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Abstract
Optimization is about finding the best available object with respect to an objective 
function. Mathematics and quantitative sciences have been highly successful in for-
mulating problems as optimization problems, and constructing clever processes that 
find optimal objects from sets of objects. As computers have become readily avail-
able to most people, optimization and optimized processes play a very broad role in 
societies. It is not obvious, however, that the optimization processes that work for 
mathematics and abstract objects should be readily applied to complex and open 
social systems. In this paper we set forth a framework to understand when optimiza-
tion is limited, particularly for complex and open social systems.

Keywords Optimization · Artificial intelligence · Complex systems · Ethics · 
Epistemology · Philosophy of science

1 Introduction

A pernicious quality of thought pervades the engineering sciences. Automation, 
machine learning, artificial intelligence, economics, and control comprise a non-
exhaustive list of fields dominated by the perspective that: challenges are symptoms 
to be cured with optimization (Intriligator, 2002; Lewis et al., 2012; Passino, 2005). 
When optimization fails it is often believed that size is the limiting factor; that a 
bigger, more powerful optimization method would surely suffice (Schwartz et  al., 
2020). From this perspective, the right technological progress may eventually cure 
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all symptoms. There is no proof, however, that this is the case. Quite the contrary, 
there are good reasons to believe that optimization is limited by its own necessities.

The social sciences have not been immune to this quality of thought. Compu-
tational advances allow data-mining and large scale simulations of human behav-
iour, which promise knowledge and understanding while concealing their inad-
equacies (Shmueli, 2017). Optimization is used both to construct optimal models 
(LeCun et  al., 2015) and find the optimal configuration of a modelled phenom-
enon (Lewis et  al., 2012). When a quantitative model of a phenomenon is con-
structed, it can always be used to try to optimize the phenomenon. We argue that 
doing this for open and complex systems can lead to undesirable outcomes.

We point to the is-ought problem in philosophy, that what ought to be cannot 
be derived from what is. A model may be used to understand the complexity of 
a system and plausibly reduce what is into simpler and defined components. A 
model can also be used to determine what might be, given different circumstances 
and settings for the defined components, but it would then be a fallacy to con-
clude what ought to be from the model results, for the system being modeled.

It is the case, however, that social systems can and are being modeled. Though 
these models may not be perfect, and decreasingly so for systems of greater com-
plexity, it is still the case that optimization can and is being used to determine set-
tings of these models that are ordered above other settings in terms of quantifiable 
metrics. In such situations, if optimizations are interpreted as determining set-
tings that are ‘right’ from settings that are ‘wrong’, from a philosophical perspec-
tive, the optimization can be considered, perhaps provokingly, a form of quanti-
tative ‘ethics’. Conversely ethics may be framed as a ‘qualitative optimization’, 
where the ethical judgment of goodness or badness rests on the moral qualities of 
the object. This term emphasises the qualitative dimension that might be present 
in ethics and the tension with the purely quantitative process of optimisation. On 
another level of abstraction both optimization and ethics raise a multitude of axi-
ological questions pertaining to how the value of an object can be established. We 
do not wish to take a fixed position on an ontic difference between quantities and 
qualia (which can also be seen as related to the debate on computationalist per-
spectives which we will expound on later, and relate to our arguments from both 
sides). We rather wish to point out that, optimization can and has been used to 
provide answers to ethical quandaries, and wish to accentuate this link before we 
present some limits of optimization. Such a perspective would only encapsulate 
some of the characteristics of what we understand as philosophical ethics (hence 
the quotation marks). It is worth noting that a view that explicitly links optimisa-
tion with ethics exists in the form of some applied ethics, for instance utilitarian-
ism (where the total ‘goodness’ is to be maximized). This link can also be further 
explored through the lens of reductionism, by asking if ethics, taken from a philo-
sophical perspective, could be reduced to quantitative ‘ethics’ or optimisation: 
can the problems of axiology be addressed from a purely quantitative perspective 
or is this unquestioned reign of quantity driving us into dangerous territories?

Such questions are pertinent as computation is ubiquitous, computational 
resources more powerful, and artificial intelligence is on the tip of all tongues. 
This is because algorithms that optimize and promise to find the best solutions 
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can easily lull users into a false sense of security. To begin to understand why this 
is the case consider the following question: how can we find something that we do 
not know we are looking for?1

In this paper we lay forth our arguments for the limits of optimization. We begin 
by defining optimization and posing the main limits (Sect. 2). We expand on each 
limit in separate sections: Object Limit (Sect. 3), Objective Limit (Sect. 4), and Pro-
cess Limit (Sect. 5), and present an array of examples to support our claims. In an 
attempt to leave the reader with more questions than answers we conclude with a 
discussion (Sect. 6), where we pose some open questions stemming from the deline-
ated limitations. The goal of this paper is to bring attention to the inadequacies of 
applying optimization uncritically. We hope to spark a multidisciplinary discussion 
involving fields of philosophy, social, computational and mathematical sciences.

2  What is Optimization?

Definition 1 Optimization is a process of choosing x ∈ M such that 
∀m∈Mf (x) ≥ f (m) , where M is a set of objects and f is a total order on M.

