithm 1

needsPackage "SparseResultants"
needsPackage "Kronecker"

threefactors = (T)->(
n = (length T,numrows T_0,numcols T_0);
if n == (2,2,2) then(

dis =
sparseDiscriminant(genericMultihomogeneousPolynomial((2,2,2),
(1,1,1)));

V = (ring dis)**ring (T_0);
T = apply(T,x->sub(x,V));
Tlist = flatten {flatten entries T_0,flatten entries T_1};
dis = sub(sub(dis,V),for i to length Tlist-1 list

V_(i)=>Tlist_i);
if dis==0 then(

return "T is not identifiable";
)else(

return "T is identifiable";
);

)else if n==(3,3,3) then(
return "n=(3,3,3), T is not on the list";

)else if n==(2,2,3) then(
return "n=(2,2,3), T is not identifiable";

)else(
R = QQ[x,y];
T = apply(T,x->sub(x,R));
A = kroneckerNormalForm (x*T_0+y*T_1);
if A_0==matrix {{y, 0, 0}, {0, x, 0}, {0, 0, x}} then(

return "T is not identifiable";
)else if A_0==matrix {{y, 0, 0}, {0, x, 0}, {0, 0, x+y}}

then(
return "T is identifiable";
)else(
return "T is not a concise rank three tensor";

);
);

)

Thus, working over T24 , to detect whether a given tensor T ∈ T24 is a non-identifiable
rank-3 tensor it is sufficient to verify if [T ] ∈ σ3(X14)\σ2(X14), i.e. if T satisfies the equations
of σ3(X14) (cf. [51, Theorem 1.4]) and T does not satisfies the equations of σ2(X14) for which
we refer to [43].

3.2.3 Tn1,...,nk �= C
2 ⊗ C

2 ⊗ C
2 ⊗ C

2, with k ≥ 4, ni = 2, 3 for all i = 1, . . . , k

Let now k ≥ 4 with Tn1,...,nk 
= C
2 ⊗C

2 ⊗C
2 ⊗C

2. In this case, any non-identifiable rank-3
tensor comes from case f) of Theorem 4.1. More precisely, let

Y ′ := P
1 × P

1 × {u3} × · · · × {uk} ⊂ Ym1,m2,1k−2 = P
m1 × P

m2 × P
1 × · · · × P

1,

with m1,m2 ∈ {1, 2}. Let q ′ ∈ 〈ν(Y ′)〉\ν(Ym1,m2,1k−2) and p ∈ Ym1,m2,1k−2\Y ′. We saw that
any [T ] ∈ 〈q ′, ν(p)〉 is a non-identifiable rank-3 tensor. Let {ui , ũi } be a basis of the C

ni

arising from the i th factor of Ym1,m2,1k−2 for all i ≥ 3. Take distinct a1, a2 ∈ C
m1+1 and
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distinct b1, b2 ∈ C
m2+1 and ifm1 = 1 then let a3 ∈ 〈a1, a2〉 otherwise we let a1, a2, a3 form

a basis of the first factor. Let b3 ∈ 〈b1, b2〉 if m2 = 1, otherwise b1, b2, b3 form a basis of
the second factor. With respect to these bases T can be written as

T =(a1 ⊗ b1 + a2 ⊗ b2) ⊗ u3 ⊗ · · · ⊗ uk + a3 ⊗ b3 ⊗ ũ3 ⊗ · · · ⊗ ũk . (7)

Since the only type of tensors that we have to detect corresponds to (7), we may restrict
ourselves to consider the following tensor spaces:

• T3,2k−1 = C
3 ⊗ C

2 ⊗ C
2 ⊗ · · · ⊗ C

2;
• T3,3,2k−2 = C

3 ⊗ C
3 ⊗ C

2 ⊗ · · · ⊗ C
2;

• T2k = C
2 ⊗ C

2 ⊗ C
2 ⊗ · · · ⊗ C

2 (with k ≥ 5).

Definition 3.5 Let Tn1,...,nk = C
n1 ⊗ · · · ⊗ C

nk , fix integer k′ ≤ k and let I = ∪k′
i=1 Ii be a

partition of {1, . . . , k}. A reshaping of T of type I1, . . . , Ik′ is a bijection

ϑI1,...,Ik′ : Tn1,...,nk −→ C
N1 ⊗ · · · ⊗ C

Nk′ ,

whereC
Ni ∼=⊗ j∈Ii C

n j for all i = 1, . . . , k′, i.e. Ni =∏ j∈Ii ni andC
Ni is the vectorization

of
⊗

j∈Ii C
n j .

In other words a reshaping of a tensor space Tn1,...,nk is a different way of grouping
together some of the factors of Tn1,...,nk and forgetting their tensor structure (eventually it is
also necessary to reorder the factors of Tn1,...,nk ). In the following we will be interested in the
reshaping grouping together two factors of a tensor space Tn1,...,nk . More precisely, we will
consider the partition {i, j} ∪ ({1, . . . , k}\{i, j}) for some i, j = 1, . . . , k and to lighten the
notation we will set ϑ{i, j},{1,...,k}\{i, j} = ϑi, j , i.e

ϑi, j : C
n1 ⊗ · · · ⊗ C

nk ∼−→ (Cni ⊗ C
n j ) ⊗ C

n1 ⊗ · · · ⊗ Ĉni ⊗ · · · ⊗ Ĉn j ⊗ · · · ⊗ C
nk ,

where we put a widehat on the removed factors.

