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Abstract
We study global and local geometry of forms on odd symplectic BV supermanifolds,
constructed from the total space of the bundle of 1-forms on a base supermanifold.
We show that globally 1-forms are an extension of vector bundles defined on the base
supermanifold. In the holomorphic category, we prove that this extension is split if and
only if the super Atiyah class of the base supermanifold vanishes. This is equivalent to
the existence of a holomorphic superconnection: we show how this condition is related
to the characteristic non-split geometry of complex supermanifolds. From a local point
of view, we prove that the deformed de Rham double complex naturally arises as a
de-quantization of the de Rham/Spencer double complex of the base supermanifold.
Following Ševera, we show that the associated spectral sequence yields semidensities
on the BV supermanifold, together with their differential in the form of a super BV
Laplacian.

Keywords Supermanifolds · Odd symplectic manifolds · Super Atiyah class ·
Differential and integral forms

Mathematics Subject Classification 58A50 · 32C11 · 14M30 · 14F40 · 81S10

1 Introduction

The Batalin–Vilkovisky formalism (henceforth the “BV formalism”) was originally
designed in the early 1980’s as a tool to deal with the perturbative quantization of
gauge theories. Nowadays, its importance goes far beyond its original purpose: the
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BV formalism has grown into one of the foundational languages of contemporary
theoretical and mathematical physics [7, 8, 10, 14, 21], with several applications also
to pure mathematics [8, 23].

It was Albert Schwarz in [24] who first elucidated the geometric framework that lies
at the basis of the BV formalism, by recognizing the crucial role played by superge-
ometry. The BV formalism builds upon the BRST formalism, that in turn introduced a
new point of view on the so-called Faddeev–Popov procedure. In particular, the BRST
formalism identifies the space of fields of a gauge theory with “functions” on a super-
manifold (MBRST ,OMBRST ), typically constructed as the split supermanifold generated
by an action Lie algebroid g×M → M associated to a Lie group actionG×M → M ,
so that OMBRST is trivialized as OMBRST (U ) ∼= C∞(U )⊗∧•�g∗. In this framework,
ghost fields are not just byproducts of an integration procedure, as in the Faddeev–
Popov procedure. Instead, they are conceptually understood as proper geometric data:
odd sections of OMBRST related to the generators of the Chevalley–Eilenberg algebra
∧•�g∗ resolving the (infinitesimal) gauge symmetry g. The BV formalism enhances
the above “BRST package” by crucially allowing symplectic geometry to enter the
picture: starting fromMBRST , one constructs a canonically associated (odd) symplectic
supermanifold (MBV ,OMBV ) as the total space supermanifold of the (parity-shifted)
cotangent bundle MBV := (�T∗MBRST → MBRST ). This is called BV space or BV
supermanifold. Functions on MBV are given by polynomial functions on the fibers of
MBV , that isOMBV := (�•

MBRST
)∗. This means that if in the BRST setting the local n |m

coordinates (xi, θα) ofMBRST are identified with the fields xi and the ghosts θα of the
related physical theory, in theBV setting these get supplemented by another set ofm | n
coordinates (qα | pi ), accounting for the fiber directions of MBV and identified with
the so-called anti-fields pi and anti-ghosts qα . In a similar fashion as above, whereas
the odd ghosts θα provided a homological resolution for the gauge symmetry, the new
odd generators in MBV—the anti-fields qi ’s—provide a homological (Koszul–Tate)
resolution of the critical locus of the action S, showing once again the vicinity of the
formalism with a homological or, better, derived geometric point of view.

Generally speaking, the most interesting aspects of supergeometry are those which
do not arise as a generalization of the ordinary commutative theory, but instead force us
to revise our classical geometric intuition and to confront ourselves with unexpected
new features. These new features are both of local and global nature. Locally, the
geometry of forms on supermanifolds and the related integration theory present the
most peculiar non-trivial novelties: the failure of a trivial generalization of Poincaré
duality leads to the introduction of a new kind of forms, which are crucial for the
purpose of a meaningful integration theory and for this reason are called integral
forms. On the other hand, globally, complex supermanifolds can be non-split or non-
projected: this means that they cannot be reconstructed from ordinary geometric data,
but instead they are genuinely new geometric spaces living a life of their own.

In this paper we relate these two aspects, by starting from the geometry of forms
arising from a BV supermanifold of the type ofMBV above. More precisely, the paper
is organized as follows. In Sect. 2 we recall the main definitions of the supergeomet-
ric objects and constructions that we will use. We then address the global aspects
related to the geometry of forms on BV supermanifolds in Sect. 3. In particular, we
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prove that 1-forms on MBV -type supermanifolds are an extension of vector bundles
defined on the base supermanifold, Theorem 3.2. For real supermanifolds we show
in Theorem 3.4 that this extension is always split and the splitting corresponds to a
reduction of the structural symplectic supergroup. More interestingly, building upon
a projection to (the cohomology of) the base supermanifold of MBV , Theorem 3.3, in
the case of complex supermanifolds we show that the extension is split if and only if
the super Atiyah class of the base supermanifold vanishes, corresponding to the exis-
tence of a holomorphic connection, Theorem 4.3. We then show how this condition is
related to the characteristic non-split or non-projected geometry of complex and alge-
braic supermanifolds in Theorem 4.9 and we comment on future perspectives in this
context. Several examples spanning different levels of sophistication are discussed
in Sect. 5. From a local point of view, in Sect. 6, we focus on the geometry related
to the symplectic nature of the supermanifold MBV and we show that the associated
deformed de Rham double complex—whose differentials are given by the odd sym-
plectic form and the de Rham differential—naturally arises as a de-quantization of the
de Rham/Spencer double complex associated to the base supermanifold. Following
Ševera, we show in Theorem 6.13 that the related spectral sequence yields semiden-
sities on the odd symplectic BV supermanifold and their differential in the form of a
super BV Laplacian.

2 Main definitions: local and global data

In this section we recollect the definitions of the main geometric objects that will be
used throughout the paper. For thorough introductions to the geometry of superman-
ifolds the reader is suggested to refer to the books [2, 18]. The recent [22] offers a
detailed account of the geometry of forms on supermanifolds. We let X be a smooth,
analytic or algebraic supermanifold of dimension p | q with structure sheaf given by
OX and we denote by Xred its reduced space, which is an ordinary (commutative
smooth, analytic or algebraic) manifold of dimension p with structure sheafOXred . We
will denote by OX ,0 and OX ,1 the even, respectively, odd part of the structure sheaf
with respect to itsZ2-gradation, and likewise for other sheaves or vector bundles intro-
duced in the following. We define TX be the tangent sheaf of X . This is a locally-free
sheaf of (left) OX -modules of rank p | q: if we let U be an open set in the topological
space |Xred | underlying X and xa := zi | θα for i = 1, . . . , p and α = 1, . . . , q be a
system of local coordinates over U for X , then

TX (U ) = OX (U ) · {∂z1, . . . , ∂z p | ∂θ1 , . . . , ∂θq },

where OX is the structure sheaf of X and the local generators ∂zi ’s are even and the
∂θα ’s are odd. Given the tangent sheaf as defined above, we can immediately introduce
two related sheaves. The first one is the cotangent sheaf T∗

X , which is the dual of TX ,
i.e. T∗

X :=HomOX (TX ,OX ). The second one is the parity shifted tangent sheaf �TX ,
which is a locally-free sheaf of OX -module of rank q | p. With reference to the above
trivialization over U , the parity shifted tangent sheaf is locally generated as follows:
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�TX (U ) = OX (U ) · {π∂θ1, . . . , π∂θq | π∂z1 , . . . , π∂z p },

where we stress that the local generatorsπ∂θ ’s are even and theπ∂z’s are odd. Sections
of the parity-shifted tangent sheaf are called �-vector fields or vector fields for short.
We call the dual of the parity-shifted tangent sheaf the sheaf of 1-forms on X and we
denote it as �1

X := �T∗
X . This is a locally-free sheaf of (right) OX -modules of rank

q | p: over an open set U one has the trivialization

�1
X (U ) = {dθ1, . . . , dθq | dz1, . . . , dz p} ·OX (U ),

where the local generators dθ ’s are even and the dz’s are odd. The duality paring
between �1

X and TX overU reads dxa(π∂xb) = δab for any a, b both even or odd. The
name sheaf of 1-forms is in some sense justified by the fact that in supergeometry it
is customary take the de Rham differential to be an odd morphism, so that one indeed
has a sheaf morphism d : OX → �1

X which satisfies the Z2-graded Leibniz rule.

Application of the (super)symmetric power functor S• : ShMod
OX

→ ShAlgOX
to the sheaf

of 1-forms�1
X and to�TX yields respectively the algebra of forms and�-vector fields

on X . A section of �k
X := SkOX

�1
X is called a k-form and a section of Sk�TX is called

a (k-)�-polyfield or k-polyfield for short. In this context the de Rham differential lifts
to the exterior derivative d : �k

X → �k+1
X , which is an odd derivation of �•

X , i.e. it
obeys the Z2-graded Leibniz rule in the form

d(ωη) = dωη + (−1)|ω|ω dη,

where ω and η are two generic forms in �•
X and where we have denoted by |ω| the

Z2-degree, henceforth parity of ω. Further, it is easy to see that the exterior derivative
is nilpotent: the pair (�•

X , d) defines a sheaf of dg-algebras, the de Rham complex
of X .

As it is well known, differential forms are not suitable for integration in a super-
geometric setting [18]: this leads to the introduction of a second complex, which is
“dual” to the de Rham complex. This is the so-called complex of integral forms,
which are defined as sections of the tensor product of sheaves Ber (X )⊗OX (�•

X )∗,
where Ber (X ) :=Ber (�1

X )∗ is the Berezinian sheaf of X , see [18, 21, 22], which sub-
stitutes the notion of canonical sheaf of an ordinary manifold and whose sections are
tensor densities. The interested reader can refer to [18] or the recent [5] and [22] for
a construction ab initio of the differential for integral forms.

After this preliminary recollections of definitions, conventions and notations we
introduce one of the main objects under study in this paper.

Definition 2.1 (BV supermanifold M) Let X be a smooth, analytic or algebraic
supermanifold of dimension p | q and let �1

X be its sheaf of 1-forms. We call

M := Tot(�1
X

π−→ X ) the p+q | p+q-dimensional supermanifold defined as a ringed
space by the pair (|Mred |,OM), where the topological space |Mred | is given by the total
space |Mred | := Tot((�T∗

X )0
π̃−→ Xred ) of the vector bundle (�T∗

X )0
π̃−→ Xred of rank

p + q endowed with its canonical topology, and the structure sheaf OM is defined as
OM := (�•

X )∗, where (�•
X )∗ is taken with its OX -module structure.
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Remark 2.2 Notice that the canonical topology on the total space of a vector bundle
is defined locally via the product topology, and then glueing along the transition
functions: the related quotient topology is the desired topology on the total space of
the vector bundle.

