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Abstract
Classical music, unlike popular music, is usually recorded live with close micro-
phone techniques. For this reason, isolated tracks are not available to create the final 
mixture/stream, and so the mixing process requires greater effort. Source separa-
tion methods are a potential solution to this problem. However, current algorithms 
are not fast enough to yield real-time separation in professional setups with dozens 
of microphones and sources. In this paper, we propose a fast approach consisting 
of a panning-based multichannel non-negative matrix factorization model to sepa-
rate classical music. We tested the system on real professional recordings, where we 
were able to reach real-time with very low latency and promising quality.
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1 Introduction

Music source separation (SS) is the process of segregating a music mixture into 
its constituting individual instruments. This is a task of great interest for mul-
tiple musical applications, including music remixing, equalization, professional 
production of records/streams, music education and recreational purposes (e.g., 
karaoke).

In the last years, thanks to the emergence of deep neural networks (DNN), many 
competent systems have been proposed to perform SS on popular music. Typically, 
convolutional neural networks (CNN) or long short-term memory (LSTM) networks 
are trained on large datasets containing mixture-source pairs. Since popular music is 
usually created by recording each instrument separately (before the audio engineer 
mixes all stems to produce the final mixture), reasonably large datasets are available 
for training, specially thanks to artists sharing their stems. Among the most popular 
deep learning models, we can cite Open-Unmix [1], Spleeter [2] or Demucs [3].

Classical music, unlike popular music, is usually recorded with all musicians 
performing at the same time in the same acoustic space. For this reason, datasets 
with isolated sources are scarce in classical music, which is a great impediment 
for training data-driven SS models. In a typical recording session, each instru-
ment is recorded with one or more close microphones, whereas the whole orches-
tra/ensemble is captured with two main microphones (stereo pair) [4]. Additional 
channels can be used to pick up ambient sounds. The final recording (or stream) 
is created by boosting the stereo pair with the close-mic and ambient signals, 
selecting appropriate gain levels and compensating the inter-channel time differ-
ences (ITD). Usually, before the concert, each musician is asked to play alone for 
a few seconds to allow the audio engineer to fine-tune some of these parameters. 
However, because the instruments are not completely isolated in each close chan-
nel during the concert, the mixing process still requires great effort and expertise, 
with numerous tricks and adjustments to mask microphone leakage (e.g., artifi-
cial reverberation) [5]. An SS algorithm able to yield high-quality isolated stems 
for mixing could facilitate this labor significantly. Here, real-time is a desirable 
requirement, in particular when the concert is to be transmitted via streaming.

The lack of training material restricts SS in classical music to heuristic solu-
tions, such as spectrogram decomposition with non-negative matrix factoriza-
tion (NMF) or similar [6–8]. Even though these methods do not achieve better 
quality than machine learning, they can deliver reasonably good results when 
prior information is known, such as instrumentation, score of the piece, or inter-
channel level/phase differences for each instrument. Recently, systems based on 
multichannel NMF (MNMF) have been proposed with promising results [9–11]. 
However, current approaches are too complex for real-time delivery in a realistic 
recording setup, which usually comprises dozens of instruments and channels. 
Besides, some methods rely on information that may not be available during the 
recording, such as microphone positions or the piece score (as in [9]).

In this paper, we propose a MNMF system able to reach real-time SS in classi-
cal music with a high number of channels and instruments. The MNMF model is 
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similar to the version described in [12], based on a panning matrix that encodes 
inter-channel level differences (ILD) for each instrument, but with pre-trained 
instruments bases. This model was chosen for efficiency, simplicity and flexibility 
reasons. Even though it does not represent accurately how the sources are mixed 
in the air, it exploits effectively multichannel information. The panning matrix 
can be learnt in a preliminary stage, asking each performer to play alone for a 
few seconds before the concert, which is a common practice. The method does 
not need any other additional prior information. During the separation, only the 
instrument time-varying amplitudes have to be estimated. The system is able to 
produce hundreds of stems in real time with reasonable quality. Our approach 
provides the basis to create a real-time music demixing machine for classical 
music able to work in realistic conditions.

We organize this document as follows. In Sect. 2, we describe the implemented 
SS system. In Sect.  3, we test the algorithm on professional orchestra recordings 
and synthetic mixtures and provide objective and subjective SS measures. A detailed 
experimentation is conducted to analyze the execution time and efficiency of the 
algorithm. Section 4 concludes the paper.