Example 3.1 Let Tn1,...,nk = C
n1 ⊗ · · · ⊗ C

nk and denote by ϑ1,2 the reshaping grouping
together the first two factors of Tn1,...,nk

ϑ1,2 : Tn1,...,nk −→ (
C
n1 ⊗ C

n2
)⊗ C

n3 ⊗ · · · ⊗ C
nk

T =
n1∑

i1=1

· · ·
nk∑

ik=1

ti1,...,ik ei1 ⊗ · · · ⊗ eik �→
n1∑

i1=1

· · ·
nk∑

ik=1

ti1,...,il (ei1 ⊗ ei2) ⊗ ei3 ⊗ · · · ⊗ eik .

Since C
n1 ⊗C

n2 ∼= C
n1n2 , by sending the basis {ei1 ⊗ei2}i1=1,...,n1,i2=1,...,n2 of C

n1 ⊗C
n2

to the basis {ei1,i2} of C
n1n2 , we write

ϑ1,2(T ) =
∑

i1,...,ik

ti1,i2,i3,...,ik ei1,i2 ⊗ ei3 ⊗ · · · ⊗ eik ∈ C
n1n2 ⊗ C

n3 ⊗ · · · ⊗ C
nk .

The following lemma tells us how to completely characterize non-identifiable rank-3
tensors lying on either T3,2k−1 or T3,3,2k−2 or T2k .

Lemma 3.6 Let T ∈ Tn1,n2,2k−2 = C
n1 ⊗ C

n2 ⊗ C
2 ⊗ · · · ⊗ C

2 be a concise tensor in
Tn1,n2,2k−2 , where n1, n2 ∈ {2, 3}, k ≥ 4 and Tn1,n2,2k−2 
= T24 . Then T is as in case f) of
Theorem 4.1 if and only if the following conditions hold:
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(1) the reshaped tensor ϑ1,2(T ) ∈ C
n1n2 ⊗ (C2)⊗(k−2) is an identifiable rank-2 tensor with

respect to C
n1n2 ⊗ (C2)⊗(k−2)

ϑ1,2(T ) = T1 + T2 = x ⊗ u3 ⊗ · · · ⊗ uk + y ⊗ v3 ⊗ · · · ⊗ vk ∈ C
n1n2 ⊗ (C2)⊗(k−2)

for some independent x, y ∈ C
n1n2 and some ui , vi ∈ C

2 with {ui , vi } linearly indepen-
dent for all i = 3, . . . , k;

(2) looking at x, y ∈ C
n1n2 as elements of C

n1 ⊗ C
n2 then {r(x), r(y)} = {1, 2}.

Proof Let T ∈ Tn1,n2,2k−2 be as in case f) of Theorem 4.1, so T can be written as

T = a1 ⊗ b1 ⊗ u3 ⊗ · · · ⊗ uk + a2 ⊗ b2 ⊗ u3 ⊗ · · · ⊗ uk + a3 ⊗ b3 ⊗ v3 ⊗ · · · ⊗ vk,

where ui 
= vi for all i = 3, . . . , k, a1, a2, a3 are linearly independent if n1 = 3 and b1, b2, b3
are linearly independent if n2 = 3. Let ϑ1,2 be the reshaping grouping together the first two
factors of Tn1,...,nk . Let x := a1 ⊗ b1, y := a2 ⊗ b2 and z := a3 ⊗ b3 and remark that
r(x + y) = 2 and r(z) = 1. Therefore

ϑ1,2(T ) = x ⊗ u3 ⊗ · · · ⊗ uk + y ⊗ u3 ⊗ · · · ⊗ uk + z ⊗ v3 ⊗ · · · ⊗ vk

= (x + y) ⊗ u3 ⊗ · · · ⊗ uk + z ⊗ v3 ⊗ · · · ⊗ vk

= T1 + T2 ∈ C
n1n2 ⊗ C

2 ⊗ · · · ⊗ C
2.

Note that the rank of (T1 + T2) ∈ Tn1n2,2k−2 is at most 2 and in fact r(T1 + T2) = 2
since ui , vi are linearly independent for all i = 3, . . . , k. Moreover, we recall that the only
non-identifiable rank-2 tensors are matrices (cf. [10, Proposition 2.3]). Therefore, since the
concise tensor space of T1 + T2 is made by at least 3 factors, then T1 + T2 is an identifiable
rank-2 tensor.

Vice versa let T ∈ Tn1,n2,2k−2 such that ϑ1,2(T ) ∈ C
n1n2 ⊗ (C2)⊗(k−2) is an identifiable

rank-2 tensor

ϑ1,2(T ) = T1 + T2 = a ⊗ u3 ⊗ · · · ⊗ uk + b ⊗ v3 ⊗ · · · ⊗ vk,

for some unique a, b ∈ C
n1n2 with 〈a, b〉 ∼= C

2 and unique ui , vi ∈ C
2 with 〈ui , vi 〉 ∼=

C
2 for all i = 3, . . . , k. By assumption ϑ−1

1,2(a), ϑ−1
1,2(b) ∈ C

n1 ⊗ C
n2 are such that

{r(ϑ−1
1,2(a)), r(ϑ−1

1,2(b))} = {1, 2} andby relabeling if necessarywemayassume r(ϑ−1
1,2(a)) =

2 and r(ϑ−1
1,2(b)) = 1.

Let us see ϑ1,2(T ) as an element of Tn1,n2,2k−2 = C
n1 ⊗ C

n2 ⊗ C
2 ⊗ · · · ⊗ C

2. Since T2
is a rank-1 tensor, there exist v1 ∈ C

n1 , v2 ∈ C
n2 such that ϑ−1

1,2(b) = v1 ⊗ v2, i.e.

