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Abstract

Due to the growing number of scholarly publications, finding relevant articles becomes increasingly difficult. Scholarly
knowledge graphs can be used to organize the scholarly knowledge presented within those publications and represent them in
machine-readable formats. Natural language processing (NLP) provides scalable methods to automatically extract knowledge
from articles and populate scholarly knowledge graphs. However, NLP extraction is generally not sufficiently accurate
and, thus, fails to generate high granularity quality data. In this work, we present TinyGenius, a methodology to validate
NLP-extracted scholarly knowledge statements using microtasks performed with crowdsourcing. TinyGenius is employed to
populate a paper-centric knowledge graph, using five distinct NLP methods. We extend our previous work of the TinyGenius
methodology in various ways. Specifically, we discuss the NLP tasks in more detail and include an explanation of the data
model. Moreover, we present a user evaluation where participants validate the generated NLP statements. The results indicate
that employing microtasks for statement validation is a promising approach despite the varying participant agreement for
different microtasks.

Keywords Crowdsourcing microtasks - Knowledge graph validation - Scholarly knowledge graphs - User interface evaluation

1 Introduction

Every year, the number of published scholarly articles grows
[1], making it increasingly difficult to find and discover rel-
evant literature. Methods and tools to organize scholarly
knowledge are therefore becoming more important. One of
the key challenges is the ability of machines to interpret the
knowledge published in scholarly articles. Without machine
actionable scholarly knowledge, machines are severely lim-
ited in their utility to effectively organize this knowledge [2].
Knowledge graphs are a possible solution, as they enable
knowledge to be represented in a machine-actionable man-
ner. Once scholarly knowledge is machine readable, a variety
of new knowledge discovery methods become available. For
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example, it will then be possible to find articles that employed
specific methods yielding specific results or to automatically
generate benchmarks of methods ranked by their perfor-
mance. There are numerous potential use cases for exploiting
machine-readable scholarly knowledge that could ultimately
lead to new ways of doing science.

For centuries, scholarly knowledge has been communi-
cated in a narrative document-based and largely unstructured
form [3]. In order to create a scholarly knowledge graph,
structured knowledge has to be either extracted from the
unstructured documents or produced directly upfront in
the research workflow [4]. There are different strategies
to support the extraction process. It is possible to manu-
ally extract structured knowledge. Although this will likely
result in high-quality data, the approach does not scale
well. Another approach is to automatically extract structured
knowledge using machine learning techniques. Specifically,
natural language processing (NLP) is able to interpret nat-
ural language and transform unstructured content into a
structured, machine-readable representation. However, NLP
tools are not sufficiently accurate to generate a high-quality
knowledge graph, in particular, due to the complexity of the
conveyed information, the required context-awareness or the
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varying levels of semantic granularity. Naturally, quality is a
crucial aspect for a scholarly knowledge graph to become a
valuable resource for researchers. Thus, in this work, we pro-
pose a hybrid method where we combine human and machine
intelligence via microtasks to create a structured scholarly
knowledge graph. This results in a synergy and combines
the advantages of each approach, i.e., the quality aspect from
human intelligence and the scalability aspect from machine
intelligence.

We present TinyGenius, a methodology to create a
scholarly knowledge graph leveraging intertwined human
and machine intelligence. Firstly, NLP tools are used to
autonomously process scholarly articles. Secondly, the NLP
results are transformed into a paper-centric scholarly knowl-
edge graph. Finally, the statements are presented to humans
in the form of microtasks. Humans can vote to determine the
correctness of the statements. Votes are stored as provenance
data on statement level. Based on the votes, an aggregated
score is computed to indicate the correctness of a statement.
TinyGenius is specifically designed to be integrated in the
Open Research Knowledge Graph (ORKG) [5]. The ORKG
aims to describe scholarly knowledge in a structured man-
ner using crowdsourcing, resulting in a scholarly knowledge
graph. The task of transforming unstructured into structured
knowledge, even with NLP assistance, is a complex and time-
consuming endeavour. We, therefore, propose a method that
decomposes this large task into a set of microtasks. Once inte-
grated into the platform, microtasks are displayed throughout
the web interface. This enables regular visitors to be content
producers not just content consumers. For each NLP tool,
a specific microtask is designed. This is to ensure task sim-
plicity and to provide a task that can be answered without
contextual knowledge (i.e., without reading the article). A
screenshot of the interface showing an example of a micro-
task is depicted in Fig. 1.