Remark 2.3 The previous definition says that “functions” on M are polynomial func-
tions on the fibersMx = �T∗

X ,x , i.e. they are polyfields having shifted parity. Locally,
on open sets of the kind π−1(U ) ∼= U ×K

p+q for U an open set in |Xred |, one has
that

OM(π
−1(U )) :=OX (U )⊗KK[F1, . . .Fp+q ],

for even and odd fiber coordinates {Fi }i=1,...,p+q and K the field of real or complex
numbers. In the following subsection we will give an explicit local description via
transition functions.

Remark 2.4 A notational remark is in order. Indeed, in the introduction of the paper
we have denoted the supermanifold M defined above in Definition 2.1 with MBV ,
to distinguish it from the supermanifold MBRST , arising in the context of the BRST
formalism. In the following we will always consider the supermanifold M = MBV .

2.1 Local description

It is worth to provide a local description ofM in terms of transition functions of its local
coordinates. We let (U , xa) be a local chart for the p | q-dimensional supermanifold
X , where we stress that the index a spans both even and odd local coordinates. Then
(π−1(U ), xa, pa) is a chart for M with

pa := (−1)|xa | ∂dxa .

The following is immediate.

Lemma 2.5 (Transition functions of M) Let (U , xa) and (V , zb) be two charts on X
withU∩V �= ∅, and let (π−1(U ), xa, pa) and (π−1(V ), zb, qb) be the corresponding
open sets on M. Then the transition functions of M read

xa = za(x), pa = (−1)|xa |+|zb|
(

∂zb
∂xa

)

qb.

Proof The first ones are obvious, being the transition functions on X . For the latter, it
is enough to observe that from dzb = dxa(∂xa zb) it follows that

pa = (−1)|xa | ∂dxa = (−1)|xa | ∂dxa
(

dxc
∂zb
∂xc

)

∂dzb = (−1)|xa |+|zb|
(

∂zb
∂xa

)

qb,

where we have made use of the definition of qb in the last step. 	
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3 The geometry of forms: split and non-split extensions

We now study the geometry of the cotangent sheaf �1
M of the supermanifoldM. Note

that this is a locally-free sheaf ofOM-modules of rank p+q | p+q.We can characterize
its transition functions thanks to Lemma 2.5.

Lemma 3.1 (Transition functions of�1
M) LetM be defined as above and let (dxa, dpa)

and (dzb, dqb) be two local bases of �1
M on the open sets π−1(U ) and π−1(V ) onM

with U ∩ V �= ∅. Then the transition functions of �1
M read

dxa = dzb

(
∂xa
∂zb

)

, (3.1)

dpa =
(

∂zb
∂xa

)

dqb + (−1)|xa |+|zb| d
(

∂zb
∂xa

)

qb. (3.2)

Proof The first ones are obvious. For the transition functions of the dp’s we observe
that we have

dpa = dzb

(
∂ pa
∂zb

)

+ dqb

(
∂ pa
∂qb

)

. (3.3)

The first summand reads

dzb
∂ pa
∂zb

= dzb
∂

∂zb

(

(−1)|xa |+|zb| ∂zc
∂xa

qc

)

= (−1)|xa |+|zb| d
(

∂zb
∂xa

)

qb.

The second summands reads

dqb

(
∂ pa
∂qb

)

= dqb
∂

∂qb

(

(−1)|xa |+|zc|
(

∂zc
∂xa

)

qc

)

= ∂zb
∂xa

dqb. 	


The previous lemma describes �1
M locally in terms of its transition functions, but it

yields information also on its global geometry, as the following shows.

Theorem 3.2 (�1
M as extension of vector bundles) Let M be defined as above. Then

the canonical exact sequence

0 π∗�1
X �1

M �1
M/X 0,

induces the isomorphism �1
M/X

∼= π∗TX . In particular, �1
M is an extension of locally-

free sheaves

0 π∗�1
X �1

M π∗TX 0. (3.4)
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Proof We work in the same setting of Lemma 3.1. We first observe that the trans-
formations of equation (3.1) identify the sections (dxa)’s as a local basis of π∗�1

X
(notice the slight abuse of notation). The first summand in the transformations given
by equation (3.2) identifies the transformations of the parity-reversed dual of π∗�1

X ,
as the dpa have opposite parity with respect to the dxa . This is hence identified with
π∗TX . The second summand in (3.2) gives the off-diagonal term of the extension of
π∗TX with π∗�1

X . 	

It follows from the previous theorem that in order to study the geometry of �1

M one
needs to consider the cohomology group

Ext1OM
(π∗TX , π∗�1

X ) ∼= H1(|Mred |,HomOM(π∗TX , π∗�1
X )

)
, (3.5)

which controls the splitting of the exact sequence (3.4), that will be called �1
M-

extension in the rest of the paper. For ease of reading, we have deferred to the appendix
a very concrete construction of the Ext-group related to an extension, which highlights
the structure of the representatives in the above cohomology group in terms of the tran-
sition functions of the vector bundles involved. As we shall see, this concrete approach
will play a significant role in what follows.

It is convenient to re-express this Ext-group appearing in (3.5) as a cohomology
group computed on the supermanifold X—and hence on Xred—instead of M.

Theorem 3.3 (Projection to X ) Let X be a smooth, analytic or algebraic supermani-
fold, and letM be constructed as above with π : M → X its projection map. Then one
has the following natural isomorphism:

Ext1OM
(π∗TX , π∗�1

X ) ∼= H1(|Xred |, T∗
X ⊗OX End OX (TX )

)
.

Proof First, notice that

Ext1OM
(π∗TX , π∗�1

X ) ∼= H1(|Mred |, π∗HomOX (TX ,�1
X )

)
.

Since in the given hypotheses, π : M → X is an affine morphism, then by Leray’s
spectral sequence

H1(|Mred |, π∗HomOX (TX ,�1
X )

) ∼= H1(|Xred |, π∗π∗HomOX (TX ,�1
X )

)
.

Finally, by projection formula applied to Riπ∗—in the case i = 0 (see [13, p. 253])
we have

H1(|Xred |, π∗π∗HomOX (TX ,�1
X )

) ∼= H1(|Xred |,HomOX (TX ,�1
X )⊗OX π∗OM

)
.

Further, since π∗OM ∼= (�•
X )∗ as OX -modules, this can be rewritten as

H1(|Xred |,HomOX (TX ,�1
X )⊗OX π∗OM

)

∼= H1(|Xred |,HomOX (TX ,�1
X )⊗OX (�•

X )∗
)
.
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Finally, the linear dependence on p in the second summand of (3.2) shows that
this extension class appears in degree one only in (�•

X )∗, i.e. in the summand
H1(|Xred |,HomOX (TX ,�1

X )⊗OX (�1
X )∗) of the above direct image, so that one finds

Ext1OM
(π∗TX , π∗�1

X ) ∼= H1(|Xred |,HomOX (TX ,�1
X )⊗OX �TX

)
.

The conclusions follow observing that

HomOX (TX ,�1
X )⊗OX �TX ∼= HomOX (TX ,�TX )⊗OX �1

X

and that �1
X := �T∗

X
∼= �OX ⊗OX T

∗
X , so that

HomOX (TX ,�OX ⊗OX TX )⊗OX �OX ⊗OX T
∗
X

∼= End (TX )⊗OX T
∗
X . 	


The above theorem can be applied to smooth real supermanifolds, as to show the
existence of a reduction of the structure group of �1

M. To this end, following [18,
Chapter 4, Section 10], we recall that the structure group of �1

M is given by the
symplectic supergroup �Sp(p + q | p + q), that can be understood as the stabilizer
of the “metric” in H0(|Mred |,�1

M⊗�1
M) given by the odd symplectic form ω—whose

related geometry will be discussed in Sect. 6, see Definition 6.6.

Theorem 3.4 (Splitting & reduction of symplectic supergroup) Let X be a smooth
supermanifold and letM = Tot(�1

X ) be the smooth supermanifold associated to X as
defined above. Then the following are true:

(1) The �1
M-extension

0 π∗�1
X �1

M π∗TX 0

is split, i.e. �1
M

∼= π∗�1
X ⊕π∗TX non-canonically.

(2) There exists a reduction of the structure group of �1
M as follows:

�Sp(p + q | p + q) −→
{(

T
(T−1)st

)

: T ∈ GL(p | q)

}

,

where �Sp(p + q | p + q) is the symplectic supergroup.

Proof For the first point it is enough to observe that the existence of a smooth partition
of unity in the smooth category leads to the exactness of the Čech cochain complex
of any sheaf in degree i > 0, which is therefore fine, thus soft and acyclic. Applying
this to T∗

X ⊗OX End OX (TX ) yields the conclusion, i.e.

H1(|Xred |, T∗
X ⊗OX End OX (TX )

) = 0.
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The second point follows from the first one and Theorem 6.14 in Appendix, which
generalizes to the Z2-graded context. To this end it is enough to observe that the
structure of the transition functions as in (A.4) follows from Lemma 3.1. 	

Remark 3.5 It is to be noted that the above splitting is non-canonical. It would be
interesting to see if it is possible to classify or provide constraints on smooth super-
manifolds such that the above reduction of the structure group is possible via a suitable
choice of charts.

4 Connections and obstructions: the super Atiyah class

Theorem 3.4 proves the existence of a splitting for the �1
M-extension in the smooth

category: this fact could have been easily inferred directly from equation (3.5). On the
other hand, the “projection” result of Theorem 3.3 allows for a very nice interpretation
whenworking in the complex analytic or algebraic category, where sheaves admit non-
trivial higher cohomologies and the splitting of the �1

M-extension is far from obvious.
Quite the contrary, we will see that in general the conditions under which the �1

M-
extension splits are quite restrictive. To this end, in the following we restrict ourselves
to work on complex supermanifolds in the holomorphic category: the reader shall see
that everything holds true also in the algebraic category.

Definition 4.1 (Affine connection on X ) Let X be a complex supermanifold and let
TX be the (holomorphic) tangent sheaf of X . An affine connection on X is an even
morphism of sheaves of C-vector spaces ∇ : TX → T∗

X ⊗OX TX such that it satisfies
the Leibniz rule

∇( f X) = dev f ⊗ X + f ∇X ,

for any f ∈ OX and X ∈ TX , where dev : OX → T∗
X is the even de Rham differential,

see [18].

Obstructions to the existence of an affine connection on a complex supermanifold
[2, 3, 11, 17] can be established in same fashion of the original Atiyah’s result [1]
for ordinary complex manifolds. We spell out the main points of the construction
following [2], which is very close to the original [1].