ϑ−1
1,2(T2) = v1 ⊗ v2 ⊗ v3 ⊗ · · · ⊗ vk .

Moreover, since r(ϑ−1
1,2(a)) = 2 then there exist linearly independent a1, a2 ∈ C

n1 and

linearly independent b1, b2 ∈ C
n2 such that ϑ−1

1,2(a) = a1 ⊗ b1 + a2 ⊗ b2, i.e.

ϑ−1
1,2(T1) = a1 ⊗ b1 ⊗ u3 ⊗ · · · ⊗ uk + a2 ⊗ b2 ⊗ u3 ⊗ · · · ⊗ uk .

We remark that the concise space of T is Tn1,n2,2k−2 , therefore if n1 = 3 (or n2 = 3) then
a1, a2, v1 are linearly independent (b1, b2, v2 are linearly independent). Thus T is as in case
f). ��
Remark 3.6 In Lemma 3.6we assumed that dealingwith a tensor as in (7) the non-identifiable
part of the tensor was in the first two factors because it is always possible to permute the
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factors of the tensor space in this way. This assumption cannot be made in the algorithm
and we have to be careful if either (n1, n2) = (3, 2) or (n1, n2) = (2, 2). Dealing with
(n1, n2) = (3, 2), we have to check if there exists i = 2, . . . , k such that ϑ1,i (T ) satisfies
the conditions of Lemma 3.6.

Similarly, for the case of (n1, n2) = (2, 2)we have to check all reshaping of T if necessary,
i.e. we have to check if there exist i, j ∈ {1, . . . , k} with i 
= j such that ϑi, j (T ) satisfies
the conditions of Lemma 3.6.

Recall that a concise tensor T ∈ C
n1n2 ⊗ (C2)⊗(k−2) is an element of σ2(X(n1n2−1),1k−2)\

τ(X(n2n2−1),1k−2) if and only if there is a specific change of basis on each factors g̃ =
(g, g3, . . . , gk) ∈ GLn1n2 × GL2 × · · · × GL2 such that

g̃ · T = x ⊗ u3 ⊗ · · · ⊗ uk + y ⊗ v3 ⊗ · · · ⊗ vk . (8)

By Lemma 3.6, given an identifiable rank-2 tensor T ∈ Tn1n2,2k−2 , in order to verify if T is
as in case f), we do not need to find an explicit decomposition of T as in (8) but it is enough
made the following steps:

• distinguish x, y ∈ C
n1n2 and look at them as elements of C

n1 ⊗ C
n2 ;

• prove that either r(x) = 2 and r(y) = 1 or that r(x) = 1 and r(y) = 2.

Let us explain in detail how to do so.

3.2.4 Reshaping procedure for an identifiable rank-2 tensor of Tn1n2,2k−2 (how to find
x, y ∈ C

n1 ⊗ C
n2 )

Let T be an identifiable rank-2 tensor in Tn1n2,2k−2 = C
n1n2 ⊗ (C2)⊗(k−2). Remark that the

rank of the first flattening ϕ1 : (C2)⊗(k−2) → (Cn1n2) of T is 2 and, to complete the concision
process, there exist two independent elements x̂, ŷ of Im(ϕ1) for which T can be written as

T = x̂ ⊗ u3 ⊗ · · · ⊗ uk + ŷ ⊗ v3 ⊗ · · · ⊗ vk ∈ C
2 ⊗ (C2)⊗k .

If we reshape our tensor space by grouping together all factors from the 4th one onwards,
then T can be seen as

x̂ ⊗ u3 ⊗
û︷ ︸︸ ︷

(u4 ⊗ · · · ⊗ uk) +ŷ ⊗ v3 ⊗
v̂︷ ︸︸ ︷

(v4 ⊗ · · · ⊗ vk)

= x̂ ⊗ u3 ⊗ û + ŷ ⊗ v3 ⊗ v̂ ∈ C
2 ⊗ C

2 ⊗ ((C2)⊗(k−3)).

We want to look at this 3-factors tensor as a pencil of matrices with respect to the second
factor of C

2 ⊗ C
2 ⊗ (C2)⊗(k−3). Let u3 = (u3,1, u3,2), v3 = (v3,1, v3,2) and denote by

C1 :=
[
u3,1 x̂ ⊗ û
v3,1 ŷ ⊗ v̂

]
, C2 :=

[
u3,2 x̂ ⊗ û
v3,2 ŷ ⊗ v̂

]
∈ C

2 ⊗ (C2)⊗(k−3).

We can write T as C1λ +C2μ. Call X3 the matrix whose columns are given by x̂ and ŷ and
denote by X4 the matrix whose rows are given by û and v̂. Therefore

C1 = [x̂ ŷ
] [u3,1 0

0 v3,1

] [
û
v̂

]
= X3

[
u3,1 0
0 v3,1

]
X4,

C2 = [x̂ ŷ
] [u3,2 0

0 v3,2

] [
û
v̂

]
= X3

[
u3,2 0
0 v3,2

]
X4.
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Remark that C2 is right invertible and denote by C−1
2 its right inverse. Moreover r(X3) =

r(X4) = 2, therefore X3 is invertible and there exists a right inverse of X4 that we denote by
X−1
4 . Thus

C1C
−1
2 =

(
X3

[
u3,1 0
0 v3,1

]
X4

)(
X3

[
u3,2 0
0 v3,2

]
X4

)−1

= X3

[ u3,1
u3,2

0

0 v3,1
v3,2

]
X−1
3 .

We have now an eigenvalue problem that we can easily solve to find x̂, ŷ ∈ C
2.