We make the following contributions:

1. The TinyGenius methodology to validate scholarly NLP
results using crowdsourced microtasks;

NLP
processing

Quick question: Is this statement correct? The paper statistical learning OeIIE=V
H : :

<< rdf:s.ubject rdf:pre.dicate rdf:o.bject >> :hasVote :====as S I

S e

Scholarly
knowledge graph

Scholarly
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Fig. 1 Graphical abstract. Workflow of the TinyGenius methodology.
Scholarly articles are processed by NLP tools to form a scholarly
knowledge graph (machine intelligence part). Afterwards, the extracted
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2. A modular architecture to create a scholarly knowledge
graph at scale with NLP tools;

3. An evaluation of the methodology and architecture by
means of a user study and case study, respectively.

This work is an extension of previous work presented in [6].
In contrast to the previous work, we provide a more compre-
hensive description of the employed NLP tools and respective
tasks. Furthermore, we discuss the user interface in more
detail and include a more detailed description of the Tiny-
Genius data model. Finally, we add a user evaluation that
includes the discussion of the corresponding results.

2 Related work

Large complex tasks can be decomposed into a set of
smaller, independent microtasks [7]. These microtasks are
context-free, are more manageable, and lead to higher quality
results [8]. The context-free setting relates to the absence of
required prior task knowledge from a user perspective. While
microtasks can be beneficial on an individual level, such as
microwork [9], they are commonly performed in a crowd-
sourced setting by unskilled users [10]. In a crowdsourced
setting, a large task, too big in scope for a single person,
can be completed collaboratively. Microtask crowdsourcing
has been successfully employed for various tasks, for exam-
ple, writing software programs [7], validating user interfaces
[11], labeling machine learning datasets [12], ontology align-
ment [10], and knowledge graph population [13].

Machine learning tools can process data at scale with-
out the need for human assistance. Therefore, such tools are
especially suitable to handle large quantities of data, such
as scholarly article corpora. The natural language processing
(NLP) domain focuses specifically on understanding natural
language for machines [14]. In our methodology, we employ
a set of five NLP tools to process scholarly article text. These
tools perform four different NLP tasks, which we will now
discuss in more detail.

v X (?
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Human validation
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statements are validated by humans by means of microtasks (human
intelligence part). User votes are stored as provenance data as part of
the original statements



Creating and validating a scholarly knowledge graph...

3 Machine intelligence

& Human intelligence

Abstract / title

v =

L]
<subject, predicate, Y
1. Entity recognition - object> o’ G ra p h D B
Titles a 2. Entity linking ; . a
Authors 3. Topic modelin Store all data in JSON Add
Abstract " op 9 document datastore JSON to RDF mapper statements to
stracts 4. Summarization triple store Vote on statements
1. Article import 2. NLP processing 3.D g 4. tification 5. Knowledge graph 6. Microtask

Fig. 2 TinyGenius methodology intertwining human and machine
intelligence to create a scholarly knowledge graph. ArXiv articles are
imported, processed by a set of NLP tools, and the results are stored.

e First, Named Entity Recognition (NER) is a task to iden-
tify entities within text belonging to a predefined class
[15]. For example, the task of identifying the classes
“materials” and “methods” within a scholarly article.

e Second, Entity Linking is the task of linking entities to
their respective entry in a knowledge base [16]. This
includes the task of entity disambiguation, to ensure enti-
ties are not only syntactically but also semantically the
same. For example, the entity “Python” can be linked
both to the animal and the programming language. The
context determines which link is correct.

e Third, Topic Modelling is the task to identify and distin-
guish between common topics occurring in natural text
[17]. This allows for classifying papers based on their
mutual topics.

e Finally, Text Summarization is the task of compressing
text into a shorter form, while preserving the key points
from the original text [18].

Knowledge Graphs comprise triple statements according
to the W3C Resource Description Framework (RDF) [19].
By using a standardized data representation model, the data
interchange between machines is facilitated. This increases
the machine actionability of the data, which is defined as the
ability for machines to interpret the data without the need
for human intervention [20]. RDF data can be queried using
the SPARQL language [21]. A key aspect of our approach
is storing the user votes as provenance data to statements in
the knowledge graph. This means not only a final correct-
ness score of a statement is available, but also the underlying
information used to determine the score. Among others, the
provenance data include the votes, contextual information,
and confidence score of the NLP tool. There are different
approaches to store provenance data in RDF [22], for exam-
ple, standard reification, singleton properties [23], named
graphs [24], and via RDF* [25]. We adopted the RDF* rep-
resentation as this provides a method that scales well and,
compared to the other approaches, provides improved com-
prehensibility for SPARQL queries.

