
Journal of Applied and Computational Topology
https://doi.org/10.1007/s41468-023-00118-9

Hochschild homology, and a persistent approach via
connectivity digraphs

Luigi Caputi1 · Henri Riihimäki2

Received: 4 April 2022 / Revised: 28 December 2022 / Accepted: 13 February 2023
© The Author(s) 2023

Abstract
We introduce a persistent Hochschild homology framework for directed graphs.
Hochschild homology groups of (path algebras of) directed graphs vanish in degree i ≥
2. To extend them to higher degrees, we introduce the notion of connectivity digraphs,
and analyse two main examples; the first, arising from Atkin’s q-connectivity, and the
second, here called n-path digraphs, generalising the classical notion of line graph.
Based on a categorical setting for persistent homology, we propose a stable pipeline
for computing persistent Hochschild homology groups. This pipeline is also amenable
to other homology theories; for this reason, we complement our work with a survey
on homology theories of directed graphs.
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Introduction

Directed graphs, or shortly digraphs, organise a multitude of mathematical objects
and physical phenomena; in particular, where an inherent directionality plays a con-
siderable rôle. Prominent examples motivating this paper come from structural brain
networks, i.e., (directed) networks modelling the synaptic connectivity in the brain;
here the pre- and post-synaptic signal propagation induces directions between neurons.
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This type of application in neuroscience has particularly ignited the interest in applied
topology and topological data analysis (TDA), together with the subsequent develop-
ment of computational tools (Lütgehetmann et al. 2020; Reimann et al. 2017). For an
application in classifying network (brain) dynamics, see the recent work (Conceição
et al. 2022). One of the main techniques adopted in TDA is persistent homology (PH),
which has been employed not just in neuroscience and neuroimaging (Caputi et al.
2021b; Chung et al. 2014; Khalid et al. 2014; Kuang et al. 2019; Lee et al. 2011), but
also in fields like finance (Gidea 2017), fingerprint classification (Giansiracusa et al.
2019), and image classification (Dey et al. 2017), to name a few.

In applications, the classical persistent homology pipeline takes as input a filtered
family of undirected graphs. Having in mind the aforementioned examples involv-
ing families of digraphs instead, we are interested in persistent homology pipelines
for directed graphs; however, in order to extend the classical pipeline to directed
frameworks, one needs suitable (co)homology theories of directed graphs. The main
goal of this paper is to go beyond structural limitations of existing (undirected)
approaches. To do so, we introduce new connectivity frameworks, aiming to capture
more combinatorial and homotopical invariants of digraphs, as we now shall describe.

In a primal approach, the persistent homology pipeline for directed graphs would
be the following: one starts by constructing suitable simplicial complexes (the directed
flag complexesMasulli andVilla 2016; Reimann et al. 2017) associated to the digraphs,
computes (most often, homological) features of the simplicial complexes, and finally
uses these, or derived features, for subsequent network analysis. Implementations are
usually possible, thanks to existing software and algorithms allowing homological
computations; e.g., Flagser (Lütgehetmann et al. 2020) has a persistence implementa-
tion with directed flag complexes. Even if the simplices in directed flag complexes are
constructed using the coherently oriented cliques in the digraphs, the calculation of the
associated homology groups reduces to simplicial homology. This has the effect that
the associated topological invariants forget some information carried in the direction-
ality of the edges. Besides the directed flag complex approach, many other homology
theories of digraphs have been recently used in applications. With the hope that the
interested readermight find useful a recollection of someprominent homology theories
of digraphs, in Sect. 2 we provide a review of recent advancements. Among others, we
give an overview of the recently developed path homology (Grigor’yan et al. 2020)—
see Sect. 2.2, and also Chaplin (2022) for a comparison with the directed flag complex
of random graphs. A third approach uses Hochschild homology (HH ), a homology
theory of associative algebras introduced byHochschild (1945)—cf. Sect. 2.3. There is
a standard and coherent way of associating to a directed graph an associative algebra,
called the path algebra. Then, application of Hochschild homology to path algebras
of digraphs provides additional homological invariants. We refer to Sect. 2.4 for an
exposition of other related homological constructions.

In Sect. 3.2, we show that all the described homological approaches cannot tell
apart simple examples of non-isomorphic digraphs. This then begs the question about
what an appropriate homology theory for digraphs should be, and how to incorporate
the directed combinatorics in the theory and applications. Hochschild homology of
path algebras is able to capture part of the combinatorial information. Path algebras, in
fact, naturally arise from the combinatorics of the directed paths in the digraphs, and
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Hochschild homology is able to coherently capture such information. If the digraph
has an oriented cycle, the path algebra is automatically infinite-dimensional. In the
case of acyclic digraphs instead, the dimensions of the Hochschild homology groups,
seen as vector spaces over a base field, can be laid down in a simple combinatorial
formula. However, also the Hochschild homology of digraphs has some shortcomings.
First, the digraph is assumed to be acyclic, which rarely is the case in real networks.
Second, the Hochschild homology groups vanish beyond degree 1, and one retrieves
no information beyond dimension 1 of the digraph itself.

To remedy the issues raised above, we propose in this paper the following approach:
a persistent homology framework applied to a filtered family of digraphs taking into
account higher orders of intrinsic connectivities. The main points of the paper follow
the scheme below:

From digraphs to connectivity digraphs With the twofold aim of providing and
extending persistent homology pipelines to higher degrees, and of capturing combina-
torial information intrinsic in the directed structure of directed graphs, we introduce
the notion of a connectivity digraph—cf.Definition 3.2. For a digraphG, a connectivity
graph associated to G is a graph, possibly directed, constructed by using the combina-
torics of G. For example, connectivity graphs can be described by edges, paths, sets
of edges, or by cliques, together with their incidence relations. In Sect. 3 we present
two new connectivity structures for simplices. The directed q-analysis extended from
the work of Atkin (1972) connects simplices σ and τ , both of dimension ≥ q, if there
is a q-dimensional face α such that ̂di (σ ) ←↩ α ↪→ ̂d j (τ ), where ̂di is an extended
face map (see Definition 3.12). The n-path digraph connects n-simplices σ and τ if
there is an (n−1)-simplex α such that di (σ ) = α = d j (τ ) with i < j , where di is the
standard face map. Both the above connectivity relations define connectivity digraphs.

Hochschild homology for acyclic graphs Application of homologies (simplicial
homology, path homology, Hochschild homology) to connectivity digraphs extends
the family of homological invariants of digraphs to each n ∈ N. In particular, apply-
ing Hochschild homology on connectivity digraphs enables us to admit Hochschild
homology groups from degree 1 to n, where n now refers to the dimension of simplices
appearing in our connectivity digraphs. A convenient computation of the dimension
of Hochschild homology only applies when restricting to acyclic digraphs. In gen-
eral, this fails to be true, also for our connectivity digraphs. To be able to compute
Hochschild-related invariants for general digraphs, we define the Hochschild charac-
teristic (Definition 2.29) which adds to the acyclic formula the component coming
from the vector space generated by the simple cycles in the digraph.

Stable persistent Hochschild homology In the case of acyclic digraphs the transfor-
mation from the category of digraphs, through connectivity structures, into finite vector
spaces via Hochschild homology is functorial. Then, for a given filtration of digraphs,
one can apply the usual pipeline to get persistent Hochschild homology groups of
digraphs. The categorical framework developed by Bergomi and Vertechi (2020) pro-
vides immediately the needed abstract stability theorems. For a filtration F in the
category Digraph0 of digraphs without oriented cycles, the persistent Hochschild
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pipeline can be illustrated as the following composition of functors:

(R,≤)
F−→ Digraph0

C−→ Digraph0
K−−−→ K-Alg

HH1−−→ FinVect

where C is any functorial construction of connectivity digraphs—cf. Sect. 4.1 and 4.2.
In Sect. 4.3, we apply this procedure to a real network, namely the neural network of
the C. elegans.

Computational HH and K-theory into applied topology toolbox As far as the
authors know, this work is the first in bringing invariants from Hochschild homol-
ogy into the realm of TDA, to be used as featurisations of common data objects.
Our implementation of the above pipeline and computations on the C. elegans indeed
demonstrate the applicability of our approach to real-world directed networks. Nat-
ural extensions would be using cyclic homology theories and K -theoretic methods.
Previous work has focused on computing the K -theory of the category of zig-zag
persistence modules (Grady and Schenfisch 2021). In a subsequent work we plan to
investigate the extension in the K -theoretic directions as well.

We hope with this work to raise the interest of current developments in applied
topology and persistence to focus more on trying to bring unexplored tools from
theoretical algebraic topology and K -theory into the applied setting. Based on our
work, we believe that a following recipe is useful. First, a fruitful combination of data
and invariants needs to be found. For us, this is the combinatorics of (connectivity)
digraphs and the path algebras they generate. Standard simplicial persistence is made
for finite metric spaces, which we feel is not a natural pairing for digraphs as com-
binatorial objects without any regard on metric issues. Second, the invariant needs to
be computable. In our case, this comes from the known combinatorial formula for the
dimensions of Hochschild homologies. Going further, one needs to focus algebraic
derivations on proving similar results when these are not yet existing. Third, the main
lesson from persistence theory are the stability results. Any new tool in the applied
topology toolbox should take into account that small variations in the input data need
to be bounded at the level of algebraic invariants and featurisations. As mentioned,
our pipeline satisfies certain stability guarantees.

Wefinishwith someperspective on the apparent simplicity of digraphs. Even though
graphs and digraphs are simple objects to describe and many concepts in graph theory
are rather easy and intuitive to handle, it is the immense possibilities of putting together
vertices and edges that gives rise to the actual complexity of graphs/digraphs. One then
needs to find an appropriate balance between the objects described and complexity and
information content of the invariants attached to them.As a fourth point in the recipe of
the previous paragraph, in applications some level of interpretability of the invariants is
desired. In standard persistence it is easy to give a geometric meaning to the generators
of a barcode. In the case of Hochschild homology it is still maintainable to understand
how the information of directed paths is captured. The question of interpretability is of
course conditioned on the application domain. For example, in medical applications
the outcomes of TDA analyses should have some meaning to, say, prognosis and
diagnosis. In machine learning applications topological/algebraic invariants can be
accepted more as black box featurisations.
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Conventions

Calligraphic font, as G, is used to denote finite graphs (both directed and undirected).
All base rings are assumed to be unital and commutative, and algebras are assumed
to be unital and associative. Unless otherwise stated, R denotes a ring, K is an alge-
braically closed field, A is a unital associative R-algebra, V is a vector space over
K, and all tensor products ⊗ are assumed to be over the base ring R or base field K.
General references for graph theory, category theory, and algebraic topology are West
(2005), MacLane (1971), and Hatcher (2000), respectively.

1 Graphs and complexes

In this section we review and fix some basic notions related to graphs and simplicial
complexes, needed in the follow-up.

1.1 The category of digraphs

A graph is pair G = (V , E) consisting of a set of vertices V and a relation E ⊆ [V ]2.
The relation E is the set of edges between vertices and we denote the edges by pairs
{v,w}. We are interested in graphs with oriented edges:

Definition 1.1 A directed graph, or a digraph, is pair G = (V , E) consisting of a set
of vertices V and a subset E ⊆ (V × V )/�V , where �V = {(v, v) | v ∈ V }. The
subset E is the set of directed edges and we denote edges by ordered pairs (v,w).

In this work, unless otherwise specified, graphs and digraphs will always be finite,
hence the sets V and E are finite. Note that the definition above defines simple
(di)graphs without loops: there are no edges of the form {v, v} nor (v, v) and there is
only one edge between any pair of vertices. In the case of digraphs, edges are unique
ordered pairs (v,w), and we allow reciprocal edges (v,w) and (w, v) in E . We use the
same symbol G for denoting both an (undirected) graph and a digraph. In the rest of
the paper we will mainly deal with digraphs, and we will always make clear whether
we are referring to a graph or a directed graph.

Definition 1.2 A graph is complete if for every pair of vertices v and w there is an
edge {v,w}. A digraph is complete if for every pair of vertices v and w there are both
edges (v,w) and (w, v). A k-clique of G is a complete subgraph of G on k vertices.

Directed graphs come equipped with source and target maps s, t : E → V . For an
edge e = (v,w), the function s maps e to its source, s(e) = v, and t to its target,
t(e) = w. Sometimes, when we want to specify the source and target maps, we denote
a digraph as G = (V , E, s, t).

Graphs and digraphs have natural notions of morphisms between them; we spell it
out in the case of digraphs.
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Definition 1.3 A morphism of digraphs from G1 = (V1, E1) to G2 = (V2, E2) is a
function

φ : V1 → V2

on the vertices such that (φ(v), φ(w)) ∈ E2 for every (v,w) belonging to E1.

Observe that, by Definition 1.3, a morphism of digraphs sends directed edges to
directed edges and it does not allow to collapse them. One can also consider func-
tionsφ : V1 → V2 on the vertices such that eitherφ(v) = φ(w) or (φ(v), φ(w)) ∈ E2;
we refer to these maps as maps of digraphs. Finite digraphs and edge preserving mor-
phisms of digraphs form a category that we denote by Digraph. By Digraph+ we
denote the category of finite digraphs with possible self-loops on vertices, and maps
of digraphs.

Remark 1.4 A morphism of digraphs from G1 to G2 sends complete subgraphs of G1
to complete subgraphs of G2, hence cliques to cliques. Indeed, otherwise a morphism
would collapse at least one of the edges in the clique, which is not allowed.

One can consider also more restrictive morphisms, namely morphisms of digraphs
that are also injective (as functions of vertices). We will refer to these morphisms as
regular morphims of digraphs and denote the resulting category of digraphs (possibly
with loops) and regular morphisms by RegDigraph.

