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Abstract
Networks of splicing processors are one of the theoretical computational models that take inspiration from nature to efficiently 
solve problems that our current computational knowledge is not able to. One of the issues restricting/hindering is practical 
implementation is the arbitrariness of the underlying graph, since our computational systems usually conform to a predefined 
topology. We propose simulations of networks of splicing processors having arbitrary underlying graphs by networks whose 
underlying graphs are of a predefined topology: complete, star, and grid graphs. We show that all of these simulations are 
time efficient in the meaning that they preserve the time complexity of the original network: each computational step in that 
network is simulated by a fixed number of computational steps in the new topologic networks. Moreover, these simulations 
do not modify the order of magnitude of the network size.

Keywords Splicing processor · Network of splicing processors · Underlying graph · Simulation.

1 Introduction

The formal operation of splicing on strings has been intro-
duced in [5] as an abstraction of the biological phenomenon 
of DNA recombination under the effect of restriction and 
ligases enzymes. The biological phenomenon is illustrated 
in Fig. 1. We give here a few informal explanations. Two 
DNA molecules (the blue and the red ones) are cut by a 
restriction enzyme (in this case the enzyme is EcoRI). This 
process yields fragments with Watson–Crick complementary 

tails called “sticky ends”. These sticky ends may join again 
leading to the recombination of DNA. To fix the new com-
bination, a DNA enzyme called ligase seals the gaps after 
the sticky ends are joint.

We follow [15] with the formal definition of splicing as 
an operation on pairs of strings. First, we need to define 
what a splicing rule is: a quadruple of strings specifying 
the subsequences in the two strings where the strings are 
cut. Therefore, a splicing rule is intended to abstract the 
restriction enzymes and its subsequences indicate the sites 
where the enzymes cut. Different computational models 
based on the iteration of this operation may be defined. 
Thus, a generating splicing system initiates a computa-
tion starting from a given finite set of strings (axioms) 
and iteratively applying splicing rules, from a given finite 
set of such rules, producing eventually a language. This 
computational model was introduced in [5]; further on, 
the model and its variants have intensively been investi-
gated. Splicing operation, as a formal operation on words 
and languages, has been vividly studied for more than two 
decades. There have been published a lot of papers as well 
as several books containing chapters devoted to this topic. 
We mention here just a few of them [6, 9, 16], containing 
extensive chapters about splicing, as well as [7, 8], con-
taining chapters that intend to discuss various applications. 
There are two types of splicing systems: generating sys-
tems, which generates a language by iteratively applying 
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splicing rules to the strings obtained starting from a finite 
set of strings, and accepting system, which starts out with 
just one initial string and a finite set of axioms and an iter-
ative splicing as above is initiated. The computation halts 
when at least one string from a predefined set is obtained. 
The input string is accepted as soon as the system halts. 
The accepting splicing system has been introduced by 
Mitrana et al. in [13], while different variants have been 
studied in [1, 4, 14], etc.

In [10] a highly parallel and distributed computational 
model based on the splicing operation was introduced: net-
work of splicing processors (NSP). This model consists in an 
undirected graph whose nodes host a splicing processor. A 
splicing processor consists in a finite set of splicing rules, a 
finite set of strings (axioms) and four sets of symbols, such 
that two of them define the input filter while the other two 
define the output filter. A computation in a network of splic-
ing processors (NEP, for short) is a sequence of splicing and 
communication steps which alternate with each other. In a 
splicing step, each processor applies, in parallel, the splicing 
rules it contains to all the strings existing at that moment in 
the processor. Note that we assume that each string appear-
ing in a processor at some moment, appears actually in an 
unlimited number of identical copies such that different 
copies may be rewritten by different splicing rules. In a 
communication step, all the strings existing in the network 
nodes are simultaneously are expelled from their nodes, 
provided that they can pass the output filters of the nodes. 
In the same communication step, arbitrary large number of 
copies of each string expelled from one node (sender) enter 
all the nodes (receivers) connected to the sender, provided 
that the string can pass the input filters of the receivers. The 
computation halts as soon as a predefined node, called  Halt, 
contains at least a string.