From the results, a knowledge graph is generated. Afterwards, humans
validate the knowledge graph by means of microtasks

3 Architecture and NLP

We now discuss the TinyGenius methodology. First, we
describe the technical infrastructure responsible for data stor-
age and processing. Second, we explain the user interface in
more detail.

3.1 Technical infrastructure

One of the key benefits of using NLP tools to process data
is the ability to perform this analysis at scale. Therefore, the
infrastructure is designed to handle large quantities of data
while still having a well performing system. Among other
things this includes query response time and system resource
utilization. We outline the methodology depicted in Fig. 2:

1. In the first step, the complete metadata corpus from the
open-access repository service arXiv! is imported. This
includes article titles and abstracts. To reduce the required
computational resources and ensure a consistent level of
semantic granularity, only paper titles and abstracts are
processed by NLP tools (i.e., the full-text is excluded).

2. Afterwards, the papers are processed by different NLP
tools, which we discuss in Sect. 3.2.

3. In the third step, the output of the paper imports process,
and the resulting data from the NLP tools are stored in
a document-based JSON data store. Notably, the NLP
results are stored in their native data model and are not
transformed to make them suitable for knowledge graph
ingestion.

4. The semantic transformation process takes place in the
fourth step, i.e., semantification. This step converts the
native NLP data models to a triple format, as required by
the RDF data model. The original data from step three
remains available in the original JSON data store. This
allows to create a different mapping from the NLP models
to RDF at any time in the future, and it separates the
concerns between data processing and data modelling.

1 https://arxiv.org/.
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5. In the fifth step, the data are ingested in a triple store. As
discussed previously, we adopted an RDF* provenance
data model. Therefore, a GraphDB? triple store is used,
which supports RDF* natively. The data model, including
an example of data provenance statements, is depicted in
Fig.4. To increase machine actionability, existing ontol-
ogy concepts are used when possible.

3.2 NLP tools

We employed a set of five different NLP tools to process
the articles. The TinyGenius methodology itself is not lim-
ited to this set of tools and can be easily extended with other
NLP tools. The tools are listed in Table 1. The selected tools
provide a representative sample of different NLP tasks. The
CSO classifier takes an article abstract as input and outputs
extracted topics. This classifier is a domain-specific model
designed to classify Computer Science abstracts [26]. The
related microtask asks users whether the extracted topic is
indeed relevant for the paper. The Ambiverse Natural Lan-
guage Understanding (NLU)?3 [27] tool links entities found in
a text to a corresponding entry in Wikidata [28]. The micro-
task is related to determining whether the concept is correctly
linked. Users can visit the corresponding Wikidata page to
determine the correctness. The Abstract Annotator extracts
four classes from paper abstracts: data, material, method,
and process [29]. The related microtask lets users validate
whether the entity indeed belongs to the selected class. The
Title parser is similar to the Abstract annotator, but focuses
specifically on titles, which typically follow certain conven-
tions exploited by this tool. Finally, the Summarizer takes
an abstract as input and summarizes that into a text piece of
maximum 120 characters. The microtask asks users to indi-
cate whether the generated abstract is indeed a reasonable
summary.

4 Microtask crowdsourcing user interface

The user interface consists of two main components: the vot-
ing widget and the view paper page. The voting widget is
self-contained, meaning that it contains all the required con-
text to perform the microtask. The view paper page integrates
the voting widget for the displayed paper.

4.1 Voting widget

The voting widget is the key interface component and inte-
grates the microtasks to perform the NLP validation. It is

2 https://graphdb.ontotext.com/.