Remark 1.5 Both the categories Digraph and RegDigraph have an initial object1 ∅,
the empty digraph. Note that this is not a terminal object.

An oriented cycle in a directed graph G is an embedding into G of the coherently
oriented cyclic digraph Cn on n vertices—cf. Fig. 1. In the follow-up, we might need
to work with categories of digraphs without oriented cycles; we use the following
notation:

Notation 1.6 We denote by Digraph0 the subcategory of Digraph consisting of finite
directed graphs without oriented cycles.

A standard construction in graph theory is the so called edge graph, or line graph,
L(G) of a graph G. This is defined as the graph consisting of all the edges of G
as vertices, with connections described by the incidence relations. The construction
generalizes to the case of digraphs—see, for instance, Harary and Norman (1960):

Definition 1.7 The line digraph of a directed graph G = (V , E, s, t) is the directed
graph L(G) whose vertices are the edges of G and two vertices p and q in L(G)

corresponding to the edges ep = (s(ep), t(ep)) and eq = (s(eq), t(eq)) in G are
connected by a directed edge (p, q) ∈ E(L(G)) if t(ep) = s(eq).

Associating a line (di)graph to a (di)graph is coherent with respect to morphisms:

1 An initial object in a categoryC is an object I such that, for each objectC ofC, there is a uniquemorphism
I → C .
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Fig. 1 The coherently oriented
cyclic digraph Cn

Remark 1.8 There is a functor

L : Digraph → Digraph

which sends a digraph G to its line digraphL(G). First, note that the line digraphL(G)

of a digraphG is the empty digraph∅ if, and only if,G has no edges. As byRemark 1.5,
∅ is an initial but not a terminal object in the category Digraph, the functoriality may
fail formorphismsφ : G1 → G2,whereG2 has no edges.On the other hand, amorphism
of digraphs sends edges to edges and collapsing is not allowed; therefore, either both
G1 and G2 have no edges—hence, the induced morphism between the associated line
digraphs is the trivial morphism ∅ → ∅—or φ induces a morphism of digraphs
L(φ) : L(G1) → L(G2) between the associated (non-empty) line digraphs. It is now
straightforward to check that compositions and identities are preserved; hence, L is a
functor.

We will use a standard procedure for obtaining directed acyclic graph out of a
digraph.

Definition 1.9 A strongly connected component in a digraph G is an induced subgraph
G′ such that for any two vertices x and y in G′ there are paths x → y and y → x in
G′.

The strongly connected components are the equivalence classes of the relation of
being strongly connected on the vertices of G, i.e. having directed paths between any
ordered pair of vertices. The ensuing partition then enables to construct the quotient
graph without directed cycles.

Definition 1.10 The condensation c(G) of digraph G has as its vertices the strongly
connected components of G. Two vertices X and Y have a directed edge (X ,Y ) in
c(G) if there is an edge (x, y) in G for some x ∈ X and y ∈ Y .
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Remark 1.11 The condensation c(G) of a digraph G does not have oriented cycles.

In particular, if G has the structure of a preorder, i.e. a reflexive and transitive
relation, the condensation is a canonical way of obtaining its underlying partial order
(Schröder 2016, Proposition 8.13). Observe that taking the condensation of a digraph
is not functorial; in fact, it may lead to maps G → ∗, where ∗ is the one-point graph.
However, in the theory of Alexandroff and finite topological spaces preorders and
partial orders are in bijection with topological spaces and spaces with T0 separation,
respectively. In this context, the condensation is a homotopy equivalence (Barmak
2011).

1.2 Simplicial complexes and homology theories

We recall here the definition of simplicial complexes;

Definition 1.12 An (abstract) simplicial complex on a vertex set V is a collection K
of non-empty finite subsets σ ⊆ V that is closed under taking non-empty subsets: if
σ ∈ K and τ ⊆ σ is non-empty then τ ∈ K . The subsets are called simplices of K .

The following list records notations related to simplices and simplicial complexes
used in this paper.

Notation Definition

σ ∈ K σ is a simplex in a simplicial complex K .
Kq the set of simplices of K with dimension greater than or

equal to q.
Vert(K ) or V (K ), Vert(σ ) The sets of vertices of K and σ , respectively.
dim(σ ) |Vert(σ )| − 1, dimension of σ . If equal to k, then σ is a

k-simplex.
dim(K ) The dimension of K , the dimension of its highest

dimensional simplex.
τ ⊆ σ , τ ↪→ σ Face of σ . Faces are simplices. We use the convention that

every simplex is a face of itself. Proper face has
dimension strictly less than the dimension of the simplex.

Analogously to morphisms of graphs, we can define morphisms of simplicial
complexes:

Definition 1.13 A simplicial map f : K1 → K2 between simplicial complexes K1
and K2 is a function on the vertices f : V (K1) → V (K2) such that f (σ ) ∈ K2 is a
simplex for every simplex σ of K1.
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(Abstract) simplicial complexes and simplicialmaps form the category of simplicial
complexes, that we denote by SCpx. In this work we focus on homological invariants
of directed graphs, and more precisely, on homology groups of digraphs. Homology
groups are topological invariants of simplicial complexes. We assume that the reader
is familiar with homology theories and we refer to Hatcher (2000), Munkres (1984)
for comprehensive introductions. For setting the notations we briefly sketch here the
main definition. We fix a commutative ring R.

Definition 1.14 A chain complex (C, ∂) is a sequence C = (Cn)n∈N of R-modules
with a boundary operator ∂ consisting of linear maps ∂ = (∂n : Cn+1 → Cn) such
that ∂n ◦ ∂n+1 = 0 for all n.

Amorphism of chain complexes f : (C, ∂) → (C ′, ∂ ′) is a sequence of linear maps
fn : Cn → C ′

n with the commutation relations fn ◦ ∂n = ∂ ′
n ◦ fn+1. Chain complexes

and morphisms of chain complexes over R form a categoryCh(R), or more concisely
Ch. For a simplicial complex K and a commutative ring R, there is a standard way
to construct a chain complex (C, ∂) by considering, for each n ∈ N, the free R-
module generated by the n-simplices of K . The construction gives a functor from the
category SCpx of simpicial complexes to the category Ch. Furthermore, for a chain
complex (C, ∂), the degree n homology Hn(C) of (C, ∂) is defined as the quotient

Hn(C) := ker(∂n)/im(∂n+1),

which is well-defined as im(∂n+1) is contained in ker(∂n) by the identity ∂n ◦∂n+1 = 0.
If we want to indicate the coefficients R over which we are computing homology we
write Hn(C; R). The construction gives functors from the category of chain com-
plexes Ch to the categoryModR of R-modules; hence, by composition, funtors from
the categorySCpx toModR . In the next sectionwebriefly recall how to construct, start-
ing with a digraph, suitable simplicial complexes (flag complexes or path complexes)
and homology groups of digraphs.

2 Homology theories of digraphs

In this section we survey some of the most prominent homology theories of directed
graphs. We start in Sect. 2.1 by recalling the definition of flag complexes and asso-
ciated simplicial homology, then in Sect. 2.2 we review the path complexes and path
homology, as introduced by Grigor’yan et al. (2020). In Sect. 2.3, we provide a more
detailed account on the Hochschild homology of a digraph, as of more relevance to us.
Finally, in Sect. 2.4, we sketch some variations to these constructions, as has appeared
in the literature.

2.1 Homology of flag complexes

Homology groups of undirected graphs can be defined as the simplicial homology
groups of their underlying topological spaces; in fact, graphs can be seen as 1-
dimensional simplicial complexes, and one can directly apply the approach of Sect. 1.2.
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We first start with describing this naive approach, and then we see how to generalize
it by means of the so-called flag complexes.

For a digraph G = (E, V ) and a fixed commutative ring R, consider the chain
complex

· · · 0−→ 0
0−→ 〈E〉R ∂1−→ 〈V 〉R 0−→ 0 (1)

where 〈E〉R is the free R-module generated by the edges E and 〈V 〉R is the free R-
module generated by the vertices V of G. The boundary maps ∂i are all 0, except for
∂1; this acts on the basis edges in 〈E〉R as

∂1(v,w) := w − v,

and is extended to the whole R-module 〈E〉R by R-linearity. The homology groups
of a digraph defined this way are usually referred to as the ordinary homology groups
of graphs.

Remark 2.1 The ordinary homology groups of graphs are trivial in every degree i ≥ 2.

The 0-th homology group of G describes the set of connected components. The 1-st
homology group is isomorphic to the kernel of the only non-trivial map ∂1, and counts
the cycles of G; its rank can be entirely described in terms of numbers of vertices,
edges and connected components of the digraph G—see for instance (Diestel 2010,
Theorem 1.9.6). A prominent approach to generate higher dimensional homology
groups is to construct, out of a graph G, the so-called flag (also known as clique)
complexes (Aharoni et al. 2005; Chen et al. 2001; Ivashchenko 1994); these provide
natural invariants of graphs and have been generalized to digraphs (Masulli and Villa
2016; Reimann et al. 2017), as we now recall.

We first need to introduce the ordered simplicial complexes. A set S, endowed with
a linear order of its elements, will be called an ordered set.

Definition 2.2 An ordered simplicial complex 
 on a vertex set V is a non-empty
family of finite ordered subsets σ ⊆ V with the property that, if σ belongs to 
 then
every ordered subset τ of σ (ordered with the natural order induced by σ ) belongs to

.

When dealing with directed graphs, we need ordered cliques (as opposed to
unordered cliques—cf. Definition 1.2.

Definition 2.3 An ordered k-clique of a directed graph G is a totally ordered k-tuple
(v1, ..., vk) of vertices of G with the property that, for every i < j , the pair (vi , v j ) is
an ordered edge of G.

We can now extend the construction of flag complexes to directed graphs.

Definition 2.4 Let G = (V , E) be a directed graph. The directed flag complex of G
is the ordered simplicial complex dFl(G) on V whose k-simplices are all the ordered
(k + 1)-cliques of G.
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We can again construct a chain complex. LetCn(dFl(G); R) be the R-module freely
generated by all the n-simplices of dFl(G). There are well-defined face maps

d j : Cn(dFl(G); R) → Cn−1(dFl(G); R) (2)

for j = 0, . . . , n. The j-th face map d j , as an operator applied to the simplex
(v0, . . . , vn) in Cn(dFl(G); R) is defined by cancelling the j-th vertex:

d j (v0, . . . , vn) := (v0, . . . , v̂ j , . . . , vn).

Face maps uniquely identify the faces of a simplex. In fact, let σ = (v0, . . . , vn) be
an n-simplex of the flag complex dFl(G); then, the faces d j (v0, . . . , vn) are (n − 1)-
simplices of dFl(G). Each face map d j uniquely identifies the j-th (n − 1)-face of σ

as the face opposite to the vertex v j . For example, if (v0, v1, v2) is an ordered 3-clique
in a digraph G, represented below as an ordered simplex σ of the associated directed
flag complex dFl(G),

v0 v2

v1

d2(σ )

d1(σ )

d0(σ )

then we have d0(σ ) = (v1, v2), d1(σ ) = (v0, v2) and d2(σ ) = (v0, v1).

Remark 2.5 The construction of flag complexes can be promoted to a functor from
directed graphs to ordered simplicial complexes. Namely, if φ : G1 → G2 is a mor-
phism of digraphs, then it sends ordered cliques of G1 to ordered cliques of G2. This
induces a simplicial morphism fφ : dFl(G1) → dFl(G2) between the flag complexes,
sending a simplex σ ∈ dFl(G1), hence an ordered clique (v0, . . . , vk) of G1, to the
simplex fφ(σ ) = (φ(v0), . . . , φ(vk)).

The (simplicial) homology groups with coefficients in R of a directed graph G are
defined as the homology groups of the associated directed flag complex, and for each
n ∈ N it can be seen as a composition of functors

Digraph
Ch◦dFl−−−−→ Ch

Hn(−;R)−−−−−→ ModR, (3)

where ModR is the category of R-modules.

Example 2.6 Fix as base ring the ring of integersZ. Consider the square-shapeddigraph
G on the vertices 0, 1, 2, 3 and set of edges described as in the following picture:

0

1

2

3

G = ⇒ dFl(G) =
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Fig. 2 Two possible directed configurations for the pentagon graph

As we only have ordered 2-cliques, the associated flag complex is the square itself,
i.e. an ordered simplicial complex with four vertices and four edges. It has homology
groups

H0(dFl(G);Z) ∼= Z ∼= H1(dFl(G);Z).

By adding to G also the edge (0, 3), we get the ordered 3-cliques (0, 1, 3) and (0, 2, 3);
the corresponding flag complex is then the full square:

0

1

2

3

G = ⇒ dFl(G) =

The first homology group H1(dFl(G);Z) is now 0, whereas the 0-th homology group
describing the number of connected components is again isomorphic to Z.

Remark 2.7 From Example 2.6 we see that some information from the orientations of
the edges is lost. In fact, even though the simplices are constructed from the ordered
cliques, the homology groups are defined as the homology groups of the (geometric
realization of the) directed flag complex, which forgets some information about the
directionalities. As an additional illustrative example, consider the digraphs in Fig. 2
. They have isomorphic ordinary homology groups, as well as isomorphic homology
groups of the associated directed flag complexes.

Therefore, for constructing homology theories of digraphs more sensitive to the
directionalities, one might need to incorporate the directed combinatorics in the defi-
nition of the homology groups. This is partially achieved with the homology theories
recalled in the next subsections.

2.2 Path homology

Path homology can be considered as a homology theory of directed graphs, explicitly
constructed from the edges of the digraphs. It was introduced in Grigor’yan et al.
(2013), Grigor’yan et al. (2020), and it has nowadays many developments. We recall
its definition, following the first works on the subject.
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Definition 2.8 Let V be a finite set. For p ∈ N, an elementary p-path on V is an
ordered sequence i0 . . . i p of p + 1 elements of V .

