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Abstract
This paper provides a novel, unique, and improved optimization algorithm called the modified Orca Predation Algorithm

(mOPA). The mOPA is based on the original Orca Predation Algorithm (OPA), which combines two enhancing strategies:

Lévy flight and opposition-based learning. The mOPA method is proposed to enhance search efficiency and avoid the

limitations of the original OPA. This mOPA method sets up to solve the global optimization issues. Additionally, its

effectiveness is compared with various well-known metaheuristic methods, and the CEC’20 test suite challenges are used

to illustrate how well the mOPA performs. Case analysis demonstrates that the proposed mOPA method outperforms the

benchmark regarding computational speed and yields substantially higher performance than other methods. The mOPA is

applied to ensure that all load demand is met with high reliability and the lowest energy cost of an isolated hybrid system.

The optimal size of this hybrid system is determined through simulation and analysis in order to service a tiny distant

location in Egypt while reducing costs. Photovoltaic panels, biomass gasifier, and fuel cell units compose the majority of

this hybrid system’s configuration. To confirm the mOPA technique’s superiority, its outcomes have been compared with

the original OPA and other well-known metaheuristic algorithms.

Keywords Orca predation algorithm � Global optimization � Photovoltaic � Biomass � Fuel cell � Isolated hybrid system

1 Introduction

The likelihood of rising energy distribution disparity due to

renewable energy sources is significant, ensuring long-term

continuous energy distribution while simultaneously

reducing emits of greenhouse gases. This is why most

researchers are working on the design and development of

distributed energy resources based on the use of renewable

sources (photovoltaic panels (PV), wind turbine (WT),

diesel generator (DG), biomass gasifier (BG), battery bank,

and fuel cell (FC), etc.), especially in rural areas, to be

utilized in feeding the required loads [1]. The hybrid

energy systems need to be appropriately built and sized for

distributed generation microgrids to operate securely,

dependably, and economically [2]. This turns determining

the hybrid energy system’s ideal size into an optimization

issue that includes a set of objectives. In order to optimize

hybrid energy systems, many techno-economic issues have

been taken into account. Examples of costs taken into

account in hybrid systems optimal sizing study include net

present cost (NPC), energy cost (COE), annualized system

cost (ASC), and life cycle cost (LCC). The main drawback

of renewable energy sources is their reliance on the envi-

ronment. This drawback is reduced by using hybrid energy

system combinations, guaranteeing a standard power sup-

ply to the loads. This can be achieved by combining sus-

tainable energy sources with being used if a more potent
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source fails and integrating green energy sources with

conventional energy sources. Several studies focus on the

effectiveness of hybrid renewable energy systems and

different metaheuristic optimization techniques. Most

research investigations examine whether energy production

can meet load demands [3]. The technical indices used as a

result are the loss of power supply probability (LPSP), the

loss of load expected (LOLE), loss of energy expected

(LOEE), deficiency of power supply probability (DPSP),

loss of load hours (LOLH), unmet load (UL), equivalent

loss factor (ELF), and renewable energy fraction [3].

Currently, examining the effectiveness of hybrid renewable

systems is the subject of numerous papers, as are various

optimization algorithms, with the goal being to ascertain

the optimal size of the system’s constituent parts and

enhance the critical technical and economic indicators in

the system’s design. Several papers have presented differ-

ent operation strategies for many hybrid systems designs

that apply different metaheuristics and improved opti-

mization strategies. For example, a standalone hybrid

energy system based on PV, WTs, and FC configuration

has been described in [4]. This study offered a power

management approach that controls the power flow

between the various system parts using the metaheuristic

optimization technique called the mine blast algorithm

(MBA). The obtained findings of the MBA method were

compared with other techniques, namely, PSO, artificial

bee colony (ABC), and cuckoo search (CS). Based on the

same previous system combination, the authors in [5]

proposed an optimal sizing optimization strategy for a

hybrid system situated in the Ataka area in the Suez Gulf

region, Egypt. A novel modified algorithm based on

improving the performance of the traditional Artificial

Ecosystem Optimization (AEO) method called Improved

Artificial Ecosystem Optimization (IAEO) is utilized for

this hybrid system. The major objective functions of this

hybrid system are to reduce the COE, LPSP, and excess

energy while satisfying the operational constraints. To

demonstrate the IAEO technique’s effectiveness, a com-

parison of IAEO, the original AEO, PSO, Salp Swarm

Algorithm (SSA), and Gray Wolf Optimizer (GWO) has

been performed.

Moreover, the work in [6] developed a new hybrid

system strategy based on combining the biomass system as

the primary source and the FC as a backup unit. This

suggested hybrid system has been offered to supply the

electric power of a microgrid in a small tourist hamlet in

Hurghada city, Egypt. A Multi-objective Particle Swarm

Optimization (MOPSO) method minimizes the COE and

the LPSP. HOMER software tool has been utilized in [7] to

apply a techno-economic analysis for a new different

configurations hybrid system based on PV/WT/BG/Biogas/

FC/battery components. This hybrid system is developed to

be practical in rural and remote places. This work provided

optimal configuration for reducing COE and NPC.

In [8], four different metaheuristic algorithms (PSO, DE,

the water cycle algorithm (WCA), and GWO methods) for

determining the best size for an isolated microgrid in rural

locations are tested for effectiveness and adaptability. In

four separate AC-coupled isolated microgrids for a distant

community in South Australia, these algorithms maximize

the PV, WT, DG, fuel tank, and battery energy storage

capacity. In terms of capacity optimization of the system’s

components, the PSO and GWO algorithms produced

comparable results. While the DE method was unreliable.

To obtain the optimal sizing for an isolated hybrid system

consisting of PV, WT, and battery units, the authors in [9]

applied ten optimization methods which are simulated

annealing (SA), Jaya algorithm, moth–flame optimization

(MFO), GA, CS, harmony search (HS), firefly optimization

algorithm (FOA), flower pollination algorithm (FPA), the

simplified squirrel search algorithm (S-SSA), and the

brainstorm optimization in objective space (BSO-OS)

algorithm. Abd El-Sattar et al. [10] developed a hybrid

algorithm, namely the Gradient Artificial Hummingbird

Method (GAHA), that combines the Gradient-Based

Optimizer (GBO) with the Artificial Hummingbird Algo-

rithm (AHA). This modified GAHA method is utilized to

ascertain the optimal size of PV, WT, biomass system, and

battery units for a standalone area in the new Tiba city,

Luxor, Egypt, considering the reducing the COE and LPSP.

In [11], an enhanced Arithmetic Optimization Algorithm

known as IAOA was created by updating the original AOA

with the aid of the Aquila Optimizer’s leading operators

(AO). This developed IAOA technique was used to deter-

mine the best design scenario for a standalone hybrid

system made up of PV, WT, DG, and battery units in the El

Kharga region, Egypt. The authors in [12] concentrated on

determining the optimal sizing for an off-grid hybrid sys-

tem using a novel PV/BG/FC construction. The objective

functions of the proposed method are to reduce the COE

and minimize CO2 emissions. A novel Mayfly Optimiza-

tion Algorithm (MOA) has been utilized to obtain the

optimal size of this hybrid system. To prove the effec-

tiveness of the suggested MOA method, its outcomes were

contrasted with those of the Sooty Tern Optimization

Algorithm (STOA), Sine Cosine Algorithm (SCA), and

Whale Optimization Algorithm (WOA).

Various hybrid configurations and techno-economic

analysis approaches may be used to build diverse renew-

able systems in the best possible ways. Accordingly,

researchers have discovered in recent years that meta-

heuristic algorithms, which are all-purpose and straight-

forward to use, can tackle challenging real-world problems.

