
Vol.:(0123456789)1 3

Journal of Membrane Computing
https://doi.org/10.1007/s41965-023-00120-1

RESEARCH PAPER

Networks of splicing processors: simulations between topologies

José Angel Sanchez Martín1 · Victor Mitrana2 · Mihaela Păun3,4

Received: 30 November 2022 / Accepted: 3 March 2023
© The Author(s) 2023

Abstract
Networks of splicing processors are one of the theoretical computational models that take inspiration from nature to efficiently
solve problems that our current computational knowledge is not able to. One of the issues restricting/hindering is practical
implementation is the arbitrariness of the underlying graph, since our computational systems usually conform to a predefined
topology. We propose simulations of networks of splicing processors having arbitrary underlying graphs by networks whose
underlying graphs are of a predefined topology: complete, star, and grid graphs. We show that all of these simulations are
time efficient in the meaning that they preserve the time complexity of the original network: each computational step in that
network is simulated by a fixed number of computational steps in the new topologic networks. Moreover, these simulations
do not modify the order of magnitude of the network size.

Keywords Splicing processor · Network of splicing processors · Underlying graph · Simulation.

1 Introduction

The formal operation of splicing on strings has been intro-
duced in [5] as an abstraction of the biological phenomenon
of DNA recombination under the effect of restriction and
ligases enzymes. The biological phenomenon is illustrated
in Fig. 1. We give here a few informal explanations. Two
DNA molecules (the blue and the red ones) are cut by a
restriction enzyme (in this case the enzyme is EcoRI). This
process yields fragments with Watson–Crick complementary

tails called “sticky ends”. These sticky ends may join again
leading to the recombination of DNA. To fix the new com-
bination, a DNA enzyme called ligase seals the gaps after
the sticky ends are joint.

We follow [15] with the formal definition of splicing as
an operation on pairs of strings. First, we need to define
what a splicing rule is: a quadruple of strings specifying
the subsequences in the two strings where the strings are
cut. Therefore, a splicing rule is intended to abstract the
restriction enzymes and its subsequences indicate the sites
where the enzymes cut. Different computational models
based on the iteration of this operation may be defined.
Thus, a generating splicing system initiates a computa-
tion starting from a given finite set of strings (axioms)
and iteratively applying splicing rules, from a given finite
set of such rules, producing eventually a language. This
computational model was introduced in [5]; further on,
the model and its variants have intensively been investi-
gated. Splicing operation, as a formal operation on words
and languages, has been vividly studied for more than two
decades. There have been published a lot of papers as well
as several books containing chapters devoted to this topic.
We mention here just a few of them [6, 9, 16], containing
extensive chapters about splicing, as well as [7, 8], con-
taining chapters that intend to discuss various applications.
There are two types of splicing systems: generating sys-
tems, which generates a language by iteratively applying

 * Victor Mitrana
 victor.mitrana@upm.es

 José Angel Sanchez Martín
 josanc16@ucm.es

 Mihaela Păun
 mihaela.paun@incdsb.ro

1 Department of Software Engineering and Artificial
Intelligence, Universidad Complutense de Madrid, Calle del
Prof. José García Santesmases, 9, 28040 Madrid, Spain

2 Department of Information Systems, Universidad Politecnica
de Madrid, Calle Alan Turing s/n, 28031 Madrid, Spain

3 Bioinformatics Department, National Institute for R
&D for Biological Sciences, 296 Independenţei Bd.,
Bucharest 060031, Romania

4 Faculty of Administration and Business, University
of Bucharest, Bucharest, Romania

http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-023-00120-1&domain=pdf

 J. A. S. Martín et al.

1 3

splicing rules to the strings obtained starting from a finite
set of strings, and accepting system, which starts out with
just one initial string and a finite set of axioms and an iter-
ative splicing as above is initiated. The computation halts
when at least one string from a predefined set is obtained.
The input string is accepted as soon as the system halts.
The accepting splicing system has been introduced by
Mitrana et al. in [13], while different variants have been
studied in [1, 4, 14], etc.