Let K be a field (this assumption may be relaxed, but for the sake of reference,
we use here the same assumptions as in Grigor’yan et al. (2013)). The vector space
over K consisting of formal linear combinations of elementary p-paths is denoted by
�p(V ), or simply by�p . The basis element of�p(V ) corresponding to the elementary
p-path i0 . . . i p is denoted by ei0...i p and the elements of �p(V ) are called paths.
The linear maps ∂(ei0...i p ) := ∑p

q=0(−1)qei0...̂iq ...i p define the boundary operator
∂ : �p → �p−1, hence a chain complex (Grigor’yan et al. 2020, Lemma 2.1).

Definition 2.9 (Grigor’yan et al. 2020, Definition 3.1) A path complex over V is a
non-empty collection P of elementary paths on V with the property that if i0 . . . i p
belongs to P , then also i0 . . . i p−1 and i1 . . . i p belong to P . The paths in P are called
allowed.

For a path complex P on a set V , the vector spaceAp(P) spanned by all the allowed
p-paths from P is a subspace of �p. Define the subspace �p(P) of Ap(P) as

�p(P) := {

v ∈ Ap(P) | ∂v ∈ Ap−1(P)
}

.

The elements of �p(P) are called the ∂-invariant paths of P . Then the boundary
operator ∂ restricts to a boundary operator on�p(P) (Grigor’yan et al. 2020, Sect. 3.2),
and provides a chain complex (�n(P), ∂).

Definition 2.10 The path homology groups PHn(P) of the path complex P are the
homology groups of the chain complex (�n(P), ∂).

To every directed graph there is an associated path complex (Grigor’yan et al.
2020, Ex. 3.3). If G = (V , E) is a digraph, an elementary p-path i0 . . . i p is allowed
if (ik−1, ik) ∈ E for all k = 1, . . . , p. The set of allowed p-paths on G is denoted by
Pp(G); note that P0(G) = V , and P1(G) = E . Then, the union P(G) := ⋃

n Pn(G) is
a path complex. In particular, if G is a digraph, then the path homology of G is defined
as the path homology of the path complex P(G), after restricting to the ∂-invariant
paths.

Remark 2.11 It has been shown that path homology satisfies nice functorial properties:
for a morphism of digraphs f : G1 → G2 one gets a homomorphism f∗ : PH∗(G1) →
PH∗(G1) between the associated path homology groups (Grigor’yan et al. 2014,
Theorem 2.10). Furthermore, it has been shown that path homology satisfies Kün-
neth formulas (Grigor’yan et al. 2017) and analogous properties to the classical
Eilenberg-Steenrod axioms (Grigorian et al. 2018).

The following example illustrates a computation of the path homology groups of
the same digraph as in Example 2.6.

Example 2.12 We return to the the square-shaped digraph G = (V , E) on the vertices
0, 1, 2, 3 introduced in Example 2.6. The path complex P(G) associated to G is the
complex with elementary allowed paths as depicted below:
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0

1

2

3 P0 = {0, 1, 2, 3} = V

P1 = {01, 02, 13, 23} = E

P2 = {013, 023}

All the other Pn are empty. As the edge (0, 3) does not belong to G, the paths e013 and
e023 are not ∂-invariant. However, the linear combination e013 − e023 would be, as

∂(e013 − e023) = e13 − e03 + e01 − e23 + e03 − e02 = e13 + e01 − e23 − e02.

Therefore, if K is a field, then �0 = 〈e0, e1, e2, e3〉, �1 = 〈e01, e02, e13, e23〉 and
�2 = 〈e013 − e023〉. The associated path homology of G is then PH0(P(G)) ∼= K
and it is 0 in higher dimensions. This can be shown by direct computation from the
chain complex (�n(P), ∂), or by using the fact that the square digraph is contractible
(Grigor’yan et al. 2014, Example 3.13). Observe that if we add the edge (0, 3) to G
the spaces �1 and �2 become �1 = 〈e01, e02, e13, e23, e03〉 and �2 = 〈e013, e023〉,
but the path homology groups do not change.

We conclude this subsection with a note on the computability of path homology.
Despite the apparent computational complexity, path homology is amenable to com-
putations; for example, in dimension 2, for digraphs with 4000 vertices and ca. 25K
edges (Grigor’yan 2022). The interested reader can find the description and applica-
tions of an algorithm computing path homology in higher degrees in Chowdhury et al.
(2022) (and in the related references).

2.3 Hochschild homology of path algebras

Hochschild (co-)homology, introduced by Hochschild (1945), is a natural invariant
of associative, not necessarily commutative, unital algebras. An investigation of this
homology theory is beyond the purposes of this work, and we refer to Loday (1998)
for a general and comprehensive overview on the subject. To each digraph G, we
associate an algebra RG, called thepathalgebra—seeDefinition2.20.Thepath algebra
is associative and, for finite digraphs, also unital. Therefore, Hochschild homology
groups of RG give (algebraic) invariants of digraphs. Goal of this section is to review
some properties of Hochschild (co-)homology, and to introduce a new characteristic
of digraphs (Definition 2.29).

2.3.1 Hochschild homology

We first recall the definition of Hochschild homology, following (Loday 1998,
Sect. 1.1). For a commutative ring R, let A be an associative unital R-algebra; for
example, A can be a polynomial algebra over R. For a bimodule2 M over A, let

2 A bimodule over the algebra A is an R-module endowed with an action of A both on the left and on the
right, such that (am)a′ = a(ma′) for all a, a′ ∈ A, and m ∈ M . The actions are compatible, and if A is
unital, the unit acts as the identity.
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Cn(A, M) be the R-module

Cn(A, M) := M ⊗ A⊗n

defined as the tensor product of M and n copies of A (all the tensor products
being over R). The boundary operator, classically denoted by b, is the R-linear map
b : Cn(A, M) → Cn−1(A, M) defined as follows:

b(m, a1, . . . , an) = (ma1, a2, . . . , an) +
n−1
∑

i=1

(−1)i (m, a1, . . . , aiai+1, . . . , an)

+(−1)n(anm, a1, . . . , an−1)

In the formula, for simplicity of notation, we have dropped the tensor products. The
map b is a boundary operator (Loday 1998, Lemma 1.1.2) and the pair (C∗(A, M), b)
is a chain complex, called the Hochschild complex.

Definition 2.13 TheHochschild homology groups HH∗(A, M) of an associative unital
algebra Awith coefficients in a bimoduleM are the homologygroups of theHochschild
complex.

When M is the algebra A itself, we use a simpler notation:

Notation 2.14 The Hochschild homology groups of an associative unital algebra A
with coefficients in A are denoted by HH∗(A).

For illustration, we provide some elementary computations; for further details see
Loday (1998).

Example 2.15 Let M = A = R be a commutative ring. Then, we have

HH∗(R) =
{

R, if ∗ = 0

0, otherwise
.

In fact, as tensor products are computed over R and R ⊗R R ∼= R, the chain complex
C∗(R, R) is a copy of R in each degree, and the boundary operator b is either the
identity or the zero map, depending on the parity of n. The computation follows.

Example 2.16 Let M = A be an associative algebra. Then,

HH0(A) = A/[A, A]

where [A, A] denotes the commutator submodule generated by all the [a, a′] = aa′ −
a′a. In fact, for a ⊗ a′ ∈ C1(A, A), we have b(a ⊗ a′) = aa′ − a′a. In particular, if A
is commutative, then we obtain HH0(A) ∼= A, and for A non-commutative HH0(A)

coincides with its center.
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We recall that if A is unital and commutative, then the module of Kähler differen-
tials �1(A) is the A-module generated by all the formal differentials da, with a ∈ A,
which are R-linear, i.e., d(λa+μb) = λda+μdb for all a, b ∈ A and λ,μ ∈ R, and
satisfy the additional product condition d(ab) = adb+bda for all a, b ∈ A. Then the
first Hochschild homology group of A is isomorphic to �1(A) over the ring R (Loday
1998, Definition 1.1.9 and Proposition 1.1.10). Analogously, in higher degrees, the
n-th Hochschild homology HHn(A) of A is related to the module of n-forms (Loday
1998, Sect. 1.3).

Example 2.17 Let A = K[X ] be the polynomial algebra over a field K. As A is a
commutative algebra, then HH0(A) ∼= A. The first Hochschild homology group is
isomorphic to the ideal (X) of A. In fact, by Loday (1998, Proposition 1.1.10) it is
isomorphic to the module of Kähler differentials �1(A), and this latter is generated
by X . All its higher Hochschild homology groups are zero.

Remark 2.18 Note that the Hochschild homology groups HH∗(A, M) depend on
the choice of the ground ring. Non-isomorphic ground rings can lead to different
computations—see for example Loday (1998, Sect. 1.1.18).

A dual cohomological theory can be easily derived. In fact, the Hochschild coho-
mology groups HH∗(A, M) of an associative algebra A with coefficients in M can
be defined as the homology groups of the cochain complex HomR(Cn(A, M)) =
HomR(A⊗n, M)—cf. Happel (1989), Loday (1998).

Remark 2.19 The Hochschild homology construction is functorial in both the bimod-
ule M and the algebra A, and for M = A, Hochschild homology is a covariant functor
from the category of associative R-algebras to the category of R-modules (Loday
1998, Sect. 1.1.4). More precisely, a bimodule homomorphism f : M → M ′ induces
a map

f∗ : HH∗(A, M) → HH∗(A, M ′)

in Hochschild homology by sending the element (m, a1, . . . , an) ∈ Cn(A, M) to
the element ( f (m), a1, . . . , an) ∈ Cn(A, M ′); the differential b clearly commutes
with it and induces the required homomorphism of homology groups. Similarly, if
M = A and g : A → A′ is an R-algebra homomorphism, then g extends to the tensor
products giving a map (a0, . . . , an) �→ (g(a0), . . . , g(an)) and providing a morphism
of chain complexes C∗(A, A) → C∗(A′, A′); hence, a homomorphism of Hochschild
homology groups.

We note here that the functoriality with respect to R-algebra homomorphisms does
not extend to Hochschild cohomology—see, for instance, Loday (1998, Sect. 1.5.5).
This lack of functoriality is the reason why we will focus on Hochschild homology,
rather than cohomology.

2.3.2 Hochschild homology of path algebras

In this subsection we apply Hochschild homology to certain algebras associated to
digraphs.All results and proofs provided here are classical, andwe claimnooriginality.
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For computational purposes, we also restrict to the case in which the base ring R is an
(algebraically closed) field K; we can think of K as the field of complex numbers.

LetG = (V , E, s, t) be a (finite) directed graph. By a path inG wemean a sequence
γ = (e1, . . . , en) of composable edges ei in G such that s(ei+1) = t(ei ). The number
n is the length of the path. For any vertex v of G, we also consider the trivial path ev

of length 0 at the vertex v.

Definition 2.20 The path algebraKG associated to the digraphG is theK-vector space
with a basis consisting of all possible paths in G, and the multiplication being defined
on two basis paths γ = (e1, . . . , en), γ ′ = (e′

1, . . . , e
′
p) by the formula

γ γ ′ =
{

(e1, . . . , en, e′
1, . . . , e

′
p), if s(e′

1) = t(en)

0, otherwise
.

The following lemma is easily derived from the definition:

Lemma 2.21 The path algebraKG associated to a digraph G is an associative algebra
over K, and has a unit if the digraph is finite.

Proof Letγ, γ ′, γ ′′ be paths inG. Then, by definition of product of paths, both (γ γ ′)γ ′′
and γ (γ ′γ ′′) are given as concatenation of paths if they are all compatible, and are
both 0 otherwise (by bilinearity). Since the algebra KG is defined as a vector space
generated by the possible paths in G, this is enough to show its associativity.

If the digraph G is finite, then the element

e :=
∑

v∈V (G)

ev

is a unit. In fact, if γ = (e1, . . . , en) is a path of G, then es(e1)γ = γ and γ et(en) = γ ,
where es(e1) and et(en) are the constant paths at s(e1) and t(en), respectively. All the
other products with paths of type ev , for v a vertex of G, are zero; hence we have
eγ = es(e1)γ = γ , and γ e = γ eten = γ . ��

The path algebraKG is generated (as an algebra overK) by all the paths of length at
most 1, and the unit is the sumof all trivial paths.More precisely, it has the structure of a
graded vector spacewith grading induced by the length of paths (Brion 2012). Observe
that all trivial paths ev , with v ∈ V (G), are idempotents ofKG, as (ev)

2 = evev = ev .
Furthermore, if v and w are distinct vertices of G, then evew = 0.

We will be interested in digraphs without oriented cycles. In fact, we have the
following:

Proposition 2.22 The path algebraKG is of finite dimension,3 if and only if G is finite,
connected, and has no oriented cycles.

3 here as a K-vector space.

123



L. Caputi, H. Riihimäki

Fig. 3 The linear n-graph In

Proof The path algebraKG is generated by the paths of length atmost one, this number
being bounded by the number of all vertices and edges of G.

To prove the statement, it is enough to show that the number of paths of G is finite if
and only if G is finite and has no oriented cycles. Assume first that G is finite without
oriented cycles. Then the number of paths of length l in G is bounded by |E(G)|l . If
the number of paths of G is infinite, then there is a path of arbitrary large length. In
particular, there exists a path γ with length greater than the number of vertices of G.
This leads to a contradiction, because there exists a vertex v of G encountered twice
by γ , hence an oriented cycle. Conversely, any infinite connected graph has infinitely
many paths; if the graph G is finite, but it contains at least an oriented cycle γ , then
we can generate infinitely many paths by iterative compositions of such γ with itself.