Because metaheuristics are very accurate and straightfor-

ward, they have drawn much attention in various
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challenging optimization issues in engineering, communi-

cations, medical, and social sciences [13]. Moreover,

metaheuristic algorithms are also used to improve solutions

for a variety of problems, such as global optimization [14],

energy applications [15], power flow systems [16], image

segmentation [17, 18], deep learning-based classification

[19], scheduling microgrid systems [20], economic emis-

sion dispatch (EED) problems [21], and feature selection

[22, 23]. Unlike deterministic approaches, metaheuristic

algorithms use randomly generated search agents and

specialized operators to find the best solutions in the search

space. These operators take inspiration from natural

occurrences such as swarm behavior, social behavior,

physical theories, and evolutionary principles. There are

three primary types of metaheuristic algorithms: (a) Swarm

methods contain swarm-based strategies that simulate the

social behavior of groups of animals, birds, and humans;

(b) evolutionary methods; and (c) natural phenomenon

algorithms imitate physics and chemistry principles

[24, 25]. Particle Swarm Optimization (PSO) [26], a pop-

ular algorithm in this family of algorithms, is regarded as

the origin of numerous other optimization methods. For the

evolution-based techniques, researchers represent various

operators based on the guides of the evolution theory. The

well-known evolution-based methods are the Genetic

Algorithms (GA) introduced in [27] by Holland and the

Differential Evolution (DE) [28]. The physics-based algo-

rithms were driven by the principles of physics and

chemistry, such as the laws of gravity and electrical char-

ges. Several algorithms have been presented to address

real-world issues based on this inspiration, for example,

Gravitational Search Algorithm (GSA) [29], Multi-verse

Optimizer (MVO) [30], and the Gradient-Based Optimizer

(GBO) [31].

The performance of a metaheuristic algorithm typically

refers to the level of the optimized solution, and the time

needed for the algorithm to converge. Even though many

MAs have produced good results, optimization issues have

grown more complex (as the number of optimized vari-

ables has grown) while still adhering to various constraints

and requirements. However, despite the advantages of

algorithms, numerous existing metaheuristic algorithms

only sometimes guarantee the globally optimum solution.

In addition, in solving the problems of conducting the

parameters of the hybrid energy systems, no algorithm can

be considered the better quality in determining the optimal

sizing of an isolated hybrid system with reducing the COE

within the limitations of LPSP. Therefore, developing new

metaheuristic algorithms can effectively handle the issue of

computing the optimal sizing for an off-grid hybrid system

comprising PV/BG/Hydrogen Tank units (HT)/FC/Elec-

trolyzer (ELE) modules. The hybridization concept of two

or more metaheuristics and modified or improved existing

algorithms effectively addresses the current optimization

challenges [32]. Although hybridization enhances the per-

formance of optimization, it must be carried out with

suitable algorithms. So choosing the algorithms is a crucial

step. Moreover, it is standard to choose them based on how

well they function independently.

Therefore, to develop a more effective algorithm used

for solving the hybrid energy system problems, we have

studied more recent algorithms and features. In particular,

Orca Predation Algorithm (OPA) is a novel algorithm that

has begun to attract interest. The OPA algorithm has sev-

eral advantages. The performance of OPA is evaluated

using 23 well-known unconstrained benchmark functions,

recent CEC2015 and 2017 benchmark functions, and five

constrained engineering issues. Although the OPA algo-

rithm has achieved encouraging results, it is not entirely

impervious to the flaws that metaheuristics may experi-

ence. Indeed, despite being effective and powerful opti-

mization tools, metaheuristics can run into problems.

Nonetheless, any original metaheuristic algorithm has

some drawbacks that impair functionality and cause slow

convergence or trapping in local optima. As a result, these

algorithms must be enhanced by changing the original

method [33] or combining two algorithms to adjust the

search techniques [34, 35]. According to the optimization

problem, the main problems mentioned in the studies are

the algorithm’s slow convergence speed, its tendency to get

stuck in local optima, how much algorithm parameters

affect algorithm performance, and how poorly exploration

and exploitation are balanced. So, this paper proposes a

modified Orca Predation Algorithm (mOPA) to address

these limitations. The Lévy flights (LF) strategy has shown

good results in enhancing metaheuristics performance [36].

Also, OBL [37] is one of the most beneficial methods for

improving the search performance of the metaheuristics

[38]. The mOPA method was utilized to compute the

optimal sizing for an off-grid hybrid system comprising

PV/BG/Hydrogen Tank units (HT)/FC/Electrolyzer (ELE)

modules to demonstrate this modified approach’s useful-

ness. The results obtained from utilizing the mOPA are

compared with results from the original OPA method and

other techniques used in [12] for the same hybrid system.

This work brought attention to the possibilities of using

biomass systems with fuel cell technology for energy

storage. Utilizing recent developments in data science and

modeling methodologies, which give the required technical

tools for informing decision-making, will help to enable the

successful realization and deployment of these sophisti-

cated technologies.

The contributions of the paper are summarized in the

following points:
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– This paper proposed an improved mOPA algorithm that

combines two enhancing strategies: Levy flight and

OBL.

– mOPA is applied to solve global optimization prob-

lems. Moreover, we compare its performance with

different well-known metaheuristic algorithms.

– The performance of mOPA compared to competitors is

demonstrated using the CEC’20 test suite problems.

– The proposed mOPA is applied to develop an optimal

design for an isolated hybrid PV/BG/HT/FC/ELE

system for supplying a load in Abu-Monqar region,

located in Egypt.

– The proposed mOPA method is used to solve the

problem of reducing the COE, within the limitations of

LPSP.

– To prove the superiority of the recommended mOPA

technique for the suggested optimization problem, the

mOPA results compared with other well-known algo-

rithms (Mayfly optimizer (MOA), Sooty Tern optimizer

(STOA), and Sine Cosine optimizer (SCA)).

This paper is structured as follows: Section 2 describes the

mathematical model for the original OPA method required

to construct the suggested modified algorithm, the OBL

concept, and the Lévy flight method. The mathematical

model of the suggested mOPA algorithm is presented in

Sect. 3. Section 4 discusses the real-world application,

divided into four subsections. These subsections describe

the suggested hybrid system components design, the opti-

mization problem formulation, the operation energy man-

agement strategy, and the description of the site of the

project study, respectively. Section 5 discusses the design

findings, and the discussion contains the performance

results of the proposed mOPA on CEC’20 benchmark

functions and the results of the proposed hybrid system.

Finally, Section 6 provides this paper’s conclusion and

future work.

2 Preliminaries

This section will discuss the techniques essential to

building the proposed method. The original Orca Predation

Algorithm (OPA) mathematical model and the OBL idea,

and the Lévy flight technique are described in detail.

2.1 Orca predation algorithm (OPA)

OPA is a novel bio-inspired metaheuristic algorithm

developed by Yuxin et al. [39]. It mimics the hunting

manners of orcas and simplifies it into three phases: driv-

ing, encircling, and attacking phase. OPA gives various

qualities to the driving and encircling in parameter

modification to balance the exploitation and exploration

processes. In the attacking phase, the best solution may be

determined without sacrificing the particles’ variety after

considering the positions of many best orcas and several

randomly chosen orcas.

The detailed mathematical formulations of the OPA

algorithm are as follows:

1. Development of a colony of orcas A group of Nn oracs

are used in OPA and represent in 1D, 2D, 3D, or extra-

dimensional space. It is represented in Eq. 1

X ¼ ½x1; x2; x3; ::::::; xNn� ¼

X1;1 X1;2 . . . X1;Dim

X2;1 X2;2 . . . X2;Dim

..

. ..
. ..

. ..
.

XNn;1 XNn;2 . . . XNn;Dim

2
66664

3
77775

ð1Þ

where X denotes the orca population of the candidate

solutions. xNn denotes the position of the Nth individual

orca, and xNn;Dim is the position of the Dimth

dimension of the Nth population.