From this we have that the optimal m is such that ∀m∈Mf (x) ≥ f (m) . The set M repre-
sents a model, a space containing all possible objects m of a model—the objects m 
are particular groundings of a model, its concrete states. The total order f quantifies 
and orders the objects such that optimal objects can be established (and is a reflex-
ive, transitive, anti-symmetric and strongly connected relation, such that all pairs of 
elements in M are comparable (Birkhoff, 1940)).

In words: optimization is the process of choosing an object from a set of 
objects such that it scores highest on an objective function when compared to all 
the other objects. Our definition of optimization captures broadly all mathematical 
optimizations.

2.1  Additional Definitions

Objective as pertaining to the objective functions f, and not to be understood in 
terms of non-subjectivity of the matter. The objectives may not exist on their own, 
but are rather ‘objectivized’ by the user, in so far as the user may bring an objec-
tive into existence by pursuing it. Nonetheless, we follow the nomenclature from the 
field of mathematical optimization when referring to the objective.

Phenomenon An empirical system with behaviours observable in the real world, 
which one may seek to model.

Model A representation of a phenomenon using mathematical objects amenable 
to quantification.

1 Similar to the question: ‘How can we look for something that we do not know yet?’ (Hayek, 2002). 
Hayek explains how competition in the free market discovers new facts that cannot be predicted since 
they depend upon the agents’ arbitrations—which, in turn, are free hence undetermined.
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Quantitative (vs Qualitative) a quantitative description relates objects to a com-
mon dimension—a quantitative difference can be measured precisely. Qualitative 
description of objects creates orthogonal dimensions, which might not be easily 
relatable to one another.

Accuracy A quantification of the difference of a model and the empirical phe-
nomenon it is modelling. A perfectly accurate model will be no different than the 
empirical phenomenon. Such a model could be simpler than the phenomenon itself 
if the phenomenon is reducible—if a simpler representation suffices to capture 
the full breadth of the phenomenon. Note that the notion of accuracy rests on the 
assumption that the phenomenon is quantifiable and further that the relationship 
between the model and the phenomenon is also quantifiable, which may not hold 
true for all phenomena.

Complex: A system with many parts that interact non-linearly which lead to 
emergent behaviours which cannot be understood by studying the parts in isolation 
(Batty & Torrens, 2001) (see Figs. 1 and 3).

Computationalism2 Universality of computation and computer like processes, the 
universe and all of its contents as a machine, everything as information and infor-
mation processing, sequences of inputs of finite symbolic elements manipulated by 
symbolic processing rules so as to yield an output; the computationalist perspec-
tive believes all phenomena to be indistinguishable from computer programs, which 
would seem to imply that for any phenomenon there exists a perfectly accurate 
model.

Emergence System behaviour which is ‘more than the sum of parts’. Weakly 
emergent behaviour arises from the interactions of many parts. Strongly emergent 

Fig. 1  The diagram represents 
‘common sense’ inclusions. 
Openness, complexity, and 
emergence are loosely defined 
concepts often used to define 
each other. Many systems found 
in nature are open systems. 
Closed systems are usually 
abstract models. These are best 
interpreted as epistemic catego-
ries, rather than ontological cat-
egories, as the latter is subject 
most readily to critique through 
computationalist perspectives

complex

emergent

open

closed

2 The authors note that computationalism as defined here contains more ontological implications that are 
often debated in the philosophy of mind: the structure of physical systems, their informational content 
and their compositional properties. The aforementioned computationalism subsumes the weaker, epis-
temic, philosophy of mind version, that explain cognition and consciousness as computations carried out 
by physical processes in the body and brain.
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beahviour, on the other hand, may not be reducible to interactions of parts, as is the 
case for the open question of consciousness and subjective experience. Weak emer-
gence can be usefully defined through computational irreducibility (Bedau, 1997). 
An advantage of this definition is that it may be used for any process that carries out 
computations (as is the case for optimization on models). An emergent behaviour 
may not be reducible to the behaviours of the independent parts (Holland, 1992) 
(see Figs. 1 and 5).

Computational Irreducibility A computational process which has no shortcut. 
The only way to achieve the end result of the computational process is to run the 
entire computational process (Bedau, 1997; Zwirn & Delahaye, 2013).

Phase Space The underlying spaces (or fields) in which phenomena and models 
exist (Longo, 2018). Some claim strong emergence to be a property of complex bio-
logical ecosystems, or complex social systems like economics, whereby the phase 
spaces of these systems undergo changes and transformations which can not be 
reduced to computational steps, or sequences of an optimizaiton (Bailly & Longo, 
2009).

Open A system which does not have precisely defined boundaries: a system 
where external variables that are not accounted for influence the evolution of the 
system (Von Bertalanffy, 1950; Chick & Dow, 2005) (see Figs. 1 and 4).

2.2  The Limitations

There are three main limitations stemming from the above definition (vizualised in 
Fig. 2): 

(a) Object limit (Sect. 3): pertains to the relation between optimization and the 
phenomenon, which is facilitated by the model M.

(b) Objective limit (Sect. 4): refers to the relation between optimization and the user, 
encapsulated by the choice of the optimality criterion f.