In [10] a highly parallel and distributed computational
model based on the splicing operation was introduced: net-
work of splicing processors (NSP). This model consists in an
undirected graph whose nodes host a splicing processor. A
splicing processor consists in a finite set of splicing rules, a
finite set of strings (axioms) and four sets of symbols, such
that two of them define the input filter while the other two
define the output filter. A computation in a network of splic-
ing processors (NEP, for short) is a sequence of splicing and
communication steps which alternate with each other. In a
splicing step, each processor applies, in parallel, the splicing
rules it contains to all the strings existing at that moment in
the processor. Note that we assume that each string appear-
ing in a processor at some moment, appears actually in an
unlimited number of identical copies such that different
copies may be rewritten by different splicing rules. In a
communication step, all the strings existing in the network
nodes are simultaneously are expelled from their nodes,
provided that they can pass the output filters of the nodes.
In the same communication step, arbitrary large number of
copies of each string expelled from one node (sender) enter
all the nodes (receivers) connected to the sender, provided
that the string can pass the input filters of the receivers. The
computation halts as soon as a predefined node, called Halt,
contains at least a string.

Several variants of NSP have been considered so far, most
of them being computationally complete, see, e.g., [2, 3,
10–12]. These networks have an ad hoc underlying graph
structure. By different reasons like: possible implementa-
tions, uniformity, comparisons, etc., it would be useful to
have networks with a fixed and well known topology as:
complete graph, star, grid, etc. This is actually the aim of
this work: to investigate the possibility of transforming a
given NSP into an equivalent NSP with an underlying graph
of such a predefined structure. We are interested not only in
the construction of these networks but also in comparing
the computational time and size of the constructed networks
with those of the original ones.

2 Basic definitions

In this section we introduce the main concepts and notations
that will be used in the sequel. For those notions not defined
here we refer to [17].

An alphabet is a finite and nonempty set of symbols. The
cardinality of a finite set A is written card(A). Any finite
sequence of symbols from an alphabet V is called string
over V. The set of all strings over V is denoted by V∗ and
the empty string is denoted by � . The length of a string x is
denoted by |x| while alph(x) denotes the minimal alphabet
W such that x ∈ W∗ . A language over the alphabet V is a set
L ⊆ V∗.

We give now the formal definition of the splicing opera-
tion following [15]. A splicing rule over a finite alphabet
V is a quadruple of strings of the form [(u1, u2);(v1, v2)]
such that u1 , u2 , v1 , and v2 are in V∗ . For a splicing rule
r = [(u1, u2);(v1, v2)] and for x, y, z ∈ V∗ , we say that r pro-
duces z from x and y (denoted by (x, y) ⊢r z) if there exist
some x1, x2, y1, y2 ∈ V∗ such that x = x1u1u2x2 , y = y1v1v2y2 ,
and z = x1u1v2y2 . For a language L over V and a set of splic-
ing rules R we define

A short discussion is in order here. As one can see, the splic-
ing rule defined above is a 1-splicing rule in the sense of
[6]. However, in the rest of the paper we do not make any
difference between the two strings a splicing rule is applied
to, therefore we may say that the rules are actually 2-splic-
ing rules .

Let V be an alphabet; we now define two predicates, one
with strong conditions (s) and another with weak restrictions
(w), for a string z ∈ V+ and two disjoint subsets P, F of V
as follows:

𝜎R(L) = {z ∈ V∗ ∣ ∃u, v ∈ L,∃r ∈ R such that (u, v) ⊢r z}.

𝜑(s)(z;P,F) ≡P ⊆ alph(z) ∧ F ∩ alph(z) = �

𝜑(w)(z;P,F) ≡alph(z) ∩ P ≠ � ∧ F ∩ alph(z) = �.

Fig. 1 Splicing operation (Klug and Cummings 1997)

Networks of splicing processors: simulations between topologies

1 3

In the definition of these predicates, the set P is a set of
permitting symbols while the set F is a set of forbidding sym-
bols. Informally, both conditions require that no forbidding
symbol occurs in z. As one can see, the former condition is
stronger than the second one since it requires that all permit-
ting symbols are present in z, while the latter requires that at
least one permitting symbol appears in z.

These predicates are extended to a language L ⊆ V∗ by

with � ∈ {(s), (w)}.
A splicing processor over an alphabet V is a 6-tuple

(S, A, PI, FI, PO, FO), where:

– S is a finite set of splicing rules over V.
– A is a finite set of auxiliary strings over V. These aux-

iliary strings are to be used, together with the existing
strings, in the splicing steps of the processors. Auxiliary
strings are available at any moment.

– PI,FI ⊆ V are the sets of permitting and forbidding
symbols, respectively, which form the input filter of the
processor.