3 https://github.com/ambiverse-nlu/ambiverse-nlu.
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displayed in Fig.3. The widget is self-contained, modular,
and is designed to be integrated into a scholarly knowledge
web platform. Each NLP tool has a different question tem-
plate, as listed in Table 1. This question template is used to
display the microtask in the widget. The widget itself displays
the context required to make an informed decision about the
correctness of the statement. In most cases, the context dis-
plays an excerpt of the abstract and highlights the words
used by the NLP tool to extract the data. Finally, users are
able to vote about the correctness. A vote can either be cor-
rect, incorrect, or unknown. After a user has voted, a positive
affirmation (e.g., “Good job!” or “You rock!”) is displayed
to encourage the user to continue with the next statement.
The next statement is automatically displayed after voting.
Statements are selected in random order, and statements are
only displayed once to a specific user.

4.2 View paper page

Fig.3 shows a screenshot of the view paper page. It shows
how a single paper is displayed when integrated within the
Open Research Knowledge Graph (ORKG) [5]. All data
displayed on the page are coming from the TinyGenius
knowledge graph and are fetched using SPARQL. The previ-
ously discussed voting widget is also displayed on this page.
A score is displayed for each listed statement, indicating how
reliable a statement is. When hovering over the score a tooltip
becomes visible, explaining how the score is determined.
This is an aggregation of user votes, counting for 75% of
the score, and the system’s confidence level, counting for the
remaining 25% for the score. By default, statements with a
score below a certain threshold (40%) are hidden. Finally,
the context tooltip shows statement provenance data. This
includes an excerpt from the abstract used by the NLP tool
to generate the result. Furthermore, additional data related to
the tool, version, and date are displayed. The listed statement
resources link to a page that shows the use of the respective
resource over the years (see node 6 in Fig. 3).

5 Evaluation

The objective of the evaluation is twofold. Firstly, we con-
duct a data evaluation to gather general statistics about our
approach and to assess the technical performance. Secondly,
we use a sample of the data generated in the first evaluation
to conduct a user study. The user study is an exploratory eval-
uation, and its results are used to guide further development
and to assess the feasibility of the approach.
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Fig.3 View paper page, showing the integrated voting widget and NLP a single statement. Node 5 lists the NLP-generated statements grouped
statements. Node 1 displays the metadata related to the selected paper. by the tool. Finally, node 6 shows the use of a resource grouped by year,
Node 2 shows the voting widget. Node 3 is the score tooltip. Node 4 which is displayed when clicking on a resource

shows a tooltip that displays the context and provenance data related to

Table 1 List of employed NLP tools and their corresponding task and scope. The question template shows how the microtask is presented to the
user

Tool name NLP task Scope Question template

CSO classifier Topic Modelling Domain-specific Is this paper related to the topic {topic}?
Ambiverse NLU Entity Linking Generic Is the term {entity} related to {wikidata concept}?
Abstract annotator Named Entity Recognition Domain-specific Is this statement correct? This paper {type} {entity}
Title parser Named Entity Recognition Domain-specific Is {entity} a {type} presented in this paper?
Summarizer Text Summarization Generic Does this summarize the paper correctly?
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Table 2 Overview of the data evaluation statistics

Description Measure
General statistics Number
Processed articles 95,376
Triples metadata 1,521,492
Triples provenance 47,595,706
Triples total 65,608,902
Average number of triples per article 688
Processing time Seconds
CSO classifier 27,803
Ambiverse NLU 137,060
Abstract annotator 62,056
Title parser 87
Summarizer N/A

5.1 Data evaluation

We imported the arXiv corpus and processed a subset with
selected NLP tools. All articles classified as “Machine Learn-
ing” by arXiv* are processed. This results in a total amount of
95, 376 processed articles, which is approximately 5% of the
complete arXiv corpus. We consider this a sizable amount to
estimate statistics such as processing time per article, num-
ber of extracted statements per article, and to determine the
performance of the setup. We chose the machine learning
field because several NLP tools are trained specifically on
machine learning abstracts. The processing time in seconds
per NLP tool is listed in Table 2. In addition to the total num-
ber of triples, an approximation of the number of metadata
and provenance triples is listed. The tools ran on a machine
with 40 CPU cores and no dedicated GPUs. As the summa-
rizer tool requires GPUs to run efficiently, we did not apply
this tool to the entire dataset. Instead, we ran the summariza-
tion tool for the sample of articles used in the user evaluation.

5.2 Performance evaluation

To determine the performance of the triple store with the
ingested data, we now present three prototypical SPARQL
queries and their respective execution time. The results of
running the queries are listed in Table 3. The queries also
demonstrate how data can be accessed via our data model,
as outlined in Fig. 4. The previously presented user interface
uses the listed queries to render the paper data, and therefore,
the queries are representative for use in an actual system.
The queries are executed on the same machine as used
for the NLP processing. Furthermore, the same data are used
to query data as listed in Table 2 (i.e., 65,608,902 triples).