Several variants of NSP have been considered so far, most 
of them being computationally complete, see, e.g., [2, 3, 
10–12]. These networks have an ad hoc underlying graph 
structure. By different reasons like: possible implementa-
tions, uniformity, comparisons, etc., it would be useful to 
have networks with a fixed and well known topology as: 
complete graph, star, grid, etc. This is actually the aim of 
this work: to investigate the possibility of transforming a 
given NSP into an equivalent NSP with an underlying graph 
of such a predefined structure. We are interested not only in 
the construction of these networks but also in comparing 
the computational time and size of the constructed networks 
with those of the original ones.

2  Basic definitions

In this section we introduce the main concepts and notations 
that will be used in the sequel. For those notions not defined 
here we refer to [17].

An alphabet is a finite and nonempty set of symbols. The 
cardinality of a finite set A is written card(A). Any finite 
sequence of symbols from an alphabet V is called string 
over V. The set of all strings over V is denoted by V∗ and 
the empty string is denoted by � . The length of a string x is 
denoted by |x| while alph(x) denotes the minimal alphabet 
W such that x ∈ W∗ . A language over the alphabet V is a set 
L ⊆ V∗.

We give now the formal definition of the splicing opera-
tion following [15]. A splicing rule over a finite alphabet 
V is a quadruple of strings of the form [(u1, u2);(v1, v2)] 
such that u1 , u2 , v1 , and v2 are in V∗ . For a splicing rule 
r = [(u1, u2);(v1, v2)] and for x, y, z ∈ V∗ , we say that r pro-
duces z from x and y (denoted by (x, y) ⊢r z ) if there exist 
some x1, x2, y1, y2 ∈ V∗ such that x = x1u1u2x2 , y = y1v1v2y2 , 
and z = x1u1v2y2 . For a language L over V and a set of splic-
ing rules R we define

A short discussion is in order here. As one can see, the splic-
ing rule defined above is a 1-splicing rule in the sense of 
[6]. However, in the rest of the paper we do not make any 
difference between the two strings a splicing rule is applied 
to, therefore we may say that the rules are actually 2-splic-
ing rules .

Let V be an alphabet; we now define two predicates, one 
with strong conditions (s) and another with weak restrictions 
(w), for a string z ∈ V+ and two disjoint subsets P, F of V 
as follows:

𝜎R(L) = {z ∈ V∗ ∣ ∃u, v ∈ L,∃r ∈ R such that (u, v) ⊢r z}.

𝜑(s)(z;P,F) ≡P ⊆ alph(z) ∧ F ∩ alph(z) = �

𝜑(w)(z;P,F) ≡alph(z) ∩ P ≠ � ∧ F ∩ alph(z) = �.

Fig. 1  Splicing operation (Klug and Cummings 1997)
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In the definition of these predicates, the set P is a set of 
permitting symbols while the set F is a set of forbidding sym-
bols. Informally, both conditions require that no forbidding 
symbol occurs in z. As one can see, the former condition is 
stronger than the second one since it requires that all permit-
ting symbols are present in z, while the latter requires that at 
least one permitting symbol appears in z.

These predicates are extended to a language L ⊆ V∗ by

with � ∈ {(s), (w)}.
A splicing processor over an alphabet V is a 6-tuple 

(S, A, PI, FI, PO, FO), where:

– S is a finite set of splicing rules over V.
– A is a finite set of auxiliary strings over V. These aux-

iliary strings are to be used, together with the existing 
strings, in the splicing steps of the processors. Auxiliary 
strings are available at any moment.

– PI,FI ⊆ V  are the sets of permitting and forbidding 
symbols, respectively, which form the input filter of the 
processor.

– PO,FO ⊆ V  are the sets of permitting and forbidding 
symbols, respectively, which form the output filter of the 
processor.

The set of splicing processors over V is denoted by SPV.
A network of splicing processors is a 9-tuple 

� = (V ,U, ⟨, ⟩,G,N, �, In , Halt), where:

• V and U are the input and network alphabet, respectively, 
V ⊆ U , and ⟨, ⟩ ∈ U ⧵ V  are two special symbols.

• G = (XG,EG) is an undirected graph without loops with 
the set of nodes XG and the set of edges EG . Each edge is 
given in the form of a binary set. G is called the underly-
ing graph of the network.

• N ∶ XG ⟶ SPU  is a mapping, which associ-
ates with each node x ∈ XG the splicing processor 
N(x) = (Sx,Ax,PIx,FIx,POx,FOx).