2  Proposed separation method

2.1  Problem statement and assumptions

The problem addressed in this work is to separate each source instrument from a 
live music performance recorded with N microphones. The input of the system is an 
N-channel signal xn , with n ∈ [1,N] , and the outputs are the j ∈ [1, J] source instru-
ment signals at each microphone, which give us a total of J ⋅ N output waveforms 
ŷjn . In practice, it is not necessary to get so many outputs, because most channels 
correspond to close microphones where only one instrument is desired.

In the frequency domain, we denote the input signals at time frame t as 
xnt = [x1,nt,… , xF,nt]

⊺ ∈ ℝ
F
+
 and the original sources as yjt = [y1,jt,… , yF,jt]

⊺ ∈ ℝ
F
+
 , 

where F is the number of bins. In this work, we use the same frequency representa-
tion as in [9], where the signal is windowed with Hanning windows and the dimen-
sionality of the magnitude STFT is reduced to a musically meaningful resolution 
[13].

We assume that the instruments are mixed in each microphone following an 
instantaneous mixture model,

where mnj ∈ ℝ+ is the gain contribution of instrument j to channel n (panning coef-
ficient). Clearly, this model is a simplification of the way signals are actually mixed. 
The actual mixing is convolutive in nature and depends on the source-to-microphone 
paths and room acoustics. However, in close mixing scenarios, this model is use-
ful enough to exploit effectively spatial information, because in that case, ILDs are 

(1)xnt =

J∑

j=1

mnjyjt,
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significant. Coefficients mnj are also supposed to be time-invariant (i.e., sources and 
instruments do not change placement).

In addition, we assume that each instrument source signal can be modelled as a 
linear combination of P spectral patterns,

where bjp ∈ ℝ
F
+
 is the p-th spectral pattern of instrument j, and gjpt ∈ ℝ+ are their 

corresponding time-varying gains. In our approach, the instrumentation of the piece 
is known in advance. The spectral patterns are picked from a dictionary that con-
tains pre-learned spectral patterns for each classical instrument, with each pattern 
representing the shape of a single pitch/note. Further information about how to gen-
erate this dictionary can be found in [13].

2.2  System overview

Our approach operates in two stages. The first one is dedicated to estimate the pan-
ning coefficients mnj . To this end, the system works on the preliminary recordings 
that audio engineers make before the concert. Typically, in these recordings, each 
performer plays alone for a short time, allowing the engineer to find the best mixing 
settings (gain, delay, reverb) for each channel in the absence of interferences. The 
time interval during which each instrument is playing is annotated manually in a text 
file in the form of time markers (see Fig. 1). Our system uses these annotated record-
ings to accurately determine the panning coefficients for each instrument, exploiting 
the fact that each source is free of interference.

(2)yjt =

P∑

p=1

gjptbjp,

Fig. 1  Block diagram of the proposed separation system
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In the second stage, dedicated to source separation during the concert, the system 
estimates the time-varying gains gjpt . The panning coefficients mnj (estimated in the pre-
vious stage) and the instrumental patterns bjp are kept fixed. Unlike the previous stage, 
this one has to work in real time, and therefore, the inference of gjpt must be heavily 
optimized. Here, the signal is processed in a block-wise fashion in order to keep latency 
to a minimum. A block diagram of the proposed approach is shown in Fig. 1.

2.3  MNMF instantaneous model

Let Xn = [xn1,… , xnT ] ∈ ℝ
F×T
+

 be the frequency representation of a small block of 
input signal at channel n, where T is the block length in frames. Following assumptions 
(1) and (2), our MNMF decomposition model X̂n can be formulated as

where Bj = [bj1,… , bjP] ∈ ℝ
F×P
+

 is the matrix that holds the spectral patterns for 

instrument j, and Gj ∈ ℝ
P×T
+

 holds their corresponding time-varying gains gjpt across 
the block. This model is just a panning-based extension of NMF, similar to [12], but 
with pre-computed and fixed bases Bj . The unknowns of the model are the panning 
coefficients mnj and the gains Gj.