4 arXiv category: Machine Learning (cs.LG).
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Table 3 Results of the performance evaluation for running three dif-
ferent queries

Query Execution time (s) Retrieved triples
Query 1 0.1 23

Query 2 0.2 653

Query 3 0.4 15

SELECT DISTINCT * WHERE {
<<tinygenius:1802.01528 ?pred ?obj>>
dcterms:creator tinygenius:ambiverse_nlu .
tinygenius:ambiverse_nlu dcterms:hasVersion "1.1.1" .

}

Query 1 Select all statements created by “Ambiverse NLU” version
"1.1.1" and its corresponding provenance data.

SELECT DISTINCT * WHERE {

<<tinygenius:1608.06993 “?pred ?obj>> ?provPred
7provObj .

OPTIONAL {

IprovObj  ?provPred2 ?provObj2 .

}
}

Query 2 Select all statements related to a single paper, including prove-
nance data. Optionally, include nested provenance data.

SELECT ?year (COUNI(DISTINCT ?paper) AS ?count) WHERE {
?paper a fabio:Work ;
fabio:hasPublicationYear ?year ;
?predicate tinygenius:artificial_neural_network .
} GROUPBY ?year

Query 3 Count the numbers of papers that are related to the “Artificial
neural network” resource. Group the results by year.

Query 1 demonstrates how statements can be retrieved based
on the NLP tools used to generate them. Query 2 queries all
available data for a single paper. A similar query is used in the
user interface to display paper data. Finally, Query 3 counts
all articles that are related to a specific resource, grouped by
year. The plotted result of this query is displayed in Fig.3
node 6. The resulting execution time indicates that the triple
store performs well, even for more complex queries such as
aggregating data from all papers in the graph.

5.3 User evaluation

We created an online evaluation environment to evaluate the
TinyGenius approach. We focused on evaluating the voting
widget, specifically targeting the microtasking aspect of our
approach.
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Fig. 4 Example of paper subgraph including provenance data. Grey
nodes represent metadata related to the work. Blue nodes indicate
NLP-generated knowledge for the respective paper. The dashed lines
represent provenance data for the statement. In this example, green

5.3.1 Experimental setup

In total, we recruited 11 participants. All participants are
researchers with a Computer Science background. We
adopted convenience sampling for the recruiting process.
Participants were asked to visit the online evaluation environ-
ment which guided them through the evaluation. An interac-
tive help guide explained the objectives of the evaluation and
what was expected from the participants. Additionally, sev-
eral interface components were highlighted and explained
in more detail. The appearance of the evaluation interface
mimics the design of the scholarly platform where we plan
to integrate TinyGenius. Interface components not needed
for the evaluation were either disabled or hidden. This is to
ensure participants are not leaving the page and potentially
not finishing the study.

Participants were asked to validate 114 statements com-
ing from ten different articles. These articles were sampled
from the dataset generated in the data evaluation section. The
ten most popular articles from this set are selected for eval-

nif:anchorOf  nif:endIndex

74
Object recognition

nodes indicate provenance data related to the context (i.e., the explana-
tion of how to NLP tool came to this result). The orange nodes represent
the data for a single user vote on the statement

uation.” The rationale for selecting popular articles is that
those articles are likely to contain relevant knowledge, hence
the popularity of the articles. From the selected articles, state-
ments were randomly selected and limited to three statements
per NLP tool. The random statement selection simulates
a realistic scenario where NLP tools generate statements
that are possibly clearly wrong, clearly right, or ambigu-
ous and therefore hard to assess for correctness. Notably,
the participants were not selected based on their knowledge
of machine learning. Our assumption is that this knowledge
is not required to perform the majority of the microtasks as
most tasks consist of relatively simple questions that do not
require deep domain knowledge.

After participants completed the microtasks, they were
asked to fill out a questionnaire. This questionnaire con-
sisted of 35 questions of which most are answered with a
5-point Likert scale, ranging from “strongly disagree” to
“strongly agree”. The questionnaire has several objectives,
including determining the attitudes towards the overall voting

> Top 10 based on popularity determined with https://github.com/
karpathy/arxiv-sanity-preserver.