• � ∶ XG ⟶ {(s), (w)} defines the type of the filters of a 
node.

• In,Halt ∈ XG are the input and the halting node of �  , 
respectively.

The size of an NSP �  is defined as the number of nodes of 
the graph, i.e., card(XG) . A configuration of an NSP �  is a 
mapping C ∶ XG → 2U

∗ , which associates a set of strings 
with every node of the graph. Although a configuration is a 
multiset of strings, each one appearing in an arbitrary num-
ber of copies, for the sake of simplicity, we work with the 
support of this multiset. A configuration can be seen as the 
sets of strings, except the auxiliary ones, which are present 

��(L,P,F) = {w ∈ L ∣ ��(w;P,F)},

in the nodes at some moment. For a string w ∈ V∗ , we define 
the initial configuration of �  on w by C(w)

0
(In) = {⟨w⟩} and 

C
(w)

0
(x) = � for all other x ∈ XG.

A configuration is followed by another configuration 
either by a splicing step or by a communication step. A 
configuration C′ follows a configuration C by a splicing 
step if each component C�(x) , for some node x, is the result 
of applying all the splicing rules in the set Sx that can be 
applied to the strings in the set in C(x) together with those 
in Ax . Formally, configuration C′ follows the configuration 
C by a splicing step, written as C ⇒ C′ , iff for all x ∈ XG , 
the following holds:

In a communication step, the following actions take place 
simultaneously for every node x: 

 (i) all the strings that can pass the output filter of a node 
are sent out of that node;

 (ii) all the strings that left their nodes enter all the nodes 
connected to their original ones, provided that they 
can pass the input filter of the receiving nodes.

Note that, according to this definition, those strings that are 
sent out of a node and cannot pass the input filter of any 
node are lost. Formally, a configuration C′ follows a con-
figuration C by a communication step (we write C� ⊧ C) iff 
for all x ∈ XG

holds. For an NSP �  , a computation on an input string w is 
defined as a sequence of configurations C(w)

0
 , C(w)

1
 , C(w)

2
, ... , 

where C(w)

0
 is the initial configuration of �  on w, C(w)

2i
⇒ C

(w)

2i+1
 

and C(w)

2i+1
⊧ C

(w)

2i+2
 , for all i ≥ 0 . A computation on an input 

string w halts if there exists k ≥ 1 such that C(w)

k
(Halt) is 

non-empty. Such a computation is called an accepting com-
putation. As the halting node is used just for ending the 
computation, we shall consider that SHalt = AHalt = � . Fur-
thermore, because as soon as a string enters Halt , the com-
putation halts and no string goes out, we may also consider 
that POHalt = FOHalt = �.

The language accepted by �  is defined as

Given an NSP �  with the input alphabet V, we define the 
following computational complexity measure. The time com-
plexity of the finite computation C(x)

0
 , C(x)

1
 , C(x)

2
 , …C(x)

m
 of �  

C�(x) = �Sx (C(x) ∪ Ax).

C�(x) = (C(x) − ��(x)(C(x),POx,FOx))∪⋃

{x,y}∈EG

(��(y)(C(y),POy,FOy) ∩ ��(x)(C(y),PIx,FIx))

L(� ) = {z ∈ V∗ ∣ the computation of �

onzis an accepting computation}.
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on x ∈ V∗ is denoted by Time� (x) and equals m. The time 
complexity of �  is the partial function from N to N,

3  Complexity preserving simulations

3.1  Simulating arbitrary NSP by complete NSP

Theorem 1 For every NSP �  one can construct a complete 
NSP � ′ such that the following conditions are satisfied: 

1. L(� ) = L(� �).
2. Time� � (n) ∈ O(Time� (n)).
3. size(� �) = size(� ) + 2.

Proof Let 𝛤 = (V ,U,<,>,G,N, 𝛽, In,Halt) be a NSP with 
the underlying graph G = (XG,EG) and XG = {x1, x2,… , xn} 
for some n ≥ 2 ; x1 ≡ In and xn ≡ Halt . We construct the 
NSP 𝛤 � = (V �,U�,<,>,G�,N�, 𝛽�, In�,Halt�) , where

G′ is the complete graph Kn+2 represented in Fig. 2, with the 
nodes {In� , xcomp , xs1 , x

s
2
 , … , xs

n−1
 , Halt�} defined as follows:

• node In′ : 

• node xcomp : 

Time� (n) = max {Time� (x) ∣ x ∈ L(� ), |x| = n}.