The model parameters are found by minimizing the �-divergence between the 
observed input Xn and its modeled form X̂n . In order to make the algorithm independ-
ent from the signal amplitude, the input matrix Xn is first normalized to have �-norm 
equal to 1 as follows:

The �-divergence is minimized using the well-known multiplicative gradient 
approach [14]. First, the variables Gj and mnj are initialized with non-negative val-
ues. Then, they are updated iteratively using multiplicative update rules in which 
each element is multiplied by a positive gradient. These rules guarantee that the �
-divergence is reduced at each iteration, while preserving non-negativity of the vari-
ables. For our model in (3), the update rules are

(3)Xn ≈ X̂n =

J∑

j=1

mnjBjGj,

(4)
Xn ←

Xn
�∑

fnt

�
xfnt

���1∕�
.

(5)Gj ← Gj ⊙

∑
n mnj ⋅ B

⊺

j
⋅

�
X̂

𝛽−2

n
⊙ Xn

�

∑
n mnj ⋅ B

⊺

j
⋅ X̂

𝛽−1

n

,
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where divisions, exponentials and multiplications denoted by ⊙ are element-wise 
operations, and [⋅]ft means matrix indexing. We run the algorithm with a fixed num-
ber of iterations, and set � = 1.5 , which has been found to perform well with music 
signals [9].

In the first stage of the system, Xn represents the preliminary test recording, 
which is a few minutes long at most. Since we know the interval where each instru-
ment is playing, Gj is initialized to 1 in the frames where instrument j is active, and 
0 in the rest. Coefficients mnj are initialized to 1. Both update rules (5 and 6) are 
applied in this stage, and the resulting mnj values are stored for later use. Real time is 
not a requirement in this stage.

In the second stage, Xn represents a block of the live audio signal. To ensure a 
low latency for streaming applications, the block size is set to a small number of 
frames. Coefficients mnj are initialized to the values obtained in the previous stage 
and kept fixed, so that only rule (5) is applied to estimate Gj , whose elements are 
initialized to 1. Implementation of equation (5) is then critical, because in real con-
ditions, recordings can be made with dozens of instruments and channels. Thereby, 
efficient techniques including parallel and high performance computing will be 
used. The estimated gains Gj are used to reconstruct the sources in each channel for 
the current block.

2.4  Source reconstruction

The J instrument signals in each channel are reconstructed from the parameters esti-
mated in the MNMF decomposition. To do this, we make use of the well-known 
Wiener filtering strategy. Observe that according to our model in (3), the j-th spec-
trogram in channel n can be constructed as

with Ŝnj ∈ ℝ
F×T
+

 . A single-channel Wiener mask for a certain source j represents the 
relative energy contribution of source j with respect to the total energy of the mix-
ture. In other words, the Wiener mask Vnj ∈ ℝ

F×T
+

 for source j and channel n can be 
computed as

Then, we can extract the spectrogram of source j from channel n by applying the 
filter Vnj over the input mixture:

(6)mnj ← mnj ⋅

∑
ft

�
BjGj

�

ft
⋅

�
X̂

𝛽−2

n
⊙ Xn

�

ft

∑
ft

�
BjGj

�

ft
⋅

�
X̂

𝛽−1

n

�

ft

,

(7)Ŝnj = mnjBjGj,

(8)Vnj =
�Ŝnj�2

∑
j �Ŝnj�2

.
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Before transforming the spectrogram Ŷnj to the time domain, it is necessary to per-
form two steps. First, since Ŷnj is expressed in musical resolution, it must be con-
verted to lineal frequency resolution. This is done by replicating the value of each 
band f to all its corresponding linear frequency bins. Second, since Ŷnj only contains 
magnitude information, the phase must be provided to obtain a complex-valued 
spectrogram. Here, for all sources, we use the phase of the STFT of the input sig-
nal xn . Finally, the inverse STFT is employed to yield the output stems ŷjn . For the 
reconstruction stage, we use the same software developed in [9].

The separation system proposed in this study is summarized by Algorithms  1 
and 2. Algorithm 1 focuses on the first stage of the system, which involves the esti-
mation of panning coefficients mnj . This estimation is performed using preliminary 
recordings without the constraint of real-time processing. By contrast, Algorithm 2 
involves the estimation of the time-varying gains gjpt . This stage must be performed 
in real time, demanding the use of parallel and high-performance computing (HPC) 
techniques in its design. Specifically, parallel OpenMP directives were used to buffer 
input audio frames (see line 4 of Algorithm 2). Next, frames within the same audio 
block Xn were processed in parallel using OpenMP directives (see line 5 of Algo-
rithm 2). Later, the norm of Xn was calculated in parallel using reduction clauses 
and directives of OpenMP. The matrix is then normalized using Level 3 BLAS calls 
(see line 6 of Algorithm 2). Finally, the operations involved in the NMF update (see 
line 9 of Algorithm 2) were parallelized using BLAS calls for matrix–matrix and 
vector–vector products and OpenMP directives for non-BLAS operations. Notably, 
for three-dimensional matrix products, several versions were implemented using the 
batched variants available in Intel oneAPI.