��
We proceed with some elementary examples of path algebras:

Example 2.23 The simplest graphs to consider are given by the graph G0 with a single
vertex v, the directed graphG1 with a vertex v and a loop e at v, and the digraphG2 with
two vertices v0, v1 and a directed edge e1 = (v0, v1) between them. The associated
path algebras are given by the base fieldK, the polynomial ringK[X ], and by the ring
of upper triangular (2 × 2)-matrices. More generally, if In is the graph illustrated in
Fig. 3, then the path algebraKIn is isomorphic to the ring of upper triangular (n× n)-
matrices. An isomorphism can be described by sending the trivial path evi to the entry
(i, i), and edge (vi , vi+1) to the entry (i, i + 1).

Observe that the map assigning to a digraph its path algebra is functorial:

Remark 2.24 The assignmentG �→ KG associating the path algebraKG to a digraphG
extends to a functor from the category of directed graphs to the category K-Alg of
associative K-algebras. To see this, observe that a morphism of digraphs sends paths
to paths, thus induces a K-linear map between the vector spaces, and preserves the
composition of paths. As a consequence, the induced map between the associated path
algebras uniquely extends by linearity to a K-algebra homomorphism. Hochschild
homology of associative path algebras is functorial—see Remark 2.19. Then, the
composition

Digraph
K−−−→ K-Alg

HHn−−→ Vect (4)

describes theHochschild homology of the path algebra of a (finite) digraph as a functor
on the category Digraph with values in the category Vect of vector spaces over K.

Computations of Hochschild (co-)homology groups may be difficult for arbitrary
associative algebras, but when A is the path algebra KG of a directed graph, compu-
tations are easier and reflect the combinatorial properties of the digraph G. First, it is
a standard fact that the path algebra associated to a digraph is a hereditary algebra,
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i.e., all submodules of its projective modules are projective. In fact, modules over a
path algebra have a standard resolution of length 1 (Brion 2012, Proposition 1.4.1),
and as a consequence the Hochschild homology groups HH∗(A) of the path algebra
A vanish in degree ≥ 2. In degrees 0 and 1, the computation is due to Happel (1989)
(see also Redondo 2001, Proposition 4.4):

Theorem 2.25 If G = (V (G), E(G), s, t) is a connected directed graph without
oriented cycles and K is an algebraically closed field, then

dimK HHi (A) = dimK HHi (A) =

⎧

⎪

⎨

⎪

⎩

1, if i = 0

0, if i > 1

1 − n + ∑

e∈E(G) dimK et(e)Aes(e), if i = 1

where A = KG is the path algebra of G, n = |V (G)| is the number of vertices of G
and et(e)Aes(e) is the subspace of A generated by all the possible paths from s(e) to
t(e) in G.

In general, for infinite digraphs, or digraphs admitting cycles, this computation can
not be used and the first Hochschild homology group is of infinite rank.

Example 2.26 Let G be the digraph with a vertex v and the single directed edge (a
loop) (v, v). The path algebraKG is isomorphic to the polynomial algebraK[X ]. This
is a commutative algebra over K, hence by Example 2.17, we get

HHi (KG) ∼=

⎧

⎪

⎨

⎪

⎩

K[X ], if i = 0

(X), if i = 1

0, if i > 1,

which is not finite over K.

In concrete applications, one avoids the case of digraphswith paths of infinite length
by restricting to some special classes of acyclic directed subgraphs. In such restricted
context, we observe that Hochschild homology can be seen as a functor with values
in the category of (graded) vector spaces of finite dimension:

Remark 2.27 Theorem 2.25 implies that, when restricting to digraphs without oriented
cycles, the associated Hochschild (co-)homology groups are vector spaces of finite
dimension. LetDigraph0 be the subcategory ofDigraph consisting of finite digraphs
without oriented cycles and induced morphisms of digraphs. Then, the composition
in Eq. (4) induces the composition of functors

Digraph0
K−−−→ K-Alg

HHn−−→ FinVect

where now the target category FinVect is the category of finite-dimensional vector
spaces over K.

We give a concrete example:
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Fig. 4 Regular morphism of digraphs φ(vi ) = wi

Example 2.28 Letφ : G1 → G2 be the regularmorphismof digraphs illustrated inFig. 4
, and defined by sending vi to the vertexwi , for i = 0, 1, 2. Themorphismφ sends paths
ofG1 to paths ofG2 of the same length, thus inducing byK-linearity an homomorphism
of vector spaces φ∗ : KG1 → KG2. In terms of basis elements, the trivial path evi is
sent to the trivial path ewi , whereas the basis elements corresponding to the 1-paths
(v0, v1), (v0, v2), and (v1, v2) are sent to those of KG2 corresponding to (w0, w1),
(w0, w2), and (w1, w2). The tensor product operations are clearly compatible. As in
Remark 2.27, we get morphisms

φn : Cn(KG1,KG1) = KG1 ⊗ · · · ⊗ KG1 −→ KG2 ⊗ · · · ⊗ KG2 = Cn(KG2,KG2),

hence induced maps between the Hochschild (co-)chain complexes. By applying the
functors Hom(−,KG−) to the minimal projective resolutions of KG1 and KG2, we
get a diagram of short exact sequences (for such a computation, see Happel 1989)

0 K K3 ∼= K|V (G1)| K4 0

0 K K4 ∼= K|V (G2)| K8 0

IdK φ∗ φ∗

where the maps are induced by identification of paths of length 0 (central map) and
of the paths (v0, v1), (v0, v2), (v1, v2), and (v0, v1, v2) with the respective ones in G2
(rightmost map).

Focusing on the first Hochschild homology groups HH1(KG1) ∼= K2 and
HH1(KG2) ∼= K5, this roughly describes the functoriality of Hochschild homology
by means of the paths in the digraphs; the first Hochschild homology groups being
obtained as alternating sums of the vector spaces appearing in the horizontal diagrams
of the short exact sequences.

In general, descriptions of the Hochschild homology groups are not easy. In this
work, we use the computation of Theorem 2.25 as handleable—considering in the
summation only simple paths. In order not to loose the information captured by the
number of cycles, we will also consider the following characteristic measure:
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Definition 2.29 Let G = (V (G), E(G), s, t) be a digraph, and A = KG the path
algebra of G over a field K. The Hochschild characteristic of G is defined as

XHH(G) := dimk HH0(A) −
⎛

⎝1 − n +
∑

e∈E(G)

dimk et(e)Aes(e)

⎞

⎠ + C(G)

where n = |V (G)|, the sum over e ∈ E(G) only counts simple paths, and C(G) is the
number of simple oriented cycles in G, i.e. cycles with only the first and last vertices
being equal.

Note that the Hochschild characteristic agrees with the Euler characteristic of
the Hochschild chain complex associated to the path algebra KG, if G has no ori-
ented cycles andK is algebraically closed. The definition of Hochschild characteristic
extends then to any field. We conclude with some illustrative examples.

Example 2.30 Consider the coherently oriented cyclic graphCn , for n ≥ 2, and the lin-
ear n-graph In—see Figs. 1 and 3, respectively. Then, we get XHH(Cn) = XHH(In) =
1. From the point of view of the Hochschild characteristic, linear graphs and cycles
are not distinguishable.

More generally, observe that a connected digraph whose underlying graph is iso-
morphic to a linear graph has always Hochschild characteristic 1. Likewise, if the
digraph is a polygon, or it differs from a polygon only for one edge (such edge having
the opposite orientation). All other digraphs whose underlying unoriented graph is iso-
morphic to a cyclic graph have Hochschild characteristic 0. Therefore, the following
holds:

Proposition 2.31 Let G be a (simple) connected digraph. Then,

• if its underlying unoriented graph is isomorphic to a linear graph, then its
Hochschild characteristic is 1;

• if its underlying unoriented graph is isomorphic to a polygonal graph, then its
Hochschild characteristic is either 0 or 1.

Example 2.32 We apply the Hochschild homology computation of Theorem 2.25 to
the square digraph G of Examples 2.6 and 2.12. The Hochschild homology group in
degree 0 is isomorphic toK, whereas the dimension ofHH1(KG) is 1. The computation
in degree 1 changes if we add to G the edge (0, 3), giving dimK HH1(KG) = 4. As a
consequence, the Hochschild characteristics of the two graphs are 0 and −3. Observe
that if we consider the cycle with a diagonal (rather than the square with a diagonal)
we get Hochschild characteristics equal to 0 (with the edge (v0, v2) decreasing it).

We remark here that the computation of the Hochschild characteristics requires
counting all simple cycles in the digraph. This is exponential, and, consequently,
computations for large digraphs are rather demanding.
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2.4 A view towards other approaches

We conclude this survey section by reviewing some generalizations and other
approaches to (co-)homology theories of digraphs; the literature on the subject is
very rich, and this survey is far from being exhaustive.

• A generalization of the homology of directed graphs as the homology of the asso-
ciated flag complex (see Sect. 2.1) is given by the homology of the so-called flag
tournaplex (Govc et al. 2021). In fact, when a directed graph has no recipro-
cal edges the associated flag tournaplex is isomorphic to the flag complex of the
underlying undirected graph. The flag tournaplex of a digraph has been employed
as a classifier in Govc et al. (2021), combined with directionality invariants and
persistent homology methods.

• The theory of path homology for digraphs, as developed inGrigor’yan et al. (2020),
has been further extended to multigraphs and quivers (Grigor’yan et al. 2018) or
to more general path algebras, e.g., to the realm of differential algebras (Ren and
Wang 2021). It has also a cohomological counterpart (Grigorian et al. 2015). This
has also been extended to a persistent path homology approach—see for instance
Dey et al. (2022).

• Hochschild homology can be endowed with an additional differential of degree 1,
usually denoted by B, turning it into amixed complex (Kassel 1987). The additional
differential B leads to the construction of the so-called cyclic homology, and to its
variations negative cyclic homology and periodic cyclic homology of algebras—
see also Loday (1998). Therefore, application of such homology theories to the
path algebra of a digraph may lead to other invariants, extending the approach
surveyed in Sect. 2.3.2.

• Ordinary homology groups of digraphs, and the Hochschild homology groups
of the associated path algebras, have natural generalizations to the categorical
framework. One way to do so is by replacing the path algebra of Definition 2.20
with a suitable (freely generated) category Path(G), called the path category—
see also the discussion below. In a similar fashion, instead of constructing the
path algebra or the path category, one can associate to a directed graph other
mathematical objects, for example the so-called path posets P(G). First introduced
by Turner and Wagner (2012), the path poset has been recently used to define new
combinatorial cohomologies of digraphs (Caputi et al. 2021a, 2022c), and that can
be generalized to arbitrary monotone properties of graphs (Caputi et al. 2022b).
This approach seems to be related to other topological/combinatorial invariants of
simplicial complexes (Caputi et al. 2022a).

• Among other approaches, sheaf homology has been used with some applications
to theMax-FlowMin-Cut theorem (Krishnan 2014), as well as a directed approach
to algebraic topology built upon cohomology of small categories with coefficients
in natural systems as in Baues and Wirsching (1985) and Dubut et al. (2015) and
in the references therein.
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We can illustrate these various approaches in the following (non-commutative)
diagram

Cat

Poset

SCpx

DiGraph Ab

K-Alg

H

H

H

K−
Homologies of digraphs

dFl

P

Free

HH

where we synthetically show the construction of homology theories of digraphs
as representations of the category DiGraph. Note that path homology does not
appear in the picture because it is not yet known if it factors through simplicial
complexes/algebras/posets/categories.

We wish to spend a few more words on the path category and related homology
theories, as these are close to the Hochschild homology of path algebras. The path
category Path(G) associated to a directed graph G is the category freely generated by
the paths of G. There is a forgetful functor from the category Cat of small categories
and functors to the category of quivers (thought of as directed graphs with loops and
multiple edges). Such forgetful functor has a left adjoint, the functor sending a quiver
to the free category on that quiver (see e.g.,MacLane 1971, Sect. II.7). As each directed
graph is, in particular, also a quiver, one gets a functor

Free : DiGraph → Cat (5)

from the category of digraphs to the category of small categories. It is easy to see
that Free(G) is in fact the path category Path(G). Then, the functor in (5) allows
one to use homology theories of categories for obtaining new invariants of digraphs.
The naive idea of directly computing the homology groups of the category Path(G)

(with constant coefficients), would not give new information due to the following (see
Citterio 2001, Ex. 4.3):

Proposition 2.33 The classifying space |N (Path(G))| of the path category of a
directed graph G has the homotopy type of the geometric realization |G| of the digraph
G.

However,more interesting homology theories arisewhen considering the homology
of categories with coefficients in functors (Gabriel and Zisman 1967, App. 2). In this
framework, one considers the homology groups of Path(G) with twisted coefficients
in the same spirit as in usual homology of topological spaces but with local coefficients
(see also Quillen 1973, Sect. 1). Remarkably, this point of view has been used in node
embedding and community detection problems (Kaul and Tamaki 2020).
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3 Connectivity structures and digraphs

As outlined in Sect. 2, homology theories of digraphs are flexible and versatile tools,
able to capture various topological information from the input graphs. However, as
we will show with examples in Sect. 3.2, these homology theories might miss some
combinatorial information inherent in the digraph structure. Therefore, with the aim of
capturing both the topology and combinatorics of digraphs, in this sectionwewill study
some special cases of connectivity digraphs, i.e., digraphs constructed by using some
combinatorial information of G. For example, connectivity digraphs can be described
by edges, paths, sets of edges, or cliques, together with their incidence relations.