(c) Process limit (Sect. 5): when the process of optimizing itself affects either the 
model M or the optimality criterion f. That is, by selecting objects m from M or 

Optimization Phenomenon Optimization User

User Optimization Phenomenon

a) b)

c)

Fig. 2  Limits to optimization come in three categories: a the relation between optimization and the phe-
nomenon through the process of modelling, b the relation between optimization and the user through the 
process of choosing an optimality criterion, c the feedback from the phenomenon and the user which can 
affect the model and the optimality criterion
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by applying f to m the user affects the phenomenon, which in turn may affect the 
model and/or notion of optimality.

The first limit is mostly an epistemic one, we cannot optimize something we 
cannot model. Greater computational resources have allowed us to extend the phe-
nomena we appear to model accurately, but it remains an open question (partially 
addressed in this paper) whether it is possible to perfectly model all phenomena. The 
second limit focuses on the meta-problem of selecting an objective, that is answer-
ing the question: What are we looking for? The third limit is an enactive one, where 
we consider the process of optimization to be embedded in the phenomenological 
sphere and thus being able in particular cases to influence its own functioning.

Our endeavor presently will consist in explaining these three limits, providing 
examples and lingering on the questions infer-able from them.

3  Object Limit

The objects of an optimization are the quantities m used to construct a quantitative 
model M of a phenomenon. Most models are not in a one-to-one relation to what 
they model and so any approximations we take here might translate into inaccura-
cies in the final results of the optimization process itself. This inaccuracy of models 
has been addressed in depth by the field of General Semantics (Korzybski, 1958) 
which focuses on the language as a modelling tool and its many inadequacies with 
respect to representation and understanding. Thus, limits that pertain to the objects 
are representational limits. We identify two such limiting factors, corresponding to 
the first two rules of General Semantics3. 

1. A model M may be inaccurate with respect to the phenomenon it models, such that 
it does not capture the true behaviour of the phenomenon in all circumstances.

2. The phenomenon being modelled may be complex, have emergent properties and 
be computationally irreducible requiring a model to be nearly as expressive as the 
entire phenomenon, such that modelling actually introduces greater complexity 
than it provides simple understanding.

Physics is the field of science recognized as having the most accurate models of 
phenomena (Oerter, 2006). For example, our models of particles and electrons are 
so accurate [matching measurements in experiments up to 12 decimal places (Sailer 
et al., 2022)] that we can construct computers. Computers are capable of carrying 
out logical operations that are not described by the models of their constituent par-
ticles and electrons. Yet, these models were necessary to create computers, and the 

3 The first two rules of Korzybski’s General Semantics are: 

1. A map is not the territory.
2. A map covers not all the territory (Korzybski, 1951).
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fact that their operations transcend these models is a testament to the practical use of 
the models.

Models of social phenomena, on the other hand, tend to have lower accuracy 
than models in physics (Beckage et  al., 2013), as in studies of life success given 
IQ, for example, where correlations above 0.5 are taken to be indications of strong 
relationships (Firkowska-Mankiewicz, 2002). This is accepted by the psychologists 
and social scientists who recognize the inevitable challenge of modelling social phe-
nomena: there is great heterogeneity between human subjects (Axelrod, 1997) as 
social systems are open systems affected by many factors that we cannot account for 
(Green & Perlman, 1985). This, however, does not stop users from applying optimi-
zation techniques on inaccurate models of social systems [as in the optimization of 
click-through-rates (Richardson et al., 2007) and content recommendations (Cremo-
nesi et al., 2010) on websites], because the mathematics of the optimization tech-
niques does not break down. What is limited is the applicability of the results of the 
optimization to a real understanding of the modelled social system.

An example of a whole class of systems for which such limits may apply are 
complex systems, whose elements and interactions generate novel order that cannot 
be defined a priori (Batty & Torrens, 2001) (see Fig. 3). Then open systems, which 
are under influence of external driving forces, can also prove difficult to model accu-
rately, depending on the nature and degree of openness that they exhibit4 (Von Ber-
talanffy, 1950) (see Fig. 4). When the interactions between systems is such that the 
phase spaces change, it may be impossible to quantify the possible future from a 
model which is merely a snapshot of the past (Longo, 2018). This may be a hard 
limit of modelling and controlling complex systems that are strongly dependent on 
their histories, such that the present state of the systems (or that which is feasibly 
measurable) does not contain the sufficient information to determine all future pos-
sibilities in interaction with other complex systems. Similarly, weakly emergent sys-
tems cannot be fully modelled a priori, because their macrostates can be derived 
from their microstates only through simulation (in other words they are computa-
tionally irreducible) (Bedau, 1997) (see Fig. 5).