Algorithm 1 Proposed MNMF separation algorithm (panning estimation)

1: Load recording xn and its marker file
2: Compute Xn (Hanning window, magnitude FFT, musical resolution) and

save original FFT phase
3: Normalize Xn by (4)
4: Load instrument bases Bj

5: Initialize gains Gj according to marker file
6: Initialize panning coefficients mnj to 1
7: for i = 1 to # of iter do
8: Update Gj by (5)
9: Update mnj by (6)

10: end for
11: Save mnj

(9)Ŷnj =
√

Vnj ⊙ Xn.



 P. Cabañas-Molero et al.

1 3

Algorithm 2 Proposed MNMF separation algorithm (separation stage)

1: Load instrument bases Bj

2: Load panning coefficients mnj

3: while audio keeps coming do
4: Buffer T frames of audio xn

5: Compute Xn (Hanning window, magnitude FFT, musical resolution)
and save original FFT phase

6: Normalize Xn by (4)
7: Initialize gains Gj to 1
8: for i = 1 to # of iter do
9: Update Gj by (5)

10: end for
11: Compute BjGj

12: for n = 1 to N do
13: for j = 1 to J do
14: Compute Ŷnj by (7), (8) and (9)
15: Change to linear resolution and add phase
16: Inverse FFT
17: Output ŷjn
18: end for
19: end for
20: end while

3  Experiments

3.1  Experimental setup

We evaluated the proposed method using two real professional recordings created 
by a record label. These recordings contain performances of two classical pieces 
composed by Brahms and Webern, played with piano and orchestra in a concert hall. 
Each instrument was recorded with one or two close microphones, and the whole 
scene was captured with a stereo pair and several ambient sensors. Both recordings 
contain a preliminary segment where each musician plays alone for a few seconds. 
These segments were annotated by the audio engineer in a marker file. We used 
these annotated sections to estimate our panning matrix.

In addition, to give objective separation measures, we employed a subset of the 
University of Rochester Multimodal Music Performance (URMP) database [15], 
which provides separated stems. The chosen subset is composed of four pieces of 
chamber music (two quintets and two quarters) played by wind and stringed instru-
ments. To generate multichannel mixtures, we simulated the spatial position of the 
sources and microphones using a room simulator based on the image method [16]. 
The simulated room is a rectangular prism of dimensions 22 × 16 × 5 m3 and rever-
beration time RT60 equal to 1 s. The room layout is illustrated in Fig. 2, where the 
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close microphones are omnidirectional. We also generated a preliminary recording 
for each piece to learn the panning matrix.

Information about our dataset is provided in Table 1. All mixtures are sampled at 
44 kHz and were analyzed using a frame size of 5700 samples and a frame shift of 570 
samples (13 ms). The number of iterations of the MNMF decomposition was set to 50.

In our experimentation, we used two different systems as a testbed. The first sys-
tem was an Intel server with two Intel  Xeon® Silver 4110 processors, each with 8 
cores. The processors operate at a clock speed of 2.10 GHz, and HyperThreading 
and Turbo Boost were disabled in the experimentation. The second system was the 
NVIDIA Jetson AGX Xavier development kit, which is a system-on-chip with an 
8-core ARM v8.2 64-bit CPU. The Xavier platform was used to simulate the perfor-
mance of a range of mobile devices, such as smartphones, laptops, and tablets, under 
controlled conditions.