We will focus on two closely related simplicial connectivity approaches and show
that they capture the combinatorial information described by edges and ordered cliques
in a digraph. The first one, developed by the second author in Riihimäki (2023) and
briefly recalled in Sect. 3.3, generalizes the classical q-connectivity analysis (Atkin
1972, 1974) to the context of ordered simplicial complexes. This construction is
based on ordered cliques sharing q-faces respecting a chosen directionality condition.
The connectivity digraphs constructed have the additional structure of a preordered
set (Definition 3.13). Then in Sect. 3.4, we investigate the particular case of connec-
tivity digraphs built with ordered cliques and codimension 1 incidence relations. The
connectivity digraph structure is induced from a total order of simplicial face maps.
This choice is shown to generalize the notion of line digraphs (going from the combi-
natorics of edges to the combinatorics of higher simplices), giving what we call here
the n-path digraphs—cf. Definition 3.20.

3.1 Connectivity digraphs

Goal of this subsection is to introduce the concept of connectivity digraphs. For a
digraph G, a connectivity digraph associated to G is meant to encapsulate some com-
binatorial information of G. In order to make it formal, we start with the notion of a
connectivity structure.

Definition 3.1 A connectivity structure is a triple (G,F, A) consisting of a digraph G,
and a non-empty family F of subgraphs of G together with a {0, 1}-valued function
A : F × F → {0, 1}.

Note that there are no additional requirements on themap A; roughly, a connectivity
structure is a way to encode the connectivity properties of families of subsets of G, all
at once. For a given connectivity structure (G,F, A) there is an associated well-defined
digraph EFG (possibly with self-loops) constructed as follows: the set of vertices of
EFG is the family F, and for H1, H2 in F, there is a directed edge (H1, H2) in EFG
if and only if A(H1, H2) = 1. We can now give the formal definition of connectivity
digraphs.

Definition 3.2 A connectivity digraph is the directed graph EFG associated to a con-
nectivity structure (G,F, A). A morphism of connectivity structures (G,F, A) →
(G′,F′, A′) is a morphism of digraphs � : G → G′ inducing a function φ : F → F′
such that A(H1, H2) = 1 implies A′(φ(H1), φ(H2)) = 1.
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Before proceeding further, we provide some examples of connectivity structures
and associated connectivity digraphs.

Example 3.3 Let G be a digraph and let F = {G} be the family consisting of the graph
G itself. Then, depending on A, EFG can either be the graph with a single vertex
and no edges, or the digraph with a vertex and a single self-loop. On the other hand,
if F = V (G) consists of the vertices of G, and we set A(v,w) = 1 if and only if
(v,w) ∈ E(G), then EFG ∼= G.

Example 3.4 Let G be a digraph and let F = E(G) be the family consisting of all the
edges of G. Set A(e, f ) = 1 if and only if t(e) = s( f ). Then, EFG ∼= LG and the
associated connectivity digraph is isomorphic to the line digraph. We will investigate
this example in detail in the next subsections. On the contrary, if we set A(e, f ) = 1 if
and only if t(e) �= s( f ), then the associated connectivity digraph is sometimes called
the complement of LG.

Example 3.5 Let G be a digraph and let F = S(G) be the family consisting of all the
strongly connected components of G. Set A(S, T ) = 1 if and only if there exists an
edge e of G such that s(e) ∈ S and t(e) ∈ T (e). Then, EFG ∼= CG yields nothing but
the condensation of G.

Example 3.6 Let G be a digraph and let F = {all the subgraphs of G}. Set A(s, t) = 1
if and only if s is strictly contained in t . Then, the connectivity digraph EFG yields,
up to orientation, the Hasse diagram of G.

Connectivity structures and morphisms of connectivity structures form a category
where compositions are induced by compositions of morphisms of digraphs. It is also
easy to see that the map which associates to a connectivity structure (G,F, A) the
connectivity digraph EFG is functorial with respect to morphisms of connectivity
structures.

The context of connectivity structures is quite general. Different connectivity struc-
tures can encode various combinatorial information of digraphs. Our main motivation
for introducing connectivity structures is that the associated connectivity digraphs pro-
vide domains for the homology theories described in Sect. 2, and then one can extend
the class of digraph invariants.

We remark here that a definition similar to Definition 3.2 has previously appeared
in Grigor’yanet al. (2018, Sect. 6) in the form of a connectivity multigraph of a CW-
complex, and meant to extend Atkin’s connectivity graphs (see Sect. 3.3): the vertices
of themultigraph are the n-cells and two vertices are adjacent if the corresponding cells
share a face. This graph is given the structure of a directed graph by first numbering all
the cells, and then using this enumeration for describing the directions of the edges.
Our construction of connectivity digraphs, and our two main examples of simplicial
connectivities provided in Sects. 3.3 and 3.4, do not require a predetermined enumera-
tion of the vertices, making the definition of connectivity digraphs more intrinsic. We
also give a more immediate recipe for connectivity digraphs; in fact, Definition 3.1
essentially provides the adjacency matrices.
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3.2 Motivating examples

We start by motivating our combinatorial constructions, provided in Sects. 3.3 and 3.4,
with some examples. Specifically we construct non-isomorphic digraphs, such that all
the homology theories introduced in Sect. 2 fail to distinguish them. Then, we will
see that the same homology theories, applied to the connectivity digraphs, are able
to distinguish them—see Examples 3.15, 3.34, and 3.35, proving that encoding the
combinatorics is quite helpful.

Example 3.7 Consider the following directed graphs:

G1 =

0

1

2

3

4

and G2 =

0

1

2

3

4

The two digraphs are not isomorphic. For example, the total degree of the vertex 2 in
G1 is 4 with out-degree 1, but there are no vertices of out-degree 1 and total degree 4
in G2. First, observe that the directed flag complexes associated to G1 and G2 are both
contractible. Hence, the associated simplicial homology groups are isomorphic.

Following Sect. 2.2, we find the ∂-invariant paths for G1 and G2: �2(G1) =
{e012, e312, e324} and �3(G1) = ∅, and �2(G2) = {e012, e123, e243, e013 − e023} and
�3(G2) = {e0123}, and all the other �n , with n ≥ 3, are empty. The �1 and �0 are
always spanned by the edges and vertices, respectively. Therefore, we get the chain
complexes:

(�∗(G1), ∂) := 0 → �2(G1) → �1(G1) → �0(G1)
(�∗(G2), ∂) := 0 → �3(G2) → �2(G2) → �1(G2) → �0(G2).

The homology groups of these chain complexes are both trivial and concentrated
in degree 0, with the only non-trivial path homology groups PH0(P(G1)) ∼= K ∼=
PH0(P(G2)).

In the case of the Hochschild homology of the path algebras, as both graphs are
acyclic, we can use Theorem 2.25. This gives us isomorphic K-vector spaces in all
degrees (with both dimK HH1(KG1) and dimK HH1(KG2) equal to 7).

Remarkably, the same homology theories can distinguish the associated line
digraphs—the line digraphs having 2 and 1 connected components, respectively; as
shown in the following illustration of the associated line digraphs:
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LG1 =

01

12 24

3431 32

02

and LG2 =

01

13

12

23

24

43

02

This suggests that the directed combinatorics plays an important role. We give another
example:

Example 3.8 Consider the following digraphs with reciprocal edges:

S1 =

0

1 2

3

S2 =

0

1 2

3

The associated directed flag complexes in both cases are topologically 2-spheres,
hence their homology groups are isomorphic. A computation similar to the one in the
previous example shows that the associated path homologies are also isomorphic. The
Hochschild homology groups of the path algebras associated to the graphs S1 and S2
are also isomorphic (in degree 1 of infinite dimension over K, both digraphs having
oriented cycle). Here follow the associated line digraphs:

LS1 =

01

13

12

02

23

21

and LS2 =

01

02

12

32

31

21

Motivated by these examples, we proceed with investigating two examples of
(simplicial) connectivity digraphs.

3.3 q-connectivity

Our first connectivity structure is an extension of Atkin’s Q-analysis (Atkin 1972)
as developed in Riihimäki (2023). We briefly summarise this theory as needed for
the purposes of this paper, and guide the reader to the previous references for more
in-depth expositions. The essential idea in Atkin’s work is the generalisation of edge
path connectivity of a simplicial complex to sequences of connected simplices through
sharing of faces of certain dimension. Atkin was particularly motivated by the classic
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work of Dowker (1952): to any relation one can associate two simplicial complexes,
nowadays known as Dowker complexes, but the homology groups of these complexes
are isomorphic.Atkin’s insightwas to associate to a simplicial complex his Q-analysis,
which turns out to differentiate between the two Dowker complexes of a relation.

Definition 3.9 Let K be a simplicial complex. Two simplices σ and τ of K are q-
near, if they share a q-face. Two simplices σ and τ of K are q-connected, if there is
a sequence of simplices in K ,

σ = α0, α1, α2, . . . , αn, αn+1 = τ,

such that any two consecutive ones are q-near. The sequence of simplices is called a
q-connection between σ and τ .

Similarly to the property of being path connected, we say that the complex K is
q-connected if any two simplices in K of dimension greater than or equal to q are
q-connected. The notion of q-connectivity is an equivalence relation on the set Kq of
simplices of dimension q and higher, for 0 ≤ q ≤ dim(K ).

The aim of Q-analysis is to associate a simplicial complex with its q-connectivity
equivalence classes, or its q-connected components. Note that if a simplex σ is max-
imal in K with respect to inclusion and dim(σ ) = q, then σ is q-connected only to
itself; hence every maximal q-simplex generates its own equivalence class. For each
q the equivalence classes encode the connectivity information of the q-upper skele-
ton of K . A related notion was introduced in Palla et al. (2005) to study community
structures in networks.

Definition 3.10 Let G be a graph and n ≥ 2 a natural number. Two n-cliques in G
are connected if there is a sequence of n-cliques of G such that any two consecutive
cliques share n − 1 vertices. A n-clique community of G is a maximal set of pairwise
connected n-cliques.

The n-cliques of a graph are in correspondence with the (n − 1)-simplices in the
associated flag complex. The n-clique communities are obtained from the Q-analytical
information of the flag complex. Note that we can put the n-cliques as vertices of a
graph with edges between vertices if the associated cliques share n − 1 vertices. This
leads us to define our first connectivity graph.

Definition 3.11 Theq-graph of a simplicial complex K has as its vertices the simplices
in Kq and edges between pairs of q-near simplices.

Standard Q-analysis as outlined above fails to take into account directionality in the
case of digraphs and directed flag complexes. Consider the cycle and star digraphs in
the figure below. As undirected graphs, or 1-dimensional simplicial complexes, they
are indistinguishable by q-connectivity information: both contain one component so
they are 0-connected, and the maximal 1-simplices each form their own 1-connected
components in both cases.
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1 2

0

a

b c

d

We therefore introduce a refined version of Q-analysis that is sensitive to the direc-
tionality of simplices, or directed cliques in directed graphs. We do this by imposing
directions through face maps.

Definition 3.12 Let σ be an n-simplex. We denote by ̂di the face map

̂di (σ ) =
{

(v0, . . . , v̂i , . . . , vn), if i < n,

(v0, . . . , vn−1, v̂n), if i ≥ n.

The face map ̂di nowmakes sense in any dimension since it always removes the vertex
at position min{i, dim(v)}. The reason to modify the standard face map in this fashion
is due to the fact that q-connectivity looks at all the simplices of dimension q and
higher.

Definition 3.13 For an ordered simplicial complex K , let (σ, τ ) be an ordered pair of
simplices σ ∈ Ks and τ ∈ Kt , where s, t ≥ q. Let (̂di , ̂d j ) be an ordered pair of
the i- and j-face maps. Then (σ, τ ) is q-near along (̂di , ̂d j ) if either of the following
conditions is true:

1. σ ↪→ τ,

2. ̂di (σ ) ←↩ α ↪→ ̂d j (τ ), for some q-simplex α ∈ K .

The ordered pair (σ, τ ) of simplices of K is q-connected along (̂di , ̂d j ) if there is a
sequence of simplices in K ,

σ = α0, α1, α2, . . . , αn, αn+1 = τ,

such that any two consecutive ones are q-near along (̂di , ̂d j ). The sequence of sim-
plices is called a q-connection along (̂di , ̂d j ) between σ and τ . We simply write this
connection as (σα1α2 . . . αnτ).

We will call the above connection (q, ̂di , ̂d j )-connection, when the choices of q
and directions ̂di and ̂d j are made, and similarly we say (q, ̂di , ̂d j )-near.

The directed (q, ̂di , ̂d j )-connectivity is a preorder on the set of directed cliques
Kq . By the classical Alexandroff correspondence, preorders and topological spaces
are in bijection (Barmak 2011). The (q, ̂di , ̂d j )-preorders thus endow a directed graph
with a collection of new topological spaces. Up to homotopy it is enough to study
partial orders obtained by condensing the preorders (Definition 1.10 and the discussion
after). The homotopy types of partial orders can then be studied through their order
complexes, i.e. taking the nerve.

As our main connectivity digraph stemming from q-connectivity we take the
(q, ̂di , ̂d j )-nearness digraph in Digraph+ of the (q, ̂di , ̂d j )-connectivity preorder.
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For visualisation purposes we use the Hasse diagram form, i.e. we do not draw the
self-loops on vertices.

Definition 3.14 For an ordered simplicial complex K the vertices in the (q, ̂di , ̂d j )-
digraph, or simply q-digraph, are the simplices in Kq , and for two vertices σ and τ

there is a directed edge (σ, τ ) when the pair (σ, τ ) is (q, ̂di , ̂d j )-near.

As an illustrative example we see that our new connectivity digraph can be used
to distinguish prior Example 3.8; we refer the reader to Riihimäki (2023) for a more
detailed investigations of these connectivity digraphs.

Example 3.15 The full (1, ̂d1, ̂d2)-digraphs of the 2-spheres in Example 3.8 are shown
below. We use simplified notation where a simplex (v0, v1, . . . , vn) is denoted by
(v0v1 · · · vn).