Moreover, recent developments in machine learning have led to many mod-
els being learned directly from data, to score the credit worthy-ness of people for 
example (Ala’raj et al., 2022). The process of generating these models, where deep 
learning is employed, can itself be considered an optimization process (Bennett & 
Parrado-Hernández, 2006). Optimization methods play a central role in the ability 
of machine learning algorithms to extract information from data. These models are 
naturally limited: they are only, at best, as good as the data. The usual procedure 
when optimizing such models would be to decouple the model learning from deci-
sion making—machine learning creates the model from the data and then some 
algorithm optimizes, treating the learned model as if it were exact. In Balkanski 
et  al. (2017) the authors show that there exist classes of functions, which are not 
optimizable in this way. This limitation stems from sample complexity rather than 

4 ‘Verification and validation of numerical models of natural systems is impossible. This is because nat-
ural systems are never closed and because model results are always nonunique.’ (Oreskes et al., 1994)
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non-linear
interactions

Fig. 3  Vizualisation of a complex system with non-linear interactions between the parts

open system

Fig. 4  Vizualisation of an open system where parts that are not within the model closure interact with the 
parts within the model closure

(micro)

(macro)

(emergence)

Fig. 5  Vizualisation of a complex system with an emergent collective behaviour. The emergence results 
from the local interactions at the micro scale which lead to a collective behaviour at the macro scale
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from computational complexity. In other words, there are situations in which the 
data does not carry sufficient information to allow optimization.

We have echoed an often claimed notion that models are not perfectly accurate, 
and provided some examples to substantiate it. However, discussing optimization as 
being limited by models runs into ontological questions of the existence of the phe-
nomena. Should one take a computationalist perspective, whereby any phenomenon 
P is in its most fundamental essence a composition of computational processes, then 
it naturally follows that there exists a computational model M such that the phe-
nomenon is fully captured by the model, M = P ; in other words, that there exists a 
perfectly accurate model.

Let us assume that this computationalist perspective holds, and consider the case 
where we run an optimization on top of our model. For the optimization to offer 
practical benefits it must at some point return a global or local, an exact or approxi-
mate optimum, that is the process must necessarily be finite. Thus, a fixed optimiza-
tion horizon N must be established that delimits the time allocated for optimization. 
Therefore, it is important that the model includes all the relevant behaviour for the 
modelled phenomenon within the optimization horizon. N is picked such that all of 
the behaviours we wish to model have sufficient time to occur within N iterations.

However, if the system is computationally irreducible, there is no guarantee 
that all interesting phenomena will occur within N iterations: ‘if the behavior of an 
object is computationally irreducible, no computation of its nth state can be faster 
than the simulation itself’ (Zwirn & Delahaye, 2013). Should this definition of a 
computationally irreducible process hold, a computationally irreducible system may 
thus have behaviour b for which a fixed time horizon N can not be stated in order for 
b to manifest with complete certainty. Therefore, optimizing a model M of such a 
system (in the manner specified in Sect. 2) may yield an m which is not optimal on 
the unobserved behaviour b. Claiming such an m to be optimal in all cases is there-
fore a fallacy.

If the iteration horizon is a boundary on time, set such that the model of our phe-
nomenon is accurately represented, the model horizon is a boundary on interactions 
and causal influences, to close an open system off from the external world. The 
model horizon is another limit of optimization particularly heightened for complex 
and open systems. For a complex, open phenomenon there may be unknown and 
uncountably many external variables, relevant to the phenomenon and yet excluded 
from the model such that a tractable model of the system could be designed (Chick 
& Dow, 2005). The effects of the variables falling outside of the boundary (outside a 
Markov blanket for example), though relevant, become irrelevant to an optimization 
run on the model. Again, from a computationalist perspective, the inaccuracy of the 
model is simply an epistemic factor, which could in principle be complemented by 
greater processing power to achieve a complete and thus perfectly accurate model.

However, taking a non-computationalist perspective, there exist phenomena 
which can not be modelled completely, because phenomena are not, in their essence, 
fully reducible to input output relations, computations. Although computationalism 
may hold, science so far has not produced perfectly accurate models, as was argued 
in the previous paragraphs mentioning physics and social models.
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4  Objective Limit

Assume we have selected an appropriate model M to embody the phenomenon P 
we are studying and that this phenomenon is indeed satisfying all the assumptions 
that optimization imposes. A meta-problem of deciding what to optimize is the next 
logical step of optimization. Indeed, optimization necessitates the existence of an 
explicit goal (expressed by the valuation f), thus to optimize is to focus on the aims 
rather than the means. The aim must be defined, we must be able to discern it clearly 
to know when it has been reached. This meta-problem might itself be optimized, 
resulting in an infinite regress (Hubinger et al., 2019). Beyond the model, one should 
not appeal to the notion of optimum, but rather of choice. The optimality does not 
provide information on the choice the user ultimately makes. The decision to be 
made is a value choice, namely the user must decide what value f(m) of the phenom-
enon (expressed through the model) will be the goal of the optimization. At our cur-
rent stage of sociotechnoligcal development, the decision is made by humans. One 
could of course imagine this being offloaded to an oracle or randomness or in some 
futuristic scenarios to AGI.5

The selected goal needs to be quantifiable. We need to be able to compare alter-
native states and decide which one of them is better. Some values, like trust, friend-
ship and love may not always be quantified and readily optimized, unless modelled 
dependent on quantifiable values. Thus, optimization imposes further constraints 
on the way a system is modeled, by requiring the system’s states to be measurable 
with the objective. If we want to be able to optimize, we risk preferring models that 
allow for optimization [which may be a reason we observe a strong preference of 
quantitative models in modern science, as is especially apparent in e.g. economics 
(Bruni, 2010; Mirowski, 1991; Romer, 2016)]. In that way we can end up framing 
and understanding the system through the perceived goal that we have for it—instru-
mentalizing it and potentially limiting our perspective.