2. Chasing phase This phase is divided into two steps:

driving and encircling. p1 is used to adapt the

probability of the orca performing these two steps

individually. It is a constant in [0, 1], and a random

number is generated between [0, 1]. If this random

number is greater than p1, the driving process is

applied; other else, the encircling process will be

applied.

3. Driving process In order to prevent the orca group

from straying from the target, it is also vital to regulate

the orca group’s central position and keep it near to the

prey. The moving speed of the orca and the relevant

position is shown in the following equations:

Vt
chase;1;i ¼ a � ðd � xt

best � F � ðb � Mt þ c � xt
iÞÞ

ð2Þ

Vt
chase;2;i ¼ e � xt

best � xt
i ð3Þ

where t indicates the number of iterations, Vt
chase;1;i

represents the chasing speed after choosing the first

chasing step. Vt
chase;2;i represents the chasing speed after

choosing the second chasing. Moreover, a, b, and d are

randoms in [0, 1]. e is a random value in [0, 2], F is

equal to 2, and q is in [0, 1] that used for choosing the

chasing technique. While, M indicates the average

location of the orca population as shown in Eq. 4.

M ¼
PNn

i¼1 xt
i

Nn

ð4Þ
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c ¼ 1� b ð5Þ

There are two chasing methods depending on the orca

population size. If the orca is large, i.e. ðrand [ qÞ, the
first process is applied; otherwise, if ðrand � qÞ, the
second process is applied as shown in Eq. 6.

xt
chase;1;i ¼ xt

i þ Vt
chase;1;i if rand [ q

xt
chase;2;i ¼ xt

i þ Vt
chase;2;i if rand � q

(
ð6Þ

4. Encircling of prey In this step, the orcas updating

using the positions of three randomly orcas that can be

expressed as follows:

xt
chase;3;i;k ¼ xt

d1;k þ u � xt
d2;k � xt

d3;k

� �
ð7Þ

u ¼ 2� randn � 1=2ð Þ �Maxitr � t

Maxitr
ð8Þ

where Maxitr is the maximum iteration numbers,

d1, d2, and d3 represent the three randomly selected

orcas from Nn orcas and d1 6¼ d2 6¼ d3. xt
chase;3;i is the

position after selecting the third chasing technique.

5. Position changes during the encircling phase The

positions are adjusted according to the following

equations:

xt
chase;i ¼ xt

chase;i IF f xt
chase;i

� �
\f xt

i

� �

xt
chase;i ¼ xt

i IF f xt
chase;i

� �
� f xt

i

� �

8><
>:

ð9Þ

where f ðxt
chase;iÞ is the fitness function relevant to

xt
chase;i, and f ðxt

iÞ is the fitness function relevant to xt
i.

6. Attacking of prey The four best-attacking positions in a

circle are represented by four orcas. The following

equations are used to determine the orca’s movement

speed and location during an attack.

Vt
attack;1;i ¼ xt

1 þ xt
2 þ xt

3 þ xt
4

� �
=4� xt

chase;i ð10Þ

Vt
attack;2;i ¼ xt

chase;d1 þ xt
chase;d2 þ xt

chase;d3

� �
=3� xt

i

ð11Þ

xt
attack;i ¼ xt

chase;i þ g1 � Vt
attack;1;i þ g2 � Vt

attack;2;i

ð12Þ

where Vt
attack;1;i and Vt

attack;2;i are the speed vectors,

xt
1; xt

2; xt
3; and xt

4 are the four orcas in the best position,

d1; d2; and d3 are the three randomly choosen orcas

from Nn in the chasing step and d1 6¼ d2 6¼ d3, xt
attack;i

identifies the position after the attacking process, g1 is

a random number in [0, 2], and g2 is a random number

in ½�2:5; 2:5�.
7. Position changes during the attacking phase The

position of the orca is determined by the lower

boundary lb of the problem that can be identified using

the following scheme:

If f ðxt
attack;iÞ\f ðxt

chase;iÞ

Xtþ1
i ¼ xt

attack;i

Else

Q ¼ randn

For K from 1 to D

If Q\p2

xtþ1
j;k ¼ lbðkÞ

Else

xtþ1
j;k ¼ xt

chase;i;k

End

End

End

ð13Þ

where p2 is a value in [0, 1].

To conclude, the following steps illustrate the implemen-

tation of the OPA algorithm

– Step 1: Initialize the parameters and orca populations;

number of population Nn, dimension Dim, maximum

number of iterations Maxitr, selection probability

p1, p2, lower bound lb, and upper bound ub. The

positions of orcas are defined randomly using lb and ub.

– Step 2: Each orca’s fitness value is determined, and the

optimal fitness is selected as Xbest.

– Step 3: The orca group’s position is being updated

during the chasing phase. Depending on the selection

factor p1, orcas decide whether to drive or encircle the

prey at this stage. The positions are updated as shown

from Eqs. 2 to 9.

– Step 4: The orcas changed their positions throughout

the attacking phase. The positions are updated using

Eqs. 10–12, and their positions are then replaced by lb

as shown in Eq. 13.

– Step 5: After the attacking process, the new population

will be expanded into a new group.

– Step 6: Termination criteria: the process is terminated

if the current iteration number exceeds the allowed

number of iterations. Step 2 of the preceding proce-

dures will be repeated if the optimal output solution is

not reached.

2.2 Opposition-based learning (OBL)

Metaheuristic algorithms often begin with a random initial

population, and over-optimization process iterations,
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population agents increase the chance of reaching the best

solutions. Since these algorithms have a stochastic nature,

the convergence time is mainly related to the distances

between the initial guesses and the promising or optimal

solution. As a result, the more used initial solutions close to

the best solution, the more the metaheuristic algorithm

quickly converges through problem search space and vice

versa. OBL is a metaheuristic optimization technique used

to improve a search algorithm’s convergence rate. It is an

effective technique to prevent stagnation in candidate

solutions [37]. The main idea of OBL is to evaluate can-

didate solutions in pairs, with one solution representing the

current best solution and the other solution representing the

‘‘opposition’’ or ‘‘antithesis’’ to the current best solution.

Comparing these two solutions allows the algorithm to

identify promising areas of the search space more quickly,

thereby speeding up the convergence process toward an

optimal solution. HR. Tizhoosh developed the idea of the

OBL [40]. OBL improves the exploitation ability of a

search mechanism. In metaheuristics, convergence typi-

cally occurs when the initial solutions are nearer the opti-

mal site; otherwise, late convergence is anticipated. By

considering opposing search regions, which may be nearer

to the global optimum, the OBL technique discovers better

solutions in this case. The OBL works by traversing the

search space in both directions. These two approaches

make use of one of the initial solutions, while the opposite

approach establishes the other path and then takes the most

optimal solution [41]. The following describes the concept

of OBL:

• Opposition number OBL is defined as being explained

by the concept of opposite numbers. The following

expressions can present the opposition-based number.

Consider _x is a real number belongs to the range [u, w],

½u;w� 2 R , the opposite number of _x is defined by

Eq. (14) [41]

_x ¼ u þ w � _x ð14Þ

• Opposition point Assuming, Px ¼ _x1; _x2; _x3; :::; _xD be a

point in D-dimensional space, where _xi 2 ½ui;wi�,
ui;wi 2 R, i = 1, 2, 3,..., D. The point ðPxÞ=
_x1; x _x; :::; _xD. All items in _x computed by Eq. (15)

_xj ¼ uj þ wj � _xj where j ¼ 1; 2; 3; :::;D ð15Þ

• The Opposition in optimization In the optimization

method, the opposite number _x is replaced by the

equivalent point _x according to the objective function. If

f ð _xÞ is better than f ð _xÞ, then _x not replaced; otherwise, _x

= _x, so, the solutions of the population are updated

according to the best value of _x and _x [42].