@ Springer


https://github.com/karpathy/arxiv-sanity-preserver
https://github.com/karpathy/arxiv-sanity-preserver

A. Oelen et al.

approach, assessing how participants feel about the specific
microtasks, and gathering additional feedback. Furthermore,
the questionnaire contained two standardized evaluation
methods. System Usability Scale (SUS) [30] questions are
included to determine the usability of the voting widget
interface. Additionally, questions from the NASA Task Load
Index (TLX) [31] are included to assess the perceived task
load by the participants.

5.3.2 Evaluation results

A set of answers from the questionnaire is plotted in Fig.5.
The first five questions are related to the five NLP tools.
As can be observed from the results, microtasks related
to the CSO classifier (question 1), Summarizer (question
2), and Ambiverse NLU (question 4) are considered rela-
tively straightforward by the participants. On the other hand,
microtasks related to the Abstract annotator (question 3) and
Title parser (question 5) are considered more difficult. Most
likely this type of task requires more domain knowledge,
and possibly more knowledge about the actual article, as
participants have to decide whether a certain term is cor-
rectly classified. Furthermore, the results suggest that most
participants had sufficient context to answer questions and
that the “View paper PDF” button, and especially the “View
context” feature, were appreciated (question 8 and 9, respec-
tively). Question 10 and 11 give an indication of the required
domain knowledge according to the participants. While par-
ticipants are mostly neutral about the question whether
domain knowledge (in this case Machine Learning knowl-
edge) is required, some participants considered themselves
knowledgeable regarding this domain. This can introduce
bias regarding the task complexity, as knowledgeable partic-
ipants are more likely to underestimate the required skills.
The TLX outcomes are shown in Fig. 6. The average task
load is 33.79 (SD = 17.43), which is low compared to the
average of 45.29 determined by Grier [32] (lower is better).
The standard deviation is relatively high, indicating that some
participants considered the task more demanding than others.
This also becomes apparent from the question related to the
time needed to finish the evaluation. While some indicated to
be finished within 10 to 20 min, others needed considerably
more time, between 30 and 60 min, and one participant more
than 60 min. The perceived machine learning knowledge of
participants is displayed in Fig.5 question 11. However, the
time required to finish the task does not seem to correlate
with their knowledge of machine learning. The results from
the SUS evaluation are displayed in Fig. 7. The average SUS
score is 78.18 (SD = 11.68) which is considered “good”.
Finally, we evaluated the voting data produced by the par-
ticipants. In total, 1, 254 votes were collected. From these,
122 votes were “unknown”, meaning that participants were
not sufficiently confident to vote. To assess the agreement
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among participants, we determined the inter-rater reliabil-
ity from the voting data. The results are listed in Table 4.
Specifically, we calculated Krippendorff’s alpha [33], which
is used as a reliability coefficient when there are multiple
observers (i.e., participants) and missing data. In our case,
the “unknown” vote is considered missing data. The statistic
ranges from —1 to 1, where 1 means unanimous agreement,
0 no agreement apart from chance, and —1 means inverse
agreement [34]. We calculated the agreement per NLP tool.
Interestingly, a relatively large difference between the tools
can be observed. More agreement is found for the CSO classi-
fier and Ambiverse NLU, and less agreement for the Abstract
annotator and Title parser. This is in line with the results from
the participants’ own judgments related to the difficulty per
NLP tool (questions 1 to 5 in Fig. 5). The summarization tool
has a negative agreement, indicating that this type of task in
its current form is not producing meaningful results.

6 Discussion

We now discuss our methodology and evaluation in more
detail. Furthermore, we discuss the limitations and future
work.

6.1 System usage

The evaluation results indicate that the presented method is
promising and the proposed setup and infrastructure are suit-
able for the task. When the methodology is deployed in a
real-life setting, the knowledge graph quality can be sub-
stantially improved. Over time, more visitors will vote on
the presented statements, increasing the overall data accu-
racy. The user votes are stored as provenance data on the
statement level, providing the opportunity for downstream
applications to decide how to incorporate the validation data.
Incorrect data can simply be filtered out, but it is also possible
to perform more complex analysis on the validation data.
The generated knowledge graph comprises both correct
and incorrect statements, no matter if they are considered
to be invalid according to user votes. The adds an overhead
while querying the data, as the respective provenance data has
to be queried as well, in order to determine the correctness
of a statement. However, we deem the RDF* syntax to be
sufficiently intuitive to query provenance data, which reduces
the overhead from a user perspective. Another possibility is to
include an aggregated correctness score for each statement
which makes it possible to filter out incorrect statements,
without having to query the provenance data of a statement.
We did not include such a mechanism in the current setup,
as the usefulness of such solutions heavily relies on the use
case of the data. As mentioned before, in the end downstream
applications can decide how to handle incorrect statements.
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Fig.5 Questionnaire results
from the questions with a Likert
scale. The first five questions
relate to the specific NLP tools.
The remaining questions are
either about the use of the voting
widget or the participants’
knowledge of machine learning