First, one defines the sheaf of 1-jets of TX . One starts introducing the sheaf of
C-vector spaces given by

U �→ J1TX (U ) := TX (U )⊕(T∗
X ⊗OX (U )TX )(U )

for U an open set of X . Notice that sections of T∗
X ⊗OX TX are 1-forms valued in the

tangent bundle. The sheaf J1TX can be endowed with the structure of sheaf of OX -
modules as follows: let j := (X , τ ) ∈ J1TX (U ) and f ∈ OX (U ). One defines the
product

f · j = f ·(X , τ ) := ( f X , f τ + dev f ⊗ X), (4.1)
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where dev : OX → T∗
X is the even de Rham differential, see again [18]. One can then

verify that the sequence of sheaves of OX -modules given by

0 T∗
X ⊗OX TX

α
J1TX

β
TX 0, (4.2)

where α(τ) := (0, τ ), and β((X , τ )) = X , is exact. Notice that since TX is locally-free,
then the sequence (4.2) is locally split, hence there exists a covering {Ua}a∈I such that
TX |Ua and T∗

X ⊗TX |Ua are free and

J1TX |Ua
∼= TX |Ua ⊕(T∗

X ⊗TX )|Ua
∼= O

⊕n|m
X |Ua ⊕O

n2+m2|2nm
X |Ua ,

which guarantees that J1(TX ) is locally-free. On the other hand, due to the non-trivial
OX -module structure of the sheaf of 1-jets of TX , the previous short exact sequence of
locally-free sheaves of OX -modules (4.2)—henceforth 1-jets short exact sequence—
does not necessarily split. Applying the functor Hom(TX ,−) :=HomOX (TX ,−), and
taking the long exact sequence in cohomology one gets

0 H0(|Xred |, T∗X ⊗Hom(TX , TX )) H0(|Xred |,Hom(TX ,J1TX )) H0(|Xred |,Hom(TX , TX ))

δ

H1(|Xred |, T∗X ⊗Hom(TX , TX )) H1(|Xred |,Hom(TX ,J1TX )) H1(|Xred |,Hom(TX , TX )) . . .

(4.3)

We call this long exact sequence in cohomology the 1-jets long exact cohomology
sequence. We can thus give the following definition.

Definition 4.2 (Super Atiyah class) Let X be a complex supermanifold and let TX be
its tangent sheaf. We define the Atiyah class At(TX ) of TX to be the image of the
identity map idTX ∈ H0(|Xred |,HomOX (TX , TX )) via the 1-connecting homomorphism
δ in the 1-jets long exact cohomology sequence, i.e.

At : H0(|Xred |,HomOX (TX , TX )) H1
(|Xred |, T∗

X ⊗HomOX (TX , TX )
)

idTX At(TX ) := δ(idTX ).

The following theorem is adapted from [1] to the super-setting, and it shows how the
super Atiyah class is related to the existence of an affine connection on the complex
supermanifold X .

Theorem 4.3 (Pseudo-Atiyah) Let X be a complex supermanifold and let TX be the
tangent sheaf of X , then:

(1) the 1-jets short exact sequence (4.2) splits if and only if there exists an affine
connection on X ;

(2) there exists an affine connection on X if and only if At(TX ) is trivial.
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In particular, let {Ui }i∈I be an open covering for |Xred | and {gi j }i, j∈I be the transition
functions of TX on the intersections Ui ∩Uj , then the Atiyah class of TX is represented
by the Čech 1-cocycle

At(TX ) �
∏

i< j

(−(dev gi j )g
−1
i j ) ∈ H1(|Xred |, T∗

X ⊗OX End OX (TX )
)
. (4.4)

Proof The first point is the crucial one. First, we let ∇ be an affine connection on X
and we define the morphism s∇ : TX → J1TX by j(X) := (X ,∇X). Notice that s∇ is
a well-defined morphism of sheaves of OX -modules, as

s∇( f X) = ( f X ,∇( f X)) = ( f X , dev f ⊗ X + f ∇X) = f ·(X ,∇X),

by equation (4.1). By definition of the 1-jets short exact sequence (4.2), one has that
the surjective morphism β : J1(TX ) → TX is given by β((X , τ )) = X . Therefore
β ◦s∇ = idTX , which implies that the affine connection ∇ determines a splitting s∇ of
the 1-jets short exact sequence, i.e.

0 T∗
X ⊗OX TX

α
J1TX

β
TX

s∇
0.

Vice versa, let the 1-jets short exact sequence (4.2) be split. Then there exists a mor-
phism of sheaves of OX -modules s : TX → J1TX such that β ◦s = idTX . We let then
p : J1TX → T∗

X ⊗OX TX be defined by p((X , τ )) = τ . Notice that p is C-linear, but
not OX -linear. Let us then define ∇(s) := p◦s : TX → T∗

X ⊗OX TX . It is immediate that
∇(s) is C-linear. Finally, it satisfies the Leibniz rule, indeed

∇(s)( f X) = p(s( f X)) = p( f s(X)) = p( f ·(X , τ ))

= p(( f X , dev f ⊗ X + f τ)) = dev f ⊗ X + f τ = dev f ⊗ X + f ∇(s)X ,

for any f ∈ OX and X ∈ TX . It follows that ∇(s) defines an affine connection.
The second point of the theorem depends on the first one. Let At(TX ) = 0. Then,

by definition δ(idTX ) = 0. By exactness, it follows from the 1-jets long cohomology
exact sequence (4.3)

· · · → H0(|Xred |,Hom(TX , J1TX )) → H0(|Xred |,Hom(TX , TX ))

→ H1(|Xred |, T∗
X ⊗Hom(TX , TX )) → · · ·

that there exists an element h ∈ H0(|Xred |,HomOX (TX , J1(TX )) such that β ◦h = idTX ,
where β is the surjection in 1-jets short exact sequence (4.2), which therefore splits.
By the previous point of the theorem, this is equivalent to the existence of an affine
connection on X .

Vice versa, let X be such that it admits an affine connection. Then the 1-jets
short exact sequence is split by the previous point of the theorem. This implies that
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there exists a map h : H0(|Xred |,HomOX (TX , J1TX )) such that β ◦h = idTX . It fol-
lows that idTX belongs to the image of the map H0(|Xred |,HomOX (TX , J1TX )) →
H0(|Xred |,HomOX (TX , TX )) and hence δ(idTX ) = 0, i.e. At(TX ) = 0.

For the last point, we let {Ui }i∈I be an open covering of X and {gi j }i, j∈I be the
transition functions of TX on the intersectionsUi ∩Uj . For the sake of notation, com-
positions ofmaps are left understood inwhat follows. A Čech 1-cocycle representation
of the class At(TX ) in terms of {gi j }i, j∈I can be obtained by letting ∇i be the (flat)
connection on TX |Ui which is determined by a fixed trivialization relative to {Ui }i∈I .
In particular, following [1] and [2] we let

∇i : TX |Ui (T∗
X ⊗OX TX )|Ui

s ∇i s := φi dev φ−1
i s,

where φi is a trivialization on Ui , and we define

(ai j )i< j,i, j∈I ∈ �
(
Ui ∩Uj , T∗

X ⊗OX End OX (TX )
)

by

ai j = ∇ j − ∇i .

Observing that φ j = φi ◦(φ−1
i ◦φ j ) = φi ◦g−1

j i , one computes

ai j = φ−1
j dev φ j − φ−1

i dev φi = φ−1
i g−1

j i dev g jiφi − φ−1
i dev φi

= φ−1
i (g−1

j i dev g ji + g−1
j i g ji dev − dev )φi .

This simplifies to

ai j = φ−1
i (g−1

j i (dev g ji ))φi = φ−1
i (gi j (dev g

−1
i j ))φi = φ−1

i (−(dev gi j )g
−1
i j )φi ,

where we have used the Leibniz rule applied to dev (gi j g
−1
i j ) = 0. It follows that

φ−1
i ai jφi = − (dev gi j )g

−1
i j .

Finally, upon using gi j g jkgki = idTX , one checks that ai j ∈ Z1({Ui }i∈I ,
T∗
X ⊗OX End OX (TX )), i.e. it defines a Čech 1-cocycle in the cohomology of
T∗
X ⊗OX End OX (TX ). 	

Remark 4.4 With reference to the last part of Theorem 4.3, one can notice that a
local holomorphic connection can be written in the form dev + Ai in a trivializa-
tion φi : π−1(Ui ) → Ui ×C

n|m, with Ai a matrix-valued holomorphic 1-form on
Ui . These can be patched together to form a globally defined (holomorphic) affine
connection if and only if

φ−1
i (dev + Ai )φi = φ−1

j (dev + A j )φ j ,
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that can be rearranged as

φ−1
j dev φ j − φ−1

i dev φi = φ−1
i Aiφi − φ−1

j A jφ j . (4.5)

Then, in view of Theorem 4.3, the left-hand side is (a Čech 1-cocycle representing)
the Atiyah class of TX , and equation (4.5) can be written as

− (dev gi j )g
−1
i j = Ai − g−1

j i A j g ji ,

where the right-hand side is the Čech coboundary of Ai ∈ �(Ui , TX ⊗OX End (TX )).
This shows via Čech cohomology that local connections can be patched together if
and only if At(TX ) = 0, providing a different proof of the second point of Theorem
4.3 in a local-to-global fashion, as it is customary in Čech cohomology.

Remark 4.5 Further, notice that the same construction as above can be carried out
for any locally-free sheaf E on X , not only the tangent sheaf TX . In this respect the
non-vanishing of the corresponding Atiyah class, which we still denote as At(E), is
an obstruction to define a holomorphic connection on E.

The previous Theorem 4.3 allows to identify the obstruction to splitting the �1
M-

extension.

Theorem 4.6 (�1
M and the Atiyah class) Let X be a complex supermanifold and letM

be constructed as above. Then the �1
M-extension

0 π∗�1
X �1

M π∗TX 0 (4.6)

is split if and only if At(TX ) is trivial. In particular, the short exact sequence is split
if and only if X admits an affine connection.

Proof By the previous Theorem 3.3 obstructions to splitting the short exact sequences
lie indeed in H1(|Xred |, T∗

X ⊗OX End OX (TX )). By Lemma 6.14 and the structure of the
transition functions given in Theorem 3.1 one sees that the obstructions are represented
as Čech 1-cocycles by elements of the form −(dgi j )g

−1
i j , (where the gi j ’s are the

transition functions of the tangent sheaf TX ), which is identified with the Atiyah class
At(TX ) by (4.4). 	

We now aim to relate the splitting of the short exact sequence (4.6) to the geometry
of the complex supermanifold X . To this end we first recall some basic constructions
specific to the theory of complex supermanifolds, see [5] or [18]. To each complex
supermanifold is attached the short exact sequence

0 JX OX OXred 0, (4.7)

where JX is the sheaf of nilpotent sections in OX and OXred = OX /JX is the structure
sheaf of the reduced space Xred—and ordinary complex manifold—of the superman-
ifold X . If (4.7) splits, then the supermanifold X is said to be projected, because the
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splitting corresponds to the existence of a “projection” morphism π : X → Xred such
that π ◦ ι = idXred , if ι : Xred ↪→ X is the canonical embedding of the reduced space
Xred into the supermanifold X . Moreover, the quotient JX /J2X defines a locally-free
sheaf of OXred -modules of rank q —where q is the odd dimension of X—and whose
sections are seen to be odd. We call the quotient JX /J2X the fermionic sheaf of X and
we denote it by FX . We say that the supermanifold X is split if its structure sheaf is
globally isomorphic to the sheaf of exterior algebras

∧•FX over OXred . Notice that a
split supermanifold is in particular projected. The corresponding obstruction theory
to splitting a supermanifold is currently a compelling active research topic, see for
example [3, 22].

