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Abstract
Thanks to the development of depth sensors and pose estimation algorithms, skeleton-based action recognition has become
prevalent in the computer vision community. Most of the existing works are based on spatio-temporal graph convolutional
network frameworks, which learn and treat all spatial or temporal features equally, ignoring the interaction with channel
dimension to explore different contributions of different spatio-temporal patterns along the channel direction and thus losing the
ability to distinguish confusing actions with subtle differences. In this paper, an interactional channel excitation (ICE) module
is proposed to explore discriminative spatio-temporal features of actions by adaptively recalibrating channel-wise pattern
maps. More specifically, a channel-wise spatial excitation (CSE) is incorporated to capture the crucial body global structure
patterns to excite the spatial-sensitive channels. A channel-wise temporal excitation (CTE) is designed to learn temporal
inter-frame dynamics information to excite the temporal-sensitive channels. ICE enhances different backbones as a plug-
and-play module. Furthermore, we systematically investigate the strategies of graph topology and argue that complementary
information is necessary for sophisticated action description. Finally, together equipped with ICE, an interactional channel
excited graph convolutional network with complementary topology (ICE-GCN) is proposed and evaluated on three large-scale
datasets, NTU RGB+D 60, NTU RGB+D 120, and Kinetics-Skeleton. Extensive experimental results and ablation studies
demonstrate that our method outperforms other SOTAs and proves the effectiveness of individual sub-modules. The code will
be published at https://github.com/shuxiwang/ICE-GCN.
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1 Introduction

Human action recognition has attractedmore andmore atten-
tion in the area of computer vision and finds its various
applications in human–machine interaction, video surveil-
lance, virtual reality, and so on [1–4]. Recently, with the
emergence of high-precision depth sensors such asMicrosoft
Kinect [5] and advanced human pose estimation algorithms
[6–8], the skeleton coordinates can be obtained accurately
and economically. With its robustness to variations in body
size, viewpoints, and complicated backgrounds, as well as
efficiency in storage and computational cost, skeleton data
have become the mainstream input compared with other
modalities, such as traditional RGB videos.

The early-stage deep learning-based approaches directly
treated human joint coordinates as sequences of coordinate
vectors [9–12] or pseudo-images [13–15] and fed them into
convolutional neural networks (CNNs) or recurrent neural

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00138-023-01386-2&domain=pdf
http://orcid.org/0000-0003-4948-0909
https://github.com/shuxiwang/ICE-GCN


   40 Page 2 of 13 S. Wang et al.

networks (RNNs). Such representations overlook the intrin-
sic graph structure relationship among joints, which is crucial
for recognizing human action. To solve this issue, recently,
Yan et al. [16] proposed a spatio-temporal graph convo-
lutional network (ST-GCN) to model the skeleton data as
the graph structure, which represents the joints as graph
nodes and the joint connectives as graph edges. In the spa-
tial dimension, joint topology is defined by a sequence of
adjacency matrices, and then, a graph convolutional network
(GCN) is utilized to capture the joint spatial relationship for
each frame. In the temporal dimension, temporal convolu-
tion (TCN) is applied to capture the inter-frame relationship
for each node. ST-GCN is the first and classical network
that introduced GCN to the task of skeleton-based action
recognition, which was followed bymany improvements and
variants [17–24].

To enable the networks to capture various ranges of
dependencies and enhance the most discriminative joints in
intra-frame space, the spatial attention mechanisms [18,21,
22,25] are applied to generate spatial attention maps for each
joint. Based on similar considerations, the temporal atten-
tionmechanisms [18,22–24] are applied to generate temporal
attention maps for each frame. However, these previous joint
and frame attention methods have treated feature patterns in
different channels equally without considering how to select
the more informative and channel-wise features. This lim-
ited the representation capability and was not optimal for
obtaining the discriminative features.

Since different channels indicate different motion fea-
tures [20], the importance among joints varies with different
motion features. Therefore, exploring various importance
of the motion features in different channels can emphasize
the informative spatio-temporal feature patterns, which can
help the network distinguish confusing actions. Inspired by
SENet [26], which is the first to introduce a simple but
effective channel attention module for image classification
tasks, works [27,28] applied the channel attention to calcu-
late channel-wise modulation weights. But these attention
schemes only consider inter-channel information without
introducing information from other dimensions. To address
this problem, CBAM [29] was proposed to combine chan-
nel attention and spatial attention sequentially. And based
on this idea, works [18,22,25,27] took spatial and tempo-
ral information into account, but these methods treated each
single dimension independently and then combined them in
a sequential manner; the other dimensions would be glob-
ally averaged into a single scalar. Intuitively, the channel
and spatio-temporal information is highly related to each
other, i.e., feature patterns in each channel are explored from
spatio-temporal space. Thus, separately considering channel
and spatio-temporal aspects is sub-optimal for exploringfiner
levels of discriminative joints among intra- and inter-frame.

To address this issue, inspired by works [29–34], an inter-
actional channel excitation (ICE) module is proposed to
incorporate both spatial and temporal information into the
channel attention with cross-dimensional interactions. ICE
is composed of channel-wise spatial excitation (CSE) and
channel-wise temporal excitation (CTE) sub-modules. CSE
is applied to capture the crucial body global structure patterns
to excite the spatial-sensitive channels. CTE is applied to
vital temporal dynamics information to excite the temporal-
sensitive channels.

Moreover, we also systematically investigate the strate-
gies of graph topology, which is also essential in determining
the representation ability of joint relationships in GCN.
The topology is represented by the adjacent matrix. Various
adjacency matrix schemes are employed to construct graph
topology by previous works. They can be mainly summa-
rized into three categories: Ap (physical) means the fixed
predefined matrix, which reflects the body natural physical
structure [16,35,36]. Al (learnable) is the learnable matrix,
which is parameterized and optimized throughout training
[17,37,38]. As (similarity) represents the Gaussian similar-
ity matrix, which is used to measure the similarity of pairs of
vertexes [17,20]. Based on the experimental observation, we
argue that complementary topology is necessary, which can
achieve a good balance between adaptation and too large of
a searching space.