V � = V , U� = U ∪ T ∪ {#}, T = {ti ∣ 0 ≤ i ≤ n},

S = {[(a,>);(#,> t0)] ∣ a ∈ U}, A = {# > t0},

PI = U ⧵ (T ∪ {#}), FI = {#} ∪ T ,

PO = U ⧵ {#}, FO = {#},

𝛽� = (w)

• node xs
i
, 1 ≤ i ≤ n − 1 : 

• node Halt′ : 

We now analyze a computation of � ′ on the input string 
< w > . In the input node In′ , the symbol t0 is attached to 
the end of the string. Next, the symbol t0 is replaced by t1 
in the node xcomp . When it goes out, it can only enter xs

1
 and 

the simulation of a computation in �  starts. Thus, the string 
< w > t1 lies in xs

1
 , while the string < w > is found in x1 , 

the input node of �  . More generally, we may assume that 
a string zti is found in a node xs

i
∈ � � if and only if the cor-

responding string z lies in xi ∈ �  , for all 1 ≤ i ≤ n − 1 . Note 
that the strings can never return to In′ because of the input 
filter of this node.

Let xi be a splicing node, where a rule [(a, b); (u, v)] is 
applied to w yielding w′ and w′′ . Then, the same rule is 
applied in xs

i
 and strings of the form w′ti and w′′ti are pro-

duced. Indeed, since all the strings in Axs
i
 and any string 

entering xs
i
 have the symbol ti at the end, the splicing rule 

will always yield strings keeping the character ti as the last 
one. Since both the node xi and the node xs

i
 have the same 

output filters and the produced strings only differ in this last 
character ti , it follows that a string can only leave xs

i
 if and 

only if the original counterpart can exit xi . Once it leaves, 
the string returns to xcomp and the character ti is replaced with 
tj characters in different copies, provided that {xi, xj} ∈ EG . 
Each of the copies is sent to the corresponding connected 
node xj and the process described above restarts. It immedi-
ately follows that L(� �) = L(� ).

It is easy to notice that Time� � (w) = 2Time� (w) for every 
w ∈ L(� ) , hence the second statement is proved.

Finally, this construction needs two more nodes, therefore 
size(� �) = size(� ) + 2 .   ◻

S = {[(�, tj);(#, ti)](∣ 1 ≤ j ≠ i ≤ n)∧ A = {#ti ∣ 1 ≤ i ≤ n},

({xi, xj} ∈ EG)} ∪ {[(�, t0);(#, t1)]},

PI = U ⧵ {#}, FI = {#},

PO = U ⧵ {#}, FO = {#},

�� = (w)

S = Sxi , A = {zti ∣ z ∈ Axi
},

PI = PIxi , FI = FIxi ∪ T ⧵ {ti},

PO = POxi
, FO = FOxi

,

�� = �(xi)

S = �, A = �,

PI = PIHalt, FI = FIHalt,

PO = �, FO = �,

� = �(Halt).

xs
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xs
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xs
n−1
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Fig. 2  The underlying graph of � ′
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3.2  Simulating arbitrary NSP by star NSP

Theorem 2 For every NSP �  one can construct a star NSP 
� ′ such that the following conditions are satisfied: 

1. L(� ) = L(� �).
2. Time� � (n) ∈ O(Time� (n)).
3. size(� �) = size(� ) + 2.

Proof The simulation is identical to the one for complete 
graphs. The node xcomp is set as the center of the star net-
work, while all the other nodes defined in the previous proof 
are connected to it, as shown in Fig. 3.