In OBL, the optimization process is completed using the

solution with the best fitness determined by simultaneously

evaluating both current candidate and opposition-based

solutions. This comparison process helps to increase the

speed at which the optimizer converges to promising

solutions.

2.3 Lévy flight (LF)

Paul Lévy proposed the LF, and Benoit Mandelbrot elab-

orated on it. The step lengths in LF follow a probability

distribution with hefty tails. It is one of the most common

flight patterns in naturally occurring surroundings [43]. The

step sizes of LF calculated using the probability function as

shown in Eq. (16) [44]:

LðxjÞ � jxjj1�a ð16Þ

where xj denotes the flight length, and ð1\a� 2Þ is the

power exponent. The probability density of Lévy step in

integral form is shown in Eq. (17):

fvðx; a;qÞ ¼
1

p

Z 1

0

expð�qqaÞ cosðqxÞdq ð17Þ

a decides the distribution index, and q sets the scale unit.

When (a = 2), it signifies Gaussian distribution, and when

(a =1), it signifies a Cauchy distribution [45]. Equation (17)
uses a series expansion technique only when x has a vast

value as Eq. (18):

fvðx; a;qÞ �
qCð1þ aÞ sin pa

2

� �
p xð1þaÞ ; x ! 1 ð18Þ

where C is the gamma function.

For an index distribution, a value between 0.3 and 1.99

is a practical approach to generate a Lévy stable process.

Mantegna et al. [46] creates random numbers method

based on the Lévy distribution by Eq. 19:

levyðaÞ ¼ 0:05� x

jyj1=a ð19Þ

where x and y represent normal distribution parameters

with the standard deviations of rx and ry given in Eqs. (20

and 22).

x ¼ Normalð0; r2xÞ ð20Þ

y ¼ Normalð0; r2yÞ ð21Þ
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rx ¼
Cð1þ aÞ sin pa

2

� �

C
ð1þ aÞÞ

2

� �
a 2

ða�1Þ
2

2
64

3
75

1=a

; ry ¼ 1; a ¼ 1:5 ð22Þ

3 The proposed mOPA algorithm

This section provides the proposed mOPA algorithm in

detail. mOPA is proposed to enhance search efficiency and

avoid the limitations of the original OPA.

3.1 Shortcomings of mOPA

The original OPA algorithm has shown good performance

in solving global and real-world optimization problems.

However, it suffers from the lack of exploration problem as

it searches inside the search region identified by the orcas.

This behavior of the basic OPA algorithm stuck the whole

population into local optima and may lead the algorithm to

premature convergence, especially in complex and high-

dimensional problems. So, referring to the No Free Lunch

(NFL) that promotes the concept that no stronger opti-

mization algorithm can perform well at all the optimization

problems. Therefore, the Lévy flight strategy and the OBL

mechanism have been introduced in the proposed mOPA

algorithm to overcome the shortcomings of the original

OPA.

3.2 Initialization phase of mOPA

According to the OPA algorithm, the mOPA algorithm

begins by developing an initial population (Nn); each

population has a dimension (Dim) in the search space

limited by the lower and upper boundaries (lb and ub). The

positions of orcas are defined according to lb and ub as

shown in Eq. 23 in addition to the maximum number of

iterations Maxitr and the selection probability p1 and p2.

Xbi ¼ lbi þ rand � ubi � lbið Þ; i ¼ 1; 2; :::;Nn ð23Þ

Then, the mOPA’s diversity was improved in the search

process using the OBL strategy during the initialization

phase to enhance the search operation by Eq. 24:

Opps ¼ lb þ ub � xb; b 2 1; 2; :::;Nn ð24Þ

where Opps is a vector obtained by performing the OBL.

3.3 The fitness evaluation phase of mOPA

Each orca’s fitness value is determined, and the best one is

selected as Xbest.

3.4 Chasing phase

This phase is divided into two steps: driving and encircling

process. p1 is used to adjust the probability of the orca

performing these two steps individually. It is a constant in

[0, 1], and a random number is generated between [0, 1]. If

this random number is greater than p1, the driving phase is

applied; other else, the encircling phase will be applied.

3.4.1 Perform the LF

LF is applied to acquire new positions during the chasing

phase in the driving step using the following equations:

VLt
chase;1;i ¼ a � d � xt

best � F � b � levyðaÞt þ c � xt
i

� �� �

ð25Þ

VLt
chase;2;i ¼ levyðaÞ � xt

best � xt
i ð26Þ

There are two chasing methods based on the orca popula-

tion size as illustrated in Eq. 27.

xt
chase;1;i ¼ xt

i þ VLt
chase;1;i if rand [ q

xt
chase;2;i ¼ xt

i þ VLt
chase;2;i if rand � q

(
ð27Þ

3.4.2 Encircling step

After applying the LF strategy in the previous step, the

position updated using equations from Eqs. 7 to 9 as shown

in Sect. 2.1.

3.5 Attacking phase

The orcas changed their positions throughout the attacking

phase as disscussed in Sect. 2.1. The positions are updated

using Eqs. 10–12, and their positions are then replaced by

lower bounds lb as shown in Eq. 13.

3.6 Termination criteria of mOPA

The proposed mOPA optimization process is repeated until

the stopping criteria is met. The pseudo-code of the pro-

posed mOPA algorithm is provided in Algorithm 1. Also,

the flowchart of the mOPA algorithm is presented in Fig. 1.
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4 Real-world application

4.1 The proposed hybrid system design

In order to service a tiny remote area in Egypt, an off-grid

hybrid system is simulated and evaluated to determine the

best size and satisfy the electricity demand while reducing

costs. This hybrid system’s primary components are PV,

BG systems, ELE units, HT, and FC, which is described in

detail as below:

4.1.1 Photovoltaic solar module (PV)

The following equations can be utilized to compute the PV

array’s generated power PPVðtÞ and cell temperature

TCELL [47–49]:

PPVðtÞ ¼
ISRðtÞ
1000

� �
NPVPrat

PVgwgPV
� �

1� Tc TCELL � 25ð Þ
� �

ð28Þ

TCELLðtÞ ¼ ISRðtÞ ðTN � 20Þ=800ð Þ þ TA ð29Þ

ISR(t) is the solar radiation intensity that is present at any

given time (t), NPV is the PV units number, Prat
PV is the PV

rated power,gw is the wiring efficiency, and gPV is the PV

module efficiency. While Tc, TN , and TA are the maximum

power temperature coefficient for PV modules, the cell

temperature at normal operating conditions, and the

ambient temperature, respectively. The main characteris-

tics of the PV and inverter unit are indicated in Table 1.