Secondly, there is an issue with the number of values that can be optimized. 
In simple optimization problems we select one goal and optimize with respect 
to it. However, in many real-world problems there is a set of goals that we want 
to achieve. This necessitates a new notion of optimality, an example of which 
is Pareto Optimality (Deb, 2014). Figure 6 explains Pareto optimality in greater 
detail with the use of an example: comparing apples and oranges. Figure  7 
provides another example of a challenging multi-objective optimization: Ste-
ven Pinker’s social trilemma of fairness, freedom and equality (Pinker, 2005a, 
2005b). The challenge introduced by multiple objectives is that optimization does 
not provide an answer to which of the objectives should be preferred. The opti-
mization does not terminate and yield a single solution that can be followed. If 
the user is a non-normative being, then they will not be able to choose, since the 

5 Even so, off-loading the decision in such way could still be interpreted as a human making a decision 
(to off-load the decision, at the very least) with all its trappings and consequences. The delegating does 
not clearly free the delegator of the responsibility or the value-choice; it could be considered a sort of 
meta-decision.
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apples

oranges

Pareto front

Pareto dominated

combinations

unaffordable

combinations

Fig. 6  Imagine a customer at a market stand that sells both apples and oranges. Our customer has grown 
up with the notion that apples and oranges should not be compared, so he does not prefer either fruit 
more than the other. Ideally, he would like some combination of both. With his pocket money, he can 
afford different combinations of apples and oranges (apples, oranges) e.g. (10, 0), (5, 5), (1, 9). As he 
does not compare apples and oranges, he is indifferent between all the combinations that get him the 
most possible apples and oranges. That means that all of the combinations are optimal in the same man-
ner. Our customer therefore must resort to other means to decide which of the combinations to pay for 
and take home. We say that the set of combinations that our customer is indifferent to is the Pareto front, 
where all the combinations are optimal under a definition of Pareto optimality (Deb, 2014). A combina-
tion is Pareto optimal if no improvement can be made on the combination such that we get more of one 
fruit without getting less of the other fruit. For example, the combination (4, 5) in this example is not 
optimal, because the combination (5, 5) is affordable and gets our customer one more apple

freedom

fairnessequality

freedom

equalityfairness

Fig. 7  According to Steven Pinker (2005a, 2005b) our western societies wish to provide freedom, equal-
ity and fairness, which he argues to be a trilemma. This implies that only two of the three desirable 
options can be achieved fully at the same time: society can be fair and free, fair and equal or equal and 
free. For the figure, possible states lie on the boundary of the circle. Values are maximized at the black 
points, and are 0 at the opposite side
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optimality does not provide the necessary information to choose. Choosing is a 
moral process, not a computational one. It is an is-ought fallacy to derive what 
the user should choose based on the Pareto front.

Focusing on the user, who we have assumed to be human we realize that they 
are befallen by an epistemic limitation—What does one know? (Williamson, 
2002)—one half of the question—how can we find something that we do not know 
we are looking for. In some systems one might conceivably know what needs to 
be optimized and be able to reason about it analytically (abstract systems, simple 
systems). In other systems there is a strong argument against assuming too much 
knowledge. For example, in many complex systems (traffic, the economy) we 
might not have a full understanding of how a change in one variable of the system 
might affect the whole system (Ladyman et al., 2013). In such systems, optimiz-
ing a given variable might lead to a feedback loop, which eventually drives the 
optimized variable to a new state which may invalidate the optimization (McDan-
iel & Driebe, 2005).

Stemming from the fields of evolutionary algorithms and machine learning is 
also a new awareness that objectives are limited in scope (Lehman & Stanley, 2011). 
Kenneth Stanley in a recent book (Stanley & Lehman, 2015) argues that for ambi-
tious objectives, following the objective typically leads to dead ends. He claims 
that using the objective as a measure of improvement, and only taking actions that 
improve along this measure, is unlikely to lead to the objective, when the latter is 
ambitious. An ambitious objective is conceptualized as one that requires a sequence 
of novel advancements that are not known beforehand, an example of which could 
be writing a ground-breaking scientific paper, or leading a satisfying life. A practi-
cal example from evolutionary optimization is teaching a robot to walk. When the 
robot tries to improve the distance it travels, falling face first at the first step counts 
as an improvement of distance, but is clearly not a step in the right direction. Along 
this objective measure of distance, bending the robots legs does not constitute an 
improvement, but is a necessary thing to learn to be able to achieve a steady walking 
gait. Such examples are used to argue that, for ambitious objectives, the objective 
gradients should not be followed.