Fig.6 Outcomes of the NASA
Task Load Index (TLX), using
non-weighted questions. Higher
values indicate more task load.
Line endings represent
minimum and maximum values.
Boxes represent the first and
third quartile

| think the questions in the form of...

1. ... “Is the paper related to the topic <topics>“ were easy to answer
2. ... “Does this summarize the paper correctly <summary>“ were easy to answer
2 [ I
3. ... “Is this statement correct <subject> <predicate> <object>" were easy to answer
2 4
4. ... “Is this term <word> related to <Wikidata concept>" were easy to answer
1 3
5. ... “Is <word> a <resource/method/material...> presented in this paper” were easy to answer
6 2
6. | think | would vote on statements when the voting widget is integrated in a scholarly platform

1 6

7. | had sufficient context to answers the questions
3 2
8. | think the “View paper PDF” button to visit the paper is a helpful feature
1
9. | think the “View context” button to show the abstract is a helpful feature
e T
10. I need knowledge about Machine Learning to correctly answer the questions
5
11. I have good knowledge of Machine Learning topics

1 5

Strongly disagree  Disagree Neutral Agree Strongly agree

100

1_gl1,

1. Mentally 2. Physically 3. Hurried or 4. Successful 5. Working 6. Insecure,
demanding demanding rushed accomplishing hard discouraged
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1. Use frequently

10. Learn a lot 5 2. Unnecessarily complex

4

9. Confident 3. Easy to use

8. Cumbersome 4. Need support

7. Learn quickly 5. Well integrated

6. Much inconsistency

Fig.7 Outcomes of the System Usability Scale (SUS) questions. Ques-
tions are abbreviated, and the full list of questions is provided by Brooke
et al. [30]. Answers are normalized so that higher scores mean better
usability (SUS uses alternating positive and negative questions to reduce
response bias)

Table4 Aggregated results from the voting task, grouped by NLP tools.
Krippendorff’s alpha indicates the agreement among the participants

Tool name Krippendorff’s o Votes
CSO classifier 0.31 330
Ambiverse NLU 0.36 330
Abstract annotator 0.021 330
Title parser 0.14 154
Summarizer —0.032 110

The data and performance evaluations show that the cur-
rent setup performs well and is able to handle the scale of
the knowledge graph without major issues. Naturally, more
complex queries will result in increased execution time, espe-
cially when the knowledge graph grows in size. However, we
limited our performance evaluation by running queries that
are needed to render the user interface. One of the require-
ments for web applications is that loading times should be
low, preferable below two seconds, which is considered a
tolerable waiting time for web users [35]. As the evaluation
results indicate, it is indeed possible to load the page within
this time frame. Here, we specifically focused on machine
learning articles from the arXiv corpus. Some of the selected
NLP tools are domain models, specifically trained on Com-
puter Science. However, our approach is not limited to this
domain. By design, the system is modular and can be gener-
alized to support other domains and NLP tools.

The generated knowledge graph provides opportunities
for multiple data consumption use cases. For example, by
linking concepts between articles, scientometrics can be con-

@ Springer

ducted on the data. This includes methods to plot research
trends over time or to find related papers by means of com-
monly used materials and methods. By making the data
accessible via SPARQL, we provide a powerful interface to
support such use cases. Query 3 is an example for research
trend analysis. Other use cases include data exploration inter-
faces, such as a dynamic faceted search to more effectively
find research articles. Due to the availability of structured
data, it becomes possible to perform precise search queries.
Implementing data consumption use cases is out-of-scope for
this work and will be part of future work.