The Xavier system ran Ubuntu 18.04.6 LTS and uses the OpenBLAS1 library 
(release 0.3.20, February 2022) and the FFTW2 library (release 3.3.10, September 

Table 1  Dataset used to evaluate our music separation system

Composer Piece name Duration Channels Instr Room

Allegri Miserere mei deus 00:40 5 5 Simulated
Mozart String quintet K515 03:45 5 5 Simulated
Purcell Rondeau from abdelazer 02:08 4 4 Simulated
Dvořák Slavonic dance 01:22 4 4 Simulated
Brahms Piano concerto No. 2 26:14 30 18 Real
Webern Concerto for 9 instruments 11:40 20 9 Real

Fig. 2  Simulated room and microphone/source positions (quintet)

1 https:// www. openb las. net
2 http:// www. fftw. org

https://www.openblas.net
http://www.fftw.org
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2021). The Intel server ran CentOS Linux 7.9 and the Intel oneAPI Toolkit (release 
2022.2). Although the Intel oneAPI Toolkit provides the FFTW interface, the exter-
nal FFTW library (release 3.3.10, September 2021) was used on the Intel server to 
accurately compare the performance of the two systems and draw meaningful con-
clusions from the experimentation.

3.2  Separation results

For the URMP subset, the separation quality was objectively measured using the 
BSS_eval toolbox [17], which provides three metrics: signal-to-distortion ratio 
(SDR), signal-to-interference ratio (SIR) and signal-to-artifacts ratio (SAR). For 
each source, we only considered the separated stem in its corresponding close 
microphone. We tested two different block sizes: T = 16 and T = 4096 frames.

We compared our system with two state-of-the-art MNMF-based methods. The 
first one is the complex-valued multichannel extension (CMNMF) proposed in [18]. 
In this case, the complex spatial matrix for each instrument was initialized using 
the preliminary recording, in a similar fashion to our system. Euclidean divergence 
was used, and all model parameters were updated during the separation until conver-
gence. The second one is FastMNMF2 proposed in [19], using the code provided by 
the authors. In this case, the method was not initialized with any prior information, 
so it ran completely blind. Finally, the baseline result without conducting any sepa-
ration was computed (i.e., we compared the ground-truth stem with the instrument 
spot signal divided by the number of sources).

Figure  3a illustrates the median values of SDR, SIR and SAR obtained in our 
experiments, together with 25-th and 75-th percentiles. As shown, our system 
achieves SDR = 5.34 dB, SIR = 7.83 dB and SAR = 9.52 dB, which are fairly supe-
rior to the baseline metrics. Our evaluation shows that the block size does not impact 
the separation quality. This was expected, as each gjpt is calculated from the same 
input variables for any T, which only affects the normalization step in (4). In this 
test, CMNMF was the best method, achieving approximately 2 dB more than our 

Fig. 3  Separation results for sources extracted from their closest microphone
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system in terms of SDR and SIR. FastMNMF2 performed poorly in terms of distor-
tion and artifacts, but still managed to achieve a competitive level of SIR (6 dB). We 
recall FastMNMF2 is operating blindly.

For both real (Brahms, Webern) and URMP mixtures, we conducted a subjec-
tive evaluation using the MUlti Stimulus test with Hidden Reference and Anchor 
(MUSHRA), which is a well-established approach for evaluating audio quality as 
specified in ITU-R Recommendation BS.1534-1 [20]. In the MUSHRA test, the par-
ticipants are given the signals being tested along with a reference signal (typically 
the clean source) and asked to rate the different signals on a quality scale ranging 
from 0 to 100. The mixture without separation is also included among the tested sig-
nals as an anchor. The algorithm corresponding to each signal is hidden. Since we 
do not have access to a clean reference for the real recordings, we presented the lis-
teners with the name of the instrument and asked them to provide a low score if the 
instrument sounded distorted, artifacted or interfered with other sources, and vice 
versa. Twenty-three listeners ranging in age from their 20 s to their 40 s participated 
in the test. Figure 3b shows the average subjective measures for all compared meth-
ods and the anchor (no separation). As can be observed, listeners preferred our sys-
tem in both real and simulated recordings. In our opinion, the reason is that phase-
based methods such as CMNMF and FastMNMF2 usually perform worse in higher 
frequencies due to the phase ambiguity problem. Objective measures are biased to 
very low frequencies just because audio signals usually present higher energy in that 
range. On the contrary, psycho-acoustic subjective measures are more balanced in 
all frequency bands, since the auditory system is more sensitive to higher frequen-
cies. In real recordings, CMNMF performed significantly worse, perhaps due to 
its limitations for modeling real-world mixing. Excerpts used in the test, as well as 
other separated stems, can be found online.3