– PO,FO ⊆ V are the sets of permitting and forbidding
symbols, respectively, which form the output filter of the
processor.

The set of splicing processors over V is denoted by SPV.
A network of splicing processors is a 9-tuple

� = (V ,U, ⟨, ⟩,G,N, �, In , Halt), where:

• V and U are the input and network alphabet, respectively,
V ⊆ U , and ⟨, ⟩ ∈ U ⧵ V are two special symbols.

• G = (XG,EG) is an undirected graph without loops with
the set of nodes XG and the set of edges EG . Each edge is
given in the form of a binary set. G is called the underly-
ing graph of the network.

• N ∶ XG ⟶ SPU is a mapping, which associ-
ates with each node x ∈ XG the splicing processor
N(x) = (Sx,Ax,PIx,FIx,POx,FOx).

• � ∶ XG ⟶ {(s), (w)} defines the type of the filters of a
node.

• In,Halt ∈ XG are the input and the halting node of � ,
respectively.

The size of an NSP � is defined as the number of nodes of
the graph, i.e., card(XG) . A configuration of an NSP � is a
mapping C ∶ XG → 2U

∗ , which associates a set of strings
with every node of the graph. Although a configuration is a
multiset of strings, each one appearing in an arbitrary num-
ber of copies, for the sake of simplicity, we work with the
support of this multiset. A configuration can be seen as the
sets of strings, except the auxiliary ones, which are present

��(L,P,F) = {w ∈ L ∣ ��(w;P,F)},

in the nodes at some moment. For a string w ∈ V∗ , we define
the initial configuration of � on w by C(w)

0
(In) = {⟨w⟩} and

C
(w)

0
(x) = � for all other x ∈ XG.

A configuration is followed by another configuration
either by a splicing step or by a communication step. A
configuration C′ follows a configuration C by a splicing
step if each component C�(x) , for some node x, is the result
of applying all the splicing rules in the set Sx that can be
applied to the strings in the set in C(x) together with those
in Ax . Formally, configuration C′ follows the configuration
C by a splicing step, written as C ⇒ C′ , iff for all x ∈ XG ,
the following holds:

In a communication step, the following actions take place
simultaneously for every node x:

 (i) all the strings that can pass the output filter of a node
are sent out of that node;

 (ii) all the strings that left their nodes enter all the nodes
connected to their original ones, provided that they
can pass the input filter of the receiving nodes.

Note that, according to this definition, those strings that are
sent out of a node and cannot pass the input filter of any
node are lost. Formally, a configuration C′ follows a con-
figuration C by a communication step (we write C� ⊧ C) iff
for all x ∈ XG

holds. For an NSP � , a computation on an input string w is
defined as a sequence of configurations C(w)

0
 , C(w)

1
 , C(w)

2
, ... ,

where C(w)

0
 is the initial configuration of � on w, C(w)

2i
⇒ C

(w)

2i+1

and C(w)

2i+1
⊧ C

(w)

2i+2
 , for all i ≥ 0 . A computation on an input

string w halts if there exists k ≥ 1 such that C(w)

k
(Halt) is

non-empty. Such a computation is called an accepting com-
putation. As the halting node is used just for ending the
computation, we shall consider that SHalt = AHalt = � . Fur-
thermore, because as soon as a string enters Halt , the com-
putation halts and no string goes out, we may also consider
that POHalt = FOHalt = �.

The language accepted by � is defined as

Given an NSP � with the input alphabet V, we define the
following computational complexity measure. The time com-
plexity of the finite computation C(x)

0
 , C(x)

1
 , C(x)

2
 , …C(x)

m
 of �

C�(x) = �Sx (C(x) ∪ Ax).

C�(x) = (C(x) − ��(x)(C(x),POx,FOx))∪⋃

{x,y}∈EG

(��(y)(C(y),POy,FOy) ∩ ��(x)(C(y),PIx,FIx))

L(�) = {z ∈ V∗ ∣ the computation of �

onzis an accepting computation}.