In this context, the fundamental obstruction class to splitting a supermanifold X is
given by a class

ωX ∈ H1(|Xred |,HomOXred
(
∧2F∗

X , TXred )
) ∼= H1(|Xred |, TXred ⊗OXred

∧2FX
)
.

If ωX is non-vanishing then X is non-projected and in particular non-split. Whereas
the fundamental obstruction class is always defined, higher obstruction classes

H1(|Xred |,HomOXred
(
∧2i+1F∗

X ,F∗
X )

)
, H1(|Xred |,HomOXred

(
∧2i+2F∗

X , TXred )
)

for i � 1 are defined if and only if all of the previous ones are vanishing, see the
discussion in [11] for example.

A different criterion, actually a sufficient condition, for the existence of a splitting
of a supermanifold, has been given by Koszul in [17], relating the question about the
splitting of X to the existence of an affine connection on it.

Theorem 4.7 (Koszul) Let X be a complex supermanifold. If X admits an affine con-
nection, then it is split. In particular, the affine connection defines a unique splitting
of the supermanifold.

Proof See [17], recently reviewed in [3]. 	

This result can in turn be related with a recent result by Donagi and Witten [11].
Indeed, when restricted to the reduced space, the tangent and cotangent sheaf TX and
T∗
X split into a direct sum of an even and an odd part. The latter is isomorphic to the
fermionic sheaf or its dual in the case of the cotangent and tangent sheaf respectively.
More precisely, one finds

TX |Xred = TX ⊗OXOXred
∼= TXred ⊕F∗

X ,

T∗
X |Xred = T∗

X ⊗OXOXred
∼= T∗

Xred ⊕FX .

In this spirit, one of the key results in [11] concerns the decomposition of the Atiyah
class of TX upon restriction of the tangent sheaf to the reduced manifold Xred .

Theorem 4.8 (Donagi &Witten) Let X be a complex supermanifold. Then, the restric-
tion TX |Xred of the tangent sheaf to Xred induces the following decomposition of the
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cohomology group H1(|Xred |,HomOX (S2TX , TX )):

H1(|Xred |,HomOXred
(S2TX �Xred , TX �Xred )

) ∼=
H1(|Xred |,HomOXred

(S2TXred , TXred )
)

⊕H1(|Xred |,HomOXred
(
∧2FX , TXred )

)

⊕H1(|Xred |,HomOXred
(TXred ⊗FX ,FX )

)
.

In particular, with respect to the above decomposition the Atiyah classAt(TX ) decom-
poses as follows:

At(TX )�Xred = At(TXred )⊕ωX ⊕At(FX ), (4.8)

where At(TXred ) is the Atiyah class of the tangent sheaf of Xred , ωX is first obstruction
class, and At(FX ) is the Atiyah class of the fermionic sheaf.

Proof See [11]. 	


This result together with Koszul’s Theorem 4.7 leads to the following for the geometry
of �1

M.

Theorem 4.9 (Splitting of �1
M) Let X be a complex supermanifold and let M be

constructed as above. Then any of the following is an obstruction to split�1
M-extension

(4.6):

(1) At(TXred ) �= 0, i.e. TXred does not admit a holomorphic connection;
(2) At(FX ) �= 0, i.e. FX does not admit a holomorphic connection;
(3) ωX �= 0, i.e. X is non-projected or non-split.

In particular, a necessary condition for the �1
M-extension to split is that X is a split

supermanifold.

Proof The �1
M-extension is split if and only if the Atiyah class of TX vanishes by

Theorem 4.6 and the three obstructions to split the �1
M-extension follow from the

decomposition at the Atiyah class given in (4.8) of Theorem 4.8. Finally, the vanishing
of the Atiyah class implies the existence of an affine connection, which is equivalent
to the existence of a splitting for X by Theorem 4.7. 	


We conclude this section with some general remarks and speculation on the nature of
the super Atiyah class for a complex supermanifold.

Remark 4.10 (Super Atiyah class & super characteristic classes) It should be clear by
the above considerations that the vanishing of the super Atiyah class provides a very
strong constraint on the geometry of a complex or algebraic supermanifold. Namely,
the following is an immediate consequence of the Koszul’s result, Theorem 4.7, and
the very definition of split supermanifold.
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Corollary 4.11 Let X be a complex supermanifold of dimension n |m such that
At(TX ) = 0, then X is split. In particular all of the obstruction classes to splitting X
vanish, i.e. for any i = 1, . . . , �m/2�,

H1(|Xred |,HomOXred
(
∧2iF∗

X , Tred )
) = 0,

H1(|Xred |,HomOXred
(
∧2i+1FX ,F∗

X )
) = 0.

This, togetherwith Theorem4.8, shouldmake apparent the existence of a close relation
between the super Atiyah class and the obstructions to splitting a complex superman-
ifold (see also the recent [3] in this regard).

It should be stressed indeed that, in a classical setting, for a compact complex
Kähler manifold X , the Atiyah class of tangent bundle contains information about all
the Chern classes ck(X) = ck(TX ) of the manifold [15]. In particular, if X admits
a holomorphic connections, i.e. the Atiyah class of TX vanishes, then all the Chern
classes vanish as well, i.e. ck(X) = 0 for any k > 0. It can be reasonably conjectured
that, in a very similar fashion, also on a complex supermanifold X the Atiyah class
of the tangent bundle TX contains information about all of the characteristic classes
related to TX . The difference relies in that among these are to be counted not only
the Atiyah classes of the reduced manifold Xred and of the fermionic sheaf FX—
as seen in Theorem 4.8—and hence the related Chern classes, but also all of the
obstruction classes to splitting the supermanifold, which indeed arises as well from
the tangent bundle TX of the supermanifold. Whereas the fundamental obstruction
ωX ∈ H1(|Xred |, TXred ⊗OXred

∧2FX ) arises from the super Atiyah class upon restriction
to Xred [11], it is quite reasonable to imagine that higher obstruction classes would
arise upon allowing for higher fermionic terms in the filtration ofOX by the ideal sheaf
of nilpotent sections JX of the supermanifold

OXred ⊂ OX /J2X ⊂ · · · ⊂ OX /JnX ⊂ OX ,

and thus considering the restriction of TX to the canonical superscheme contained in
X defined by the pair X (�) := (|Xred |,OX /J�

X ) for � > 1, i.e.

TX |X (�) = TX ⊗OXOX /J�
X

∼= TX /J�
X TX .

5 Examples and further results

In this section we discuss and comment some examples. First, it is obvious that the
complex supermanifold C

n|m admits a splitting for the �1
M-extension for any values

of n and m.

Example 5.1 (Cn|m) Let C
n|m := (|Cn|,OCn|m ) be the complex supermanifold with

structure sheaf given by OCn|m :=OCn⊗∧•[θ ] and let M be the supermanifold con-
structed from C

n|m as in Definition 2.1. Then, for any n and m the �1
M-extension is

split.
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This follows from the fact that the tangent bundle TCn|m of C
n|m is trivial, and as

such it admits a connection. Then, by Theorem 4.3 its super Atiyah class At(TCn|m ) is
trivial, and in turn, by Theorem 4.6 the �1

M-extension related to C
n|m splits.

A way more interesting example is provided by complex Lie supergroups—the reader
is suggested to refer to [26] for the relevant definitions.

Example 5.2 (Complex Lie supergroups G) Let G be a complex Lie supergroup. Then
G admits a holomorphic connection and hence it is split. In particular, if M is the
supermanifold constructed from G as in Definition 2.1, the �1

M-extension splits.
The result follows from the fact that, as in the ordinary theory, a complex Lie

supergroup is parallelizable, i.e. its tangent bundle TG is trivial. Just like in the ordinary
theory this depends on the existence of a group structure on the supermanifold G . In
turn, since the tangent bundle TG of G is trivial, then G admits a connection. It follows
from Theorem 4.7 that G is split and from Theorems 4.3 and 4.6 that the related
�1

M-extension splits.

It is to be stressed that the case of homogeneous supermanifolds, i.e. quotients of Lie
supergroups by some closed Lie sub-(super)group, is more delicate: indeed, complex
homogeneous supermanifolds can indeed be non-split, thus not admitting holomorphic
connection, see [26].

We now move to (complex) projective superspaces CP
n|m , which are defined

as the complex supermanifolds given by the pair CP
n|m := (|CP

n|,OCP n|m ) where
OCP n|m := ∧•

OCP n
(�OCP n (−1)⊕m). Notice that according to the discussion after

Theorem 4.6 above, complex projective superspaces CP
n|m are by definition split

supermanifolds, in particular their fermionic sheaf reads FCP n|m := �OC n|m (−1)⊕m .
See [4] for a dedicated paper.

Example 5.3 (CP
n|m) Let CP

n|m be any complex projective superspace and letM be
the supermanifold constructed from CP

n|m as above. Then, for any value of n � 1
and m � 0 the �1

M-extension is not split.
The result can be seen to follow from point (1) of Theorem 4.9. For this, one needs

to prove that projective spaces CP
n do not admit affine holomorphic connections. For

n � 1 the (dual of the) Euler exact sequence tensored by End OCP n (TCP n ) reads

0 →(T∗
CP n )

⊗2⊗TCP n →(T∗
CP n⊗TCP n (−1))⊗C

⊕n+1→T∗
CP n⊗TCP n → 0. (5.1)

Here all tensor products are over OCP n . In the case n > 1 one computes

H0(CP
n, (T∗

CP n⊗TCPn (−1))) = 0, H1(CP
n, T∗

CP n⊗TCP n (−1)) = C
n+1,

H0(CP
n, (T∗

CP n⊗TCP n )) = C, H1(CP
n, T∗

CP n⊗TCP n (−1)) = 0.

It follows that long cohomology sequence associated to (5.1) reads

0 →H0(CP
n, T∗

CP n⊗TCPn ) ∼= C
δ−→H1(CP, (T∗)⊗2

CPn
⊗TCP n ) ∼= C

(n+1)2+1→ · · ·
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and injectivity of the map implies that At(TCPn ) �= 0. In the case of CP
1, one has

that T∗
CP1

∼= OCP1(−2) and TCP1 ∼= OCP1(+2). The long cohomology exact sequence
reads

0 → H0(
CP

1, T∗
CP1

⊗TCP1
) ∼= C

δ−→ H1(
CP

1, (T∗
CP1

)⊗2⊗TCP1
) → 0.

Alternatively, one can just observe that for a line bundle the Atiyah class equals the
Chern class, i.e. At(TCP1) = c(TCP1) and c(TCP1) = c1(TCP1) = 2, see [15]. It then
follows from Theorem 4.9 that the �1

M-extension related to CP
n|m does not split.

Remark 5.4 Note that in the ordinary complex geometric setting, the vanishing of
the Atiyah class At(E) of a certain (Hermitian holomorphic) vector bundle E on a
compact complex manifold X is equivalent for the vector bundle E to be flat. More
precisely, the class of the curvature [F∇C

E
] ∈ H1(X , T∗

X ⊗OXEnd (E)) of the Chern

connection ∇C
E of the vector bundle E corresponds to its Atiyah class At(E). This

result is by no means true in a complex supergeometric setting. Indeed all of the
Calabi–Yau projective superspaces CP

n|n+1 for n � 1 admit a flat Chern connection
via a generalization of the Fubini–Study metric [20], but none of them have vanishing
super Atiyah class as shown above.