4.1.2 Biomass system (BG)

A small-scale downdraft gasification technique was

employed in this study, which transforms solid biomass

into a gaseous fuel (called producer gas or syngas) that is

used to power turbines. The system performance can be

expressed as follows [50–52]:

gsy ¼ LHVsymsyÞ=ðLHVBmB

� �
ð30Þ

PGðtÞ ¼ NBG=Fmð Þ
gsyLHVBBratðtÞ

LHVsy � F0PGrat

� �

ð31Þ

FBGðtÞ ¼ LHVsy=ðgsyLHVBÞ
� �

NGF0PGrat
þ FmPGðtÞð Þ

ð32Þ

EBG ¼ PGðGF 	 8760Þ ð33Þ

The following expression is used to describe the amount of

power produced from renewable sources PRS:

PPVðtÞ þ
PGðtÞ
ginv

� �
ð34Þ

where gsy is the producer gas efficiency. LHVsy and

LHVB are, respectively, the product gas’s and biomass

material’s lower heat values. msy and mB are the mass of

the producer gas flowing and the biomass material,

respectively.NBG is the biomass generators number, PG is

hourly biomass consumption rate, BratðtÞ is the rated

power of biomass generators, PGrat denotes the rated power

of biomass generators, and Fm and F0 represent, respec-

tively, the marginal and no-load fuel usage.FBGðtÞ is the

generator rated power, EBG presents the yearly (8760

hours) power generated by the biomass generator, and GF

denotes the gasifier utilization factor. The main character-

istics of the BG unit are indicated in Table 2.
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4.1.3 Electrolyzer (ELE), hydrogen tank unit (HT), and fuel
cell (FC) modeling

The electrolyzer (ELE) is a technology that uses an electric

current to pass through the liquid, creating a chemical

reaction. In this study, a water ELE is used in order to

produce ultra-pure hydrogen in an unpolluted manner,

where the hydrogen gas is produced and collected at a

pressure of 30 bar [53]. This hydrogen cannot be trans-

ferred directly to the FC because the reactant pressures

within it are up to 1.2 bar [53]. Therefore, a hydrogen tank

is used to link directly with the ELE [7, 54]. Following the

process of separating hydrogen and oxygen, the hydrogen

gas is moved and saved in HT before being utilized in the

FC to produce energy. The energy transferred to the HT

from the ELE (PELE/HT) is stated as [5, 53]:

PELE/HT ¼ gELE 	 PRS=ELE ð35Þ

where gELE indicates the ELE efficiency, and PRS=ELE

symbolizes the renewable energy that powers the ELE. The

lowest and highest parameters constrain the stored hydro-

gen mass in the HT (mHT) during the operation [5],

according to this formulation:

mmin
HT�mHTðtÞ�mmax

HT ; ð36Þ

The hydrogen power (PHTðtÞ) and mHT(t) kept in the HT

at a time interval (t) are stated as follows [7, 55]:

Fig. 1 Flowchart of mOPA algorithm
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PHTðtÞ ¼ PHTðt � 1Þ PELE/HTðtÞ �
PHT/FCðtÞ

gHT

� �� �
	 dt

ð37Þ

mHTðtÞ ¼ PHTðtÞ=HHVH ð38Þ

where PHT/FCðtÞ is the power that the HT sends to the FC,

gHT is the efficiency of the HT, dt is the simulation’s time

period, and HHVH is the stored hydrogen gas’s higher heat

value. The major characteristics of the ELE, HT, and FC

units are indicated in Table 3. Depending on the fuel cell’s

total efficiency (gFC), the amount of electricity that FC

produces (PFC) can be stated as follows [7, 55]:

PFC ¼ gFC 	 PHT/FC ð39Þ

4.2 The optimization issue formulation

4.2.1 Objective function

The main objective purpose of this system is to minimize

the COE and estimate the chance of insufficient power

supply operation using the LPSP, and minimizing the

dummy load’s (Ldum) consumption of extra energy (PEX) to

keep the system’s cost as low as possible. The values of the

objective functions are determined using the following

expressions [5, 56]:

MinZðFÞ ¼ Min a1COE þ a2LPSPþ a3PEXð Þ ð40Þ

Z ¼ NPVNBGmHTPELE/HTPFC

� 	
ð41Þ

LPSP ¼
X8760
1

PdemðtÞ � PRSðtÞ � PFCðtÞ
PdumðtÞ

� �
ð42Þ

PEX ¼
X8760
1

Ldum

Pdem

� �
ð43Þ

a indicates the value of each objective function’s weight

factor (a1 = 0.3, a2 = 0.5, and a3 = 0.2), Z stands for the

optimization problem’s control variables, and pdemðtÞ is

the power load demand (kWh).

4.2.2 Constraints

According to the decision variables’ higher and lower

bounds, the optimization method operates within the lim-

itations listed below:

1�NPV �Nmax
PV ; ð44Þ

1�NBG�Nmax
BG ; ð45Þ

1�mHT�mmax
HT ; ð46Þ

1�PELE/HT�Pmax
ELE/HT; ð47Þ

1�PFC �Pmax
FC ; ð48Þ

LSPS� 0:06; ð49Þ

Nmax
PV and Nmax

BG represent the max items of PV modules

and the generators, respectively. mmax
HT is the HT’s maxi-

mum capacity (kg). Pmax
ELE/HT and Pmax

FC represent the

ELE’s and the FC’s units’ maximum ratings (kW),

respectively.

Table 1 Main characteristics of the PV and inverter units

Parameter Value Unit

PV system

PV panel cost 14,854 $/m2̂

Tc 0.0037 –

gPV 15 %

Rated power 1 kW

Length 1625 Mm

Width 1019 Mm

Thickness 46 Mm

PV modules lifespan 20 year

PV replacement cost 13,885 $

Inverter unit

Efficiency 95 %

Inverter lifespan 15 year

Inverter capital cost 800 $/unit

Replacement cost 750 $/kW

Operating and maintenance cost 8 $/unit-year

Table 2 Major characteristics of the biomass system

Factor Value Unit

LHVB 14.8 MJ/kg

LHVsy 4.766 MJ/kg

Prat 72 kg/h

gsy 80 %

PGrat 40 KW

F0 0.0644 kg/h/50 kW

Fm 0.2998 kg/h/50 kW

Capital cost 23,700 $/kW

Replacement cost 15,000 $/unit

lifespan 25,000 h

Operating and maintenance cost 0.05 $/h
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4.2.3 Cost analysis

The total COE, which is created by microgrid components,

is regarded as an objective function that should be reduced

in this work. The hybrid microgrid’s total annual cost

(TAC), the NPC ($), and COE ($/kWh) are expressed as

follows:

COE ¼ NPCP8760
1 Pdem

 !
	 CRF ð50Þ

NPC ¼ TAC

CRF

� �
ð51Þ

CRFðr; sÞ ¼ rðr þ 1Þs

ðr þ 1Þs � 1

� �
ð52Þ

TAC ¼
X8760
1

Cy
OM þ

X8760
1

Cy
rep þ Cy

an�cap þ Can�fuel ð53Þ

where CRF indicates the capital recovery parameter, r

represents the interest rate (r = 6 %), and s denotes the

lifespan of the proposed hybrid system (s = 25 years).

Cy

OM
represents the total operation and maintenance cost

for each component (PV, BG, ELE, HT, and FC), Cy
rep is

the total replacement cost for each unit, Cy
an-cap denotes

the annualized cost of each subsystem, and Can-fuel is the

biomass unit’s annual fuel costs.

4.3 Operation energy management strategy

The three key cases that make up the operational strategy

of the suggested hybrid system are as follows and are

indicated in Fig. 2 which shows its flowchart:

1. When the power generation produced from renewable

sources (PV and BG) PRSðtÞ covered the load

requirement, in this situation, the produced power is

delivered to satisfy the necessary load demand pdem,

and no power is required from the FC or supplied to the

ELE;

2. The ELE will be fed with excess energy when the

amount of renewable energy produced exceeds the load

requirement; the hydrogen produced from this process

is then utilized to charge the HT units;

3. In this situation,the FC will utilize hydrogen contained

in the HT to compensate for the lack of energy

production when the power generated from renewable

sources is not enough to fulfill the load requirement.

Once the HT capacity is at its lowest point, there is a

loss of load.

4.4 The site of the project study

The suggested hybrid system is located in Abu-Monqar

region, Egypt, as indicated in the map in Fig. 3. Figures 4,

5, 6, and 7 indicate the profile load and the meteorological

conditions.