 J. A. S. Martín et al.

1 3

on x ∈ V∗ is denoted by Time� (x) and equals m. The time
complexity of � is the partial function from N to N,

3 Complexity preserving simulations

3.1 Simulating arbitrary NSP by complete NSP

Theorem 1 For every NSP � one can construct a complete
NSP � ′ such that the following conditions are satisfied:

1. L(�) = L(� �).
2. Time� � (n) ∈ O(Time� (n)).
3. size(� �) = size(�) + 2.

Proof Let 𝛤 = (V ,U,<,>,G,N, 𝛽, In,Halt) be a NSP with
the underlying graph G = (XG,EG) and XG = {x1, x2,… , xn}
for some n ≥ 2 ; x1 ≡ In and xn ≡ Halt . We construct the
NSP 𝛤 � = (V �,U�,<,>,G�,N�, 𝛽�, In�,Halt�) , where

G′ is the complete graph Kn+2 represented in Fig. 2, with the
nodes {In� , xcomp , xs1 , x

s
2
 , … , xs

n−1
 , Halt�} defined as follows:

• node In′ :

• node xcomp :

Time� (n) = max {Time� (x) ∣ x ∈ L(�), |x| = n}.

V � = V , U� = U ∪ T ∪ {#}, T = {ti ∣ 0 ≤ i ≤ n},

S = {[(a,>);(#,> t0)] ∣ a ∈ U}, A = {# > t0},

PI = U ⧵ (T ∪ {#}), FI = {#} ∪ T ,

PO = U ⧵ {#}, FO = {#},

𝛽� = (w)

• node xs
i
, 1 ≤ i ≤ n − 1 :

• node Halt′ :

We now analyze a computation of � ′ on the input string
< w > . In the input node In′ , the symbol t0 is attached to
the end of the string. Next, the symbol t0 is replaced by t1
in the node xcomp . When it goes out, it can only enter xs

1
 and

the simulation of a computation in � starts. Thus, the string
< w > t1 lies in xs

1
 , while the string < w > is found in x1 ,

the input node of � . More generally, we may assume that
a string zti is found in a node xs

i
∈ � � if and only if the cor-

responding string z lies in xi ∈ � , for all 1 ≤ i ≤ n − 1 . Note
that the strings can never return to In′ because of the input
filter of this node.

Let xi be a splicing node, where a rule [(a, b); (u, v)] is
applied to w yielding w′ and w′′ . Then, the same rule is
applied in xs

i
 and strings of the form w′ti and w′′ti are pro-

duced. Indeed, since all the strings in Axs
i
 and any string

entering xs
i
 have the symbol ti at the end, the splicing rule

will always yield strings keeping the character ti as the last
one. Since both the node xi and the node xs

i
 have the same

output filters and the produced strings only differ in this last
character ti , it follows that a string can only leave xs

i
 if and

only if the original counterpart can exit xi . Once it leaves,
the string returns to xcomp and the character ti is replaced with
tj characters in different copies, provided that {xi, xj} ∈ EG .
Each of the copies is sent to the corresponding connected
node xj and the process described above restarts. It immedi-
ately follows that L(� �) = L(�).

It is easy to notice that Time� � (w) = 2Time� (w) for every
w ∈ L(�) , hence the second statement is proved.

Finally, this construction needs two more nodes, therefore
size(� �) = size(�) + 2 . ◻

S = {[(�, tj);(#, ti)](∣ 1 ≤ j ≠ i ≤ n)∧ A = {#ti ∣ 1 ≤ i ≤ n},

({xi, xj} ∈ EG)} ∪ {[(�, t0);(#, t1)]},

PI = U ⧵ {#}, FI = {#},

PO = U ⧵ {#}, FO = {#},

�� = (w)

S = Sxi , A = {zti ∣ z ∈ Axi
},

PI = PIxi , FI = FIxi ∪ T ⧵ {ti},

PO = POxi
, FO = FOxi

,

�� = �(xi)

S = �, A = �,

PI = PIHalt, FI = FIHalt,

PO = �, FO = �,

� = �(Halt).

xs
1

xs
2

xs
n−1

In′

xcomp

Halt′
�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

������������

������������

�
�
�
�
��

�
�

�
��

�
�

�
�

��

�
�
�
�
��

Fig. 2 The underlying graph of � ′

Networks of splicing processors: simulations between topologies

1 3

3.2 Simulating arbitrary NSP by star NSP

Theorem 2 For every NSP � one can construct a star NSP
� ′ such that the following conditions are satisfied:

1. L(�) = L(� �).
2. Time� � (n) ∈ O(Time� (n)).
3. size(� �) = size(�) + 2.

Proof The simulation is identical to the one for complete
graphs. The node xcomp is set as the center of the star net-
work, while all the other nodes defined in the previous proof
are connected to it, as shown in Fig. 3.