Clearly, each computation in � ′ goes as in the previous 
construction, hence all the statement of the theorem fol-
low.   ◻

3.3  Simulating arbitrary NSP by grid NSP

Theorem 3 For every NSP �  one can construct a grid NSP 
� ′ such that the following conditions are satisfied: 

1. L(� ) = L(� �).
2. Time� � (n) ∈ O(Time� (n)).
3. size(� �) = 3size(� ) + 3.

Proof Let 𝛤 = (V ,U,<,>,G,N, 𝛽, In,Halt) be a NSP with 
the underlying graph G = (XG,EG) and XG = {x1, x2,… , xn} 

for some n ≥ 2 ; x1 ≡ In and xn ≡ Halt . We construct the 
NSP 𝛤 � = (V ,U�,<,>,G�,N�, 𝛽�, In�,Halt�) , where

The underlying graph of the network � ′ is the grid graph 
with width 3 and height n + 1 from Fig. 4 below and its 
nodes are defined as follows:

• node In′ : 

• nodes xs
i
, 1 ≤ i ≤ n − 1 : 

• nodes D, D′ : 

U′ =U ∪ T ∪ {#},
T ={ti, t′i , t

1
i , t

2
i ∣ 1 ≤ i ≤ n},

G′ =(XG′ ,EG′ ),
XG′ ={In′,Halt′,D} ∪ {xsi ∣ 2 ≤ i ≤ n − 1}

∪ {xcompi , xconnecti ∣ 1 ≤ i ≤ n}.

S = {[(a,>);(#,> t1)] ∣ a ∈ U}, A = {# > t1},

PI = U� ⧵ ({#} ∪ T), FI = {#} ∪ T ,

PO = U� ⧵ {#}, FO = {#},

𝛽� = (w)

S = Sxi , A = {zti ∣ z ∈ Axi
},

PI = PIxi , FI = FIxi ∪ T ⧵ {ti} ∪ {#},

PO = POxi
, FO = FOxi

,

�� = �(xi)

S = �, A = �,

PI = �, FI = U�,

PO = �, FO = U�,

�� = (s)

xcomp

xs
2

xs
1

In′ Halt′

xs
n−1����

����

�
�
��

�
�

��

Fig. 3  The underlying graph of � ′

In′ D D′

xs
1

xs
2

Halt′

xcomp
1

xcomp
2

xcomp
n

xconnect
1

xconnect
2

xconnect
n

Fig. 4  The underlying graph of � ′
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• nodes xcomp
i

, 1 ≤ i ≤ n:
  S = {[(�, t�

i
);(#, ti)]}∪ 

⎧
⎪
⎪
⎨
⎪
⎪⎩

{[(�, ti);(#, t
1

j
)] ∣ 1 ≤ i ≠ j ≤ n ∧ {xi, xj} ∈ EG},

if i is an even number,

{[(�, ti);(#, t
2

j
)] ∣ 1 ≤ i ≠ j ≤ n ∧ {xi, xj} ∈ EG},

if i is an odd number,  

A =

⎧
⎪
⎪
⎨
⎪
⎪⎩

{#t1
j
∣ 1 ≤ i ≠ j ≤ n ∧ {xi, xj} ∈ EG},

if i is an even number,

{#t2
j
∣ 1 ≤ i ≠ j ≤ n ∧ {xi, xj} ∈ EG},

if i is an odd number,  

PI = {ti, t
�
i
}, FI = {#},

PO = U� ⧵ {#}, FO = {#},

�� = (w)
• nodes xconnect

i
∣ 1 ≤ i ≤ n  : 

S = {[(�, t1
i
);(#, t�

i
)]} ∪ {[(�, t2

i
);(#, t�

i
)]}∪ 

⎧
⎪
⎪
⎨
⎪
⎪⎩

{[(�, t1
j
);(#, t2

j
)] ∣ 1 ≤ i ≠ j ≤ n},

if i is an even number,

{[(�, t2
j
);(#, t1

j
)] ∣ 1 ≤ i ≠ j ≤ n},

if i is an odd number,  

A = {#t�
i
} ∪

⎧
⎪
⎪
⎨
⎪
⎪⎩

{#t2
j
∣ 1 ≤ i ≠ j ≤ n},

if i is an even number,

{#t1
j
∣ 1 ≤ i ≠ j ≤ n},

if i is an odd number,  

PI =

{
{t1

j
∣ 1 ≤ j ≤ n}, if i is an even number,

{t2
j
∣ 1 ≤ j ≤ n}, if i is an odd number,

 

FI = {#} , PO = U� , FO = � , � = (w)

We now analyze a computation of � ′ on the input string 
< w > . In the input node In′ , the symbol t1 is attached at 
the end. Next, the string enters xs

1
 and the simulation of a 

computation in �  starts. Thus, the string < w > t1 lies in xs
1
 

while the string < w > is found in x1 , the input node of �  . 
More generally, we may assume that a string zti is found in 
a node xs

i
∈ � � if and only if the corresponding string z lies 

in xi ∈ �  . Note that the strings cannot longer return to In′ 
because of its FI filter. Note that the node In′ and the nodes 
D and D′ will not accept any string from now on because 
of their PI filters. Consequently, the first row can be disre-
garded for the rest of the computation.