Finally, together equipped with ICE, an interactional
channel excited graph convolutional network with com-
plementary topology (ICE-GCN) is proposed. Extensive
experiments and ablation studies demonstrate the necessity
of the ICEmodule and the complementary topology scheme.
Comparedwith previousworks, themain contributions of our
work can be summarized as follows:

• Comparedwith the existing attentionmechanisms,which
ignore the cross-dimensional interaction, our interac-
tional channel excitation (ICE) module embeds spatio-
temporal information into channel attention,which allows
to explore discriminative spatio-temporal features of
actions in a finer channel level, adaptively recalibrat-
ing spatial-temporal-aware attention maps along channel
dimension. ICE, composed of a channel-wise temporal
excitation (CTE) and a channel-wise spatial excitation
(CSE), can be inserted into any existing graph convolu-
tional networks as a plug-and-playmodule to enhance the
performances notably without light computational cost.

• We systematically investigate the strategies of graphs and
argue that complementary topology is necessary. Three
adjacency sub-matrices Ap, Al and As are combined to
construct the graph topology. This simple but efficient
scheme notably improves the performance, which solves
the dilemmabetween adaptation and too large of a search-
ing space.
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• Finally, together equipped with ICE, an interactional
channel excited graph convolutional network with com-
plementary topology (ICE-GCN) is proposed. Extensive
experiments conducted on three large-scale datasets,
NTU RGB+D 60, NTU RGB+D 120, and Kinetics-
Skeleton, demonstrate our ICE-GCN outperforms the
state-of-the-art performance. The follow-up ablation
experiments and visualization also show the effective-
ness of the individual modules in graph convolutional
networks.

2 Related works

2.1 Traditional attentionmechanisms for
skeleton-based action recognition

To model various scales of dependencies and help the net-
work focus on the most informative information, attention
modules are integrated into the graph convolutional net-
works.Work [18] designed a channel attentionmodule based
on SENet [26] and generated attentive maps to reweight
the channel dimension, which is averaged over all features
of the spatial joints and temporal frames. Similarly, work
[21] proposed spatial joint attention to measure the impor-
tance of each joint. And works [23,24] designed temporal
frame attention to enhance the modeling capability of tem-
poral dependencies. These attention mechanisms consider
each dimension independently, with all other dimensions
being globally averaged. As spatial, temporal and chan-
nel dimensions contain the complementary and correlated
information for action recognition. More previous works
[18,22,25,27,39–42] inspired by the scheme based onCBAM
[29] fused single-dimensional attention modules sequen-
tially, such as work [18] fused spatial, temporal, and channel
attention modules to construct STC-attention module in a
sequential manner.

Both spatial and temporal single-dimensional attention
methods ignore the difference in the contribution of dif-
ferent spatio-temporal patterns along different channels.
And the channel attention methods based on SENet [26]
squeezed global spatio-temporal information into a unitwith-
out considering spatial or temporal joint correlations. The
methods based on CBAM [29] simply fused channel, spa-
tial, and temporal attention in a sequential manner without
cross-dimensional interaction, which is essential to generate
channel-wise spatio-temporal selective attention maps.

Thus, there existed some works in the computer vision
field adopted cross-dimensional schemes. Coordinate atten-
tion [34] embedded positional as well as spatial information
into channel attention along the horizontal and vertical direc-
tions, which is critical to detecting object structures. [31–33,
43] introduced temporal information into channel attention

for video-based action recognition taskswith spatio-temporal
data. In more detail, in TEA [32], a motion excitation was
proposed to embed temporal dynamic motion patterns that
describe the temporal difference between the two adjacent
frames into channel attention and then excite these motion-
sensitive channels. ACTION-Net [33] inserted one more
convolutional layer between two fully connected layers for
channel-wise features within temporal information.

Inspired by the considerations mentioned above, we pro-
pose our innovative method interactional channel excitation
(ICE) module. The difference of our interactional chan-
nel excitation (ICE) module is that it is channel-wise and
introduces both body global structure patterns and tempo-
ral inter-frame dynamics information to channel attention by
cross-dimensional interaction. Our ICE is applied for the task
of skeleton-based action recognition and focuses on captur-
ing the features of the joint correlation of graphs, which is
different from the image and video-based tasks.

2.2 Strategies of graph topology for GCN

Graph topology construction plays a key role in determin-
ing the representation ability of joint relationships in GCN.
ST-GCN [16] proposed the predefined adjacency matrix Ap,
which is based on the body physical structure and manually
builds three topologies using three partitioning strategies. Shi
et al. [17] proposed a data-driven model called AGCN. This
work introduced a learnable adjacency matrix Al, which is
capable of adaptively learning the topologies of the graph,
and introduced anotherGaussian similaritymatrix As tomea-
sure the similarity of the pairs of vertexes in an embedding
space by dot product. Based on AGCN, Chen et al. [20]
considered that different channels reflect different types of
features, and it is not desirable to only use a single shared
topology for all channels. Therefore, they proposed channel-
specific As ( denoted as CAs ) for each channel to calculate
the pairs of vertex distances in an embedding space using
pairwise subtraction.

Although Al, As and CAs are more adaptive to capture
global graph information, they face too large of a searching
space and learn too many “noisy” edges [36]. In this work,
to address the dilemma between adaptation and a too large
searching space, we systematically investigate the strategies
of graphs and argue that complementary topology is neces-
sary.

3 The proposedmethod

3.1 Interactional channel dimension excitation (ICE)

To solve the problem that features of joint correlation
modeling ignores the interaction between spatial-temporal
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Fig. 1 Schematic diagram of the ICE on the skeleton sequence of action
“kicking something,” with C, T, andV representing the number of chan-
nels, frames, and joints, respectively. The solid orange circles represent
the importance of the corresponding joints. The left ankle joint (i.e.,

joint 15) is emphasized in the “kicking” action. The orange rectangles
represent the importance of the corresponding frames. Mcse and Mcte
are attention masks.

⊙
denotes the element-wise multiplication

dimensions and channel dimension, inspired by previous
excitation works [29,31–34], an interactional channel exci-
tation (ICE) module is proposed to capture channel-wise
patterns and embed spatio-temporal information into channel
attention by cross-dimensional interactions.A schematic dia-
gram of the processing of the ICE on skeleton sequence with
the action “kicking something” is shown in Fig. 1. The ICE
module consists of two sub-modules, spatial channel exci-
tation (CSE) and temporal channel excitation (CTE), which
are described in detail in Sects. 3.1.1 and 3.1.2, respectively.
In addition, to more clearly illustrate the innovations of ICE,
four schematic diagrams shown in Fig. 2 are to compare our
proposed CSE, CTE with classical inter-channel attention
mechanism SENet [26] and sequential multi-dimensional
attention CBAM [29].