Clearly, each computation in � ′ goes as in the previous
construction, hence all the statement of the theorem fol-
low. ◻

3.3 Simulating arbitrary NSP by grid NSP

Theorem 3 For every NSP � one can construct a grid NSP
� ′ such that the following conditions are satisfied:

1. L(�) = L(� �).
2. Time� � (n) ∈ O(Time� (n)).
3. size(� �) = 3size(�) + 3.

Proof Let 𝛤 = (V ,U,<,>,G,N, 𝛽, In,Halt) be a NSP with
the underlying graph G = (XG,EG) and XG = {x1, x2,… , xn}

for some n ≥ 2 ; x1 ≡ In and xn ≡ Halt . We construct the
NSP 𝛤 � = (V ,U�,<,>,G�,N�, 𝛽�, In�,Halt�) , where

The underlying graph of the network � ′ is the grid graph
with width 3 and height n + 1 from Fig. 4 below and its
nodes are defined as follows:

• node In′ :

• nodes xs
i
, 1 ≤ i ≤ n − 1 :

• nodes D, D′ :

U′ =U ∪ T ∪ {#},
T ={ti, t′i , t

1
i , t

2
i ∣ 1 ≤ i ≤ n},

G′ =(XG′ ,EG′),
XG′ ={In′,Halt′,D} ∪ {xsi ∣ 2 ≤ i ≤ n − 1}

∪ {xcompi , xconnecti ∣ 1 ≤ i ≤ n}.

S = {[(a,>);(#,> t1)] ∣ a ∈ U}, A = {# > t1},

PI = U� ⧵ ({#} ∪ T), FI = {#} ∪ T ,

PO = U� ⧵ {#}, FO = {#},

𝛽� = (w)

S = Sxi , A = {zti ∣ z ∈ Axi
},

PI = PIxi , FI = FIxi ∪ T ⧵ {ti} ∪ {#},

PO = POxi
, FO = FOxi

,

�� = �(xi)

S = �, A = �,

PI = �, FI = U�,

PO = �, FO = U�,

�� = (s)

xcomp

xs
2

xs
1

In′ Halt′

xs
n−1����

����

�
�
��

�
�

��

Fig. 3 The underlying graph of � ′

In′ D D′

xs
1

xs
2

Halt′

xcomp
1

xcomp
2

xcomp
n

xconnect
1

xconnect
2

xconnect
n

Fig. 4 The underlying graph of � ′

 J. A. S. Martín et al.

1 3

• nodes xcomp
i

, 1 ≤ i ≤ n:
 S = {[(�, t�

i
);(#, ti)]}∪

⎧
⎪
⎪
⎨
⎪
⎪⎩

{[(�, ti);(#, t
1

j
)] ∣ 1 ≤ i ≠ j ≤ n ∧ {xi, xj} ∈ EG},

if i is an even number,

{[(�, ti);(#, t
2

j
)] ∣ 1 ≤ i ≠ j ≤ n ∧ {xi, xj} ∈ EG},

if i is an odd number,

A =

⎧
⎪
⎪
⎨
⎪
⎪⎩

{#t1
j
∣ 1 ≤ i ≠ j ≤ n ∧ {xi, xj} ∈ EG},

if i is an even number,

{#t2
j
∣ 1 ≤ i ≠ j ≤ n ∧ {xi, xj} ∈ EG},

if i is an odd number,

PI = {ti, t
�
i
}, FI = {#},

PO = U� ⧵ {#}, FO = {#},

�� = (w)
• nodes xconnect

i
∣ 1 ≤ i ≤ n :

S = {[(�, t1
i
);(#, t�

i
)]} ∪ {[(�, t2

i
);(#, t�

i
)]}∪

⎧
⎪
⎪
⎨
⎪
⎪⎩

{[(�, t1
j
);(#, t2

j
)] ∣ 1 ≤ i ≠ j ≤ n},

if i is an even number,

{[(�, t2
j
);(#, t1

j
)] ∣ 1 ≤ i ≠ j ≤ n},

if i is an odd number,

A = {#t�
i
} ∪

⎧
⎪
⎪
⎨
⎪
⎪⎩

{#t2
j
∣ 1 ≤ i ≠ j ≤ n},

if i is an even number,

{#t1
j
∣ 1 ≤ i ≠ j ≤ n},

if i is an odd number,

PI =

{
{t1

j
∣ 1 ≤ j ≤ n}, if i is an even number,

{t2
j
∣ 1 ≤ j ≤ n}, if i is an odd number,

FI = {#} , PO = U� , FO = � , � = (w)