Remark 3.7 When computing the concision process of T with respect to the first factor of
Tn1n2,2k−2 , we concretely find a basis of Im(ϕ1). Therefore, after we found x̂, ŷ ∈ C

2 with
the above procedure, we can easily get back to x, y ∈ C

n1n2 ∼= C
n1 ⊗ C

n2 and compute the
rank of both x, y seen as elements of C

n1 ⊗ C
n2 .

We remark that the above procedure describes a so-called pencil-based algorithm to com-
pute the tensor rank decomposition and we refer to [45, 47, 55, 56].

We sum up how to find a non-identifiable rank-3 tensor of at least 4 factors in Algorithm 2.
A code implementation in Macaulay2 of the above algorithm is available at the

repository website MathRepo of MPI MiS via the link https://mathrepo.mis.mpg.de/
identifiabilityRank3tensors.

Example 3.2 Let T3,2,2,2 = C
3⊗C

2⊗C
2⊗C

2 and for all j, k, � = 1, 2 and for all i = 1, 2, 3
denote ei, j,k,� = ei ⊗e j ⊗ek⊗e�. To lighten the notationwe also set ei e j = ei ⊗e j . Consider
the tensor

T = 12e1,1,1,1 + 8e1,1,1,2 + 6e1,1,2,1 + 4e1,1,2,2 + 30e1,2,1,1 + 20e1,2,1,2 + 15e1,2,2,1
+ 10e1,2,2,2 + 8e2,1,1,1 + 8e2,1,1,2 + 5e2,1,2,1 + 6e2,1,2,2 + 35e2,2,1,1 + 38e2,2,1,2
+ 23e2,2,2,1 + 30e2,2,2,2 + 16e3,1,1,1 + 16e3,1,1,2 + 10e3,1,2,1 + 12e3,1,2,2
+ 52e3,2,1,1 + 64e3,2,1,2 + 37e3,2,2,1 + 54e3,2,2,2.

Let ϑ1,2 : T3,2,2,2 → C
6 ⊗ C

2 ⊗ C
2 be the reshaping grouping together the first two factors

of T3,2,2,2. Let

ϑ1,2(e1e1) = e1,1, ϑ1,2(e1e2) = e1,2, ϑ1,2(e2e1) = e2,1,

ϑ1,2(e2e2) = e2,2, ϑ1,2(e3e1) = e3,1, ϑ1,2(e3e2) = e3,2

be a basis of C
6 such that ϑ1,2(T ) can be written as

ϑ1,2(T ) = 12e1,1 ⊗ e1e1 + 8e1,1 ⊗ e1e2 + 6e1,1 ⊗ e2e1 + 4e1,1 ⊗ e2e2

+ 30e1,2 ⊗ e1e1 + 20e1,2 ⊗ e1e2 + 15e1,2 ⊗ e2e1 + 10e1,2 ⊗ e2e2

+ 8e2,1 ⊗ e1e1 + 8e2,1 ⊗ e1e2 + 5e2,1 ⊗ e2e1 + 6e2,1 ⊗ e2e2

+ 35e2,2 ⊗ e1e1 + 38e2,2 ⊗ e1e2 + 23e2,2 ⊗ e2e1 + 30e2,2 ⊗ e2e2

+ 16e3,1 ⊗ e1e1 + 16e3,1 ⊗ e1e2 + 10e3,1 ⊗ e2e1 + 12e3,1 ⊗ e2e2

+ 52e3,2 ⊗ e1e1 + 64e3,2 ⊗ e1e2 + 37e3,2 ⊗ e2e1 + 54e3,2 ⊗ e2e2.

One can verify that ϑ1,2(T ) ∈ σ2(X5,13)\τ(X5,13), therefore we can continue our proce-
dure by considering the matrix associated to the first flattening ϕ1 : (C2 ⊗ C

2)∗ → C
6 of
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T :

A =

⎡

⎢⎢⎢⎢⎢⎢⎣

12 8 6 4
30 20 15 10
8 8 5 6
35 38 23 30
16 16 10 12
52 64 37 54

⎤

⎥⎥⎥⎥⎥⎥⎦
.

The rank of A is 2 and we take the first two columns x̂, ŷ of A as linearly independent
vectors of Im(ϕ1) and rewrite all the others as a linear combinations of x̂, ŷ. Denote by T ′
the resulting tensor

T ′ = x̂ ⊗ e1e1 + ŷ ⊗ e1e2 +
(
1

4
x̂ + 3

8
ŷ

)
⊗ e2e1 +

(
−1

2
x̂ + 5

4
ŷ

)
⊗ e2e2.

Let us consider now T ′ ∈ C
2 ⊗ C

2 ⊗ C
2 as a matrix pencil with respect to the second factor

T ′ = λ

[
1 0
0 1

]
+ μ

[
1/4 −1/2
3/8 5/4

]
= λC1 + μC2.

It is easy to see that the eigenvectors of

C1C
−1
2 =

[
10/4 1
−3/4 1/2

]

are x = (−2, 1) and y = (−2/3, 1), i.e.

x = −2x̂ + ŷ = −(16e1,1 + 40e1,2 + 8e2,1 + 32e2,2 + 16e3,1 + 40e3,2) = −
⎡

⎣
16 40
8 32
16 40

⎤

⎦

and

y = −2/3x̂ + ŷ = 8/3e2,1 + 44/3e2,2 + 16/3e3,1 + 88/3e3,2 =
⎡

⎣
0 0
8/3 44/3
16/3 88/3

⎤

⎦ .