3.1.1 Channel-wise spatial excitation (CSE)

CSE is applied to capture the crucial body global structure
patterns to excite the spatial-sensitive channels, which adap-
tively recalibrates the importance of joints along different
channels. The architecture of the CSE module is illustrated
in Fig. 2 c.

Given an input feature X ∈ R
C×T×V , the average pooling

is applied to summarize the temporal information for CSE
and focuses on the interaction between channel and spatial
dimensions. It also helps to reduce the computational cost in
this way.

X t_pool = 1

T

T∑

j=1

X [:, j, :], X t_pool ∈ R
C×V (1)

where X t pool denotes the feature after temporal pooling and
T is the number of frames.

Second, a 1D convolution layer convspa with the kernel
size K set to V is applied to enable CSE to have a global
receptive field covering all joints in a frame and facilitating
the extraction of global structural features, which is ignored
in previous spatial attention works for they considered joints
independently. convspa also reduces the number of channels
to alleviate computational and model complexity at the same
time.

Xspa = convspa ∗ X t_pool, Xspa ∈ R
C/r×V (2)

where Xspa denotes the global structure feature in the spatial
dimension and its channel-reduced, r is the scale ratio (set to
16 in this work), and ∗ indicates the convolution operation.

Third, after feeding Xspa toReLU for nonlinearity, another
1D convolution layer convexp with kernel size set to 1 is
applied to expand the channel dimension back to the orig-
inal channel dimension. Then, the tensor X is reshaped as
[C, 1, V ] and fed into a Sigmoid activation to obtain the
spatial-attentive mask Mcse.

Mcse = Sigmoid(convexp ∗ ReLU(Xspa))

Mcse ∈ R
C×1×V

(3)

Finally, the spatial-sensitive channels and crucial joints are
excited by multiplication between the input features X and
Mcse along the channel dimension. Furthermore, a residual
connection is applied to preserve the original information
and ensure network stability.

Fcse = X ∗ Mcse + X , Fcse ∈ R
C×T×V (4)

Therefore, by interacting the spatial dimension with
the channel dimension, CSE excites the beneficial spatial-
sensitive channels and adaptively recalibrates the importance
of joints simultaneously. Finally, we obtain the excited output
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Fig. 2 Schematic comparison between the proposed CSE (c), CTE (d)
and the classical attention module of SENet (a), CBAM (b). C, T, and
V denote the number of channels, frames, and joints, respectively. FC
denotes a fully connected layer. r is the reduction ratio, and K means

kernel size.w denotes the size of sliding temporal window;
⊙

indicates
the element-wise multiplication.

⊕
denotes the element-wise summa-

tion

feature Fcse and input the following channel-wise temporal
excitation (CTE) sub-module.

3.1.2 Channel-wise temporal excitation (CTE)

Like CSE, CTE aims to utilize temporal dynamics informa-
tion to discriminate and excite the vital temporal-sensitive
channels and frames. The architecture of the CTE module is
illustrated in Fig. 2d.

Given an input feature as X ∈ R
C×T×V , the average pool-

ing is applied to summarize the spatial information.

Xs_pool = 1

V

V∑

i=1

X [:, :, i], Xs_pool ∈ R
C×T (5)

where Xs_pool denotes the feature after spatial pooling.
Different from CSE, a 1D convolution layer convtmp with

the kernel size K set to w is applied to interact with the
temporal dimension based on a sliding temporal window to
capture the inter-frame temporal relationship of w frames.
We set w as a hyperparameter (3, 5, etc.) according to the
frames of different datasets to obtain the most appropriate
temporal receptive field.

X tmp = convtmp ∗ Xs_pool, X tmp ∈ R
C/r×T×1 (6)

where X tmp denotes the contextual feature among w frames
and its channel-reduced, r is the scale ratio (set to 16 in this
work), and ∗ indicates the convolution operation.

Mcte = Sigmoid(convexp ∗ ReLU (X tmp))

Mcte ∈ R
T×C×1

(7)

Like CSE, CTE adaptively recalibrates the importance of
frames and excites the temporal-sensitive channels simulta-
neously by the interaction between the temporal dimension
and channel dimension. Finally, the excited output feature
Fcte is obtained.

Fcte = X ∗ Mcte + X , Fcte ∈ R
C×T×V (8)

3.2 Complementary topology scheme

By rethinking various adjacency matrix schemes from previ-
ous works, primarily focusing on ST-GCN [16] and its two
variants 2 s-AGCN [17] and CTR-GCN [20], we can summa-
rize the various adjacency matrices as three different types:
Ap(physical), Al (learnable), and As(similarity).
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Ap denotes the predefined matrix reflecting the physi-
cal structure of the human body, which is fixed during the
training process. ST-GCN [16] applies predefined Ap of spa-
tial configuration partitioning, dividing the neighbor set into
three subsets according to their distances to the skeleton grav-
ity center.

Al denotes the learnable matrix covering the global graph.
This indicates whether the connections exist between each
pair of two joints and how strong they are. The ST-GCN
utilizes the attention matrix Mk to learn edge importance
weighting and dot multiplies to Ap. The 2s-AGCN builds
an adjacency matrix with the same shape of Ap and makes
it parameterized without any constraints, which can be opti-
mized during the training process.

As denotes the Gaussian similarity matrix between two
vertexes, and As is data dependent,which is different from Al.
The 2s-AGCNmeasures the similarity of pairs of vertexes in
an embedding space by the dot product. CTR-GCNuses pair-
wise subtraction to calculate the distances along the channel
dimension. Most importantly, CTR-GCNmakes As channel-
wise and learns channel-specific As for each channel, leading
to stronger representation capability than channel-shared As.
We mark the channel-specific As as CAs.

In this study, we found that, however, Al, As, and CAs

are more adaptive to capture global graph information for
different input samples compared with Ap. However, it is
not appropriate to neglect the necessity of Ap, especially on
large-scale datasets. Although Al and As can automatically
capture global graph information, they face a too large search
space to find the most appropriate topology. The optimiza-
tion process will be confused if each topology has too many
“noisy” edges [36]. To address this issue, we find it necessary
to take them all into account. We combine three sub-matrices
by simple summation as Ap + Al +CAs. This simple but effi-
cient scheme achieves a better performance.