Let xi be a splicing node, where a rule [(a, b); (u, v)] is 
applied to w yielding w′ and w′′ . Then, the same rule is 
applied in xs

i
 and strings of the form w′ti and w′′ti are pro-

duced. Indeed, since all the strings in Axs
i
 and any string 

entering xs
i
 have the symbol ti at the end, the splicing rule 

will always yield strings keeping the character ti as the last 
one. Since both the node xi and the node xs

i
 have the same 

output filters and the produced strings only differ in this last 
character ti , it follows that a string can leave xs

i
 if and only if 

the original counterpart can exit xi . Once it leaves the node, 
the string can only enter the linked node xcomp

i
 and, depend-

ing on if i is an odd or an even number, the character ti is 
replaced with t1

j
 or t2

j
 characters in different copies, respec-

tively, granted that {xi, xj} ∈ EG . Because of this last trans-
formation, the yielded strings can only enter the node 
xconnect
i

 . At this point, a string of the form wt1
j
 or wt2

j
 contin-

ues through the column of nodes xconnect
i

 until it reaches the 
node xconnect

j
 . More precisely, in xconnect

i
 the symbols t1

j
 and t2

j
 

are switched alternatively, forcing the string to go simultane-
ously to xconnect

i−1
 and xconnect

i+1
 , provided that i − 1 ≥ 1 , 

i + 1 ≤ n . In this way, the string eventually arrives to the 
node xconnect

j
 and either the character t1

j
 or the symbol t2

j
 is 

replaced with t′
j
 blocking the string from continuing through 

the column of nodes xconnect
i

 . Lastly, this last character is 
replaced by tj in xcomp

j
 and the string enters the intended node 

xs
j
 , granted that it meets the requirements set by the input 

filters of this last node. Otherwise, it is lost. Summarizing, 
we consider a splicing step in �  , that produces a string z′ 
from z in node xi , 1 ≤ i ≤ n , which is further sent to xj , j > i 
(the case j < i is analogous). These two steps (splicing and 
communication) are simulated in � ′ by a series of splicing 
steps such that the string zti is transformed into z′ti in xs

i
 , then 

sent, via an itinerary that starts with the node xcomp
i

 , contin-
ues with the nodes xconnect

i
, xconnect

i+1
,… , xconnect

j
 , and finishes 

with the nodes xcomp
j

 and xs
j
 . Therefore, the induction step is 

valid. From this reasoning, we infer that L(� ) = L(� �) . Fol-
lowing closely the explanations, we note that each splicing 
step in the node xi of �  is simulated by at most n + 3 splicing 
steps in � ′ . This is done as follows: one step in xs

i
 , followed 

by one step in xcomp
i

 , and then at most n splicing steps in the 
nodes from xconnect

i
 to xconnect

j
 . Finally, one more step is done 

in xcomp
j

 before the string enters xs
j
 . Since the size of �  is 

constant, it follows the second statement of the theorem. The 
third statement is immediately valid from the Fig. 4.   ◻

4  Conclusions and further work

Motivated by possible implementations, we have investi-
gated the possibility of transforming an NSP with an arbi-
trary underlying graph into an equivalent NSP (the two 
have the same computational power) with an underlying 
graph of a predefined topology. We have considered here 
the complete, star, and grid graphs. We have proposed 
constructions for these transformations such that: (i) these 
constructions do not increase the time complexity, and 
(ii) these constructions do not increase the network size 
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by more than a constant. The protocol of communication 
of the networks considered here is based on some random 
context conditions. We would like to investigate whether 
or not similar constructions can be obtained for networks 
of polarized splicing processors, where the protocol of 
communication is regulated by the polarization of the 
nodes and a mapping that defines the polarization of data.
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