(01)

(02)

(13)

(23)

(12) (21)

(012) (021)

(123) (213)

(01)

(02)

(31)

(32)

(12) (21)

(012) (021)

(312) (321)

The connectivity digraphs are different between the spheres. Passing to condensations
and order complexes of the associated (1, ̂d1, ̂d2)-preorders, the homotopy type of the
left sphere is a wedge of circles S1 ∨ S1, while that of the right sphere is S1. The
q-connectivity therefore assigns the underlying digraphs with new homotopy types
that distinguish them.

In the next sectionwe study our second example of a connectivity digraph, and show
that it extends to an endofunctor on acyclic digraphs. The next example shows that the
(q, ̂di , ̂d j )-digraph construction can not induce an endofunctor on acyclic digraphs,
as it might yield digraphs with oriented cycles and self-loops.

Example 3.16 Consider the digraphs below and the morphism φ : G1 → G2 defined
on vertices as 0 �→ 0′, 1 �→ 1′, 2 �→ 2′, and 3 �→ 0′.

G1 = 0 3

2

1

φ = G20’

2’

1’

Morphisms of digraphs send simplices to simplices, in this case both (012) and
(312) map to (0’1’2’). The induced morphism φ̃ between the (1, ̂d0, ̂d0)-digraphs,
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as illustrated below, then acts on vertices as (012) �→ (0′1′2′), (312) �→ (0′1′2′),
(01) �→ (0′1′), (02) �→ (0′2′), (12) �→ (1′2′), (31) �→ (0′1′), and (32) �→ (0′2′).

(012) (312)(02)

(01)

(32)

(31)

(12)

φ̃
(0’1’2’)(0’2’)

(0’1’)

(1’2’)

Note that the edges ((012), (312)) and ((312), (012)) are both sent to the self-loop on
(0’1’2’); this is allowed inDigraph+ and also consistent with the fact that (q, ̂di , ̂d j )-
digraphs inherently arise from the (q, ̂di , ̂d j )-connectivity preorders which have all
the reflexive relations.

The example suggests the framework for studying the functoriality of (q, ̂di , ̂d j )-
digraphs, aswe now shall show. In particular, we do not get an endofunctor onDigraph
or Digraph0, but take the target category to be Digraph+.

Theorem 3.17 The (q, ̂di , ̂d j )-digraph construction induces a functor from Digraph
to Digraph+.

Proof Wewrite (q, ̂di , ̂d j )G for the (q, ̂di , ̂d j )-digraph of a digraphG. Letφ : G1 → G2
be a morphism of digraphs. Simplices, i.e. ordered cliques, are mapped to sim-
plices; recall Remarks 1.4 and 2.5. Hence, two simplices σ = (v0, . . . , vn) and τ =
(w0, . . . , wk) of dmension ≥ q are mapped to simplices φ(σ) = (φ(v0), . . . , φ(vn))

andφ(τ) = (φ(w0), . . . , φ(wk)) of dimension≥ q. The edges in (q, ̂di , ̂d j )G1 coming
from the face inclusions σ ↪→ τ are then trivially sent to edges in (q, ̂di , ̂d j )G2 .

Assume the nearness relation ̂di (σ ) ←↩ α ↪→ ̂d j (τ ) so an edge (σ, τ ) in
(q, ̂di , ̂d j )G1 . The q-simplex α is mapped to a q-simplex φ(α) in G2. Note that
there is an order-preserving bijection between the vertices (v0, . . . , vn) of σ and
(φ(v0), . . . , φ(vn)), and similarly for τ and φ(τ), due to φ being a morphism of
digraphs. The face maps ̂di and ̂d j then act the same way on σ and φ(σ), and
τ and φ(τ), respectively, with respect to the orderings. Therefore, α has to be
a selection of vertices (vi0 , . . . , viq ) from (v0, . . . , v̂i , . . . , vn) with the inherited
ordering, and (φ(vi0), . . . , φ(viq )) is a q-simplex in ̂di (φ(v0), . . . , φ(vn)). Simi-
larly the vertices (vi0 , . . . , viq ) constitute a q-simplex in (w0, . . . , ŵ j , . . . , wn), and
(φ(vi0), . . . , φ(viq )) is a q-simplex in ̂d j (φ(w0), . . . , φ(wn)). This amount to the
nearness relation ̂di (φ(σ )) ←↩ φ(α) ↪→ ̂d j (φ(τ)) and an edge (φ(σ ), φ(τ)) in
(q, ̂di , ̂d j )G2 .

A composition of morphisms of digraphs G1 → G2 → G3 still maps simplices
to simplices, while keeping the dimensions ≥ q and preserving the relative order-
ings of vertices. The argument above then induces a composition of morphisms
(q, ̂di , ̂d j )G1 → (q, ̂di , ̂d j )G2 → (q, ̂di , ̂d j )G3 . The identity morphism on a digraph
G obviously maps to the identity on (q, ̂di , ̂d j )G . ��
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3.4 The n-path digraph

Our second example of connectivity digraphs is given by the n-path digraphs
{PG(n)}n∈N. These are defined as the digraphs with the ordered (n + 1)-cliques of
G as vertices, and with directed edges given by their incidence relations (see Defini-
tion 3.20). The construction is a generalization of the line digraph of Definition 1.7;
furthermore, we will show that this construction can be promoted to an endofunctor
on the category of digraphs Digraph—cf. Theorem 3.28.

Let n be a positive natural number and let G be a directed graph. We start by
rephrasing the concept of q-graph of Definition 3.11, in the specific case in which the
simplicial complex K is the directed flag complex of a digraph G, the simplices have
all the same fixed dimension, and the relation is the 1-codimensional q-nearness.

Definition 3.18 Let G be a digraph and let dFl(G) be its associated directed flag com-
plex. The n-path graph G(n) associated to G is the graph whose vertices are the
n-simplices of dFl(G), and such that two vertices σ and τ are connected by an edge
whenever σ and τ share a common (n − 1)-face.

Remark 3.19 Note that Definition 3.18 gives the underlying graph for the n-clique
communities (Definition 3.10). The name n-path graph is then justified by the fact
that simple paths in G(n) correspond to ordered (n + 1)-cliques of G, consecutively
connected by common ordered n-cliques. If G is a digraph, then the 1-path graph G(1)

associated to G is nothing but the line graph L(G) of the underlying undirected graph
associated to G—cf. Definition 1.7.

Let G be a digraph, n be a natural number and dFl(G) be the associated directed
flag complex. Based on Definition 3.18, we now define the n-path digraphs as the con-
nectivity digraphs on the set of ordered (n + 1)-cliques with their incidence relations.
The digraph structure is induced from the total order on {0, . . . , n} which induces a
total order on the associated face maps.

Definition 3.20 For n ≥ 1, the n-path digraph PG(n) associated to G is the directed
graph with the n-simplices of dFl(G) as vertices. For vertices σ and τ , there is a
directed edge (σ, τ ) if and only if there is an (n − 1)-simplex α of dFl(G) and some
i, j ∈ {0, . . . , n} such that

di (σ ) = α = d j (τ ), with i < j .

When n = 0, we set the 0-th path digraph PG(0) to be the digraph G.

Note that the difference of n-path digraph from q-digraph (Definition 3.14) is that
the vertices are only the n-simplices, and the edges are determined by the natural order
on face maps; in the case of q-digraphs there is a choice of the (q, ̂di , ̂d j ) involved.
These two methods then yield different connectivity structures as shown in the next
example—compare it with Example 3.15.
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Example 3.21 Consider the digraphs S1 and S2 of Example 3.8. The associated 2-path
digraph PS(2)

1 is the following:

(012) (021)

(123) (213)

The digraph PS(2)
2 , instead, is a disconnected digraph with two connected compo-

nents:

(012) (021)

(312) (321)

We investigate some properties of the n-path digraphs; first, note that these path
digraphs generalize the notion of line digraphs:

Proposition 3.22 When n = 1, the 1-path digraph PG(1) is isomorphic to the line
digraph L(G) of G.
Proof When n = 1, the vertices of PG(1) are the edges of G. The face map d1 applied
to an edge e of G, gives the source of e: d1(e) = s(e). Analogously, we have the
relation d0(e) = t(e). Consequently, two edges e and f of G are connected in PG(1)

by a directed edge (e, f ) if, and only if, they share a common vertex d0(e) = d1( f )
in G. Then the two constructions in Definitions 1.7 and 3.20 are equivalent. ��

For a digraph G, denote by Cone(G) the cone digraph obtained from G by adding a
new vertex vP and, for each vertex v in G, a new directed edge (v, vP ); see Fig. 5 for
an illustration.

Proposition 3.23 Let Cn be the coherently oriented cyclic digraph on n vertices, with
n ≥ 3. Then the the 2-path digraph of the cone Cone(Cn) is isomorphic to Cn.

Proof For n ≥ 3, if Cn is the cyclic digraph on n vertices with all the edges coher-
ently oriented, then the cone Cone(Cn) has 2-simplices based at the edges of Cn .
For each edge (vi , vi+1) in Cn , the edge (vi , vP ) of Cone(Cn) can be written as
d1(vi , vi+1, vP ) = d0(vi−1, vi , vP ) (where the indices i are taken modulo n). Then,
it is easy to check that the associated 2-path digraph is isomorphic to Cn . ��

The result generalizes by induction to every m: let Conem(G) denote the m-th
iterated cone of G, i.e. Conem := Cone ◦ · · · ◦ Cone, m times. Then, we have the
following:
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Fig. 5 The cone Cone(Cn) of
the coherently oriented cyclic
digraph Cn

Proposition 3.24 Let Cn be the coherently oriented cyclic digraph on n vertices, with
n ≥ 3. Then,

P(m)Conem(Cn) ∼= Cn,

the m-path digraph of the m-th cone Conem(Cn) of Cn is isomorphic (as a directed
graph) to Cn.

We have seen that, for everym, them-path digraph can be an oriented cycle. Cycles
of ordered n-cliques have a rigid structure, as each subsequent element in the sequence
is determined by the preceding one, and by the face maps:

Remark 3.25 Let σ and σ ′ be two n-simplices of dFl(G), and assume di (σ ) = d j (σ
′)

for i < j , and n > 0. If σ = (v0, . . . , vn), denote by σ [h] the h-entry vh of σ . Then
we have

σ ′[h] =
{

σ [h] for h < i, h > j

σ [h + 1] for i ≤ h < j

and σ ′[ j] is the vertex in which σ and σ ′ differ. For example, assume σ = (0, 1, 2, 3)
and σ ′ = (1, 4, 2, 3); then d0(σ ) = d1(σ ′) and here the face maps correspond to the
indices i = 0, and j = 1. When h = i = 0, we have σ ′[0] = σ [1], and σ ′[h] = σ [h]
for h = 2, 3; on the other hand, when h = j (case h = j = 1), we have σ ′[h] = 4,
the vertex in which σ and σ ′ differ.

Such rigidity implies that taking n-path digraphs preserves acyclicity:

Proposition 3.26 The n-path digraph PG(n) of a digraph G without oriented cycles
does not have oriented cycles.
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Proof We proceed by contradiction. Assume PG(n) has an oriented cycle γ given by
n-simplices

σ0 → σ1 → · · · → σk−1 → σk (6)

of dFl(G). All the discussion below is given modulo k.
The oriented cycle in Eq. (6) corresponds to a closed path of ordered (n+1)-cliques

ofG, and for eachσh → σh+1 there are indices ih and jh such thatdih (σh) = d jh (σh+1),
with ih < jh . Without loss of generality assume that ih = 0 for some h—otherwise
let i = min{ih | h = 0, . . . , k} and replace in the discussion below the index 0 with
such minimal index i .

Starting with the cycle γ , it is now possible to construct oriented closed paths in G
as follows. First, as ih = 0 for some h, then we have σh[1] = σh+1[0] by Remark 3.25.
Furthermore, as the simplex σh represents an ordered clique of G, this means that there
is a directed edge eh between the 0-th and 1-st entry of σh , i.e. eh := (σh[0], σh[1]),
and we can see eh as an edge between the vertices σh[0] and σh+1[0]. The idea is
now to use these edges eh to construct a cycle γ0 in G. To this goal, consider only
the indices h in {0, . . . , k} for which ih = 0, say h0, . . . , hs . For all other indices r ,
we have σr [0] = σhr+1[0], where hr := minh0,...,hs {h j < r}. Then, starting with
v0 := σ0[0] = σh0 [0], we have the sequence of edges

v0=σh0 [0]
eh0−−→ σh0+1[0]=σh1[0]

eh1−−→ σh1+1[0] −→ . . .
ehs−→ σhs+1[0]=σh0 [0] = v0

terminating again in v0, as γ was a cycle of simplices. But, this is not possible because
G has no oriented cycles, leading to a contradiction. ��

In the next example we show that the directed structure inherited by the path
digraphs is more informative than the undirected one. We apply the constructions
of Definitions 3.18 and 3.20 to the digraphs shown in Example 3.7:

Example 3.27 Let G1 and G2 be the graphs of Example 3.7. The 2-path graphs G(2)
1

and G(2)
2 have three vertices, corresponding to the three 2-simplices, and two edges,

corresponding to the two edges in common; the obtained path graphs are isomorphic.
On the other hand, the associated 2-path digraphsPG(2)

1 andPG(2)
1 are not isomorphic.

In fact, we have the digraph structures

PG(2)
1

∼= • • •

PG(2)
2

∼= • • •
showing that the extension from 2-path graphs to 2-path digraphs provides additional
non-trivial information.

We finish by establishing our main result concerning n-path digraphs, which is their
functoriality.
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Theorem 3.28 For each n in N,

P(n) : DiGraph → DiGraph, G �→ PG(n)

is an endofunctor of the category of directed graphs.

Proof First, note that if n = 0, then P(n) is the identity functor by definition; if
n = 1, then, by Proposition 3.22, P(n) coincides with the line digraph functor (see
Remark 1.8).