3.3 ICE-GC block and ICE-GCN

An efficient interactional channel excited graph convo-
lution (ICE-GC) block, which is equipped with ICE and a
complementary topology scheme elaborated above, is pro-
posed. The structure of our ICE-GC is depicted in Fig. 3a.
The operation of ICE-GC is formulated as follows:

Fout = McteMcse

Kv∑

k

(Ap + Al + CAs)WkFin (9)

where the input feature map Fin is a 3D tensor asC ×T ×V .
A 1× 1 2D convolutional layer is utilized to transform input
features into high-level representations, where Wk is the
C ×C ′ × 1 weight vector. Kv denotes three subsets accord-
ing to three partition strategies proposed by ST-GCN [16].

Ap and Al are both V ×V adjacency matrices, which are the
same for each channel. CAs is the C ′ × V × V adjacency
matrix which contains C ′ channel-specific V × V adjacency
matrices for C ′ channels, and the final refined A is obtained
by element-wise summation as C ′ × V × V . After matrix
multiplicationwith high-level representations, the graph con-
volution is accomplished.Three graph convolution blocks are
utilized in parallel to extract the latent representations. The
output excited feature map Fout as C ′ × T × V is obtained
by CTE and CSE, which is a significant complementary
approach after GCN, since the adjacency matrices can only
define the existence of connections between joints, which
cannot adaptively reflect the importance between joints along
channel dimension.

Based on the ICE-GCblock, an interactional channel exci-
tation enhanced graph convolutional network (ICE-GCN) is
constructed. The basic block of our ICE-GCN is shown in
Fig. 3b. A multi-scale temporal convolutional module (MS-
TCN) is applied following the design of [20,35] for multiple
receptive fields and temporal pooling, which is different from
CTE. For the residual connection, a 1 × 1 convolution is
worked when C is not equal to C ′. Therefore, our proposed
ICE-GCN has powerful characterization capabilities in spa-
tial, temporal, and channel dimensions.

As shown in Fig. 3c, the architecture of our ICE-GCN is
similar to most of the improved ST-GCN frameworks. First,
a batch normalization layer (BN) is added to normalize the
input data. Then, ten basic ICE-GCN blocks mainly consti-
tute the entire network. From block 1 to block 10, the input
channel and output channel are (3,64), (64,64), (64,64), (64,
64), (64, 128), (128, 128), (128, 128), (128, 256), (256, 256),
and (256, 256). The frames T will be halved after block 5
and block 8. After ten main basic ICE-GCN blocks, a global
average pooling (GAP) layer is added to pool output fea-
ture maps. Finally, a fully connected layer (FC) receives the
pooled output and generates predictions for the action class
through scores.

4 Experiments and results

4.1 Datasets

Kinetics-SkeletonTheKinetics-Skeleton [44] dataset includes
approximately 300,000 video clips and 400 human action
classes, which are collected from the YouTube video web-
site. However, it only offers raw video clips and does not
provide skeleton data. Thanks to the work ST-GCN [16] and
OpenPose [6] toolbox, which estimated the locations of 18
joints on every frame of the clips. There are 240,000 clips
for training and 20,000 clips for testing. According to the
conventional evaluation method of the ST-GCN, we report
the top-1 and top-5 accuracies to evaluate our model.
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BN

GPA FC

Frame 1

Frame 2

Frame T
Kicking something

Ten basic ICE-GCN blocks

Class ScoreInput skeleton sequence

...

Fig. 3 a Illustration of ICE-GC block. b The basic block of our ICE-
GCN. c The architecture of our ICE-GCN network. C (channels), C ′
(output channels), T (number of frames), T ′ (output number of frames),

V (joints), r (channel reduce ratio).
⊕

denotes the element-wise sum-
mation.

⊗
denotes the matrix multiplication
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NTU RGB+D 60 NTU RGB+D 60 [45] is a large and widely
used human action recognition dataset, which has 56880
human 3D skeleton action sequences, 40 volunteers and 60
classes collected by three Kinect v2 [5] cameras with differ-
ent views. Each frame contains one or two actors, and each
skeleton has 25 joints. There are two recommended bench-
marks for this dataset: Cross-subject (X-sub) and cross-view
(X-view). X-sub: 20 subjects for training and 20 subjects
for testing. X-view: Camera views 2 and 3 for training and
camera view 1 for testing.
NTU RGB+D 120With 57,367 additional samples and more
than 60 action classes based on NTU RGB+D 60, NTU
RGB+D 120 [46] is the largest dataset with 3D skeleton
action sequences for human action recognition available right
now. It contains 114,480 action samples and 120 action
classes in total, which were recorded by 106 volunteers
using three different camera views. Cross-subject (X-Sub)
and cross-setup (X-Set) are two recommended benchmarks.
X-sub: A total of 106 subjects were split into two groups
of 53 for training and 53 for testing. X-setup: Dividing the
samples into training and testing groups half and half based
on the camera setup IDs.

4.2 Implementation details

All our experiments are conducted on the PyTorch deep
learning framework, trained on one RTX 3090 GPU. The
optimization strategy is SGD with a momentum of 0.9.
For Kinetics-Skeleton, we follow the same data processing
method as [17], which has 150 frames with two bodies in
each frame. We set the batch size to 114 and the temporal
receptive field of CTE to 3 frames. The training phase is
completed at the 65th epoch. For NTU RGB+D 60 and NTU
RGB+D 120, we follow the same data processing method
as [20], which resized each sample to 64 frames. We set the
batch size to 64 and the temporal receptive field of CTE to 1
frame. The training phase is completed at the 80th epoch.

4.3 Ablation studies

4.3.1 Effectiveness of three excitation modules.

For a fair comparison, we choose the widespread framework
AGCN [17] on the Cross-View of the NTURGB+D 60 using
joint coordinates as the only input data stream.We separately
test the contributions of two sub-modules CTE and CSE and
find that they both can improve the accuracy by 0.4% and
0.6%, respectively. Then, it is observed that ICE module
improves AGCN by 1.1% by connecting two sub-modules,
more than either of them as shown in Table 1. It illustrates
that both spatial and temporal channel-wise features are nec-
essary for distinguishing different action categories, and they
are complementary to each other.