It is easy to see that r(x) = 2 and r(y) = 1, therefore T is a non-identifiable rank-3 tensor
as in case f). Indeed by multiplying T with

g =
⎛

⎝

⎡

⎣
1/2 −1 1/2
0 2 −1

−1/2 0 1/2

⎤

⎦ ,

[
1 0

−1/3 1/3

]
,

[
1 −1

−1 2

]
,

[
1/2 −1/4

−1/2 3/4

]⎞

⎠

we get

T = e1 ⊗ e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e1 ⊗ e1 + e3 ⊗ (2e1 + 3e2) ⊗ e2 ⊗ e2.

Remark 3.8 Since we already considered all concise spaces of tensors related to all non-
identifiable rank-3 tensors of Theorem 4.1, any other concise tensor space will not be
considered. Therefore, for any other concise space, the output of the algorithm will be T
is not on the list of non-identifiable rank-3 tensors.
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Algorithm 2 (Non-identifiability with at least 4 factors)

Input: Concise tensor T = (ti1,...,ik ) ∈ Tn1,n2,2k−2 , for some k > 3, 2 ≤ n1, n2 ≤ 3.
Output: A statement on whether T either belongs to one of the six cases of non-identifiable rank-3 tensors or
not.

(0) For all i, j = 1, . . . , k with i 
= j denote by ϑi, j the reshaping grouping the i-th and j-th factor of Tn1,...,nk .
(1) Case (n1, n2) = (2, 2).

• Case k = 4. Test if T ∈ σ3(X14 ) \ σ2(X14 ) (cf. [51, Theorem 1.4] for the equations of the third secant
variety and [43] for the equations of the second secant variety). If the answer to the test is positive,
the output is: T is a non-identifiable rank-3 tensor, otherwise the output is: T is not on the list of
non-identifiable rank-3 tensors.

• Case k ≥ 5. For all i = 1, . . . , k − 1 and for all j = i + 1 . . . , k follow this procedure:
• Test ifϑi, j (T ) satisfies the equations ofσ2(X3,1k−2 ) and does not satisfy the equations of τ(X3,k−2 )

(cf. [43], [49, Theorem 1.3] for equations of both varieties). If ϑi, j (T ) ∈ σ2(X3,1k−2 )\τ(X3,1k−2 )

then ϑi, j (T ) is an identifiable rank-2 tensor.
Make the concision process on the first factor of T3,1k−2 and call T ′ the resulting tensor.
Consider T ′ as a matrix pencil of C2 ⊗ C

2 ⊗ ((C2)⊗(k−2)) with respect to the second factor

T ′ = λC1 + μC2.

Find the eigenvectors x, y ∈ C
2 ofC1C

−1
2 and then rewrite x, y as elements ofC4 ∼= C

2⊗C
2 via

ϑ−1
i, j . If {r(x), r(y)} = {1, 2} then the output is:T is a non-identifiable rank-3 tensor corresponding

to case f) of Theorem 4.1.
• Else, if one of the previous conditions is not satisfied, then stop and restart with another j (and

another i when necessary).
If the algorithm stops at some point when i = k − 1, j = k then break and the output is: T is not on the
list of non-identifiable rank-3 tensors.

(2) Case (n1, n2) = (3, 2).
For all i = 2, . . . , k − 1 follow this procedure:

• Test if ϑ1,i (T ) satisfies the equations of σ2(X5,1k−2 ) and does not satisfy the equations of τ(X5,k−2 )

(cf. [43], [49, Theorem 1.3] for equations of both varieties). If ϑ1,i (T ) ∈ σ2(X5,1k−2 ) \ τ(X5,1k−2 ) then
ϑ1,i (T ) is an identifiable rank-2 tensor. Reduce the first factor of T6,2k−2 via concision, working now on
T2k−1 with T ′. Consider T ′ as a matrix pencil with respect to the second factor ofC2⊗C

2⊗(C2)⊗(k−3),
i.e.

T ′ = λC1 + μC2.

Find the eigenvectors x, y of C1C
−1
2 and then rewrite x, y as elements of C6 = C

3 ⊗ C
2 via ϑ−1

1,i . If{r(x), r(y)} = {2, 1} the output is: T is a non-identifiable rank-3 tensor.
• Else, if one of the previous conditions is not satisfied then stop and restart with another i .

If the algorithm stops at some point when i = k then break and the output is: T is not on the list of
non-identifiable rank-3 tensors.

(3) Case (n1, n2) = (3, 3).

• Test if ϑ1,2(T ) satisfies the equations of σ2(X8,1k−2 ) and does not satisfy the equations of τ(X8,k−2 )

(cf. [43], [49, Theorem 1.3] for equations of both varieties). If ϑ1,2(T ) ∈ σ2(X8,1k−2 ) \ τ(X8,1k−2 ) then
ϑ1,2(T ) is an identifiable rank-2 tensor. Reduce the first factor of T9,2k−2 via the concision process,
working now with T ′ on (C2)⊗(k−1). Consider T ′ as a matrix pencil with respect to the second factor
of C2 ⊗ C

2 ⊗ (C2)⊗(k−3), i.e.

T ′ = λC1 + μC2.

Find the eigenvectors x, y of C1C
−1
2 and then rewrite x, y as elements of C9 ∼= C

3 ⊗ C
3 via ϑ−1

1,2 . If{r(x), r(y)} = {1, 2} the output is: T is a non-idenfitiable rank-3 tensor as in case f).
• If one of these conditions is not satisfied then stop and the output is: T is not on the list of non-identifiable

rank-3 tensors.
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We conclude by collecting all together the steps made until now.