We now analyze a computation of � ′ on the input string
< w > . In the input node In′ , the symbol t1 is attached at
the end. Next, the string enters xs

1
 and the simulation of a

computation in � starts. Thus, the string < w > t1 lies in xs
1

while the string < w > is found in x1 , the input node of � .
More generally, we may assume that a string zti is found in
a node xs

i
∈ � � if and only if the corresponding string z lies

in xi ∈ � . Note that the strings cannot longer return to In′
because of its FI filter. Note that the node In′ and the nodes
D and D′ will not accept any string from now on because
of their PI filters. Consequently, the first row can be disre-
garded for the rest of the computation.

Let xi be a splicing node, where a rule [(a, b); (u, v)] is
applied to w yielding w′ and w′′ . Then, the same rule is
applied in xs

i
 and strings of the form w′ti and w′′ti are pro-

duced. Indeed, since all the strings in Axs
i
 and any string

entering xs
i
 have the symbol ti at the end, the splicing rule

will always yield strings keeping the character ti as the last
one. Since both the node xi and the node xs

i
 have the same

output filters and the produced strings only differ in this last
character ti , it follows that a string can leave xs

i
 if and only if

the original counterpart can exit xi . Once it leaves the node,
the string can only enter the linked node xcomp

i
 and, depend-

ing on if i is an odd or an even number, the character ti is
replaced with t1

j
 or t2

j
 characters in different copies, respec-

tively, granted that {xi, xj} ∈ EG . Because of this last trans-
formation, the yielded strings can only enter the node
xconnect
i

 . At this point, a string of the form wt1
j
 or wt2

j
 contin-

ues through the column of nodes xconnect
i

 until it reaches the
node xconnect

j
 . More precisely, in xconnect

i
 the symbols t1

j
 and t2

j

are switched alternatively, forcing the string to go simultane-
ously to xconnect

i−1
 and xconnect

i+1
 , provided that i − 1 ≥ 1 ,

i + 1 ≤ n . In this way, the string eventually arrives to the
node xconnect

j
 and either the character t1

j
 or the symbol t2

j
 is

replaced with t′
j
 blocking the string from continuing through

the column of nodes xconnect
i

 . Lastly, this last character is
replaced by tj in xcomp

j
 and the string enters the intended node

xs
j
 , granted that it meets the requirements set by the input

filters of this last node. Otherwise, it is lost. Summarizing,
we consider a splicing step in � , that produces a string z′
from z in node xi , 1 ≤ i ≤ n , which is further sent to xj , j > i
(the case j < i is analogous). These two steps (splicing and
communication) are simulated in � ′ by a series of splicing
steps such that the string zti is transformed into z′ti in xs

i
 , then

sent, via an itinerary that starts with the node xcomp
i

 , contin-
ues with the nodes xconnect

i
, xconnect

i+1
,… , xconnect

j
 , and finishes

with the nodes xcomp
j

 and xs
j
 . Therefore, the induction step is

valid. From this reasoning, we infer that L(�) = L(� �) . Fol-
lowing closely the explanations, we note that each splicing
step in the node xi of � is simulated by at most n + 3 splicing
steps in � ′ . This is done as follows: one step in xs

i
 , followed

by one step in xcomp
i

 , and then at most n splicing steps in the
nodes from xconnect

i
 to xconnect

j
 . Finally, one more step is done

in xcomp
j

 before the string enters xs
j
 . Since the size of � is

constant, it follows the second statement of the theorem. The
third statement is immediately valid from the Fig. 4. ◻

4 Conclusions and further work

Motivated by possible implementations, we have investi-
gated the possibility of transforming an NSP with an arbi-
trary underlying graph into an equivalent NSP (the two
have the same computational power) with an underlying
graph of a predefined topology. We have considered here
the complete, star, and grid graphs. We have proposed
constructions for these transformations such that: (i) these
constructions do not increase the time complexity, and
(ii) these constructions do not increase the network size

Networks of splicing processors: simulations between topologies

1 3

by more than a constant. The protocol of communication
of the networks considered here is based on some random
context conditions. We would like to investigate whether
or not similar constructions can be obtained for networks
of polarized splicing processors, where the protocol of
communication is regulated by the polarization of the
nodes and a mapping that defines the polarization of data.