Table 1 Effectiveness of three excitation modules

Methods X-view (%) � Acc. (%)

AGCN 93.7 –

AGCN with CTE 94.1 + 0.4

AGCN with CSE 94.3 + 0.6

AGCN with ICE 94.8 + 1.1

Table 2 Comparison with other excitations

Methods X-View (%) � Acc. (%)

AGCN [17] 93.7 –

AGCN with SENet [26] 94.2 + 0.5

AGCN with STC-attention [18] 94.3 + 0.6

AGCN with ICE (ours) 94.8 + 1.1

4.3.2 Comparison with other excitation modules

To validate the superiority of our ICE, we compare the per-
formance of ICE with other channel dimension excitation
on the Cross-View of the NTU RGB+D 60 using the joint
stream as shown in Table 2. SENet [26] was proposed to be
embedded into 2D CNNs for the image classification task;
it is a classic and popular channel attention mechanism, and
we adapted and applied it to our skeleton-based task. STC-
attention [18] applies channel attention in a skeleton-based
action recognition task, concatenating spatial attention, and
temporal attention in a sequential manner without cross-
dimensional interactions, as shown in Table 2. Note that the
enhancements brought about bySENet andSTC-attention for
AGCN (+0.6% and +0.7%, respectively) are both less than
our ICE for AGCN (+1.1%). This validated the rationality
and superiority of our ICE, which introduces both spatial and
temporal information into the channel dimension to capture
the cross-dimensional interactions.

4.3.3 Transferring to other backbones

We verify the generality, adaptability, and complexity of our
proposed ICE module on both the Cross-View and Cross-
Subject of NTU RGB+D 60 using joint stream. We also
chose thewell-known andwidespread backboneAGCN [17],
the lightweight model Shift-GCN [19], and the latest pro-
posed optimal model CTR-GCN [20]. Our ICE module is
simply equipped with those models in a plug-and-play way.
As shown in Table 3, the backbones equipped with our ICE
outperform themselves notably, and the computation cost
(measured by Floating Point Operation per second (FLOPs)
and the number of parameters) does not change too much
(only increase about 0.03 GFLOPs and 0.42M parameters).
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Table 3 Study on the impact of
transferring to different
backbones in accuracy, FLOPs,
and the number of parameters

Methods X-sub (%) X-view (%) Param.(M) FLOPs(G)

AGCN [17] 86.5 93.7 3.47 37.38

AGCN with our ICE 87.4 (+ 0.9) 94.8 (+1.1) 3.89 (+ 0.42) 37.42 (+ 0.04)

Shift-GCN [19] 87.8 95.1 0.69 2.50

Shift-GCN with our ICE 88.4 (+ 0.6) 97.4 (+2.3) 1.11 (+ 0.42) 2.52 (+ 0.02)

CTR-GCN [20] 89.9 94.9 1.45 16.40

CTR-GCN with our ICE 90.2 (+ 0.3) 95.0 (+ 0.1) 1.87 (+ 0.42) 16.43 (+ 0.03)

Table 4 Comparisons of accuracies when removing Ap, Al, and CAs
from ICE-GCN

Methods X-view (%) � Acc. (%)

ICE-GCN 95.3 –

ICE-GCN w/o A_p 95.0 − 0.3

ICE-GCN w/o A_l 95.1 − 0.2

ICE-GCN w/o CA_s 94.8 − 0.5

4.3.4 Effectiveness of adjacency matrix schemes

Then, we verify the necessity of the three adjacency matrices
by removing Ap, Al, andCA_s from ICE-GCN on the Cross-
View of NTU RGB+D 60 using joint steam. As described
in Sect. 3.4., Ap denotes the physical adjacency matrix, Al

denotes the learnable adjacency matrix, and CA_s denotes
channel-wise similarity adjacencymatrix. As shown in Table
4, the performance of our ICE-GCN can reach 95.3%. When
removing Ap, Al and CA_s, the performance drops 0.3%,
0.2%, and 0.5%, respectively. It verified that all three adja-
cencymatrices are efficient and complementary to each other
and verified the rationality of our refined an efficient com-
plementary topology scheme Ap + Al + CAs.

4.4 Comparison with the state-of-the-arts

Finally, we compare our ICE-GCN model with the state-of-
the-art methods in skeleton-based action recognition on three
large-scale datasets Kinetics-Skeleton [44], NTU RGB+D
120 [46], and NTU RGB+D 60 [45] in Tables 5, 6, and 7,
respectively. 2 s-AGCN [17] proposed the bone stream (the
lengths and directions of bones) of the skeleton data, which
shows notable improvement in the recognition accuracy.
Generally, most state-of-the-art methods adopt multi-stream
fusion strategies. For a fair and comprehensive compari-
son, we use both single- and multi-stream fusion strategies
for comparison. Js denotes only the “joint stream” using
the original skeleton coordinates as input. Bs denotes only
the “bone stream” using the differential spatial coordinates
as input. 2s denotes using both “joint stream” and “bone
stream.”

Table 5 Comparisons of the Top-1 and Top-5 accuracy with the state-
of-the-art methods on the Kinetics-Skeleton dataset

Model Year Kinetics-Skeleton

Top-1 (%) Top-5 (%)

ST-GCN [16] 2018 (AAAI) 31.6 53.7

AS-GCN [37] 2019 (CVPR) 34.8 56.3

Js-AGCN [17] 2019 (CVPR) 35.1 57.1

Js-NAS-GCN [38] 2020 (AAAI) 35.5 57.9

Js-AAGCN [18] 2020 (TIP) 36.0 58.4

Js-MST-GCN [47] 2021 (AAAI) 36.0 58.5

Js-ASE-GCN [48] 2022 (TCSVT) 35.8 58.4

Js-ICE-GCN (ours) – 37.2 60.2

Bs-AGCN [17] 2019 (CVPR) 33.3 55.7

Bs-NAS-GCN [38] 2020 (AAAI) 34.9 57.1

Bs-AAGCN [18] 2020 (TIP) 34.7 57.5

Bs-MST-GCN [47] 2021 (AAAI) 32.3 58.2

Bs-ASE-GCN [48] 2022 (TCSVT) 34.1 57.4

Bs-ICE-GCN (ours) – 36.9 59.6

2s-AGCN [17] 2019 (CVPR) 36.1 58.7

2 s-DGNN [35] 2019 (CVPR) 36.9 59.6

2 s-NAS-GCN [38] 2020 (AAAI) 37.1 60.1

2 s-AAGCN [18] 2020 (TIP) 37.4 60.4

2 s-MST-GCN [47] 2021 (AAAI) 37.8 60.3

2 s-ASE-GCN [48] 2022 (TCSVT) 36.9 59.7

2 s-ICE-GCN (ours) – 38.8 61.8

On Kinetics-skeleton, the ICE-GCN notably outperforms
the existing methods by about 2% on Top-1 and Top-5 for all
the fusion strategies. On NTURGB+D 60 and NTURGB+D
120 datasets, ICE-GCN also outperforms the existing meth-
ods in most cases on both Cross-Subject and Cross-view. As
shown in the results of the comparisons on all three large-
scale datasets, the state-of-the-art and competitive results
verify the superiority of our ICE-GCN model. It demon-
strates that our model has stronger modeling capability and
performance on a larger dataset Kinetics-skeleton.
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Table 6 Comparisons of the
Top-1 accuracy with the
state-of-the-art methods on the
NTU RGB+D 120 dataset