Another interesting example is provided by the possibly easiest—yet non-trivial—
complete intersection in CP

2|2, corresponding to the super conic C ⊂ CP
2 cut out by

the equation

X2
0 + X2

1 + X2
2 + �1�2 = 0 ⊂ CP

2|2. (5.2)

The supergeometry related to the above equation in projective superspace is non-trivial
and not that well-known outside an audience of experts in supergeometry. To help the
reader make sense and appreciate this example, we have opted to discuss some of the
more peculiar aspects of the geometry of the super conic in Appendix B.We thus refer
to it for more information. Here we content ourselves to say that the resulting 1 | 2-
dimensional supermanifold is notably isomorphic to the non-projected supermanifold
constructed out of the following three data

(
Cred = CP

1, FC = OCP1(−2)⊕2, ωC = 1
)
,

where the non-zero obstruction class ωC ∈ H1(CP
1, TCP1⊗∧2FX ) is seen via the

isomorphism H1(CP
1, TCP1⊗∧2FC) ∼= H1(CP

1,OCP1(−2)) ∼= C. We have already
seen that the Atiyah class of CP

1 is non-zero in Example 5.3, moreover the rank 2
vector bundle FC = OCP1(−2)⊕OCP1(−2) is obviously not flat, and hence it has a
non-trivial Atiyah class. We can thus conclude that �1

M-extension related to the super
conic C is totally obstructed in the sense of Theorem 4.9, i.e. all of the obstructions in
the points (1)–(3) in the statement of Theorem 4.9 are non-zero. We summarize this
in the following.

123



On BV supermanifolds... Page 19 of 36 19

Example 5.5 (Super conic C) Let C be the complete intersection given by the equation
X2
0 + X2

1 + X2
2 + �1�2 = 0 in CP

2|2 and let M be the supermanifold constructed
from C as above. Then the related �1

M-extension is not split.

Finally, let us consider a slightly trickier example, namely that of a super elliptic
curve E of dimension 1 | 3 modeled on an ordinary elliptic curve Ered = E and whose
rank 3 fermionic sheaf is given by the direct sum FE = O⊕3

E . We further assume
that the fundamental obstruction class ωE ∈ H1(E, TE ⊗∧2O⊕3

E ) is vanishing, i.e.
ωE = (0, 0, 0) in the isomorphism H1(E, TE ⊗∧2O⊕3

E ) = H1(E,O⊕3
E ) ∼= C

3. Under
these hypotheses one has that all of the points (1)–(3) in Theorem 4.9 are indeed
satisfied since also At(Ered ) = 0 = At(FE ). Nonetheless, the �1

M-extension related
to E might still be non-split, since E is projected but not necessarily split as a complex
supermanifold. Indeed the higher obstruction to splitE takes values in the cohomology
group H1(E,F∗

E ⊗∧3O⊕3
E ), which is computed to be isomorphic to C

⊕3. A non-

vanishing class obstruction class ω
(3)
E = (c1, c2, c3) �= 0 would correspond to odd

transition functions of the kind θi �→ θi + ciθ1θ2θ3 for some complex number ci . In
this case, if E is a non-split supermanifold, the �1

M-extension related to E is also non-
split. The upshot of the example is that in the case of supermanifolds of odd dimension
greater than 2, the presence of higher obstruction classes to split a supermanifold X is
quite a delicate issues. This is summarized in the following.

Example 5.6 (Super elliptic curve of dimension 1 | 3) Let E be a supermanifold of
dimension 1 | 3 such that Ered = E for E an elliptic curve (over C) and FE = O⊕3

E
and let its fundamental obstruction class ωE ∈ H1(E, TE⊗∧2O⊕3

E ) be zero. Then the
higher obstruction to split E

ω
(3)
E ∈ H1(E,F∗

E ⊗∧3O⊕3
E

) ∼= H1(E,O⊕3
E

) ∼= C
⊕3

is defined and fully determines the geometry of E . In particular, ω
(3)
E is also an

obstruction to split the the �1
M-extension related to E , i.e. if E is non-split, then

the �1
M-extension does not split as well.

6 Local theory: forms, natural operators and cohomology

In this sectionwe study forms and natural, i.e. globally defined and invariant, operators
acting on �•

M in the smooth and holomorphic category. We start by making contact
between our framework and the setting developed by the author and collaborators
in [5], where differential and integral forms on a real or complex supermanifold X
are recovered in a unified fashion starting from the triple tensor product of natural
sheaves on X given by �•

X⊗OM DX⊗OM (�•
X )∗, where DX is the sheaf of differential

operators onX . Notice that due to the pivotal presence ofDX this is a non-commutative
construction, better than just super-commutative.
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This triple tensor product is acted uponby twoglobally definedmutually commuting
operators d̂ and δ̂, see [5]

�•
X ⊗OM DX ⊗OM (�•

X )∗d̂ δ̂

and as such it yields a double complex of sheaves, (�•
X⊗OM DX⊗OM (�•

X )∗, δ̂, d̂).
Differential and integral forms, together with their differentials and Poincaré lem-

mas are recovered via the two natural spectral sequences—we call them Ed̂
i and E δ̂

i ,

depending on whether we are starting computing the cohomology with respect of d̂
or δ̂—related to this double complex (�•

X⊗OM DX⊗OM (�•
X )∗, δ̂, d̂). In particular, the

following holds true.

Theorem 6.1 ([5]) Let X be a real or complex supermanifold. Then the spectral

sequences E δ̂
i and Ed̂

i related to the double complex (�•
X⊗OM DX⊗OM (�•

X )∗, δ̂, d̂)

(1) yield the differential forms and integral forms on X at the first page, i.e.

E δ̂
1

∼= �•
X , Ed̂

1
∼= Ber (X )⊗OM (�•

X )∗;

(2) both converge to the locally constant sheaf KX forK the real or complex numbers
at the second page, i.e.

E δ̂
2 = E δ̂∞ = KX , Ed̂

2 = Ed̂∞ ∼= KX .

A consequence of the above is that the hypercohomologies of differential and integral
forms are isomorphic, and both coincide with the Rham cohomology of the reduced
manifold, see also the recent [22].

Corollary 6.2 ([5]) Let X be a real supermanifold. Then the hypercohomologies of
(the sheaf of) differential forms H•

dif (X ) and integral forms H•
int (X ) are isomorphic.

In particular, one finds

H•
dif (X ) ∼= Ȟ•(|Xred |, RX ) ∼= H•

int (X ).

One the main ingredients of the above construction is the non-commutative sheaf of
differential operatorDX . ToDX is canonically associated a sheaf of super-commuta-
tive OX -algebras, by considering the filtration D

(�i)
X ⊆ D

(�i+1)
X by the degree of the

differential operators for any i � 0. This is given by the quotient

gr•(DX ) :=
∞⊕

i=0

D
(�i)
X

/
D

(�i−1)
X .
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It is not hard to see that gr•(DX ) ∼= S•TX . In this way, a “de-quantization” of the
above triple tensor product reads

�•
X ⊗OM DX ⊗OM (�•

X )∗ de-quantization
�•

X ⊗OM S•TX ⊗OM (�•
X )∗. (6.1)

This sheaf of super-commutativeOX -algebras can be put in relation with the sheaf�•
M,

seen as a sheaf of OX -modules. Indeed one can observe that the �1
M-extension (3.4) is

always locally split, so that over an open set π−1(U ) ofM forU an open set in X , one
has

�1
π−1(U )

∼= π∗�1
U ⊕π∗TU .

This holds true globally for a real supermanifold, as proved above. It follows that

�•
π−1(U )

∼= S•
OX

(π∗�1
U ⊕π∗TU )⊗Oπ−1(U )

∼= �•
U ⊗OU S

•TU ⊗OU (�•
U )∗, (6.2)

to be compared to (6.1) above. Using the decomposition (6.2), the action of the de
Rham differential d : �•

M → �•
M can be given in an open set π−1(U ) with local

coordinate xa and pa as follows:

d(η⊗F⊗ f (x, p)) = (−1)|η|+|F |
(

η⊗F⊗dxa
∂ f

∂xa
+ η⊗F⊗dpa

∂ f

∂ pa

)

= (−1)|F ||xa |+|η| η dxa ⊗F⊗ ∂ f

∂xa

+ (−1)|η|+|F | η⊗F dpa ⊗ ∂ f

∂ pa
,

(6.3)

where η ∈ �•
X , F ∈ S•TX and f ∈ (�•

X )∗ = OM. The sum over a is left understood.

Theorem 6.3 (Homology of d / Poincaré lemma) Let M be defined as above and let
d : �•

M → �•
M the de Rham differential. Then

Hd(�
•
M) ∼= KM,

where KM is the sheaf of locally-constant functions on M for K the real or complex
numbers.

Proof Given the action of the de Rham differential d in (6.3), the result follows from
the ordinary Poincaré lemma for supermanifolds, see for example [22]. 	


6.1 Odd symplectic form and its cohomology

Let us keep working in the smooth or holomorphic category and let us now consider
the (non-degenerate) odd 2-form ω = ∑

a dxadpa ∈ (�2
M)1 where the index a runs

over both even and odd coordinates. We first observe the following.
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Lemma 6.4 (Global definition on ω) The odd 2-form ω = ∑
a dxadpa ∈ (�2

M)1 is
invariant, i.e. coordinate independent.

Proof We use the coordinate transformations of Lemma 3.1. One finds that

dxa

(
∂zb
∂xa

dqb + (−1)|xa |+|zb| d
(

∂zb
∂xa

)

qb

)

= dzadqa + (−1)|xa |+|zb| dxadxc
(

∂2zb
∂xc∂xa

)

qb,

and it is easy to verify that the contribution of the second term is zero. 	

Another way to see that ω is actually invariant is to introduce its primitive form
η := (−1)|xa |+1dxa pa .

Lemma 6.5 (Primitive form of ω ) The primitive form of ω is invariant, moreover one
has dη = ω. In particular, ω is invariant.

Proof Using again the the transformations of Lemma 3.1, it is enough to compute

(−1)|xa |+1dxa pa = (−1)|xa |+1dzc

(
∂xa
∂zc

)(

(−1)|xa |+|zb| ∂zb
∂xa

qb

)

= (−1)|zb|+1dzbqb.

Clearly dη = ω. Since both d and η are invariant so is ω. 	

The previous results allow to give the following definition, see for example [16, 25]
or the dedicated chapter in the recent book [19].

Definition 6.6 (Odd symplectic form / odd symplectic supermanifold) We call
ω := ∑

a dxadpa the odd symplectic form associated to M. In particular, we say that
the pair (M, ω) defines an odd symplectic supermanifold.