Stanley proposes instead that a gradient of ‘interesting-ness’ should be followed. 
We refrain from agreeing to this as a complete solution, but note that interesting-
ness itself is a highly subjective quality. This is because, what is interesting has his-
torical dependence, meaning that A may only be interesting given the experience 
of B, as well as a dependence on the outcome, since A may be interesting given 
that it leads to B (given A and B as arbitrary phenomena). This makes quantifying 
interesting-ness an ‘interesting’ challenge. One proxy quantification of interesting-
ness proposed by Stanley is novelty, where Stanley argues that anything interesting 
will be novel, while not everything novel will necessarily be interesting. It is ‘inter-
esting’ to consider how path dependent phenomena such as interesting-ness interact 
with optimization, where it could be argued that historical dependence leads to an 
inherent unpredictability, as has been done for historicity in cognition and biology 
(Longo, 2018), and this could create a further epistemic limit for the modelling of 
the underlying phenomenon. This kind of feedback is central to the ‘Process Limit’ 
we discuss in Sect. 5.
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5  Process Limit

This is perhaps the least intuitive of the limits, while also being the most socially 
relevant one. Optimizations themselves may affect the phenomenon and its model, 
both being optimized, in such a way that the system under study changes consider-
ably. Given our definition of optimization, the process may affect either M or f. 

1. If it affects M, then the objects that we use to represent our system or the system 
itself may change. Our optimization may become obsolete if the changes to these 
objects are considerable.

2. It if affects f, then the values that we assign to object manipulations may change, 
such that by optimizing for the original values, our optimization may actually be 
detrimentally affecting our new value.

One way to understand these cases might be to frame them as instances of learning, 
that is to see optimization as an epistemic process. As optimization is performed it 
is conceivable that we learn something new about the phenomenon, its model or our 
valuations.

On the other hand, optimization can also be seen, in some cases, as interfering 
with the phenomenon. Depending on what kind of system we are optimizing, the 
application of valuation f to a given object m ∈ M can affect the object m itself or 
the other objects of set M. This problem will not occur for abstract systems. When 
we want to find a minimum of a function, no matter how we traverse it we will not 
affect any of its objects. For embodied and embedded phenomena, however, it is 
conceivable that by interacting with them we might affect them.

Figure 8 provides a simple example that captures such an effect: when measuring 
the weights of fish, this may affect their weights. In this example, the pursuit of an 
objective requires a measurement which may have a non-trivial effect on the sys-
tem being measured. In other words, it is a case where a measurement is not ‘free’ 
or independent of the system being measured. In fact, it will often be the case that 
interacting with a complex system (like a fish, any other biological entity, or a sys-
tem of such entities) has a cost. This cost could be energetic, pertaining to an effort 
that is required to take a measurement, and it could be that this cost is born by both 
the measurement taker and the measurement subject (as in the case with the fish). If 
any cost is also borne by the subject, it may be challenging to predict how this effect 
will affect future measurements. The measurements need not affect the phase space 
of the underlying system for this limit to be relevant, as indeed the phase space of the 
aquarium has not changed following measurements since the behaviour that leads to 
alterations of the fish weights is due to the same biological responses and behaviours 
that the fish could display before the measurements (swimming, digestion, eating).

A similar effect occurs in many social situations. Consider the SATs exams as an 
optimization process, whose aim is to determine the best students. The exam can 
be considered the valuation f and the students are elements of the set M. By apply-
ing the valuation, we are clearly affecting the students. They are made aware of the 
exam and now prepare explicitly for it or resort to cheating instead of just being 
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good students (Klein et al., 2000). This is an example of the optimization process 
affecting the system it optimizes and driving it into states which were not intended. 
This example differs from the fish example (Fig.  8), as the process of measuring 
SAT scores not only influences the scores it also creates a new adaptive niches for 
the students: for example the possibility to study to the test format, and the possibil-
ity to cheat the test. Thus the optimization has affected the underlying phase space 
of the system, and not just the performative ability of the students.

Following up on that example, one could imagine this process leading to inequal-
ities, where not necessarily the best students will achieve best SAT scores but rather 
ones that due to their material conditions had access to tutoring and SAT preparation 
courses (Boaler, 2003). Once this realisation is made, the valuation f changes as it no 
longer optimizes only for the skills of the student but also for their wealth.

These effects could be considered a form of Observer’s Paradox (Labov, 1972) 
whereby the fact that there is an observer optimizing a system unwittingly affects the 
system being optimized. A common example of the Observers Paradox is the ‘Haw-
thorne Effect’, dubbed as such following the peculiar behaviour of factory workers 
during a study conducted between 1924 and 1932. A firm had commissioned a study 
to understand how much lighting was optimal for the workers. To their surprise, 
the workers performance increased every time the lighting was changed: more light, 
less light, and back to the same amount of light. A popular explanation provided by 
Landsberger (1958) is that the workers were performing better because they were 
being observed. In fact, after the study, their performance slumped.

A further example of the valuation f being affected by the process of optimization 
is explained in detail in Hubinger et al. (2019), where mesa-optimization is intro-
duced. Mesa-optimization is a case where a learned model is itself an optimization. 
In such a scenario, the inner-optimizer may have an internal objective function f i 
which is mis-aligned with the external objective function f e.

0.0 kg

Fig. 8  Imagine we have a huge aquarium full of different species of fish with similar weights. Our goal 
is to find the heaviest fish in the aquarium by weighing the fish on a scale. When we take out the fish 
one by one to weigh them they may react differently. Some of them swim agitated, others defecate pro-
fusely and the remaining ones greedily stress-eat. These minute behaviours can have an influence on their 
weights (!) and this optimization process is interfering with the closed system of the aquarium
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This concludes our explanations and examples of the three limits of optimization 
due to objects, objectives and the process. In the next section we bring these limits 
together to spur and stimulate a thoughtful discussion.