Let now n ≥ 2. We first observe that, if a digraph G has no ordered (n+1)-cliques,
then the associated n-path digraph is the empty digraph. By Remark 1.4, a morphism
of digraphs φ : G1 → G2 induces a function between the sets of (n + 1)-cliques. As
a consequence, if G1 and G2 are two digraphs and the set of (n + 1)-cliques of G2 is
empty, then the set HomDigraph(G1,G2) of morphisms of digraphs between G1 and G2
is also empty. By Remark 2.5 we also have an induced function between the sets of
ordered (n + 1)-cliques of G1 and G2, that preserves the relative order of the faces.
This function may not be surjective (there might be cliques that are not images of any
clique in G1) nor injective (as it may send different cliques to the same one).

For a morphism of digraphs φ : G1 → G2, we have got a function P(n)(φ) between
the sets of vertices of the associated n-path digraphs. We now want to promote it to
a morphism of n-path digraphs. To this end, let c, c′ be two ordered (n + 1)-cliques
of G1, and let σc and σc′ be the associated n-simplices in dFl(G1). It may happen that
P(n)(φ) sends both σc and σc′ to the same simplex of dFl(G2). However, observe that
if σc and σc′ share an (n − 1)-face τ , and are sent to the same n-simplex of dFl(G2),
then the ordered (n + 1)-cliques c, c′ share the face τ such that there exists an index i
with di (σc) = di (σc′) = τ (as the linear ordering should be preserved). Therefore,
if σc and σc′ are collapsed to the same vertex of PG(n)

2 , then σc and σc′ represent

two non-adjacent vertices of PG(n)
1 . Furthermore, the relative incidence relations are

preserved, and themorphism of digraphsφ : G1 → G2 induces a functionP(n)(φ) such
that (P(n)(φ)(σc),P(n)(φ)(σc′)) ∈ PG(n)

2 for every (σc, σc′) belonging to PG(n)
1 , i.e.

P(n)(φ) is a morphism of digraphs.
To conclude, it is now easy to see that P(n) of the identity is the identity and that,

if φ1 and φ2 are morphisms of digraphs, then P(n)(φ1 ◦ φ2) = P(n)(φ1) ◦ P(n)(φ2).
This shows that P(n) is an endofunctor of the category Digraph. ��

By Proposition 3.26, we get also the functoriality when restricting to acyclic
digraphs:

Proposition 3.29 The funtor P(n) restricts to a functor DiGraph0 → DiGraph0 on
the category of finite digraphs without oriented cycles.

Remark 3.30 The idea behind Definition 3.20 corresponds to the intuition that flows
in a directed graph follow the direction of the edges, from the source to the target. As
we have remarked in Lemma 3.22, the source and target of a directed edge are given
by the face maps d1 and d0, respectively. The condition i < j in the construction of
the path digraph follows and generalizes this principle to the higher simplices as well.
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This condition can be relaxed to i ≤ j , which has the effect that the path digraphs
might have reciprocal edges, and therefore oriented cycles.

As described in Sect. 2.1, one of the possible approaches to a homology theory of
digraphs is given by the ordinary homology of the associated directed flag complexes;
recall that this is constructed by using the set of ordered cliques in a digraph. When
applied to 1-path digraphs, we have the following consequence:

Remark 3.31 Let G be a digraph without oriented cycles. Then, the directed flag com-
plex dFl(PG(1)(G)) = dFl(L(G)) of the 1-path digraph has simplices of dimension at
most 1.

The above remark is not true for n-path digraphs. For example, it is easy to see
that the 2-path digraphs may contain 3-cliques, and as a consequence the associated
directed flag complexes can possibly be of dimension at least 2:

Example 3.32 Consider the digraph G on five vertices with directed edges as follows:

0

1

2

3

4

Then G contains three ordered cliques, corresponding to the simplices (0, 1, 2),
(1, 2, 3) and (1, 4, 2). The boundary relations show that the associated 2-path digraph
is the ordered clique on three vertices, and the associated directed flag complex is a
2-simplex.

In the case of q-connectivity the homotopy types of the connectivity digraphs can
be studied through the order complex construction, recall Example 3.15. Analogously,
it is then natural to ask what is the dimension of the directed flag complex of an n-path
digraph, and what is its homotopy type:

Question 3.33 For a given digraph G, what is the homotopy type of the directed flag
complex associated to PG(n), or to the relaxed n-path digraph of Remark 3.30? What
are the distributions of the associated Betti numbers like?

A partial answer to this is given in Riihimäki (2023) when G is the 1-skeleton of so
called pseudomanifold; for example, the Cone(Cn) in Fig. 5 is an example of a directed
2-pseudomanifold. In this case the directed flag complexes of the connectivity digraphs
we have considered are 1-dimensional. The digraph in Example 3.32 does not have
the structure of a 2-pseudomanifold: there is a "singular" edge (1, 2) to which three
different 2-simplices are attached. We conclude this section with examples showing
that the digraphs of Examples 3.7 and 3.8 can now be distinguished by using the
homology groups associated to the 2-path digraphs:
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Example 3.34 Consider the digraphs G1 and G2 illustrated in Example 3.7. The asso-
ciated 2-path digraph PG(2)

1 —cf. Example 3.27—has two connected components,

whereas the 2-path digraph PG(2)
2 has one connected component. Then all the

homology theories described in Sect. 2 can now distinguish the two digraphs.

Example 3.35 For the digraphs S1 and S2 of Example 3.8 the associated 2-path
digraphs PS(2)

1 and PS(2)
2 have one and two connected components, respectively.

Again, all the homology theories described inSect. 2 candistinguish these twodigraphs
representing 2-spheres.

4 Persistent Hochschild homology of digraphs

Thegoal of this section is to introduce apersistent homology framework forHochschild
homology of directed graphs, using connectivity digraphs as an intermediate step. One
of the disadvantages of Hochschild homology for digraphs is that it is trivial in degrees
i ≥ 2. The use of connectivity digraphs is meant to solve this issue. We first show that
the n-path digraphs introduced in Sect. 3.4 allow us to construct a persistent homology
functorially in the case of acyclic digraphs. We then extend the persistence pipeline
to general digraphs; we lose functoriality but we obtain a new persistence descriptor
for digraphs.

4.1 Persistent Hochschild homology of acyclic digraphs

In this subsection we mainly follow Bergomi and Vertechi (2020), where an abstract
categorical framework in which to develop persistent homology theories has been
introduced. In this framework, one replaces filtrations of topological spaces with fil-
trations in an arbitrary category (for us, the category of directed graphs) and the
homology functors with any functor with values in a regular ranked category (for us,
Hochschild homology over a field K), compare with Bergomi and Vertechi (2020,
Table 1). To accomplish our aims we could have also used the generalised persistence
of Patel (2018); we think, however, that the theory in Bergomi and Vertechi (2020)
provides a more straightforward passage to our aims.

We start by considering the poset (R,≤) of real numbers with the induced natural
partial order≤. The poset (R,≤) can be seen as a category in a standard way, as every
poset can be seen as a category: the category P associated to a poset P = (S,≤) has
the set S as a collection of objects and a (unique) morphism x → y for any x ≤ y. A
morphism of posets is then a functor between them, equivalently an order-preserving
map of posets.

In persistent homology applications, one usually considers diagrams of spaces
indexed by the natural numbers, ormore generally by the real numbers. These diagrams
are referred to as filtrations:

Definition 4.1 A (real-indexed) filtration in a categoryC is a functorF : (R,≤) → C.

Remark 4.2 Following Bergomi and Vertechi (2020) we will always consider tame
filtrations. Essentially, a filtration F is tame if there is a finite sequence {ti }i∈N such
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that F(a) → F(b) may fail to be an isomorphism only if a < ti ≤ b for some i . The
concept of tameness extends to subposets of (R,≤).

Example 4.3 Let {Gn}n∈N be a family of digraphs, with Gn → Gn+1 a morphism of
digraphs for each n ∈ N. Then, the family {Gn}n∈N yields a filtration (N,≤) →
Digraph; if we assume Gn to be without oriented cycles, the filtration takes values in
Digraph0. Observe that if {Gn}n∈N is a family of subgraphs of a given directed graph
G, then by Remark 4.2 the resulting filtration is tame.

Let F be a filtration in Digraph0. In the following discussion, we restrict to the
n-path digraph functor PG(n), but everything is the same by replacing PG(n) with any
functorial construction of connectivity digraphs. By Theorem 3.28, composition with
the n-path digraph functor PG(n) induces, for each n in N, a filtration in Digraph0;
by Proposition 3.26, the n-path digraph of a digraph without oriented cycles does not
have oriented cycles. We then get the following composition of functors:

(R,≤)
F−→ Digraph0

P(n)−−→ Digraph0.

Let FinVect be the category of finite dimensional vector spaces over an algebraically
closed fieldK. By Remark 2.27, the Hochschild homology groups yield functors with
values in FinVect.

Remark 4.4 The category FinVect, equipped with the dimension function assigning to
a vector space its dimension, is a ranked category—cf. Bergomi and Vertechi (2020,
Definition 2.1).

Before putting all together, we need the definition of a persistence function,
generalizing persistent Betti numbers from classical persistent homology:

Definition 4.5 (Bergomi and Vertechi 2020, Definition 3.2) Let C be a category. An
integer-valued lower-bounded function p on the morphisms of C is a categorical
persistence function if, for all u1 → u2 → v1 → v2 the following hold:

1. p(u1 → v1) ≤ p(u2 → v1) and p(u2 → v2) ≤ p(u2 → v1);
2. p(u2 → v1) − p(u1 → v1) ≥ p(u2 → v2) − p(u1 → v2).

LetF : (R,≤) → Digraph0 be a filtration, and consider the following composition
of functors:

(R,≤)
F−→ Digraph0

P(n)−−→ Digraph0
K−−−→ K-Alg

HH1−−→ FinVect (7)

By Bergomi and Vertech (2020, Proposition 3.6), any functor C → FinVect yields a
categorical persistence function. In order to get an analogue of persistent Betti numbers
usually associated to pairs of real numbers, it is then sufficient to have a filtration and
a categorical persistence function (Bergomi and Vertechi 2020, Remark 3.8). In our
context,F : (R,≤) → Digraph0 is a filtration, and the composition of functors in (7)
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yields the categorical persistence function. Furthermore, for each pair of real numbers
u ≤ v, Hochschild homology gives the linear maps

HH0(KPG(n)
u ) → HH0(KPG(n)

v ) and HH1(KPG(n)
u ) → HH1(KPG(n)

v )

of finite dimensional vector spaces. By taking the images of these maps, we get the
desired persistent Betti numbers:

Definition 4.6 The (n, 1)-persistent Betti number of a filtration in Digraph0 is the
persistent Betti number induced by HH1(KPG(n)

u ) → HH1(KPG(n)
v ), in dimension

1. The (n, 0)-persistent Betti number for dimension 0 is defined analogously.

Remark 4.7 Note that degrees of Hochschild homology are only 0 and 1. The higher
"homological" degrees n, and the n-th Betti numbers, are defined by the connectivity
digraphs of n-simplices. This is in our view the lifting ofHochschild homology beyond
degree 1.

In this functorial framework, given a categorical persistence function p and a (tame)
filtration F , it is possible to define a persistence diagram DF as well (Bergomi and
Vertechi 2020). In the case of real-indexed filtrations, the morphisms u ≤ v ∈ R are
in bijection with the positive half-plane �+ = {(u, v) ∈ R2 | u ≤ v}. We therefore
get an induced persistence function pF : �+ → Z given by (u, v) �→ p(F(u ≤ v)).
For u < v we define the multiplicity μ(u, v) as

min
Iu ,Iv

{pF (sup(Iu), inf(Iv)) − pF (inf(Iu), inf(Iv)) − pF (sup(Iu), sup(Iv))

+pF (inf(Iu), sup(Iv))},

where Iu and Iv range over disjoint connected neighborhoods of u and v. The persis-
tence diagram DF associated to pF is then defined by those points (u, v) such that
μ(u, v) > 0, together with the diagonal {(u, u) | u ∈ [0,∞)} (Bergomi and Vertechi
2020, Definition 6). Note that for small enough neighborhoods Iu and Iv we have
inf(Iu) → sup(Iu) → inf(Iv) → sup(Iv), and the above minimized expression is
exactly that of condition 2. in Definition 4.5 with strict inequality.

We get an immediate stability theorem, in fact an isometry theorem, between
our Hochschild homology valued filtrations and their persistence diagrams. Let
dFinVect(F ,G) be the interleaving distance between two filtrations F ,G : (R,≤) →
FinVect and let d(DF , DG) be the bottleneck distance between the associated
persistence diagrams.

Theorem 4.8 Let F ,G : (R,≤) → Digraph0 be two filtrations of digraphs. Then,

dFinVect(HH1 ◦ KP(n) ◦ F ,HH1 ◦ KP(n) ◦ G) = d(DF , DG)

where DF and DG represent the persistence diagrams associated to F and G.
Proof The proof follows directly from Bergomi and Vertech (2020, Theorem 3.27 and
3.29). ��
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The theorem says that the persistent Hochschild homology groups associated to
a filtration of digraphs are stable, one of the main required properties in persistent
homology applications. We refer to this as persistent Hochschild homology (PHH).
Note that, in the terminology ofBubenik et al. (2015),we have introduced a generalised
persistence along with a hard stability theorem: the map from persistence modules to
discrete invariants is 1-Lipschitz. This still leaves open the (very hard) problem of
proving a stable persistent Hochschild homology pipeline starting from the space of
(acyclic) digraphs. Themain obstacle here lies in the difficulty of having an appropriate
metric for digraphs that behaves well with filtrations.