Algorithm 3 (Non-identifiable rank-3 tensors)
Input: Tensor T = (ti1,...,ik ) ∈ C

n1 ⊗ · · · ⊗ C
nk , for some k ≥ 3.

Output: A statement on whether T belongs to one of the six cases of non-identifiable rank-3 tensors or not.

(1) Compute the concise tensor space Tn′
1,...,n

′
k′

of T .

(2)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

If k′ = 3 run Algorithm 1.

Else if Tn′
1,...,n

′
k′

∈ {T
3,2k′−1 ,T3,3,2k′−2 ,T2k′ },where k′ ≥ 4, run Algorithm 2.

Else the output will be T is not on the list of Theorem 4.1.
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4 Appendix (with E. Ballico and A. Bernardi)

The purpose of this appendix is to fix an imprecision in the statement of Proposition 3.10
of [10]. Originally stated for k ≥ 3 factors, Proposition 3.10 of [10] describes a family of
non-identifiable rank-3 tensors for an arbitrary number of factors and it represents the last
item of the classification [10, Theorem 7.1] of identifiable rank-3 tensors. Since Theorem
7.1 of [10] is the theoretic basis on which the present paper is based on, we decided to report
here the rectification of [10, Proposition 3.10].

The main issue is that the case Y2,1,1 is already completely described by [10, Examples
3.6 and 3.7], so it does not fall into [10, case 6, Theorem 7.1] but it is already included in
cases 4 and 5 of the same theorem. In order to fix Theorem 7.1 as stated in [10] is therefore
sufficient to remove the possibility of k = 3 and (n1, n2, n3) = (2, 1, 1) case 6, which will
remain the same for k ≥ 4 only. The statement of [10, Theorem 7.1] becomes as follows.
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Theorem 4.1 ([10, Theorem 7.1] revised) Let q ∈ 〈Xn1,...,nk 〉 be a concise rank-3 tensor.
Denote by S(Yn1,...,nk , q) the set of all subsets of Yn1,...,nk computing the rank of q. The
rank-3 tensor q is identifiable except in the following cases:

a) q is a rank-3 matrix, in this case dim(S(Y2,2, q)) = 6;
b) q belongs to a tangent space of the Segre embedding of Y1,1,1 = P

1 × P
1 × P

1 and in
this case dim(S(Y1,1,1,1, q)) ≥ 2;

c) q is an order-4 tensor of σ 0
3 (Y1,1,1,1) with Y1,1,1,1 = P

1 × P
1 × P

1 × P
1, in this case

dim(S(Y , q)) ≥ 1.
d) q is as in [10, Example 3.6]where Y2,1,1 = P

2×P
1×P

1, in this case dim(S(Y2,1,1, q)) =
3;

e) q is as in [10, Example 3.7]where Y2,1,1 = P
2×P

1×P
1, in this case dim(S(Y2,1,1, q)) =

4;
f) q is as in Proposition 4.5 where Yn1,...,nk = P

n1 × · · · × P
nk is such that either k ≥ 4,

ni ∈ {1, 2} for i = 1, 2, ni = 1 for i > 2, or k = 3 and (n1, n2, n3) = (2, 2, 1). In this
case dim(S(Yn1,...,nk , q)) ≥ 2 and if n1 + n2 + k ≥ 6 then dim(S(Yn1,...,nk , q)) = 2.

This result will be clear after having revised [10, Proposition 3.10].
Before proceeding, we need to recall the following.

Definition 4.2 Given q ∈ P
N = 〈Xn1,...,nk 〉 the space of solution of q with respect to Xn1,...,nk

is

S(Yn1,...,nk , q) = {A ⊂ Yn1,...,nk : #A = r(q) and q ∈ 〈ν(A)〉}.
Definition 4.3 We denote the projection on the i th factor as

πi : Yn1,...,nk −→ P
ni .

Let us start by considering the case k = 3 and (n1, n2, n3) = (2, 2, 1).

Lemma 4.4 (Case k = 3) Let Y2,2,1 = P
2×P

2×P
1. Fix two lines L, R ⊂ P

2, a point o ∈ P
1

and set Y ′ := L × R ×{o} ⊂ Y2,2,1. Take p ∈ Y2,2,1 with πi (p) /∈ πi (Y ′) for i = 1, 2, 3, i.e.
assume that Y2,2,1 is the minimal multiprojective space containing p ∪ Y ′. Fix q ′ ∈ 〈ν(Y ′)〉
of rank 2 and q ∈ 〈{ν(p), q ′}〉 of rank 3. Then S(Y2,2,1, q) = {{p} ∪ A}A∈S(Y ′,q ′).

Proof Fix a solution E ∈ S(Y2,2,1, q). Concision gives 〈π1(E)〉 = 〈π2(E)〉 = P
2 and hence,

since deg(E) = 3, h1(IE (1, 0, 0)) = h1(IE (0, 1, 0)) = 0. Fix a general A′ ∈ S(Y ′, q ′) and
set A := A′ ∪ {p} ∈ S(Y2,2,1, q) (because we assume that q has rank 3). Assume by
contradiction that E is not of the form B ∪ {p}, for some B ∈ S(Y ′, q ′).