5 Design results and discussion

Before applying the proposed mOPA to estimate the opti-

mal sizing for an off-grid hybrid system comprising PV/

BG/HT/FC/ELE modules, we assess its efficiency at the

IEEE Congress on Evolutionary Computation 2020 (CEC

2020) [57]. The proposed mOPA’s results are compared

with those obtained with WOA [58], SCA [59], the Tuni-

cate Swarm Algorithm (TSA) [60], the Slime Mold Algo-

rithm (SMA) [61], the Harris Hawk Optimization

algorithm (HHO) [62], the Runge Kutta optimization

algorithm (RUN) [63], and the original OPA. We choose

Table 3 Main characteristics of

the ELE, HT, and FC
Parameter Electrolyzer unit Hydrogen tankuUnit Fuel cell unit Unit

Rated power 1 1 1 kW

Lifetime 20 20 5 year

Efficiency 75 95 50 %

Capital cost 2000 1300 3000 $/unit

Replacement cost 1500 1200 2500 $/unit

Operating and maintenance cost 25 15 175 $/unit

Fig. 2 The suggested hybrid system’s strategy diagram
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the comparing algorithms according to different criteria,

such as the size and complexity of the optimization prob-

lem and the algorithms’ convergence speed. In addition to

the robustness of the optimization algorithms, these com-

parison algorithms have recently gained much popularity in

several engineering and complex applications fields and

have already been applied to the same problem.

5.1 Parameter settings

The algorithm settings are shown in Table 4. Since the

study in [64] demonstrates that default values are an

appropriate parametrization for algorithm comparison, we

set them to their default values. Additionally, default val-

ues reduce the possibility of comparison bias because no

algorithm might benefit from improved tuning. Simulation

is independently run 30 times to ensure fair benchmarking

comparison. Both qualitative and quantitative measure-

ments assess the efficiency of algorithms. Experiments are

done using ‘‘Windows 10 (64 bit)’’ running on ‘‘CPU Core

i7 with 8 GB of RAM,’’ and ‘‘Matlab 2016b’’ is used.

5.2 Performance of the proposed mOPA
on CEC’20 benchmark functions

5.2.1 CEC’20 benchmark functions

We used the benchmark functions of the CEC’20 [57] to

validate the performance of the proposed algorithm since

they are among the most recent benchmarks and are chal-

lenging to solve. Table 5 presents the CEC’20 functions

with their corresponding optimum valußes ‘‘Fi*’’ [65].

Figure 8 illustrates in two dimensions the different shapes

of the CEC’20 functions.

Fig. 3 Map location of Abu-Monqar region, Egypt

Fig. 4 The profile of the daily and annual load

Fig. 5 Average daily PV radiation measured per hours

Fig. 6 Average daily PV temperature per hours

Fig. 7 The quantity of biomass consumed annually

Neural Computing and Applications

123



5.2.2 Statistical results analysis

This subsection presents the comprehensive results and

comparisons demonstrating the basic exploratory and

exploitation of mOPA compared with OPA and other well-

known algorithms. Table 6 reports the mean fitness, stan-

dard deviation, and best and worst results for mOPA

compared with other algorithms over 10 CEC’20 test

functions with a dimension (Dim = 10). The best values

(minimum) are highlighted in bold. As demonstrated in

Table 6, the proposed mOPA algorithm achieves the

optimal value for the unimodal F-1 test function. While for

multi-modal functions F-2, F-3, and F-4, RUN gives the

optimal value on the F-2 function, SMA obtains the opti-

mal values on the F3 function, and the proposed mOPA

indicates superior performances on F-4 test functions.

Moreover, for the hybrid F-5, F-6, and F-7 test functions,

the proposed mOPA algorithm is performing better than

the remaining algorithms. For the composite functions F-8,

F-9, and F-10, the mOPA outperforms other algorithms and

gives the optimal values for F-8 and F-9. In contrast, the

original OPA achieves the optimal values for the F-10 test

function. Generally, the results demonstrated that mOPA

outperformed other algorithms in solving eight of the

CEC’2020 benchmark functions in terms of mean, standard

deviation, and best and worst values. Additionally, mOPA

acquired the first rank in the Friedman mean rank-sum test.

5.2.3 Boxplots behavior analysis

Boxplots are regarded as effective analysis tools because

they interpret the data distributions to quartiles to show the

realistic distribution of the data in a graphical

representation. We displayed the data distribution with

boxplots to further analyze the results of Table 6. The

algorithm’s minimum and maximum data points constitute

the lowest and highest whisker’s edges. The ends of the

rectangles separate the low and high quartiles. A narrow

boxplot indicates a high level of data agreement. Figure 9

presents the boxplots of the data for CEC 2020 test func-

tions from F-1 to F-10 for Dim ¼ 10. The boxplots of

mOPA are pretty narrow for most functions, with the

lowest values among all comparison algorithms. It is

noticed that the distribution of boxplots achieved by the

mOPA algorithm is narrower for most test functions and

achieves the minimum values compared to the other

algorithms. The boxplot graphics shows that the mOPA

algorithm consistently finds the best locations for solving

the test problems.

5.2.4 Convergence behavior analysis

This subsection analyzes the convergence of the algo-

rithms; Fig. 10 shows the convergence performances of the

WOA, SCA, TSA, SMA, HHO, RUN, and OPA against the

proposed mOPA for the CEC 2020 test problems for

dimension 10. In Fig. 10a, the convergence curves of the

F-1 function with a unimodal space are presented. The

mOPA method shows an early exploration rather than the

original OPA algorithm. Over the test functions of F-2–F-4

with multimodal functions, as shown in Fig. 10b–d, the

mOPA exhibits a significant performance through the

remaining algorithms for F-3 and F-4, while the RUN

algorithm shows a significant performance for the F-2 test

function. So, the mOPA has better results in handling the

hybrid functions, as shown in Fig. 10e–g, for F-5, F-6, and

F-7. The composition functions (F-8, F-9, and F-10), as

presented in Fig. 10h–j, exhibited that the proposed mOPA

obtains comparative performance in solving problems with

complex spaces.

5.2.5 Qualitative metric analysis

Figure 11 presents the qualitative analysis of mOPA on

CEC’20. The agent’s behaviors are depicted in Fig. 11,

which includes a two-dimensional (2D) representation of

the functions, search history, average fitness history, opti-

mization history, and diversity. The dimension of these

functions is 10. The parameters for the mOPA are the same

as in the previous experiment.

From the qualitative analysis, the following points are

remarkable:

• According to the domain’s topology The first column in

Fig. 11 displays the function in 2D space. The functions

have a specific structure that equips sense to decide

Table 4 Parametrization of mOPA and the compared algorithms

Algorithms Parameters setting

Common settings Population size: N ¼ 30

Maximum iterations: maxItr ¼ 1000

Dimensions dim ¼ 10

Number of independent runs: 30

WOA a decreases linearly from 2 to 0 (Default)

a2 linearly decreases from - 1 to - 2 (default)

SCA A ¼ 2 (default)

TSA Pmin ¼ 1, Pmax ¼ 4 (default)

SMA z ¼ 0:03 (default)

HHO E0 ¼ 1:67, E1 ¼ 1, beta ¼ 1:5

RUN a ¼ 20 and b ¼ 12 (default)

OPA p1 ¼ 0:1; q ¼ 0:9; and F ¼ 2 (default)

mOPA p1 ¼ 0:1; q ¼ 0:9; and F ¼ 2 (default)
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which functions the algorithm produces the better

performance.

• According to the search history The search history of

agents for all iterations is displayed in the second

column of Fig. 11. The search history indicates that

mOPA can determine the regions with the lowest fitness

values for some functions.