Note that persistent Hochschild homology does not behave as the usual persistent
homology; in fact, we have the following:

Remark 4.9 Consider an edge weighted directed graph G, and consider the filtration
induced by sorting theweights in an increasing order—the first digraph in the sequence
being the spanning subgraph on the vertices of G. Then, generators in persistent
Hochschild homology applied to such filtration always persist until ∞. Therefore
we cannot talk about births and deaths as is usually done in the context of barcodes.

Similarly, as for Hochschild homology, we can consider compositions

(R,≤)
F−→ Digraph0

P(n)−−→ Digraph0
Ch◦dFl−−−−→ Ch

Hn−→ Ab

involving the homology of directed flag complexes, or the path homology functors. For
n = 0, these compositions yield the usual persistent homology in the first case, and the
persistent path homology introduced in Chowdhury andMémoli (2018), in the second.
Henceforth, composition with the higher connectivity digraphs allows us to extend the
usual classical pipelines. As the homology functors—of the directed flag complex dFl
and of the path complex P associated to finite digraphs, when considering coefficients
in a field—take values in finite dimensional vector spaces, the same discussion of the
section repeats verbatim, yielding the following:

Theorem 4.10 Let F ,G : (R,≤) → Digraph0 be two filtrations of digraphs. Then,
for each i ∈ N we get:

dFinVect(Hi ◦ dFL ◦ P(n) ◦ F ,Hi ◦ dFL ◦ P(n) ◦ G) = d(DF , DG)

and

dFinVect(Hi ◦ P ◦ P(n) ◦ F ,Hi ◦ P ◦ P(n) ◦ G) = d(DF , DG)

where DF and DG represent the persistence diagrams associated to F and G.
The connectivity digraphs could be substantiatedmuchmore, for example, by trying

to understand their homotopy types and how those might relate to the underlying
digraphs, see the discussion around Question 3.33; this is an ongoing work of the
authors. From persistence point of view the filtrations of digraphs could be produced
from some derived filtrations, in the same vein as in standard persistence of finite
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metric spaces one might employ eccentricity or curvature filtrations. For digraphs
one interesting example comes from the discrete Forman-Ricci curvature extended
to directed networks (Saucan et al. 2019). We believe this connection of structurally
interesting filtrations and connectivity digraphs might be of interest and would lead to
new avenues in analysing the structure of digraphs.

4.2 A persistent Hochschild homology pipeline for directed graphs

As seen in the previous section, Hochschild homology gives rise to a persistence
function when considering directed graphs without oriented cycles; however, this
approach fails with graphs having oriented cycles, due to Proposition 2.22. We now
introduce a persistence-like framework for Hochschild homology that extends our
set-up to the whole category Digraph.

Our pipeline proceeds as follows:

1. We start with a filtration F : (R,≤) → Digraph.
2. At each filtration step t we obtain a connectivity digraph EFt by applying the

n-path digraphP(n) for some n, or the q-digraph for some (q, ̂di , ̂d j ), or any other
connectivity digraph construction (possibly non-functorial).

3. The resulting digraphs EFt can in general have oriented cycles. We therefore
consider the condensation c(EFt ) (Definition 1.10).

4. By Remark 1.11, c(EFt ) does not have oriented cycles. Hence, we compute
the Hochschild characteristic XHH(c(EFt )) = dimk HH0(A) − dimk HH1(A),
where A is the associated path algebra. Note that dimk HH0(A) agrees with the
number of connected components and dimk HH1(A) with the formula 1 − n +
∑

e∈E(G) dimk et(e)Aes(e) of Theorem 2.25. As the digraph c(EFt ) does not have
oriented cycles, this is exactly the characteristic introduced in Definition 2.29.

Diagrammatically, we have:

(R,≤)
F−→ Digraph

E−→ Digraph
c−→ Digraph0

k−−→ k-Alg
XHH−−→ FinVect. (8)

Note that the process lands in the category of finite vector spaces. Even though E
might be functorial, as we have introduced two examples in this paper, the composition
is not functorial anymore due to condensation c;we refer to the discussion afterRemark
1.11.

Remark 4.11 Observe that taking the condensation of a digraph and the connectivity
digraphs do not commute. In particular, killing the cycles in the condensation process
may kill also ordered cliques; this is the reason why we first apply E and then the
condensation c.

We demonstrate our persistent Hochschild homology pipeline, by applying it to the
filtrations of the following digraphs:

• RandomErdös-Rényi (ER) digraphwith probability 0.5 for directed edges between
any pair of vertices. We make it randomly edge weighted by replacing each non-
zero entry of the adjacency matrix with a value sampled uniformly from [0, 1).
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Fig. 6 The necklace digraph

Fig. 7 Persistent Hochschild characteristics. Left: condensed digraph and condensed 1-path digraph of
a random Erdös–Rényi. Right: condensed digraph and condensed 1-path digraph of a random necklace
digraph. Both digraphs had 20 vertices

Fig. 8 Persistent Hochschild characteristics. Left: condensed q-digraphs of a random Erdös–Rényi. Right:
condensed q-digraph of a random necklace digraph. The choices for (q, i, j) are shown in the figures. Both
digraphs had 20 vertices

• Random necklace digraph, as represented in Fig. 6. Similarly, to make it random
wefirst construct the associated adjacencymatrix, which has ones on the first upper
and lower diagonals, and we then replace these with a value sampled uniformly
from [0, 1).
In both examples, we take the digraph filtration induced by the random entries of

the associated adjacency matrices: at a filtration value t we take the digraph induced
by keeping only edges whose weight is ≤ t . The digraphs we used had 20 vertices, so
were represented by 20 × 20 adjacency matrices.

Figure7shows the persistentHochschild characteristics for the randomErdös-Rényi
and necklace digraphs, and for their associated 1-path digraphs. Figure8 shows the
results for q-digraphs with (q, ̂di , ̂d j ) equal to (q, ̂d0, ̂dq+1) for q ∈ {1, 2, 3, 4} for
the random Erdös-Rényi, and (0, ̂d0, ̂d1) for the necklace digraph; for ease of notation
we write (q, ̂di , ̂d j ) as (q, i, j) in the remainder of the paper.
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As observed in Remark 4.9, generators in persistent Hochschild homology always
persist until ∞, and therefore the associated Betti curves yield monotone func-
tions. Experiments involving the persistent Hochschild characteristics of random ER
digraphs, and more structured necklace digraphs—cf. Fig. 7—show instead that the
associated curves are not monotone. This is caused by the condensation step in the
pipeline introduced in this section. Condensation also has the effect of reducing the
number of edges and paths in the graph, a number that is correlated to the first
Hochschild homology group—cf. Theorem 2.25. The effect of condensation is seen in
the plots as zig-zagging; particularly large positive jumps correspond to large cyclic
components being killed.

Note that a common feature in all plots is that the early parts of the filtrations
are dominated by the connected components. This occurs until a certain saturation
point in which more structured graphs appear and the number of edges, paths, and
of oriented cycles, is more prominent. It is interesting to note that this saturation
point is reached very soon when dealing with random digraphs and much later for
the necklace digraphs. Essentially this is observed in the plots when the value of
XHH drops to negative. The plots for ER q-digraphs also begin slightly positive before
more paths begin to dominate dropping the values very negatively. Exception is the ER
(4,0,5)-digraph: due to the required high-dimensional connecting faces the digraphs
are predominantly rather empty of edges and dominated by connected components.

When oriented cycles are more likely to be created with long paths, the variations
in XHH are stronger. Compare this effect on the persistent Hochschild characteris-
tics of random ER digraphs and of necklace digraphs in Fig. 7. Necklace digraphs,
perturbed with addition of white noise, present small cycles, so that the persistent
Hochschild characteristics is changing almost linearly. Changing the associated con-
nectivity digraph may change completely the behaviour of XHH. Note the change in
the persistent Hochschild characteristics associated to the line digraphs of the same
random and necklace digraphs.

Finally, we remark that the XHH of the q-digraphs in Fig. 8 show drastically larger
values compared to Fig. 7. Recall that these digraphs have as vertices all the simplices
of dimension ≥ q. The simplicial face inclusions are also always near resulting in
edges (Definition 3.13). Therefore the q-digraphs are larger and more dominated by
paths along the filtration. This is particularly visible in the plot for ER (2,0,3)-digraph.

As already mentioned, the pipeline we have introduced uses the condensation of
a digraph to kill the oriented cycles. By producing acyclic digraphs, this also has
an effect in the computational efficiency since many graph algorithms, for example
finding paths, have lower complexity; this was taken advantage of in Riihimäki (2023)
for computing q-connected pathways of simplices. Other approaches are possible,
for example in Kaul and Tamaki (2020, Algorithm 1) a Berger and Shor algorithm
(Berger and Shor 1990) has been used for the same task. Using condensation leads
to our pipeline not being functorial, and we do not know if the persistent Hochschild
characteristic defined this way is stable in the sense of Theorem 4.8; this leaves open
the following question:

Question 4.12 Is it possible to modify the composition of Eq. (8) in a functorial way?
Is the composition of Eq. (8) stable in the sense of Theorem 4.8?
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Fig. 9 Persistent Hochschild homology of the synaptic filtration of the C. elegans digraph. Left: n-path
digraphs. Right: (q, i, j)-digraphs

4.3 Persistent Hochschild homology of the C. elegans network

As an application of the pipeline (8) to real-world data, we analysed the neuronal
network of the C. elegans organism (Varshney et al. 2011); in this network vertices
are neurons and directed edges represent pre-post-synaptic connections. The synaptic
connectivity is obtainable from Altun et al. (2023) and we used the steps in Govc
(2020) to construct the directed graph, which has 279 vertices and 2194 edges. The
computations demonstrate that our proposed pipeline can be taken as the first steps in
computational (persistent) Hochschild homology, and the analysis below is meant to
provide insight into how one might use this approach in concrete network analysis.

The network data contains the synaptic strengths, i.e. each edge has an integer
weight in the interval [1, 37]; note that not every value appears as an edge weight.
These weights allow to define a natural synaptic filtration of the full digraph G: for
t ∈ [1, 37] we take Gt ⊆ G to be the subgraph induced by all edges with weight ≤ t .

Figure9shows the persistent Hochschild characteristics over the synaptic filtration,
for various n-path digraphs and q-digraphs. The choice of the triple (q, i, j) is only
exemplary, and was selected to be different from the examples in the previous section.
For more about the Q-analysis of C. elegans see Riihimäki (2023). To gain more
insight into the behaviour of XHH we also show in Fig. 10 the numbers of vertices,
connected components, and strongly connected components in the n-path digraphs
and (q, i, j)-digraphs over the synaptic filtration. In all the plots we see a flattening
of the curves around synaptic weight 17. This indicates that addition of new simplices
along with higher weight edges happens so sparsely within the network, that it does
not change the structure of n-path or q-digraphs in any meaningful way.

Recall that the Hochschild characteristic XHH for (not necessarily connected)
acyclic digraphs is computed as #components − 1 + #vertices − ∑

edges e #{s(e) −
t(e)-paths}. This quantity is computed after condensation. For the 2-path digraph we
see that in the early parts of the filtration the numbers of components and strong com-
ponents rise sharply. Particularly strong components are nearly half of the number
of vertices indicating that there are many reciprocally connected pairs of simplices.
While the 2-path digraph becomes more connected along the filtration, as seen by the
sharp decline in the number of components, the number of strong components stays
rather constant. The value of XHH, however, is very negative along the full filtration.
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Fig. 10 Numbers of vertices, connected components, and strongly connected components of the synaptic
filtration of the C. elegans digraph. Left: n-path digraphs. Right: (q, i, j)-digraphs

These observations seem to indicate that, even after condensing the strong compo-
nents, the 2-path digraph is dominated by paths of 2-simplices connected through
shared 1-faces. This interpretation is in fact consistent with the known structure of the
C. elegans digraph: there is an over-representation of 2- and 3-cliques with reciprocal
edges (Varshney et al. 2011). The behaviour of 3-, 4- and 5-path digraphs seems to
follow that of 2-path digraph; the sharp rise of XHH at filtration values 2–5 is most
likely the effect of condensing away many edges.

The q-digraphs exhibit very large negative values ofXHH. This is largely dominated
by the contribution of edges: recall that each simplicial face inclusion is q-near, hence
contributing an edge. Predominantly due to this, in contrast to 2- and 3-path digraphs,
the XHH of (2,0,2)- and (3,0,3)-digraphs steadily decreases to more negative values
along the synaptic filtration when more simplices appear. The numbers of strongly
connected components in these digraphs is a large fraction of the numbers of vertices,
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possibly indicating that the strong components are rather small, i.e there are only
few reciprocally connected simplices. Condensation then only destroys relatively few
edges, leaving a larger negative factor in XHH. From the known over-representation
of reciprocally connected 2- and 3-cliques in the C. elegans network one might expect
that many pairs of simplices with exactly the same vertices would be connected in
both ways in the (q, i, j)-digraphs; the particular choice of i and j here might not be
sensitive to this. The sharp increase in the (4,0,4)-digraph around filtration values 12–
13 seems to be due to condensation: at the same time there is a drop in the number of
components, so more simplices become connected, and a steep increase in the number
of strong components, with the overall effect being that many edges are condensed
away. It is interesting that this happens at the particular synaptic weights, and the
same phenomena occurs in all the n-path digraphs, albeit to a less degree; this seems
to indicate that there is, simplicially, something interesting happening in theC. elegans
network at the synaptic weight range 10–15. Further investigating this is left for future
work. For (5,0,5)-digraph we see that the slightly positive value ofXHH until filtration
value 12 is dominated by vertices and components with very little connections; this
is reasonable as simplices of dimension ≥ 5 are sparse within the network. As more
simplices appear we see a decline in XHH with the increase of connecting edges. Note
that the numbers of vertices and strong components seem to agree throughout the
filtration, indicating that there are nearly zero reciprocal connections and condensation
therefore has no effect.
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