Notice that, for a fiexed E , the generality of A′ implies that A′ ∩ E = ∅. Call S := A∪ E
and set {H} := |Io(0, 0, 1)|. Since A′ is a solution of q ′ thenπ3(A) = {o}, therefore A′ ⊂ H .
Moreover, since π3(p) 
= π3(o), then A ∩ H = A′ and concision gives A � H . The residue
of S with respect to H is S \ S∩ H = {p}∪ (E \ (E ∩ H)) and since S � H , by [10, Lemma
1.13] either h1(I(E\(E∩H))∪{p}(1, 1, 0)) > 0 or E \ E ∩ H = {p}.
• Assume h1(I(E\(E∩H))∪{p}(1, 1, 0)) > 0. At the beginning of this proof we have already

remarked that if p ∈ E then h1(IE (1, 0, 0)) = h1(IE (0, 1, 0)) = 0 and deg(E) = 3; by
this reason it is not possible that h1(I(E\(E∩H))∪{p}(1, 1, 0)) > 0. Thus the assumption
h1(I(E\(E∩H))∪{p}(1, 1, 0)) > 0 implies that p /∈ E . Even if p /∈ E we do not know if
for example π2(p) ∈ π2(E) or not.
Assume for the moment that π2(p) ∈ π2(E) and, to fix the ideas, write E = {u, v, w}
with π2(u) = π2(p). Take M ∈ |I{u,v}(0, 1, 0)|. We have S ∩ (H ∪ M) = S\{w},
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because we remark that H ⊃ A′. Since h1(Iw(1, 0, 0)) = h1(IResH∪M (S)(1, 0, 0)) = 0,
by [10, Lemma 1.13] we would have that w ∈ H ∪ M which is a contradiction.
So π2(p) cannot belong to π2(E); but if this is the case, a general D ∈ |Ip(0, 1, 0)| does
not intersect E since OP2(1) is very ample. Thus S \ (S ∩ (H ∪ D)) 
= ∅ and moreover
S\(S∩(H∪D)) ⊆ E . As before, since h1(IE (1, 0, 0)) = 0, by [10, Lemma 1.13]we get
a contradiction. Therefore it is absurd both that π2(p) ∈ π2(E) and that π2(p) /∈ π2(E),
so we have to conclude that also the hypothesis h1(I(E\(E∩H))∪{p}(1, 1, 0)) > 0 was
absurd.

• Assume now that E \ (E ∩ H) = {p}, i.e. assume E = {p} ∪ E ′ with E ′ ⊂ H and
deg(E ′) = 2. Note that S\(S ∩ H) = ResH (S) = {p} and that h1(Ip(1, 1, 0) = 0.
Hence, by [10, Lemma 1.13], we get that S ⊂ H and therefore we get a contradiction
with the autarky assumption because the minimal multiprojective space containing q is
P
2 × P

2 × P
1. Therefore it is also not possible that E = {p} ∪ E ′ with E ′ ⊂ H .

Thus E is of type {p} ∪ A for some A ∈ S(Y ′, q ′) and this concludes the proof of the claim.
��

Now we are ready to present the new statement of [10, Proposition 3.10].

Proposition 4.5 ([10, Proposition 3.10] revised) Let Y ′ := P
1 × P

1 × {u3} × · · · × {uk} be
a proper subset of Yn1,...,nk = P

n1 × · · · × P
nk where we assume either k ≥ 4 or k = 3 and

(n1, n2, n3) 
= (2, 1, 1). Take q ′ ∈ 〈ν(Yn1,...,nk )\ν(Y ′)〉, A ∈ S(Y ′, q ′) and p ∈ Yn1,...,nk\Y ′.
Assume that Yn1,...,nk is the minimal multiprojective space containing A ∪ {p} and take
q ∈ 〈{q ′, ν(p)}〉\{q ′, ν(p)}.
1.
∑k

i=1 ni ≥ 4; n1, n2 ≤ 2, n3, . . . , nk ≤ 1; if k ≥ 3 then rν(Yn1,...,nk )(q) > 1.
2. rν(Yn1,...,nk )(q) = 3 and S(Yn1,...,nk , q) = {{p} ∪ A}A∈S(Y ′,q ′).
3. ν(Yn1,...,nk ) is the concise Segre of q.

Proof The proof of [10, Proposition 3.10] is split in two cases depending on whether Yn1,...,nk
is made by all projective lines or not and both cases are worked out by induction. If
(n1, . . . , nk) = (1, . . . , 1) the induction is contained in steps (B) and (C) of the proof of
[10, Proposition 3.10] and they are not altered by the new statement. If instead Yn1,...,nk
contains at least one projective plane, then we need to use Yn1,n2,n3,n4 = P

2 × P
1 × P

1 × P
1

instead of P
2 × P

1 × P
1 as base of the induction for which step (D) will then act as the

inductive step. Case P
2 × P

1 × P
1 × P

1 follows from the case P
1 × P

1 × P
1 × P

1 proved
in step (C) as follow. Consider a general u ∈ P

2 and the linear projection P
2 \ {u} → P

1.

Construct the associate morphism (P2\{u})×P
1×P

1×P
1 P−→

1
×P

1×P
1×P

1 and consider
the projection from � = ν({u} × P

1 × P
1 × P

1) as in step (D). This covers the proof of
Proposition 4.5 for the case k ≥ 4. Since case k = 3 is completely covered by Lemma 4.4
this concludes the proof of the statement. ��
Remark 4.1 The only statement in the rest of [10] citing [10, Proposition 3.10] is Proposition
5.1 but the result is not altered using the revised Proposition 4.5.

With the above result we completely covered Proposition 4.5. Now Theorem 4.1 is com-
pletely fixed but for the sake of completeness let us show that the case (n1, n2, n3) = (2, 1, 1)
fits only inside items d) and e). In this case the corresponding tensor space P(C3 ⊗C

2 ⊗C
2)

has a finite number of orbits with respect to the action of Aut(P2) × Aut(P1) × Aut(P1)

(cf. [50], also [15, Table 1]) and there are only two possibilities for a concise rank-3 tensor,
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namely cases 7 and 8 of [15, Table 1]. We already proved in Corollary 3.2 that case 7 corre-
sponds to [10, Example 3.7], while in Corollary 3.4 we saw that case 8 corresponds to [10,
Example 3.6].