Model Year NTU RGB+D 120

X-Sub (%) X-Set (%)

FSNet [49] 2019 (TPAMI) 59.9 62.4

SGN [50] 2020 (CVPR) 79.2 81.5

Js-Shift-GCN [19] 2020 (CVPR) 80.9 83.2

Js-MST-GCN [47] 2021 (AAAI) 82.8 84.5

Js-CTR-GCN [20] 2021 (ICCV) 84.9 86.6

Js-ML-STGNet [51] 2022(TIP) 84.9 86.5

Js-ICE-GCN (ours) – 85.1 86.9

Bs-MST-GCN [47] 2021 (AAAI) 84.8 86.3

Bs-CTR-GCN [20] 2021 (ICCV) 85.7 87.5

Bs-ML-STGNet [51] 2022 (TIP) 85.7 87.1

Bs-ICE-GCN (ours) – 86.8 87.1

2 s-MS-G3D [52] 2020 (CVPR) 86.9 88.4

2 s-Shift-GCN [19] 2020 (CVPR) 85.3 86.6

2 s-MST-GCN [47] 2021 (AAAI) 87.0 88.3

2 s-CTR-GCN [20] 2021 (ICCV) 88.7 90.1

2 s-ML-STGNet [51] 2022 (TIP) 88.6 90.0

2 s-ICE-GCN (ours) – 89.1 90.2

Table 7 Comparisons of the
Top-1 accuracy with the
state-of-the-art methods on the
NTU RGB+D 60 dataset

Model Year NTU RGB+D 60

X-Sub (%) X-View (%)

ST-GCN [16] 2018 (AAAI) 81.5 88.3

AS-GCN [37] 2019 (CVPR) 86.8 94.2

Js-AGCN [17] 2019 (CVPR) 86.5 93.7

Js-AGC-LSTM [21] 2019 (CVPR) 87.5 93.5

Js-NAS-GCN [38] 2020 (AAAI) – 94.6

Js-AAGCN [18] 2020 (TIP) 88.0 95.1

Js-Shift-GCN [19] 2020 (CVPR) 87.8 95.1

Js-MS-G3D [52] 2020 (CVPR) 89.4 95.0

Js-MST-GCN [47] 2021 (AAAI) 89.0 95.1

Js-CTR-GCN [20] 2021 (ICCV) 89.9 94.9

Js-ML-STGNet [51] 2022 (TIP) 89.8 94.9

Js-ICE-GCN (ours) – 90.1 95.2

Bs-AAGCN [18] 2020 (TIP) 88.4 94.7

Bs-NAS-GCN [38] 2020 (AAAI) – 94.7

Bs-MS-G3D [52] 2020 (CVPR) 90.1 95.3

Bs-MST-GCN [47] 2021 (AAAI) 89.5 95.2

Bs-CTR-GCN [20] 2021 (ICCV) 90.6 –

Bs-ML-STGNet [51] 2022 (TIP) 90.2 94.6

Bs-ICE-GCN (ours) – 90.6 94.9

2 s-AAGCN [18] 2020 (TIP) 89.4 96.0

2 s-NAS-GCN [38] 2020 (AAAI) – 95.7

2 s-MS-G3D [52] 2020 (CVPR) 91.5 96.2

2 s-MST-GCN [47] 2021 (AAAI) 91.1 96.4

2s-ML-STGNet [51] 2022 (TIP) 91.8 96.1

2 s-ICE-GCN (ours) – 92.0 96.2
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Fig. 4 Visualization
comparisons between CSE a
and SENet b, CTE c and
STC-attention d. The vertical
axis denotes the randomly
selected 20 channels. For a and
b, the horizontal axis denotes
the 25 joints. For c and d, the
horizontal axis denotes the final
output feature of 75 frames

4.5 Visualization

To illustrate how ICE affects the final performance and
highlight the difference of cross-dimension interactions, the
attention maps are visualized. One real evaluation sample
of “kicking something” is randomly selected from NTU
RGB+D 60 and visualized. As shown in Fig. 4, CSE and
SENet are compared on channel and spatial dimensions, and
CTE and STC-attention are compared on channel and tem-
poral dimensions.

As shown in Fig. 4a, CSE can not only reweight crucial
joints along each channel but also excite those spatial-
sensitive channels (such as channels 1, 10 and 11). CSE
focuses on the joints of the legs like joint 15 “left knee” and
joint 16 “left foot” which are relevant to the action “kicking
something.” The importance of joint 15 “left knee” is con-
sistently strong in channels 0, 1, 6, etc., indicating that the
spatial information of these related joints is generally impor-
tant for the current action in the excited channels. But SENet
reweights each joint constantly for each channel without
channel-wise difference and interactions with spatial dimen-
sion, as shown in Fig. 4b.

As shown in Fig. 4c, CTE can not only reweight vital
frames, respectively, but also excite those temporal-sensitive
channels (such as channels 3, 5, and 16). CTE focuses on
the frames (such as the frames from 21 to 30) which are
most informative to the action of “kicking something.” It
is worth noting that the importance of these frames is con-
sistently strong, indicating that the temporal relationship of
these frames is generally important for the current action
in the excited channels. As shown in Fig. 4d, STC-attention
only reweights frames constantly for each channel without
channel-wise discriminative consideration.