Remark 6.7 Notice thatwith respect to the definition of odd symplectic supermanifolds
available in the literature [25], the supermanifold M is constructed by starting from a
supermanifoldX and a vector bundle on it, better than from an ordinarymanifold X and
a vector bundle on it: in this sense it is a “generalized” odd symplectic supermanifold.

Left multiplication by the odd symplectic form ω = ∑
a dxadpa induces a well-

defined invariant operator s : �•
M → �•

M whose action with respect to the above
decomposition is given by

s (η⊗F⊗ f ) = (−1)|xa ||η| dxaη⊗dpaF⊗ f .

Such as the de Rham differential d, also the multiplication by the odd symplectic form
s : �•

M → �•
M is nilpotent. We compute its homology in the next theorem.
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Theorem 6.8 (Homology of s) Let M be defined as above and let s : �•
M → �•

M be
the left multiplication by the odd symplectic form. Then

Hs(�
•
M) ∼= [dz1 . . . dzn ⊗dpn+1 . . . dpn+m],

as a sheaf of OM = (�•
X )∗-modules.

Proof We need to construct a homotopy for the operator s. Using the above local
decomposition, �•

M can be represented by the sheaf of vector spaces generated by the
elements η⊗F⊗ f where f ∈ OM�π−1(U ) and for monomials η = dx I and F = dpJ

for multi-indices I and J .
On the other hand, one can observe that the decomposition (6.2) coincides with

�•
X ⊗gr(DX )⊗(�•

X )∗, and in view of this, the action of the operator s reads

s(η⊗F⊗ f ) = (−1)|xa ||ω| dxa(dx J )⊗∂xa (∂
J )⊗ f ,

as dpJ corresponds to ∂ J and dpa corresponds to ∂xa , having used the local splitting of
the �1

M-extension. Notice that f is not touched by s. We thus introduce the following
local operator:

h(η⊗F⊗ f ) :=
∑

a

(−1)|xa |(|dx I |+|∂ J |+1) ∂dxa dx
I⊗[∂ J, xa]⊗ f .

We prove that this is a homotopy for the operator s. In particular, one finds that

(hs + sh)(η⊗F⊗ f )

=
∑

a,b

(−1)(|xa |+|xb|)|η| δabη⊗∂ J⊗ f

+
∑

a

(−1)|∂ J ||xa | η⊗∂a[∂ J, xa]⊗ f

+
∑

a

(−1)|xa |+1 dxa(∂dxaη)⊗∂ J⊗ f .

(6.4)

The summands in the previous expression read

∑

a,b

(−1)(|xa |+|xb|)|η| δabη⊗∂ J⊗ f = (n + m)(η⊗F⊗ f ),

∑

a

(−1)|xa ||∂ J | η⊗∂a[∂ J, xa]⊗ f =
∑

a

(−1)|xa | η⊗∂ J⊗ f

= (deg0(F) − deg1(F))(η⊗F⊗ f ),
∑

a

(−1)|xa |+1 dxa(∂dxaη)⊗∂ J⊗ f = (deg0(η) − deg1(η))(η⊗F⊗ f ),
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where n is the even and m is the odd dimension of X and deg0 and deg1 is the even
and odd degree of η = dx I and F = ∂ J. It follows that the above sum (6.4) gives

(hs + sh)(η⊗F⊗ f )

= (
(n + m) + (deg0(∂

J ) − deg1(∂
J )) + (deg0(η) − deg1(η))

)
(η⊗F⊗ f ).

The homotopy h fails if and only if one has deg0(η) = deg0(∂
J ) = 0, deg1(η) =

n and deg1(∂
J ) = m, so that the non-zero element in homology takes the form

dz1 . . . dzn ⊗∂θ1 . . . ∂θm = dz1 . . . dzn ⊗dpn+1 . . . dpn+m ⊗ f , where f is any section
of the structure sheaf OM. 	

The above theorem has the following corollary.

Corollary 6.9 LetM be defined as above and let s : �•
M → �•

M be the left multiplication
by the odd symplectic form. Then the homology of s is naturally isomorphic to the pull-
back of the Berezinian sheaf on X , i.e.

HM(�•
M) ∼= π∗Ber (X ). (6.5)

Proof Allowing for the above identifications and the usual slight abuse of notation
concerning the pull-backs, it is enough to observe that [dz1 . . . dzn ⊗∂θ1 . . . ∂θm ] =
[dz1 . . . dzn ⊗dpn+1 . . . dpn+m] generates the Berezinian sheaf of the supermanifold
X , see [21] for details on this construction of the Berezinian sheaf. 	

Remark 6.10 The above result can be related to the notion of (super) semidensities, see
[16, 19, 25]. Indeed the�1

M-extension exact sequence (3.4) allows to easily compute the
Berezinian sheafBer (M) :=Ber (�1

M)∗ of the supermanifoldM. Taking theBerezinians,
the short exact sequence (3.4) yields

Ber (�1
M)∗ ∼= Ber (π∗�1

X )∗ ⊗OMBer (π
∗TX )∗ ∼= π∗(Ber (X )⊗OX Ber (TX )∗).

Observing that for any sheaf E on X one has Ber (�E) ∼= Ber (E)∗ ∼= Ber (E∗), one sees
that Ber (TX )∗ ∼= Ber (�T∗

X )∗ = Ber ∗(�1
X )∗ = Ber (X ) hence

Ber (M) ∼= π∗Ber (X )⊗2. (6.6)

Defining the sheaf of semidensities Dens(M)1/2 of the supermanifold M to be the
locally-free sheaf of OM-modules whose sections are “square roots” of the sections
of the Berezinian sheaf, i.e. Dens1/2(M) :=Ber (M)⊗1/2, it follows from (6.6) that
Dens(M)1/2 ∼= π∗Ber (X ). In turn, the above (6.5) can be re-written as

Hs(�
•
M) ∼= Dens(M)1/2,

where the sheaf of semidensities is seen as a sheaf ofOM-modules.Notice that reducing
to the underlying ordinary manifold Xred one would find Dens(Mred )1/2 ∼= π∗KXred ,
which is the ordinary notion for semidensities of odd symplectic supermanifolds con-
structed out of an ordinary manifold Xred , see for example [19] and [25].
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6.2 Deformed de Rham complex and BV Laplacian

Now, the crucial observation, originally due to Ševera in [25], is that the nilpotent
operators d and s commutes with each other. This holds true also in the present setting,
as the following shows.

Lemma 6.11 (d commutes with s) Let d and s be the de Rham differential and the
multiplication by the odd symplectic form, then [d, s ] = 0. In particular the triple
(�•

M, s,d) defines a double complex.

Proof This is a local check. Using the above decomposition, one computes

d◦s(η⊗F⊗ f )

= (−1)|η||xa |+|xb|+|xb||η|+|xb||F | dxbdxaη⊗dpaF⊗∂xb f

+ (−1)|η||xa |+|xb|+|xb||F |+|η|+|F |+|xb||xa |+1 dxaη⊗dpbdpa F⊗∂pb F

= s◦d(η⊗F⊗ f ),

which concludes the proof. 	

It follows from the previous Lemma 6.11 that, in particular, d acts on the homology
of s. This leads to the following definition.

Definition 6.12 (Deformed de Rham complex / spectral sequence Es
i ) We call the

double complex (�•
M, s,d) the deformed de Rham (double) complex ofM. We denote

with Es
i the related spectral sequence (Ei , δi ) that starts with the differential δ1 = s

and we call it deformed de Rham spectral sequence.

Let us now study the deformed de Rham spectral sequence Es
i .

Theorem 6.13 (Semidensities & super BV operator) Let E s
i be defined as above. Then

(1) the first page of the spectral sequence E s
i is isomorphic to semidensities on X , i.e.

E s
1

∼= π∗Ber (X );

(2) the second differential δ2 of the spectral sequence E s
i is zero. In particular, the

second page of the spectral sequence E s
i is given again by

E s
2

∼= π∗Ber (X );

(3) the third differential δ3 of the spectral sequence E s
i is—up to exact terms—the

super BV Laplacian

�BV
2 : π∗Ber (X ) π∗Ber (X )

D f �BV
2 (D f ) :=D

(∑
a

∂2

∂xa∂ pa
f
)
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where D = [dx1 . . . dxn ⊗dpn+1 . . . dpn+m] is a section of π∗Ber (X ) and f =
f (x, p) is a section ofOM = (�•

X )∗. In particular, the spectral sequence converges
at page three, which is isomorphic to the locally constant sheaf on X , i.e.

E s
3

∼= KX ∼= E s∞.

A representative of this homology class if given by

[dx1 . . . dxn ⊗dpn+1 . . . dpn+m] xn+1 . . . xn+m p1 . . . pn ∈ π∗Ber (X ). (6.7)

Proof The first point of the theorem is just Corollary 6.9. As for the second point,
notice that the corresponding differential is given by the induced action of the de Rham
differential d on E s

1. Referring to Theorem 6.8, one can observe that the induced action
of d maps to a zero-homotopic cohomology. More in particular, for immediate use,
one can observe that for any S ∈ E s

1, one has

d(S) = s(T ), with T :=
∑

a

(
∂dpa∂xa + ∂dxa∂pa

)
(S),

where S can be taken to be of the form [dx1 . . . dxn ⊗dpn+1 . . . dpn+m]⊗ f .
The third differential can be easily inferred by noticing that, formally, δ3 =

d◦s−1 ◦d, so that in particular, when acting on an element of Es
2 = Es

1 one finds,
upon the previous observation

δ3(S) = d(T ).

Taking S = [dx1 . . . dn ⊗dpn+1 . . . dpn+m] f as above it is easy to compute that

d(T ) = [dx1 . . . dxn ⊗dpn+1 . . . dpn+m]
(∑

a

∂2

∂xa∂pa
f (x, p)

)

+ exact terms.

We now look for a homotopy for this operator. To this end, without loss of gen-
erality, we let f ∈ OM = (�•

X )∗ be of the form f (x, p) := gI (x)pI for xa =
x1 . . . xn | xn+1 . . . xn+m even and odd coordinates of X and I a multi-index. We claim
that the homotopy for �BV

2 is given by

K( f ) :=
∑

a

(−1)|g|(|xa |+1)
(∫ 1

0
dt t� f xaP∗

t gI

)

pa p
I , (6.8)

where t ∈ [0, 1], P∗
t g(x) = g(t x) and � f is a constant, which depends on f , that will

be fixed later. An attentive computation yields the following:

(
�BV

2 ◦K + K◦�BV
2

)
( f (x, p))
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= f (x, p) − δ� f +1+deg1(gI ),0 gI (0)p
I

+ (
n + m + deg0(p

I ) − deg1(p
I ) − 2 deg1(gI ) − �g − 1

)
∫ 1

0
dt t�g (P∗

t gI )p
I.

This gives the following condition on � f as to have a homotopy:

� f = n + m + deg0(p
I ) − deg1(p

I ) − 2 deg1(gI ) − 1,

which yields

(
�BV

2 ◦K + K◦�BV
2

)
( f (x, p))

= f (x, p) − δ(n+m+deg0(pI )−deg1(pI )−deg1(gI )),0
gI (0 | θ)pI.