Acknowledgements Work supported by the National Core Program of
the National Research, Development and Innovation Plan 2022-2027,
funded by the Romanian Ministry of Research and Innovation, project
code 23020101.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Arroyo, F., Castellanos, J., Dassow, J., Mitrana, V., & Sanchez-
Couso, J. R. (2013). Accepting splicing systems with permitting
and forbidding words. Acta Inf., 50, 1–14. https:// doi. org/ 10. 1007/
s00236- 012- 0169-8

 2. Bordihn, H., Mitrana, V., Păun, A., Păun, M. (2017). Networks
of polarized splicing processors. In Theory and Practice of Natu-
ral Computing, TPNC 2017, Lecture Notes in Computer Science
10687, 165–177. Springer, Berlin, Heidelberg. https:// doi. org/ 10.
1007/ 978-3- 319- 71069-3_ 13

 3. Bordihn, H., Mitrana, V., Negru, M. C., Păun, A., & Păun, M.
(2018). Small networks of polarized splicing processors are uni-
versal. Natural Computing, 17, 799–809. https:// doi. org/ 10. 1007/
s11047- 018- 9691-0

 4. Castellanos, J., Mitrana, V., & Santos, E. (2011). Splicing sys-
tems: accepting versus generating. In Models of Computation
in Context. CiE 2011, Lecture Notes in Computer Science.
Springer, Berlin, Heidelberg, 6735, 41–50. https:// doi. org/ 10.
1007/ 978-3- 642- 21875-0_5

 5. Head, T. (1987). Formal language theory and DNA: an analysis of
the generative capacity of specific recombinant behaviours. Bull.
Math. Biol., 49, 737–759. https:// doi. org/ 10. 1007/ BF024 81771

 6. Head, T., Păun, G., & Pixton, D. (1996). Language theory and
molecular genetics: Generative mechanisms suggested by DNA
recombination. In Handbook of Formal Languages, 2, 295–360.
https:// doi. org/ 10. 1007/ 978-3- 662- 07675-0_7

 7. Head, T. (2011). How the structure of DNA molecules provides
tools for computation. In Biology, Computation and Linguistics.
Frontiers in Artificial Intelligence and Applications vol. 228, 3–8.
IOS Press. https:// doi. org/ 10. 3233/ 978-1- 60750- 762-8-3

 8. Head, T. (2012). Restriction enzymes in language generation and
plasmid computing In Biomolecular Information Processing:
From Logic Systems to Smart Sensors and Actuators, 245–263.
Wiley Online Library. https:// doi. org/ 10. 1002/ 97835 27645 480.
CH13

 9. Jonoska, N., Păun, G., Rozenberg, G. (Eds.) (2004). Aspects of
Molecular Computing. Essays Dedicated to Tom Head on the
Occasion of His 70th Birthday, Lecture Notes in Computer Sci-
ence vol. 2950. Springer, Berlin, Heidelberg. https:// doi. org/ 10.
1007/ b94864

 10. Loos, R., Manea, F., & Mitrana, V. (2009). On small, reduced, and
fast universal accepting networks of splicing processors. Theoreti-
cal Computer Science, 410, 406–416. https:// doi. org/ 10. 1016/j. tcs.
2008. 09. 048

 11. Manea, F., Martín-Vide, C., Mitrana, V. (2006). All NP-problems
can be solved in polynomial time by accepting networks of splic-
ing processors of constant size. In: DNA Computing. Lecture
Notes in Computer Science, vol. 4287, 47–57. Springer, Berlin,
Heidelberg. https:// doi. org/ 10. 1007/ 11925 903_4

 12. Manea, F., Martín-Vide, C., & Mitrana, V. (2007). Accepting
networks of splicing processors: complexity results. Theoretical
Computer Science, 371, 72–82. https:// doi. org/ 10. 1016/j. tcs. 2006.
10. 015

 13. Mitrana, V., Petre, I., & Rogojin, V. (2010). Accepting splicing
systems. Theoret. Comput. Sci., 411, 2414–2422. https:// doi. org/
10. 1016/j. tcs. 2010. 03. 025

 14. Mitrana, V., Păun, A., & Păun, M. (2021). Non-preserving accept-
ing splicing systems. Jounal Automata Languages Combinatorics,
26, 109–124. https:// doi. org/ 10. 25596/ jalc- 2021- 109