5 Conclusion

In this paper, we propose an interactional channel excited
graph convolutional network with complementary topol-
ogy for skeleton-based action recognition. The interactional
channel excitation module (ICE) consists of CSE and CTE
sub-modules. CSE is applied to capture the crucial body
global structure patterns along different channels and then
adaptively recalibrate the importance of joints and excite the
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spatial-sensitive channels. CTE is applied to capture vital
temporal inter-frame dynamics information along different
channels and then adaptively recalibrate the importance of
frames and excite the temporal-sensitive channels. In addi-
tion, to solve the dilemma between the adaptation ability and
too large of a searching space, to avoid too many “noisy”
graph edges, a complementary topology scheme is refined as
Ap + Al + CAs. By coupling the ICE module and topology
strategy, we propose an interactional channel excitation-
enhanced graph convolutional network with complementary
topology (ICE-GCN), which is a powerful network to help
extract optimal features covering three dimensions (spatial,
temporal, and channel). Extensive experiments conducted on
three large datasets NTURGB+D60, NTURGB+D120, and
Kinetics-Skeleton demonstrate that our ICE-GCN outper-
forms state-of-the-art methods and proves the effectiveness
of each sub-modules. In the future, the efficiency of ICE-
GCN still needs more consideration.

Acknowledgements This work was partially supported by the STI
2030-Major Projects under grant 2022ZD0208900, the National Natu-
ral Science Foundation of China under grant 62076103, and the Special
Funds for the Cultivation of Guangdong College Students’ Scientific
and Technological Innovation (“Climbing Program” Special Funds)
under grant pdjh2022a0125.

Declarations

Conflict of interest The authors declare that they have no known com-
peting financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Malik, Z., Shapiai, M.I.B.: Human action interpretation using con-
volutional neural network: a survey. Mach. Vision Appl. 33(3),
1–23 (2022)

2. Kong, Y., Fu, Y.: Human action recognition and prediction: a sur-
vey. Int. J. Comput. Vision 130(5), 1366–1401 (2022)

3. Dang, L.M., Min, K., Wang, H., Piran, M.J., Lee, C.H., Moon,
H.: Sensor-based and vision-based human activity recognition: A
comprehensive survey. Pattern Recognit. 108, 107561 (2020)

4. Weinland, D., Ronfard, R., Boyer, E.: A survey of vision-based
methods for action representation, segmentation and recognition.
Comput. Vision Image Underst. 115(2), 224–241 (2011)

5. Zhang, Z.: Microsoft Kinect sensor and its effect. IEEEMultimed.
19(2), 4–10 (2012)

6. Cao, Z., Simon, T., Wei, S.-E., Sheikh, Y.: Realtime multi-person
2d pose estimation using part affinity fields. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 7291–7299 (2017)

7. Yang, H., Guo, L., Zhang, Y., Wu, X.: U-shaped spatial-temporal
transformer network for 3d human pose estimation. Mach. Vision
Appl. 33(6), 1–16 (2022)

8. Ocegueda-Hernández, V., Román-Godínez, I., Mendizabal-Ruiz,
G.: A lightweight convolutional neural network for pose estimation
of a planar model. Mach. Vision Appl. 33(3), 1–21 (2022)

9. Li, S., Li, W., Cook, C., Zhu, C., Gao, Y.: Independently recurrent
neural network (indrnn): Building a longer and deeper rnn. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5457–5466 (2018)

10. Zhang, P., Lan, C., Xing, J., Zeng, W., Xue, J., Zheng, N.: View
adaptive recurrent neural networks for high performance human
action recognition from skeleton data. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 2117–2126
(2017)

11. Song, S., Lan, C., Xing, J., Zeng, W., Liu, J.: An end-to-end
spatio-temporal attentionmodel for human action recognition from
skeleton data. In: Proceedings of the AAAI Conference on Artifi-
cial Intelligence, vol. 31 (2017)

12. Liu, J., Shahroudy, A., Xu, D., Wang, G.: Spatio-temporal lstm
with trust gates for 3d human action recognition. In: European
Conference on Computer Vision, pp. 816–833 (2016). Springer

13. SooKim,T., Reiter,A.: Interpretable 3d human action analysiswith
temporal convolutional networks. In: Proceedings of the IEEECon-
ference on Computer Vision and Pattern Recognition Workshops,
pp. 20–28 (2017)

14. Ke, Q., Bennamoun, M., An, S., Sohel, F., Boussaid, F.: A new
representation of skeleton sequences for 3d action recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 3288–3297 (2017)

15. Liu, M., Liu, H., Chen, C.: Enhanced skeleton visualization for
view invariant human action recognition. Pattern Recognit. 68,
346–362 (2017)

16. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional
networks for skeleton-based action recognition. In: Thirty-second
AAAI Conference on Artificial Intelligence (2018)

17. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Two-stream adaptive graph
convolutional networks for skeleton-based action recognition. In:
Proceedings of the IEEE/CVFConference onComputerVision and
Pattern Recognition, pp. 12026–12035 (2019)

18. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Skeleton-based action recog-
nition with multi-stream adaptive graph convolutional networks.
IEEE Trans. Image Process. 29, 9532–9545 (2020)

19. Cheng,K., Zhang,Y.,He,X.,Chen,W.,Cheng, J., Lu,H.: Skeleton-
based action recognition with shift graph convolutional network.
In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 183–192 (2020)

20. Chen, Y., Zhang, Z., Yuan, C., Li, B., Deng, Y., Hu, W.: Channel-
wise topology refinement graph convolution for skeleton-based
action recognition. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 13359–13368 (2021)

21. Si, C., Chen, W., Wang, W., Wang, L., Tan, T.: An attention
enhanced graph convolutional lstm network for skeleton-based
action recognition. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 1227–1236
(2019)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


ICE-GCN: An interactional channel excitation-enhanced graph convolutional network for skeleton... Page 13 of 13    40 

22. Cheng, K., Zhang, Y., Cao, C., Shi, L., Cheng, J., Lu, H.:
Decoupling gcn with dropgraph module for skeleton-based action
recognition. In: European Conference on Computer Vision, pp.
536–553 (2020). Springer

23. Qiu, H., Wu, Y., Duan, M., Jin, C.: GLTA-GCN: Global-local
temporal attention graph convolutional network for unsupervised
skeleton-based action recognition. In: 2022 IEEE International
Conference on Multimedia and Expo (ICME), pp. 1–6 (2022).
IEEE

24. Xie, Y., Zhang, Y., Ren, F.: Temporal-enhanced graph convolution
network for skeleton-based action recognition. IETComput.Vision
16(3), 266–279 (2022)

25. Gao, B.-K., Dong, L., Bi, H.-B., Bi, Y.-Z.: Focus on temporal graph
convolutional networks with unified attention for skeleton-based
action recognition. Appl. Intell. 52(5), 5608–5616 (2022)