• Regarding the average fitness history The third column

of Fig. 11 equips the average fitness history. This

average gives details about the agents’ overall behavior

Table 5 CEC’20 functions
Test function Function type Fi*

Unimodal function

F-1 Shifted and rotated bent cigar function 100

Multimodal shifted and rotated functions

F-2 Shifted and rotated Schwefel’s function 1100

F-3 Shifted and rotated Lunacek bi-Rastrigin function 700

F-4 Expanded rosenbrock’s plus Griewangk’s function 1900

Hybrid functions

F-5 Hybrid–Fun. No.5 (N = 3) 1700

F-6 Hybrid–Fun. No.6 (N = 4) 1600

F-7 Hybrid–Fun. No.7 (N = 5) 2100

Composition functions

F-8 Composition–Fun. No.8 (N = 3) 2200

F-9 Composition–Fun. No.9 (N = 4) 2400

F-10 Composition–Fun. No.10 (N = 5) 2500

Fig. 8 The two dimensional of the CEC-2020 benchmarks
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and their assistance in the optimization process. The

history curves are rising, illustrating that the population

is enhanced with each iteration.

• According to the optimization history Column no. four

of Fig. 11 presents the optimization improvement that

conveys 100 fitness achieved from 100 iterations per

Table 6 The mean, STD, BEST, and WORST of fitness values over 30 experiments acquired by the competitor algorithms on the CEC’2020

functions

Function Metric WOA SCA TSA SMA HHO RUN OPA mOPA

F1 Mean 1.034E?07 9.362E?08 3.310E?09 7.183E?03 5.277E?05 3.399E?03 1.715E?03 7.762E102

STD 1.124E?07 3.570E?08 3.096E?09 4.575E?03 2.787E?05 2.049E?03 2.433E?03 1.310E103

Best 8.855E?05 4.128E?08 6.913E?06 3.348E?02 1.704E?05 2.141E?02 1.089E?02 1.000E102

Worst 4.439E?07 2.410E?09 1.218E?10 1.274E?04 1.645E?06 1.174E?04 1.062E?04 5.020E103

F2 Mean 2.190E?03 2.386E?03 2.281E?03 1.617E?03 2.026E?03 1.539E103 1.757E?03 1.576E?03

STD 3.469E?02 2.275E?02 3.675E?02 1.629E102 2.901E?02 1.919E?02 2.852E?02 3.514E?02

Best 1.424E?03 1.963E?03 1.688E?03 1.390E?03 1.567E?03 1.129E?03 1.247E?03 1.115E103

Worst 2.853E?03 2.757E?03 3.036E?03 1.956E103 2.778E?03 2.072E?03 2.465E?03 2.528E?03

F3 Mean 7.819E?02 7.741E?02 8.014E?02 7.319E102 7.830E?02 7.574E?02 7.594E?02 7.378E?02

STD 2.306E?01 1.180E?01 2.878E?01 1.013E101 2.101E?01 1.611E?01 2.039E?01 1.752E?01

Best 7.473E?02 7.537E?02 7.596E?02 7.184E?02 7.448E?02 7.207E?02 7.292E?02 7.140E102

Worst 8.339E?02 8.072E?02 8.739E?02 7.601E?02 8.228E?02 7.884E?02 8.096E?02 7.796E102

F4 Mean 1.908E?03 1.933E?03 4.411E?04 1.901E103 1.908E?03 1.902E?03 1.901E103 1.901E103

STD 6.144E?00 3.598E?01 6.526E?04 4.839E201 2.995E?00 8.813E-01 6.486E-01 6.602E-01

Best 1.902E?03 1.912E?03 1.905E?03 1.901E?03 1.902E?03 1.900E103 1.901E?03 1.900E103

Worst 1.934E?03 2.099E?03 2.584E?05 1.902E?03 1.916E?03 1.904E?03 1.904E?03 1.901E103

F5 Mean 1.545E?05 4.169E?04 2.206E?05 1.045E?04 4.733E?04 3.997E?03 2.038E?03 1.982E103

STD 2.609E?05 6.601E?04 2.886E?05 6.644E?03 4.760E?04 1.566E?03 1.850E?02 1.819E102

Best 3.154E?03 6.444E?03 4.174E?03 2.032E?03 3.693E?03 2.277E?03 1.746E?03 1.702E103

Worst 1.370E?06 3.703E?05 9.375E?05 1.950E?04 1.853E?05 7.197E?03 2.351E?03 2.333E103

F6 Mean 1.611E?03 1.602E?03 1.634E?03 1.601E103 1.617E?03 1.601E103 1.604E?03 1.601E103

STD 1.379E?01 3.211E-01 2.703E?01 3.008E-01 9.762E?00 2.694E-01 6.687E?00 2.233E201

Best 1.601E?03 1.601E?03 1.601E?03 1.600E?03 1.601E?03 1.601E?03 1.601E?03 1.600E103

Worst 1.662E?03 1.603E?03 1.686E?03 1.601E103 1.635E?03 1.602E?03 1.618E?03 1.601E103

F7 Mean 1.502E?05 1.296E?04 5.014E?04 5.431E?03 1.020E?04 3.996E?03 2.233E?03 2.190E103

STD 2.238E?05 8.902E?03 7.803E?04 5.609E?03 6.542E?03 2.370E?03 1.323E?02 8.605E101

Best 3.928E?03 4.232E?03 2.618E?03 2.231E?03 2.749E?03 2.159E?03 2.101E?03 2.100E103

Worst 1.071E?06 4.194E?04 2.038E?05 2.117E?04 3.037E?04 1.180E?04 2.636E?03 2.496E103

F8 Mean 2.352E?03 2.372E?03 2.580E?03 2.368E?03 2.409E?03 2.307E?03 2.297E?03 2.300E103

STD 2.004E?02 3.636E?01 1.848E?02 2.339E?02 3.172E?02 4.603E?00 1.639E?01 1.233E101

Best 2.250E?03 2.291E?03 2.238E?03 2.225E103 2.242E?03 2.301E?03 2.228E?03 2.235E?03

Worst 3.410E?03 2.457E?03 2.886E?03 3.222E?03 3.706E?03 2.321E?03 2.315E?03 2.308E103

F9 Mean 2.767E?03 2.773E?03 2.832E?03 2.758E?03 2.819E?03 2.746E?03 2.771E?03 2.719E103

STD 5.511E?01 5.735E?01 7.230E?01 8.147E?00 8.049E?01 7.398E100 5.923E?01 7.483E?01

Best 2.567E?03 2.544E?03 2.521E?03 2.740E?03 2.501E?03 2.732E?03 2.502E?03 2.500E103

Worst 2.816E?03 2.809E?03 2.980E?03 2.773E?03 2.954E?03 2.757E?03 2.861E?03 2.766E103

F10 Mean 2.938E?03 2.969E?03 3.000E?03 2.939E?03 2.936E?03 2.918E?03 2.929E?03 2.931E103

STD 5.787E?01 2.087E101 1.475E?02 2.878E?01 2.717E?01 2.376E?01 3.015E?01 2.163E?01

Best 2.664E?03 2.928E?03 2.659E103 2.898E?03 2.898E?03 2.898E?03 2.898E?03 2.898E?03

Worst 3.001E?03 3.027E?03 3.608E?03 3.024E?03 3.027E?03 2.960E?03 3.024E?03 2.950E103

Friedman mean rank 5.60 6.2 5.14 4.80 4.50 4.20 2.35 2.01

Rank 7 8 6 5 4 2 3 1

Bold values represent to highlight the best-compared results
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experiment to depict the progress of fitness achieved in

each iteration. The convergence curves decrease in all

test functions, revealing that mOPA has highly with

agents during searching for the best solution.

• According to the diversity metric The diversity plot is

displayed in the last column. The average distance

traveled by the agents during the process is shown in

this graph.

5.3 Results of the proposed hybrid system

The convergence curves for the optimization process using

the mOPA, and the OPA approaches are shown in Fig. 12.