 15. Păun, G. (1996). On the splicing operation. Discrete Applied
Mathematics, 70, 57–79. https:// doi. org/ 10. 1016/ 0166- 218X(96)
00101-1

 16. Păun, G., Rozenberg, G., & Salomaa, A. (1998). DNA computing:
New Computing Paradigms. Springer, Berlin, Heidelberg.https://
doi. org/ 10. 1007/3- 540- 48523-6_9

 17. Rozenberg, G., & Salomaa, A. (1997). Handbook of Formal Lan-
guages. Springer, Berlin, Heidelberg.https:// doi. org/ 10. 1007/
978-3- 662- 07675-0

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

José Angel Sanchez Mar-
tín received his PhD from the
Universidad Politécnica de
Madrid (Spain) in September
2021 and is cur rently a
researcher of the Department of
Software and Artificial Intelli-
gence at Complutense University
of Madrid. He has authored and
co-authored several articles in
high-impact factor journals. His
research interests include natural
computing, bioinformatics, pre-
cision medicine, deep learning,
and machine learning.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00236-012-0169-8
https://doi.org/10.1007/s00236-012-0169-8
https://doi.org/10.1007/978-3-319-71069-3_13
https://doi.org/10.1007/978-3-319-71069-3_13
https://doi.org/10.1007/s11047-018-9691-0
https://doi.org/10.1007/s11047-018-9691-0
https://doi.org/10.1007/978-3-642-21875-0_5
https://doi.org/10.1007/978-3-642-21875-0_5
https://doi.org/10.1007/BF02481771
https://doi.org/10.1007/978-3-662-07675-0_7
https://doi.org/10.3233/978-1-60750-762-8-3
https://doi.org/10.1002/9783527645480.CH13
https://doi.org/10.1002/9783527645480.CH13
https://doi.org/10.1007/b94864
https://doi.org/10.1007/b94864
https://doi.org/10.1016/j.tcs.2008.09.048
https://doi.org/10.1016/j.tcs.2008.09.048
https://doi.org/10.1007/11925903_4
https://doi.org/10.1016/j.tcs.2006.10.015
https://doi.org/10.1016/j.tcs.2006.10.015
https://doi.org/10.1016/j.tcs.2010.03.025
https://doi.org/10.1016/j.tcs.2010.03.025
https://doi.org/10.25596/jalc-2021-109
https://doi.org/10.1016/0166-218X(96)00101-1
https://doi.org/10.1016/0166-218X(96)00101-1
https://doi.org/10.1007/3-540-48523-6_9
https://doi.org/10.1007/3-540-48523-6_9
https://doi.org/10.1007/978-3-662-07675-0
https://doi.org/10.1007/978-3-662-07675-0

 J. A. S. Martín et al.

1 3

Victor Mitrana is a Full Professor
at the Department of Information
Systems of the Polytechnic Uni-
versity of Madrid. He has
authored or co-authored more
than 220 research papers pub-
lished in referred journals, inter-
national academic conferences,
and collective books. He has
been awarded the Gheorghe
Lazar Prize (1997) of the Roma-
nian Academy, Alexander von
Humboldt Fellowship (1995–
1 9 9 6) , Ra m o n y C a j a l
Researcher (2002–2008), and is
a member of the Editorial Board

of seven journals and PC member of more than 40 conferences (chair
for four of them). His research interests include theory of computing,
algorithms and data structures, and biocomputing.

Mihaela Păun received her B.S.
degree from the University of
Bucharest in Computer Science
in 1998, the MSc in Computer
Science from the University of
Western Ontario in 2000 and the
PhD in Computational Analysis
and Modeling and Applied Sta-
tistics from Louisiana Tech Uni-
versity in 2006. She is currently
a Senior Researcher at the
National Institute of Research
and Development for Biological
Sciences. Her current research
interests include biostatistics and
biocomputing, membrane com-

puting, high performance computing, and environmental data
analysis.

	Networks of splicing processors: simulations between topologies
	Abstract
	1 Introduction
	2 Basic definitions
	3 Complexity preserving simulations
	3.1 Simulating arbitrary NSP by complete NSP
	3.2 Simulating arbitrary NSP by star NSP
	3.3 Simulating arbitrary NSP by grid NSP

	4 Conclusions and further work
	Acknowledgements
	References