We see now how to distiguish these two cases in a more geometrical way.
Let q be a rank-3 tensor in 〈X2,1,1〉 and fix a solution A ∈ S(Y2,1,1, q). Since #A = 3

and h0(OY2,1,1(0, 1, 1)) = 4, there is G ∈ |IA(0, 1, 1)|. The strength of the next claim is that
we can prove that in this particular instance the space of solutions of q with respect to Y2,1,1
coincides with the space of solutions of q with respect to G.

Claim 4.5.1 Let q ∈ 〈X2,1,1〉. Every B ∈ S(Y2,1,1, q) is contained in G and hence
S(Y2,1,1, q) = S(G, q).

Proof Fix B ∈ S(Y2,1,1, q). Since A ⊂ G the statement for B = A is trivial, so let us assume
B 
= A and set S := A ∪ B. Since Y2,1,1 is the minimal multiprojective space containing B
then 〈π1(B)〉 = P

2 and hence h1(IB(1, 0, 0)) = 0. Moreover, notice that S \ S ∩ G ⊆ B
and therefore we have that h1(IS\S∩G(1, 0, 0)) = 0. Thus by [10, Lemma 1.13] we have that
B ⊂ G. ��

Every G ∈ |OY2,1,1(0, 1, 1)| is of the form G = P
2 ×C for some C ∈ |OP1×P1(1, 1)| and

vice versa. Since C is a hyperplane section of a smooth quadric in the Segre embedding of
the last two factors P

1 × P
1 of Y2,1,1 then either C is a smooth conic or C = L ∪ R with

L ∈ |OP1×P1(1, 0)|, R ∈ |OP1×P1(0, 1)| and L ∩ R is a unique point o ∈ P
1 × P

1. Let us
distinguish two cases depending on wether G is irreducible or not.

(1) Fix a solution A such that G is irreducible, i.e. assume that C is irreducible and hence

smooth. Let ui : P
1 × P

1 P−→
1
for i = 1, 2 denote the projection from the last two

factors of Y2,1,1 onto the second and third factor of Y2,1,1 respectively. Note that each

ui |C : C
P−→

1
has degree 1 and hence it is an isomorphism. Claim 4.5.1 shows that

#π2(B) = #π3(B) = 3 for all B ∈ S(Y2,1,1, q). Taking as A the union of 3 general
points of Y2,1,1 we see that this case occurs. Moreover, the open orbit of σ3(X2,1,1) arises
here and by Claim 4.5.1 this is the only case in which we fall in this orbit.
The case just described is [10, Example 3.6] with the additional observation that
S(Y2,1,1, q) = S(G, q).

(2) Fix A such that G is reducible and write G = G1 ∪G2 with G1 = P
2 × L , G2 = P

2 × R
and G1 ∩ G2 = P

2 × {o}. This case is precisely the case described in [10, Example 3.7
and Proposition 3.5] with the additional information that S(Y2,1,1, q) = S(G, q). Since
Y2,1,1 is the minimal multiprojective space containing A then A � G1 and A � G2. We
have #(A ∩ (G1 ∩ G2)) ≤ 1 and 1 ≤ #(A ∩ Gi ) ≤ 2 for i = 1, 2, and moreover

#(G1 ∩ A) + #(G2 ∩ A) = 3 + #(A ∩ G1 ∩ G2).

Notice that both π2(G1 ∩ A) and π3(G2 ∩ A) is a single point and hence at least one
i ∈ {2, 3} has #πi (A) = 2. Let us treat the two cases separately.

• The case #π2(A) = #π3(A) = 2 occurs if and only if A ∩ G1 ∩ G2 
= ∅, i.e. if and
only if the projection of A in the last two factors contains {o} = L ∩ R. To fix the
ideas denote by A = {a, b, c}, with a, b ∈ G1 and c ∈ G2 and set L = {oL} × P

1,
R = P

1 × {oR}, where o = (oL , oR). In this case #π2(A) = #π3(A) = 2 where
{oL } ∈ π2(A) and {oR} ∈ π3(A) and either a is of the form (π1(a), oL , oR) or b is
of the form (π1(b), oL , oR).
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• Taking as A a general union of two general points of G1 and a point of G2 (or vice
versa), we see that also the case #π2(A) = 2 and #π3(A) = 3 (or #π2(A) = 2
and #π3(A) = 3) occurs. Thus S(Y2,1,1, q) has precisely 2 irreducible components,
as observed in [10, Example 3.7], and the dimension of the space of solution is
dim S(Y2,1,1, q) = 4.

From the above discussion we see that a single A ∈ S(Y2,1,1, q) is sufficient to know if q is
in the open orbit of σ3(X2,1,1) of case 8 of [15, Table 1] or in the smaller orbit of case 7 of
[15, Table 1].

For the sake of clarity we conclude by summing up the above discussion in the following
statement.

Proposition 4.6 Let q ∈ 〈X2,1,1〉 be a concise rank-3 tensor and fix a solution A ∈
S(Y2,1,1, q). Then there exists G ∈ |OY2,1,1(0, 1, 1)| such that S(Y2,1,1) = S(G, q) and
either G is irreducible, dim(S(Y2,1,1, q)) = 3 and q is as in [10, Example 3.6], or G is
reducible, dim(S(Y2,1,1, q)) = 4 and q is as in [10, Example 3.7].
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