These optimization techniques were applied 50 times over

50 iterations to select the proper fitness function rate to

regulate the randomness of the suggested techniques, verify

their stability, and certify their robustness. All optimization

approach is applied in the same manner for the suggested

case study. The developed mOPA consistently identifies

the best solution to the optimization issue, as shown by the

objective function’s final outcomes for the developed

mOPA, which fall within a narrow limit.

The suggested enhanced mOPA technique’s conver-

gence curve (the best functions profiles with the iterations)

is compared to those produced from the original OPA

algorithm as well as other conventional optimization

methods (MOA, STOA, and SCA) for showing the con-

vergence performance and speed of these techniques.

Figure 13 depicts the convergence curves for all these

algorithms. As shown in this figure, the proposed mOPA

method reachs the final value of the objective function

faster than other algorithms. Moreover, the mOPA con-

verges at a lower value of the objective function than the

original OPA.

Fig. 9 The boxplot curves of mOPA and the compared algorithms obtained over CEC’20 functions with Dim ¼ 10
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The sizing and objective function results of the mOPA

and OPA algorithms compared to other optimization

techniques [12] utilized are indicated in Table 7. This

table indicates that the proposed mOPA has the optimal

fitness function (0.1219895), followed by OPA

(0.12199026), MOA (0.1219998), STOA (0.1221296), and

SCA (0.1224865). By comparing the outcomes shown in

this table, it can be seen that the suggested mOPA is the

best-founded algorithm for optimal sizing of the proposed

hybrid system with COE of 0.209626 $/kWh, followed by

OPA, MOA, STOA, and SCA, respectively.

The participation of all components in the annual cost of

the suggested hybrid system by utilizing the mOPA and

OPA optimization algorithms is shown in Fig. 14. For the

two techniques, it is clear that the FC represents the highest

annual percentage cost, followed by PV units, ELE units,

inverters, BG system, and finally the HT unit.

The proposed hybrid system’s power output perfor-

mance over a 24-hour cycle is shown in Fig. 15. According

to the mOPA technique results, the electrolyzer for pro-

ducing hydrogen is powered by the extra energy from PV

and BG units PRS, in case of the generated PRS exceeded

the required loads. The Pdum will use up this extra power if

the HT fills up. While, the FC will use the hydrogen stored

in the HT unit to make up for a lack in power generation

when the P0
RSs output is unable to satisfy the load’s power

requirements.

For each of the employed optimization algorithms

mOPA and OPA, the statistical performance measures are

shown in Table 8. For a more precise comparison of the

two optimization approaches, parametric and non-para-

metric statistical measurements were carried out based on

the obtained values of the objective function across 50

Fig. 10 Convergence curves of mOPA and the compared algorithms on CEC’20 functions with Dim ¼ 10
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Fig. 11 The qualitative metrics on CEC’20 functions: two-dimensional views of the functions, search history, average fitness history,

optimization history, and diversity
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iterations with 50 distinct runs for the proposed hybrid

system. The target function’s minimum, maximum, and

mean values are all parametric measurements, whereas the

efficiency, median, standard deviation, relative error, mean

absolute error, and mean absolute error are all non-para-

metric measurements. Based on the outcomes, the sug-

gested mOPA outperformed the original OPA optimization

technique in terms of best values.

Figure 16 displays the graphical representation of the

end values of the objective function over 50 individual

executions for the proposed hybrid system using the rec-

ommended mOPA and the original OPA techniques. It can

be noted that, the suggested mOPA’s fitness values fell

within a specific range, demonstrating the suggested tech-

nique’s superior stability to the competing techniques.

Consequently, using the mOPA optimizer compared to the

original OPA optimizer results in better parametric and

nonparametric metric values.

Fig. 12 The convergence curves of the memetic and original Orca

Predation Algorithms (mOPA and OPA) for 50 iterations

Fig. 13 The optimal convergence curves of the all optimization techniques for 50 iteration

Table 7 The optimization

characteristics parameters using

mOPA, OPA, MOA, STOA,

and SCA methods

Criteria mOPA OPA MOA [12] STOA [12] SCA [12]

Best function 0.1219895 0.12199026 0.1219998 0.1221296 0.1224865

Iteration number 49 11 44 41 27

PV (units) 48 48 47 42 40

BG (units) 2 2 2 2 3

mHT (kg) 62 61.73 62.48 61.28 66.15

PELE/HT (kW) 320.16 320.32 319.87 326.35 323.419

PFC (kW) 124 124.125 124.71 130.09 134.927

COE ($/kWh) 0.209626 0.2103765 0.2106533 0.210961 0.2123484

NPC ($) 6,140,053 6,162,026 6,170,134 6,179,148 6,219,783

LPSP 0.059926 0.060256 0.05993 0.059411 0.059187
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6 Conclusion and future work

This paper proposes a new improved optimization algo-

rithm based on modifying the original Orca Predation

Algorithm (OPA) which is a hybrid between two methods,

namely, Lévy flight (LF) and opposition-based learning

(OBL). This modified algorithm is called mOPA. The

mOPA’s performance is evaluated on the CEC’2020 test

suit. It was applied to an isolated hybrid power system to

obtain its optimal sizing. The proposed system consists of

photovoltaic panels (PV), biomass gasifier (BG), elec-

trolyzer units (ELE), hydrogen tank units (HT), and fuel

cells (FC) to meet the load demand in the Abu-Monqar

region, in Egypt. The main objectives of the mOPA method

are to minimize energy cost (COE), the loss of power

supply probability (LPSP), and excess energy under the

constraints of the suggested hybrid system. In order to

demonstrate the effectiveness of the mOPA methodology,

the optimization results from other algorithms, including

the original OPA, Sooty Tern Optimization Algorithm

(STOA), and Sine Cosine Algorithm (SCA), were

compared to the mOPA technique’s results. Comparisons

results illustrate the dominance of the proposed improved

mOPA technique against the other metaheuristic methods

in obtaining the minimum COE of the proposed hybrid

system (the mOPA achieved the best results with the

lowest COE by 0.209626$/kWh, NPC by 6,140,053$, and

LPSP by 0.059926%). Moreover, the recommended mOPA

algorithm outperforms the original OPA algorithm in

achieving the best minimum values for the objective

function as well as the lowest COE value with a quick

convergence characteristic and better system performance.

Based on the demonstrated results, the recommended

mOPA algorithm proved to be more suitable for solving the

suggested optimization problem.

Future research may concentrate on the following

points:

– Applying the proposed optimization algorithms for

solving other complex optimization problems in elec-

trical applications.

Fig. 14 The annual cost of the proposed system’s parts using mOPA

and OPA techniques

Fig. 15 The operation of the suggested hybrid system during a certain 24 hours using the recommended mOPA

Table 8 The statistical performance of the mOPA and OPA methods

mOPA OPA

Max. 0.1220952 0.1223985

Min. 0.1219895 0.1219902

Mean 0.1220101 0.1220281

Median 0.1219994 0.1220065

SD 0.0026219 0.0065250

RE 0.0084216 0.0156583

MAE 0.0000206 0.0000382

RMSE 0.0000331 0.0000751

Efficiency 99.98316 99.96872
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– Using the proposed mOPA algorithm for various real-

world applications, such as calculating solar cell

parameters, object tracking, hyperparameter optimiza-

tion, and image segmentation.

– It may be used on the internet of things for task

scheduling and preprocessing of data.

– Developing various modeling, operation, and control

methods, algorithms, methodologies, and techniques for

use in the future development of micro/smart grid

technologies.

– Creates a binary version of OPA and applies it to binary

problems, such as feature selection problems.

– Determine and investigate the possible configurations

of the hybrid renewable systems using different types of

storage technologies and components, for effective

energy management.
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