Observing that deg0(p
I ) � 0, 0 � deg1(p

I ) � n and 0 � deg1(gI ) � m, one sees
that the homotopy fails only for deg0(p

I ) = 0, deg1(p
1) = n and deg1(gI ) = m. One

thus finds that f (x, p) = xn+1 . . . xn+m p1 . . . pn so that

k · [dx1 . . . dxn ⊗dpn+1 . . . dpn+m]⊗ xn+1 . . . xn+m p1 . . . pn

with k ∈ R or k ∈ C is a representative for Es
3. Finally, it is easy to see that the repre-

sentative is d-closed, so that it yields zero when acted by all the higher differentials,
concluding the proof. 	


6.3 Remarks and outlooks

The above Theorem 6.13 extends to a “fully” supergeometric context the beautiful
Ševera’s result [25] for odd symplectic supermanifolds, with possibly the bonus of
showing explicitly the homotopy (6.8) of the super BV Laplacian—which is seen here
as a morphism of sheaves—together with the related representative in sheaf cohomol-
ogy (6.7). It is to be noted that the form of the homotopy shown above is somewhat
general, as the structure of odd nilpotent operators in supergeometry often consists
of a “multiplication” of an even and an odd part, such as the BV Laplacian above or
the de Rham differential—notice indeed that the related complexes of integral forms
and of differential forms are quasi-isomorphic, see Theorem 6.2. Similar structures
for homotopies of differentials can be found also in [5, 14, 21, 22].

Finally, a remark—or better a warning—about the holomorphic category is in
order. Let us consider a generic smooth supermanifold X admitting a closed non-
degenerate odd 2-form ω, i.e. an odd symplectic supermanifold (X , ω). Then, by a
well-known result due to Schwarz the supermanifold (X , ω) is globally symplectomor-
phic to the “standard” odd symplectic supermanifold constructed asM above, starting
from the reduced space Xred of X , and endowed with its standard odd symplectic form∑

i dxi dpi , see [24]. The proof of this fact heavily relies on that every smooth super-
manifold is in fact split, hence it is itself the total space of a certain vector bundlewhose
fibers have odd parity. It is then natural to ask what happens in the holomorphic cate-
gory, where complex supermanifolds can in fact be non-split. In particular, one can ask
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the following question: does Schwarz’s result hold true in the holomorphic category
as well? In other words, is it possible to find an example of complex supermanifold
admitting a closed non-degenerate odd 2-form which is not globally isomorphic to a
supermanifold of the kind ofM for some manifold Xred ? Clearly, a non-split complex
supermanifold admitting a globally defined odd non-degenerate closed 2-form would
provide such a counterexample to Schwarz result. This suggests, in turn, the following
question: do the obstruction classes to splitting a complex supermanifold also obstruct
the existence of a globally-defined odd non-degenerate closed 2-form?We leave these
questions to future works.
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Appendix A: Extensions of sheaves

For the sake of readability of the paper we recall that an extension of sheaves on a
manifold X is a short exact sequence of sheaves

0 A
i

C
j

B 0. (A.1)

In particular,we say thatC is an extension ofBbyA. It iswell known fromhomological
algebra that extensions are classified up to equivalence via their cohomology classes
[ξ ] ∈ Ext1(B,A). In particular, we say that an extension is split if is equivalent to the
trivial extension, i.e. if C ∼= A⊕B in (A.1), i.e. π has the property that j ◦π = idB.
Notice that if A and B are locally-free sheaves on X , then one has Hom(B,A) ∼=
A⊗B∗, so that in particular Ext1(B,A) ∼= H1(X ,A⊗B∗).

We will now compute explicitly the above Ext-functor. We will work in a general
setting—over a smooth, analytic or algebraic manifold X—following an ordinary
diagram chasing argument. Since (A.1) is always locally split, i.e. C�U∼= A�U ⊕B�U
on an open set U in X , then there exists a basis cU = {cU1 , . . . , cUn+m} of C such that
aU = {cU1 , . . . , cUn } is a basis of A and bU = { j(cUn+1), . . . j(c

U
n+m)} is a basis of B.

If now U and V are two open sets in X such that U ∩ V �= 0, and cU and cV

are the related local bases on U and V respectively, then we consider a coordinate
transformation of the following form (see for example the transition functions of
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Theorem 3.1 in the main text):

cU = cV
(
A C
0 B

)

,

where A ∈ Mat n×n(OU∩V ), B ∈ Matm×m(OU∩V ) and C ∈ Mat n×m(OU∩V ). The
class [ξ ] ∈ Ext1(B,A) is defined applying the contravariant functor Hom( · ,A) to
the short exact sequence (A.1), obtaining

0 → Hom(B,A) → Hom(C,A) → Hom(A,A)
δ−→ Ext1(B,A) → · · · .

We have [ξ ] = δ(idA). In order to explicitly compute this, we use a covering having
open sets U and V with U ∩ V �= ∅. In particular, we describe the element idA ∈
Hom(A,A) = �X (A⊗A∗) on the open set U as aU · ∂Ua := aUi ⊗∂Ua j

, where we have

introduced {∂Uai }ni=1, the basis dual to {ai }ni=1 on U . Notice that here aU is looked at
as a row vector and ∂Ua is looked at as a column vector, so that in particular, their

transformation in an intersection reads aU = aVA and ∂Ua = A−1∂V
a , or analogously

∂Ut
a = ∂V t

a (A−1)t . It follows that indeed idA = aU · ∂Ua = aVA · A−1∂V
a = aV · ∂V

a .

We now look at the transformation of the dual basis ∂Uc of cU, which we

decompose—with a slight abuse of notation—as ∂Uc = (∂Ua , ∂Ub ). We have that

(
∂Ua , ∂Ub

) = (
∂Ua , ∂Ub

)
(
A C
0 B

)−1 t

=
(

(A−1)t 0
−(B−1)tCt (A−1)t (B−1)t

)

.

In particular, it follows that

∂Ut
a = ∂V t

a (A−1)t − ∂V t
b (B−1)tCt (A−1)t .

Let us now consider the liftings of idA to Hom(C,A) and their difference
ϕUV := aU ·∂Ua − aV ·∂V

a written with respect to the bases on V . We find

ϕUV = aU · ∂Ua − aV · ∂V
a

= aV (A · A−1)∂Ua − aV (A · A−1CB−1)∂V
b = − aV (CB−1)∂V

b .

We observe that ϕUV can be naturally interpreted as a section ϕUV ∈
�U∩V (Hom(B,A)), whose associated matrix with respect to the bases aV and bV

is given by −CB−1 ∈ Mat n×m(OU∩V ). More in general, given a open covering
U = {Ui }i∈I of X , the cohomology class [ξ ] ∈ Ext1(B,A) is represented by the
cocycle {ϕi j }i, j∈I , such that

Ext1(B,A) � [ξ ] �
{
ϕi j : Ui ∩Uj → Mat n×m(OX�Ui∩Uj ) : i < j

}
,

which is represented by the matrix −CB−1 on in intersection Ui ∩ Uj , with respect
to the bases of A and B chosen on Uj .

123



19 Page 30 of 36 S. Noja

Now, if [ξ ] ≡ 0 in cohomology, the related Čech cocycle is actually a coboundary,
i.e.

ϕUV = (ϕV − ϕU )�U∩V , (A.2)

for two open sets U ∩ V �= ∅ and where ϕV ∈ �V (Hom(B,A)) and
ϕU ∈ �U (Hom(B,A)). In particular, choosing bases on U and V , in terms of
matrix representatives, one pose ϕU := aU [MU ]∂Ub and ϕV = aV [MV ]∂V

b and

ϕUV = ∂V
a [−CB−1]∂V

b . Changing coordinates from U to V in ϕU one has ϕU =
aV [AMU B−1]∂V

b . Substituting these in (A.2) one gets the matrix identity

− CB−1 = MV − AMU B−1,

which in turn can be rewritten as

0 = C + MV B − AMU . (A.3)

Recalling that in (non-abelian) Čech cohomology, by definition, two 1-cocycles
{gi j }i< j and {g′

i j }i< j are cohomologous if g′
i j = hi gi j h

−1
j for some 0-cochains

{hi }i∈I , then in the present case for the sheaf C, it is enough to consider, say on
Ui = V

hV =
(
1n MV

0 1m

)

,

so that, in turn hV gVU g
−1
U reads

(
1n MV

0 1m

) (
A C
0 B

) (
1n −MU

0 1m

)

=
(
A C + MV B − AMU

0 B

)

=
(
A 0
0 B

)

,

upon using equation (A.3) in the last equality. We summarize the above discussion in
the following theorem.

Theorem 6.14 Let C be an extension of B by A as in (A.1) with transition functions
of the form

G =
(
A C
0 B

)

(A.4)

for A and B transition functions of A and B respectively, upon choosing local bases.
Then [ξ ] ∈ Ext1(B,A) is represented by a 1-cocycle valued inMat n×m(OX ) given by
[−CB−1] with respect to the chosen bases of A and B. In particular, if [ξ ] ≡ 0, then
the structure group of the C reduces to GL (n)× GL (m).
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Appendix B: Geometry of the super conic

For a better understanding of Example 5.5, we briefly spell out in this appendix some
details of the geometry of the complex supermanifold C ⊂ CP

2|2 cut out by the
equation

X2
0 + X2

1 + X2
2 + �1�2 = 0 ⊂ CP

2|2 (B.1)

where the X ’s and the �’s denote homogeneous even and odd coordinates of CP
2|2

respectively.The aboveEq. (B.1) defines a 1 | 2-dimensional (complex) supermanifold.
Further it is easy to observe that, setting the odd homogeneous coordinates to zero,
one is left with the equation

X2
0 + X2

1 + X2
2 = 0 ⊂ CP

2

which defines a conic in CP
2, implying that the reduced manifold of C is isomorphic

to CP
1, that is Cred ∼= CP

1. We will show that the super conic C is indeed isomorphic
to a non-projected supermanifold of dimension 1 | 2 having CP

1 as reduced manifold.
It is not hard to classify all of the non-projected 1 | 2-dimensional complex super-

manifolds over CP
1. Indeed the following fundamental Theorem holds true, see [18,

Proposition 9, Chapter 4, Section 2].

Theorem B.1 (Supermanifolds of dimension n | 2) Let X := (|Xred |,OX ) be a complex
supermanifold of dimension n | 2. Then X is defined up to isomorphism by the triple
(Xred ,FX , ωX ) where Xred is the reduced manifold of X , FX is a locally-free sheaf
of OXred -modules of rank 2—the fermionic sheaf of X—and ωX is the fundamental
obstruction ωX ∈ H1(|Xred |, TXred ⊗OXred

∧2FX ).

Notice that since the odd dimension is 2, no higher obstruction classes can appear.