6  Discussion

In this paper we have defined optimization as the process of finding the best object 
in a set of objects for a particular optimality criterion, and argued that it can be 
limited in three main ways: objects, objectives and the process. While there may 
be overlap between these categories, we find it helpful to conceptualize their dif-
ferences, and examples are provided for each of these limits. This endeavour raises 
several questions, which remain open and for further investigation.

6.1  What are the Alternatives to Optimization?

We have claimed that while optimisation is a tool that can be applied in some set-
tings, it is not appropriate in others. For the clarity of the argument it appears fair 
to discuss if there are any alternatives to optimisation. Since, optimisation is widely 
used (even in settings where it perhaps should not be) it is natural to attempt to offer 
a different approach that could perhaps avoid the limits inherent in optimisation, 
while achieving the goals that are intended by it.

One process that has continuously served as an inspiration in many disciplines of 
science is evolution. Evolution and its natural selection has been claimed to be sig-
nificantly different and more complex than a simple optimisation. From the perspec-
tive of our arguments, one key difference between evolution and optimisation is that 
the latter is expected to be a finite process yielding a final result, while evolution is 
a continuous process without a clear end or goal. Furthermore, the results of natural 
selection can hardly be considered optimal.6 Moreover, the underlying phase space 
of the evolutionary process is a priori unmeasurable (Bailly & Longo, 2009) and so 
establishing an order over it, which would be necessary for optimisation to occur, is 
impossible.

Similarly, economic opportunity does not fit uniquely into an optimization para-
digm. Parallels are drawn between biological evolution and the evolution of eco-
nomic opportunity, such that it is not sufficient to conceptualize a static landscape 
of opportunity, but a dynamic and history dependent one (Felin et al., 2014). Thus 
the phase space of economic opportunity is modified and changed by the economy 
itself (Koppl et al., 2015), which undoubtedly contains some optimization processes, 

6 ‘The result is far from optimal, even less an optimum, at least because there is no pre-given partial 
order, where a largest element could be defined: the ecosystem is co-constituted by the dynamics and no 
pre-given choice of (mostly incomparable) observables may allow to fix a partially ordered space with a 
maximum or even local maxima. Indeed, if an organ or an organism were an optimum in a given phase 
space, and this optimality were a (essential) component of its fitness, as claimed by the Modern Synthe-
sis, it would be very soon dead, as the ecosystem changes.’ (Longo, 2018)
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but is not itself an optimization process; since optimization alone is not sufficient to 
explain the emergence of economic opportunity.

Thus, it appears, evolution and economy would be some of the examples of a pro-
cess that could be free of many of the limits of optimisation, while at the same time 
still leading to results, which can a posteriori be considered desirable in some sense. 
Here it is worth noting that the evolutionary algorithms, used in computational sci-
ence, while inspired by evolution, are still essentially optimisation (fitness function 
requires ordering). Perhaps, the understanding of evolution and economy referenced 
here could inspire further methodologies (including computational methods) that 
would be distinct from optimisation and free of its limits.

6.2  Are Humans Reducible to Optimization?

Is every thought and action we take conditioned and in service of some explicit 
optimum that we aim to achieve? Need we be reduced to continuous quantification, 
modelling and comparison of alternatives?

From a teleological perspective, human actions and thoughts can be understood 
and explained in terms of their purpose. This, however, is not the same as reducing 
them to optimization. While the effects of some human actions might be optimal 
with respect to some criterion, they are not necessarily the result of optimization. 
The fact that humans take actions that have purposes and outcomes is not enough to 
reduce human actions to optimal behaviour. The fact that an action can be consid-
ered optimal does not imply that it has resulted from an optimization process. In fact 
the optimality of the actions can only be asserted a posteriori by relating them to an 
objective that is external and separate to the action or its goal.

This teleological perspective does not preclude some human actions from being 
optimal, and there are human behaviours, which appear to incorporate optimal value 
based decisions. Neuroscience, for example, has successfully modeled and described 
several such optimal behaviours in the realm of perception and attention (Tajima 
et  al., 2016; Brus et  al., 2021). Nonetheless, as argued above, the fact that these 
behaviours lead to optimal outcomes cannot be used to infer them as results of an 
optimization.

Another limitation of reducing human actions to optimization is that optimiza-
tion does not offer a normative dimension, that is it does not in any way contribute 
to answering the question what decision should be made? Therefore, if one believes 
humans do make normative decisions, then no more can be learned about how that 
occurs using optimisation. Indeed, from a computational perspective any normative 
decision could be reduced to optimisation. On the other hand, if we do not subscribe 
to computationalism, optimisation does not allow us to study the normative decision 
making process further. Figure 97 presents a common sense argument for the exist-
ence of normative decisions.