26. Hu, J., Shen, L., Sun,G.: Squeeze-and-excitation networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7132–7141 (2018)

27. Yang, H., Gu, Y., Zhu, J., Hu, K., Zhang, X.: PGCN-TCA:
pseudo graph convolutional network with temporal and channel-
wise attention for skeleton-based action recognition. IEEE Access
8, 10040–10047 (2020)

28. Sun,N., Leng,L., Liu, J.,Han,G.:Multi-streamslowfast graph con-
volutional networks for skeleton-based action recognition. Image
Vision Comput. 109, 104141 (2021)

29. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: Cbam: Convolutional
block attention module. In: Proceedings of the European Confer-
ence on Computer Vision (ECCV), pp. 3–19 (2018)

30. Misra, D., Nalamada, T., Arasanipalai, A.U., Hou, Q.: Rotate to
attend: Convolutional triplet attention module. In: Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 3139–3148 (2021)

31. Jiang, B.,Wang,M., Gan,W.,Wu,W., Yan, J.: Stm: Spatiotemporal
and motion encoding for action recognition. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp.
2000–2009 (2019)

32. Li, Y., Ji, B., Shi, X., Zhang, J., Kang, B., Wang, L.: Tea: Temporal
excitation and aggregation for action recognition. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 909–918 (2020)

33. Wang, Z., She, Q., Smolic, A.: Action-net: Multipath excitation for
action recognition. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 13214–13223
(2021)

34. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient
mobile network design. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 13713–
13722 (2021)

35. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Skeleton-based action recog-
nition with directed graph neural networks. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 7912–7921 (2019)

36. Wang, M., Ni, B., Yang, X.: Learning multi-view interactional
skeleton graph for action recognition. IEEETransactions onPattern
Analysis and Machine Intelligence (2020)

37. Li,M., Chen, S., Chen, X., Zhang, Y.,Wang, Y., Tian, Q.: Actional-
structural graph convolutional networks for skeleton-based action
recognition. In: Proceedings of the IEEE/CVFConference onCom-
puter Vision and Pattern Recognition, pp. 3595–3603 (2019)

38. Peng, W., Hong, X., Chen, H., Zhao, G.: Learning graph convo-
lutional network for skeleton-based human action recognition by
neural searching. In: Proceedings of the AAAI Conference onArti-
ficial Intelligence, vol. 34, pp. 2669–2676 (2020)

39. Ding, C., Liu, K., Cheng, F., Belyaev, E.: Spatio-temporal attention
on manifold space for 3d human action recognition. Appl. Intell.
51(1), 560–570 (2021)

40. Xing, Y., Zhu, J., Li, Y., Huang, J., Song, J.: An improved spatial
temporal graph convolutional network for robust skeleton-based
action recognition. Applied Intelligence, 1–17 (2022)

41. Xie, J., Miao, Q., Liu, R., Xin, W., Tang, L., Zhong, S., Gao, X.:
Attention adjacencymatrix based graph convolutional networks for
skeleton-based action recognition. Neurocomputing 440, 230–239
(2021)

42. Zhu, J., Zou, W., Zhu, Z., Hu, Y.: Convolutional relation network
for skeleton-based action recognition. Neurocomputing 370, 109–
117 (2019)

43. Liu, Z.,Wang, L.,Wu,W.,Qian, C., Lu, T.: Tam: Temporal adaptive
module for video recognition. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 13708–13718
(2021)

44. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C.,
Vijayanarasimhan, S., Viola, F., Green, T., Back, T., Natsev, P.,
et al.: The kinetics human action video dataset. arXiv preprint
arXiv:1705.06950 (2017)

45. Shahroudy, A., Liu, J., Ng, T.-T., Wang, G.: Ntu rgb+ d: A large
scale dataset for 3d human activity analysis. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1010–1019 (2016)

46. Liu, J., Shahroudy, A., Perez, M., Wang, G., Duan, L.-Y., Kot,
A.C.: Ntu rgb+ d 120: A large-scale benchmark for 3d human
activity understanding. IEEE Trans. Pattern Anal. Mach. Intell.
42(10), 2684–2701 (2019)

47. Chen, Z., Li, S., Yang, B., Li, Q., Liu, H.: Multi-scale spatial
temporal graph convolutional network for skeleton-based action
recognition. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, pp. 1113–1122 (2021)

48. Xiong, X., Min, W., Wang, Q., Zha, C.: Human skeleton feature
optimizer and adaptive structure enhancement graph convolution
network for action recognition. IEEE Trans. Circuits Syst. Video
Technol. 33(1), 342–353 (2022)

49. Liu, J., Shahroudy, A.,Wang, G., Duan, L.-Y., Kot, A.C.: Skeleton-
based online action prediction using scale selection network. IEEE
Trans. Pattern Anal. Mach. Intell. 42(6), 1453–1467 (2019)

50. Zhang, P., Lan, C., Zeng, W., Xing, J., Xue, J., Zheng, N.:
Semantics-guided neural networks for efficient skeleton-based
human action recognition. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp.
1112–1121 (2020)

51. Zhu, Y., Shuai, H., Liu, G., Liu, Q.: Multilevel spatial-temporal
excited graph network for skeleton-based action recognition. IEEE
Transactions on Image Processing (2022)

52. Liu, Z., Zhang, H., Chen, Z., Wang, Z., Ouyang, W.: Disentangling
and unifying graph convolutions for skeleton-based action recog-
nition. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 143–152 (2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1705.06950

	ICE-GCN: An interactional channel excitation-enhanced graph convolutional network for skeleton-based action recognition
	Abstract
	1 Introduction
	2 Related works
	2.1 Traditional attention mechanisms for skeleton-based action recognition
	2.2 Strategies of graph topology for GCN

	3 The proposed method
	3.1 Interactional channel dimension excitation (ICE)
	3.1.1 Channel-wise spatial excitation (CSE)
	3.1.2 Channel-wise temporal excitation (CTE)

	3.2 Complementary topology scheme
	3.3 ICE-GC block and ICE-GCN

	4 Experiments and results
	4.1 Datasets
	4.2 Implementation details
	4.3 Ablation studies
	4.3.1 Effectiveness of three excitation modules.
	4.3.2 Comparison with other excitation modules
	4.3.3 Transferring to other backbones
	4.3.4 Effectiveness of adjacency matrix schemes

	4.4 Comparison with the state-of-the-arts
	4.5 Visualization

	5 Conclusion
	Acknowledgements
	References