Remark B.2 Concretely, in presence of a non-zero obstruction class, the (even) tran-
sition functions coming from the underlying manifold Xred get a correction coming
from ωX as they are lifted to X . More precisely, if {Ui }i∈I is an open covering of |Xred |
such that in a certain intersection Ui ∩ Uj the transition functions of Xred are given
by certain (holomorphic) functions z�i j = z�i j (z j ) for � = 1, . . . , n, then the even
transition functions of a non-projected n|2-dimensional supermanifold will be given
explicitly by

z�i j (z j , θ j ) = z�i j (z j ) + (ωX )i j (z j , θ j )(z
�
i j ), � = 1, . . . , n, (B.2)

where the z’s and the θ ’s are respectively even and odd local coordinates for X , and
where ωi j is a derivation acting on z�i j and taking values in

∧2FX—hence the θ ’s can
only appear in (ωX )i j through their product, thus respecting parity.

Now, keeping fixed Xred = CP
1, Theorem B.1 yields the following result for non-

projected of dimension 1 | 2.
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Theorem B.3 (Non-projected 1 | 2-dimensional supermanifolds overCP
1) Every non-

projected 1 | 2-dimensional supermanifold X over CP
1 is characterised up to isomor-

phism by a triple (CP
1,FX , ωX ) where FX is a locally-free sheaf of OCP1-modules of

rank 2 such that

FX ∼= OP1(m)⊕OP1(n),

with m + n = �, � � 4 and ωX is a non-zero cohomology class ωX ∈ H1(|CP
1|,

OCP1(2 − �)).

Proof First by the Birkhoff–Grothendieck splitting theorem, see [13], every locally-
free sheaf of OCP1 -modules of any rank is isomorphic to a direct sum of invertible
sheaves, that in turn are all of the formOCP1(k) for some k ∈ Z (recall that Pic(CP

1) ∼=
Z), i.e. if we let E be a locally-free sheaf ofOCP1 -modules of rank n, then we have E ∼=⊕n

i=1 OP1(ki ) uniquely up to permutation of the terms in direct sum at the right hand
side of the isomorphism. It follows that in our casewe haveFX ∼= OCP1(m)⊕OCP1(n),
for n,m ∈ Z.

Finally, observing that ∧2FX ∼= O
CP

1(n + m) and that TCP1 ∼= OCP1(+2), one
finds that

H1(|CP
1|, TCP1⊗∧2FX

) ∼= H1(|CP
1|,OCP1(2 + m + n))

)
. (B.3)

For the supermanifold X to be non-projected the cohomology in (B.3) should be non-
zero, which amounts to require that m + n � 4. Posing � :=m + n � 4 and ωX a
non-zero class in H1(|CP

1|,OCP1(2 + �)), one concludes using Theorem B.3. 	

We now focus on a particular choice of supermanifold in the “family” singled out
above, namely we choose n = m = −2. Notice that in this case one has a one-
dimensional obstruction space, i.e. H1(|CP

1|,OCP1(−2)) ∼= C.

Definition B.4 (Supermanifold CP
1|2
ω ) We denote by CP

1|2
ω , the supermanifold aris-

ing from the triple (CP
1,F, ω), with F = OCP1(−2)⊕2 and ω a non-zero class in

H1(|CP
1|,OCP1(−2)).

In order to prove that the supermanifold CP
1|2
ω is actually isomorphic to the super

conic C, we need to find the transition functions of CP
1|2
ω . To this end, let us work with

the standard open covering of CP
1 given by U = (U0,U1) where Ui := {Xi �= 0}, if

[X0 : X1] are the homogeneous coordinates of CP
1. Then one has

U0 := {X0 �= 0} � zmod J2 := X1

X0
,

U1 := {X1 �= 0} � wmod J2 := X0

X1
,

for J the nilpotent sheaf of CP
1|2
ω (note that since we are working in odd dimension 2

one has (J)0 = J2). Accordingly, on unique intersection U0 ∩U1 one finds

zmod J2 = 1

w
mod J2. (B.4)
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Passing to the fermionic sheaf F = OCP1(−2)⊕2, we denote by (θi )i=1,2 a local basis
of F on U0 and by (ψi )i=1,2 a local basis of F on U1 respectively, so that one can
write

U0 := {X0 �= 0} � θi := π

(
1

X2
0

)

,

U1 := {X1 �= 0} � ψ1 := π

(
1

X2
1

)

,

where the π ’s are there to remember the odd parity, since F = (J)1 for J the sheaf
of nilpotent sections in OX . The transition functions in the intersection U0 ∩ U1 are
therefore given by

θ1 = ψ1

w2 , θ2 = ψ1

w2 .

These identify also the product θ1θ2 (and ψ1ψ2) with a section of
∧2F ∼= OCP1(−4).

This is enough to give the correction to the even part of the transition functions of the
non-projected supermanifold CP

1|2
ω given by the presence of a non-zero obstruction

classω ∈ H1(|CP
1|,OCP1(−2)). Indeed, working with the previous conventions, one

can explicitly identify

H1(|CP
1|, TCP1⊗∧2F

) ∼= H1(|CP
1|,OCP1(−2)) � ω = λ ·

[
1

X0X1

]

, (B.5)

for λ ∈ C—in our case λ �= 0. Notice that X0X1 �= 0 in U1 ∩ U1, also—with abuse
of notation—we will take the liberty of suppressing the index of the intersection as
there is a single one of them. The previous (B.5) can be rewritten as follows:

ω = λ ·
[(

X1

X0

)3 1

X4
1

X2
0

]

= λ ·
[
ψ1ψ2

w3 ∂z

]

, (B.6)

where we have identified the sections in the intersectionU0 ∩U1 via w3 = (X0/X1)
3,

ψ1ψ2 = 1/X4
1 and ∂z = X2

0. Notice indeed that the section of the tangent sheaf
∂z ∈ TCP1 satisfies the transformation law ∂z = −w2∂w and hence it has a double
zero at [0 : 1] ∈ CP

1, so that it can be identified with the section X2
0 of OCP1(+2). It

follows that plugging equations (B.4) and (B.6) into the general expression (B.2), one
finds that the even transition functions of CP

1|2
ω reads

z(w,ψ1, ψ2) = 1

w
+ λ

ψ1ψ2

w3 ,

for some non-zero complex number λ, that we will simply set to 1 in what follows.
Indeed, it is true in general that choosing ω′

X = λ ωX for some λ ∈ C
∗ defines an

isomorphic extension of OXred by
∧2FX—however the isomorphism is not the identity

on OXred and
∧2FX . We summarize the previous discussion in the following lemma.
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Lemma B.5 (Transition functions of CP
1|2
ω ) Let CP

1|2
ω be the non-projected super-

manifold defined as above. Then in the (unique) intersection U0 ∩ U1 the transition
functions read

z = 1

w
+ ψ1ψ2

w3 , θi = ψi

w2 , i = 1, 2. (B.7)

We now want to embed CP
1|2
ω in a projective superspace, namely in CP

2|2. In order
to do this, we need to find an ample line bundle L of CP

1|2
ω which allows for such an

embedding. In the case of CP
1|2
ω it is easy to define L using the standard covering of

CP
1|2 given by {U0,U1} introduced above and then giving the expression of the unique

transition function in the intersection U0 ∩U1. Namely, we consider the following:

L �
({U0,U1}, eU0 = (w2 − ψ1ψ2)eU1

)
, (B.8)

where (eU0 , eU1) are the basis or frames of L on U0 and U1.

Remark B.6 A comment is in order here. Indeed, as in the ordinary case, one can
always describe a line bundle LX on a supermanifold X by giving an open covering
{Ui }i∈I of |Xred | and the transition functions {gi j }i, j∈I between two local frames eUi

and eU j in the intersections Ui ∩ Uj for i, j ∈ I , so that eUi = gi j eU j . In this
fashion one has indeed the correspondence LX � ({Ui }i∈I , {gi j }i, j∈I ), where we
stress that gi j takes values in O∗

X ,0(Ui ∩ Uj ) for any i, j ∈ I , since the transition
functions need to be even, hence parity-preserving. Further, compatibility on triple
intersections gives a cocycle condition, i.e. the transition functions {gi j }i, j∈I define
classes in H1(|Xred |,O∗

X ,0). This observation leads to the super-analog of the usual
identification of the Picard group Pic(X) of isomorphy classes of line bundle on a
complex manifold X with H1(|X |,O∗

X ): in the case of a supermanifold X we have
instead Pic(X ) ∼= H1(|Xred |,O∗

X ,0). Along this line of thought, the explicit form of

the transition functions (B.7) of CP
1|2
ω comes in handy to verify that the previous

definition (B.8) of L is well-posed. Indeed, one can check that the transition function
defines an element in the cohomology group H1(|CP

1|,O∗
CP

1|2
ω ,0

), which is identified

with the Picard group Pic(CP
1|2
ω ) of the supermanifold CP

1|2
ω . More in general, the

transition functions (B.7) allow to compute, via Čech cohomology, the full Picard
group of CP

1|2
ω . Namely, one finds that the Picard group of CP

1|2
ω is made of lifts of

line bundles on CP
1—recall that Pic(CP

1) ∼= Z—and a continuous part. Namely, one
finds Pic(CP

1|2
ω ) ∼= Z⊕C

3.

Getting back to the line bundle L defined in (B.8), the transition functions allow to
verify that the following are global sections:

X0 := {eU0 , (w
2 − ψ1ψ2)eU1}, X1 := {zeU0 , weU1},

X2 := {(z2 − θ1θ2)eU0 , eU1},
�1 := {θ1eU0 , ψ1eU1}, �2 := {θ2eU0 , ψ2eU1}.
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Let us check, for instance, that X2 is a global section:

(z2 − θ1θ2)eU0 =
([

1

w
+ ψ1ψ2

w3

]2
+ ψ1ψ2

w4

)

(w2 − ψ1ψ2)eU1

=
(

1

w2 + ψ1ψ2

w4

)

(w2 − ψ1ψ2)eU1 = eU1 .

It is immediate to find the equation satisfied by these global sections using their
local definitions. Working on U0, for example one has

[�1�2 − X2
1 − X0X2]|U0 = θ1θ2 − z2 + z2 − θ1θ2 = 0,

and we leave to the reader to write down the corresponding map ϕ : CP
1|2
ω → CP

2|2
and check that it defines an embedding whose image is given by the equation

�1�2 − X2
1 − X0X2 = 0 ⊂ CP

2|2. (B.9)

Finally, in order to conclude the verification that CP
1|2
ω is actually isomorphic to

the supermanifold C ⊂ CP
2|2, one can bring the Eq. (B.9) in the form (B.1) via a

transformation in PGL(3 | 2)—the supergroup of automorphisms of CP
2|2. Namely,

this is achieved by the transformation

PGL(3 | 2) � [T ] =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 i 0 0
0 i 0 0 0
1 0 −i 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

.

We summarize the previous—rather informal—discussion in the following lemma.

Lemma B.7 (Super conic) The complex supermanifold C ⊂ CP
2|2 cut out by the

equation

X2
0 + X2

1 + X2
2 + �1�2 = 0 ⊂ CP

2|2,

is isomorphic to the 1 | 2-dimensional supermanifold CP
1|2
ω , determined (up to iso-

morphism) by the triple (CP
1,OCP1(−2)⊕2, ω), where ω is a non-zero cohomology

class in H1(|CP
1|, TCP1(−4)).
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