3.3  Computational results

Concerning the computational results, a specific experimentation was designed 
and conducted to evaluate the performance of our system. These results cover the 
entire system except the reconstruction stage described in  2.4. Figure  4 shows 
the computational results obtained by the Intel server as a function of the audio 
block size. As can be observed, the block size to process ranges from T = 16 to 
T = 4096 audio frames. Figure 4a illustrates the measured execution times, with 
a red line indicating the limit for real-time processing. If the runtime for a given 
block size falls above this line, the system will not be able to process the audio 
blocks as they arrive. However, if the runtime falls below the red line, the system 
will be able to process the entire block before the next one arrives. For instance, 
with a block size of T = 16 frames, corresponding to 0.21  s of audio, the pro-
cessing time obtained is 0.46  s. As can be seen in the figure, the system starts 
to behave in real time for block sizes larger than 256 frames. The efficiency of 

3 https:// gitlab. com/ pcaba nasmo lero/ jos- 2022

https://gitlab.com/pcabanasmolero/jos-2022
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the proposed system is depicted in Fig. 4b. As shown, the optimal efficiency is 
achieved when using a block size of 256 audio frames. This result aligns with 
expectations, as using a block size of T = 256 results in matrices that are more 
square in shape, providing a better performance for the matrix products and divi-
sions of the algorithm (see(4)-(6)). Therefore, for the sake of brevity, we will use 
256 frames as the block size in order to assess the performance of the proposed 
system for the rest of the experimentation. In this sense, note that processing a 
256-frame block corresponds to less than 3 s of latency, which is acceptable for 
streaming applications.

A study was conducted to investigate the impact of the number of cores on the 
performance of a source separation system. Two application scenarios were con-
sidered: chamber music and orchestral music. As already introduced in Table 1, 
the main difference between these scenarios is the number of instruments that 
comprise the musical piece and the number of channels or microphones used 
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during the recording process. Obviously, the target task with a large number of 
instruments and/or channels will involve a higher computational load. Figure  5 
shows the results obtained by the Intel server for the Allegri and Brahms compo-
sitions. Thus, the execution times measured are presented in Fig. 5a. As can be 
observed, the application of parallelism and high performance computing tech-
niques allows for real-time behavior in chamber music settings, characterized 
by a limited number of instruments and channels. However, in settings with a 
greater number of instruments and channels, the use of 16 cores is necessary to 
achieve real-time performance. The efficiency of the system, as shown in Fig. 5b, 
decreases as the number of cores increases due to the need to divide the workload 
among a larger number of cores, resulting in less efficient utilization of each indi-
vidual core.

Figure 6 presents the results of the Xavier platform’s performance on the Allegri 
and Brahms compositions as a function of the number of cores used. It is noted that 
real-time processing is only achieved for chamber music when at least 4 cores are 
utilized (see Fig. 6a). In terms of efficiency, values above 0.7 were obtained in this 
experiment (see Fig. 6b), indicating that the proposed system scales properly.

Finally, the effect of the number of instruments on the performance of the pro-
posed system was analyzed. Figure 7 summarizes the results obtained by the Intel 
server when using 16 cores and a block size of 256 frames. The results show that 
real-time behavior cannot be achieved for musical compositions with more than 
25 instruments. This is due to the strong impact of the number of instruments on 
the operations performed in the MNMF stage. In terms of efficiency, as shown in 
Fig. 7b, the number of instruments does not significantly affect the performance.
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Fig. 6  Experimental results obtained by NVIDIA AGX Xavier as a function of the number of cores used
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4  Conclusions and future work

In this paper, we present a multichannel SS system designed for classical music 
recordings made in professional environments. Real recordings are usually made 
using dozens of instruments and close microphones, and real time is often a require-
ment. Besides, certain information usually needed by previous methods [9] (such 
as the piece score or source positions) is not always available during the recording. 
With these requirements in mind, we designed an approach based on panning-based 
MNMF able to work in real time in typical professional setups without disrupting 
the workflow of audio engineers. The system can produce separated stems that can 
be useful to create the final mixture. We tested the system in real orchestra record-
ings and synthetic chamber mixtures, obtaining promising results in real time with 
low latency using parallel and high-performance techniques. In a recording with 18 
instruments and 30 channels, we achieved real-time separation with less than 3 s of 
latency in a server with two Intel  Xeon® Silver 4110 processors (16 cores).

In future versions, we intend to improve the separation quality by incorporat-
ing pyschoacoustic criteria that allow to detect the segments where each instrument 
is active. Also, we want to estimate certain parameters automatically, such as the 
ITDs for each instrument, with the goal of creating a complete mixing tool useful to 
professionals.
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