6.2 System usability

The user evaluation indicated that the usability of the voting
widget is good. This finding is also supported by the addi-
tional results from the questionnaire. The preliminary user
evaluation gives an impression of the overall approach and
guides further development. The inter-rater reliability out-
comes are relatively low. This is expected as annotators were
not trained and had only little information on how to per-
form the task. If more extensive annotation guidelines were
provided, the agreement among annotators is expected to
increase. However, this goes against the principle of having
low-context and easy-to-perform microtasks. Furthermore,
the agreement seems to also depend on the type of micro-
task. Entity linking and topic modelling tasks are arguably
more straightforward than named entity recognition tasks,
which are generally more ambiguous and therefore harder to
evaluate. Additionally, the summarization task seems unsuit-
able for our microtask. Often, a summary is not considered
completely wrong or right, which makes it unsuitable for a
binary voting task. For future work, we plan to extend the
voting widget with a score slider to allow for interval scoring
for this specific task.

6.3 Limitations

Due to the low number of participants, no statistical con-
clusions can be drawn from the results. Consequently, we
cannot make definite conclusions about how suitable the
selected microtasks are to generate a high-quality knowl-
edge graph. However, we selected our evaluation methods
based on the low number of participants, for example, the
System Usability Scale (SUS) is a reliable statistic for small
sample sizes [36]. The homogeneity of the population (i.e.,
all participants had a Computer Science background) makes
further evaluation necessary. Yet, we deem this a realistic
setup, since the microtasks can be allocated to crowd-workers
with a respective background. Therefore, although the micro-
tasks generally do not require domain knowledge, high-level
knowledge can be expected from the crowdsourcing par-
ticipants due to predefined task allocation. Finally, certain
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Creating such a knowledge graph
requires manual effort and domain
experts, and is therefore time-
consuming and cumbersome.

Y 1 hur In-the

v

Professor John Doe

Your score
I
0 66 100

The sentences contains:

Background knowledge

3 &3 &5

L
10 seconds left for bonus score

Fig.8 Prototype of a gamification user interface using the TinyGenius methodology. The player has to advance in their scientific career by solving

the displayed tasks

domains are presumably more suitable for crowdsourcing
microtasks than others. In this work, we did not consider
different fields, which we consider a limitation of this work.

6.4 Future work

The current setup implements the voting widget within
a scholarly knowledge graph infrastructure. However, for
future work, we envision the widget to be implemented
within external systems as well. Due to the simplicity of
the task, the widget can be integrated into third-party sys-
tems and different settings. For example, arXiv provides a
section “arXivLabs” where additional information related to
a publication can be displayed. This section is suitable for
TinyGenius-related data as well, providing opportunities to
collect additional user votes. Furthermore, data can be col-
lected in a casual microtasking setting [37]. For example,
data can be collected via Twitter where questions are asked in
Tweets and answers can be provided viacomments. Although
the voting setup will be different than presented within our
work, the same underlying knowledge graph and data model
can be used.

Additionally, we plan to leverage the TinyGenius method-
ology within a gamification approach. A prototype of such an
implementation is depicted in Fig. 8. Also with this approach,
the underlying data model is the same. Completed tasks
within the game environment generate voting data for the
displayed statements, contributing to the validation of the
knowledge within the graph. Compared to the voting widget
(displayed in Fig. 3), the gamification interface provides extra
incentives for users to vote on statements. By making the cor-
rect votes, they make progress in the game and advance to
the next levels. Gamification has been applied in businesses,
politics, health, and education [38]. We therefore consider
a gamified graph validation approach as a promising future
research direction.

7 Conclusion

We presented TinyGenius, a methodology to validate NLP
statements using microtasks. We applied and evaluated Tiny-
Genius in the scholarly domain. The method combines
machine and human intelligence resulting in a synergy that
utilizes the strengths of both approaches. Firstly, a set of NLP
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tools is applied to a corpus of paper abstracts. Secondly, the
resulting data are ingested in a scholarly knowledge graph.
Finally, the data are presented to users in the form of micro-
tasks. By utilizing microtasks, the data are validated using
human intelligence. The performance evaluation indicated
that the used triple store is able to handle the data quantity
without issues. The user evaluation showed that the usabil-
ity of the system is good. We deem this work to be one of
the first, which truly combines human and machine intelli-
gence for scholarly knowledge graph creation and curation.
This combination needs much more attention, since there are
many important use cases, where machine intelligence alone
can (e.g., due to the missing training data) not produce useful
results.
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