7 The image has been reproduced as an Internet meme, retrieved from http:// subco rtex. com/ pictu res/, 
personal website of prof. Jesse Prinz believed to be the original author.

http://subcortex.com/pictures/
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This raises an interesting perspective on artificial intelligence research. If we con-
sider human intelligence to be irreducible to optimization it becomes unlikely that 
a human-like intelligence can be achieved with just optimization techniques. How 
is the AI supposed to make decisions if it can only optimize (Weizenbaum, 1976)? 
Nevertheless, currently, one of the most driven branches of AI, including machine 
learning and especially deep learning, focus almost exclusively on optimization. In 
fact, deep neural networks are just parametric models optimized with stochastic gra-
dient descent. As such they are constrained by the same set of limitations that we 
have delineated in this paper. Therefore, the limits of optimization in machine and 
deep learning should be of great interest to philosophers.

6.3  Should Societies be Universally Optimized?

We have argued that it is beyond our ability to model society with perfect accuracy 
given that it is an open and complex system. To overcome this limitation, we may 
try to model and optimize reduced parts of the the social phenomenon rather than 
the whole. But as we have indicated, complex systems are not generally reducible to 
their parts. Optimizing one part of a system (eg. the socioeconomic situation of the 
top 10%), without considering the interactions that part has with the other parts (eg. 
the socioeconomic situation of the bottom 90%), can lead to emergent phenomena 
that are challenging to foresee and that cannot be understood with the model of just 
one of the parts.

Fig. 9  The Trolley Optimization (?): optimization could be used to determine which choice is best 
according to an objective function, but requires a choice of objective to do so. The trolley problem, for 
example, could be optimized using the number of people harmed, but it is a normative decision to use 
such a utilitarian objective. The fact that it is called the trolley ‘problem’ (and not the trolley ‘optimiza-
tion’) could be an indication that most reasonable individuals do not believe there to be an optimal deci-
sion
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Moreover, the meta-problem of selecting the values that need to be optimized 
is more challenging for a society. This is because society is already an aggregate 
of many individuals. When these individuals each have different needs, desires 
and goals, how should a unique optimization criterion be formulated? Picking the 
goal that should be pursued is a normative decision which an optimization does not 
provide. If we attempt instead to satisfy all goals, the optimization will not yield a 
unique solution, but rather a set of solutions. Picking from this set of solutions, once 
again, is a normative decision, which the optimization does not provide. Does there 
even exist in principle, a goal that all individuals pursue, and that a society can opti-
mize for?

Profit is often taken to be the goal that all individuals pursue, and that a society 
can optimize for globally. It is so appealing because it is easily quantifiable, and all 
actions can be compared in terms of their effects on profit. Behaviours like spend-
ing and consumption, which clearly have societal impacts are aggregated en masse 
for individuals and companies and used to estimate Gross Domestic Product (GDP). 
Changes in GDP are then used to justify interventions in society. Nations optimize 
their politics and laws while optimizing for GDP.8 Following our arguments for the 
limits of optimization in open and complex social systems, do nations of today have 
a sound model and goal for societies?

What about emotions? What about moral behaviour? Can this be quantified? It is 
questionable whether human experiences like emotions or morality can be quanti-
fied in principle, and it is also questionable whether it is ethical to try. We recall 
a powerful phrase by Robert F. Kennedy addressing The University of Kansas on 
March 18th 1968: ‘[GDP] measures neither our wit nor our courage, neither our 
wisdom nor our learning, neither our compassion nor our devotion to our country, it 
measures everything in short, except that which makes life worthwhile. And it can 
tell us everything about America except why we are proud that we are Americans’. 
What directions does a society go in, when guided by actions that optimize for ‘eve-
rything, except that which makes life worthwhile’ (GDP)?

Again, we draw an interesting link to artificial intelligence and societies. Most 
people will have entertained the idea that perhaps, large-scale social problems 
like climate change, global pandemics, systemic inequalities, and the resurgence 
of totalitarianism could be ‘off-loaded’ to an artificial general intelligence (AGI). 
This machine would be so much more powerful than any individual, and capable 
of bringing together many objectives to find the forward path that solves them all 
simultaneously. Based on our arguments, such an idea should be entertained with 
great care. The AGI would be acting and influencing the society it is trying to opti-
mize using a model that humans cannot interpret. The AGI’s model may be more 
accurate than human models, but it will nonetheless be subject to object, objective 
and process limits. Furthermore, optimization does not provide the tools to decide 

8 GDP is used as an illustrative example and does not imply any systematic statements. Microeconom-
ics of the Neoclassical school as well as the Austrian school reject the macroeconomic notion of GDP 
as meaningful or having any bearing on political actions that should be taken. Such a rejection is in fact 
convergent to a large degree with the arguments presented in this paper.
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what is important. Such decisions are made by the users, and it seems reasonable for 
those decisions to be taken by the users most affected by the consequences. Putting 
an AGI in charge resembles putting an optimization process in charge.

6.4  Final Remarks

We have defined optimization and discussed the limitations pertaining to optimiz-
ing models of real phenomena, particularly for open and complex social systems 
(Sect. 2). We characterized these limitations with toy and real examples (Sects. 3, 4, 
5). We concluded with an open discussion on the ways that optimization shapes our 
understanding of individuals and societies (Sect. 6). Before us lies extensive future 
research. Practically, we aim to further the collection of examples that clarify the 
limits of optimization. Theoretically, there may be valuable results that can quantify 
the limits of optimization for open complex systems, provided sufficiently descrip-
tive definitions of openness and/or complexity.
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