
Machine Vision and Applications (2023) 34:42
https://doi.org/10.1007/s00138-023-01391-5

SPEC IAL ISSUE PAPER

Video2Flink: real-time video partitioning in Apache Flink and the cloud

Dimitrios Kastrinakis1 · Euripides G.M. Petrakis1

Received: 14 July 2022 / Revised: 2 January 2023 / Accepted: 5 March 2023
© The Author(s) 2023

Abstract
Video2Flink is a distributed highly scalable video processing system for bounded (i.e., stored) or unbounded (i.e., continuous)
and real-time video streams with the same efficiency. It shows how complicated video processing tasks can be expressed
and executed as pipelined data flows on Apache Flink, an open-source stream processing platform. Video2Flink uses Apache
Kafka to facilitate the machine-to-machine (m2m) communication between the video production and the video processing
system that runs on Apache Flink. Features that make the combination of Apache Kafka and Apache Flink a desirable solution
to the problem of video processing are the ease of customization, portability, scalability, and fault tolerance. The application
is deployed on a Flink cluster of worker machines that run on Kubernetes in the Google Cloud Platform. The experimental
results support our claims of speed showing excellent speed-up results for all tested video resolutions. The highest (i.e., more
than seven times) speed-up was observed with the videos of the highest resolutions and in real time.

Keywords Video processing · Video shot detection · Apache Flink · Apache Kafka · Kubernetes

1 Introduction

High-resolution video data are constantly being produced
in a wide range of application fields ranging from surveil-
lance and cinema to social media and streaming platforms
of entertainment or news content. This generated the need to
process video in real time (i.e., as quickly as it is produced).
Extracting meaningful descriptions from videos is the first
step toward content understanding as well as indexing and
searching by content. The first step toward this process is the
detection of consecutive frames showing continuous action
in time and space, referred to as shots.

Processing in-stream video from online video sources in
real time is still a research problem that merits further con-
sideration. Compressed (e.g., MPEG-4) video is typically
more complex to process especially when it is not converted
to raw format first. On the other hand, processing raw video

Dimitrios Kastrinakis and Euripides G.M. Petrakis these authors
contributed equally to this work.

B Euripides G.M. Petrakis
petrakis@intelligence.tuc.gr

Dimitrios Kastrinakis
dkastrinakis1@tuc.gr

1 School of Electrical and Computer Engineering, Technical
University of Crete (TUC), 73100 Chania, Crete, Greece

can providemore accurate content results but requires a great
amount of memory space and significant bandwidth. Single
frames of raw video can reach sizes of over 6 megabytes (for
a typical 1920x1080 resolution colored video). Frames of
this size are too big to process without splitting them up into
smaller parts. In video production, multiple videos need to
be processed simultaneously in real time. This might require
the deployment of video processing solutions on large infras-
tructures such as the computer grid or the cloud. Minimizing
the monetary and energy cost of a solution is a challenging
problem.

Video2Flink handles video segmentation as a stream
processing problem [13] to take advantage of the latest devel-
opments in data processing using stream processing and
virtualized platforms (e.g., the cloud). A substantial advan-
tage of the approach is that it makes the implementation of
video processing independent of the hardware platform so
that it can be easily replicated (i.e., ported) to servers or
the cloud of different vendors. Video2Flink platform runs
on a Kubernetes (K8s) [2,14] cluster in the Google Cloud
Platform (GCP). Most cloud providers offer Kubernetes as a
service to developers to support efficient application deploy-
ment, orchestration, and monitoring.

Apache Flink [6] is the state-of-the-art native real-
time analytics engine for bounded and unbounded data
streams in the database, data analytics, and machine learning

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00138-023-01391-5&domain=pdf
http://orcid.org/0000-0001-7436-5852

 42 Page 2 of 15 D. Kastrinakis, E.G.M Petrakis

application domains. Video2Flink shows how complicated
video processing tasks can be expressed and executed as
pipelined fault-tolerant dataflows on Apache Flink. Overall,
Video2Flink is a cost-effective, easy-to-implement system
for processing high-resolution video in real time. The solu-
tion combines Apache Flink with Apache Kafka [18,25] a
state-of-the-art publish-subscribe platform whose purpose
is to facilitate machine-to-machine (m2m) communication
between the video production and the video processing sys-
tem that runs on Apache Flink.

The videos are generated at one end (the video producer)
and are split into smaller blocks that are easier to transfer
in a highly distributed system and process in parallel. The
blocks are evenly distributed to multiple Apache Kafka par-
titions. An equal number of parallel Apache Flink pipelines
consume that data simultaneously. They process each block
by applying a series of transformations (i.e., Flink operators).
The sum of these transformations leads to detecting camera
shots (i.e., camera breaks and gradual transitions).

Scaling this system up is realized by simply increasing the
number of partitions for the input data in an Apache Kafka
topic as well as by configuring the Apache Flink application
with higher parallelism. This allows Video2Flink to process
multiple videos of different resolutions simultaneously at the
frame rate of each video (i.e., 24 frames per second or faster).
Additional desirable characteristics of Video2Flink are (a)
cost-effectiveness: only the required computing nodes are
utilized (i.e., in the cloud, the end-user is charged per use of
computer resources); (b) scalability: Video2Flink can take
advantage of auto-scaling features of Kubernetes [14] (i.e.,
the number of compute nodes is determined automatically);
and (c) portability: Kubernetes enables deployment of the
application on server infrastructures and in the cloud.

Related work is discussed in Sect. 2. Issues related to
Video2Flink architecture design and implementation are dis-
cussed in Sects. 3 and 4, respectively, followed by an analysis
of its performance in Sect. 5. Conclusions and issues for
future work are discussed in Sect. 6.

2 Related work and background

Video segmentation is the process of partitioning video into
meaningful sequences of frames based on similarity [23,26].
It is a fundamental problem in video content application
domains that acquire, produce, or distribute video content
such as robotics, surveillance, video conferencing, sports,
and the Web. It plays an important role in video production
for improvingviewing experience andmonetizing content [1]
(e.g., for finding where to insert a break for advertisements,
creating promotional videos using representative shots, and
for creating video summaries). The use of summaries and
keyframes reduces video data and enables video indexing,

browsing, and retrieval in large video repositories of the video
provider (e.g., in Video of Demand).

Video segmentation can be also formulated as a classifica-
tion problem on pixels or objects. This is referred to as video
object segmentation [16] (i.e., detecting frame sequences
with an object of interest) and paves the way to seman-
tic video segmentation [8], a far more complex problem
that aims at the complete understanding of video content
by detecting human-understandable concepts in scenes (e.g.,
an event or a person of interest). This, in turn, lays the foun-
dation for video analytics [4] for mining valuable insights
fromvideo and exploiting this information to reach a business
objective (e.g., increasing sales, car collision avoidance, etc.).
The renaissance of machine learning and deep learning over
the past few years has delivered a new generation of semantic
video segmentationmethodologies that promise good perfor-
mance [17]. However, object or semantic video segmentation
methods, in addition to being intrinsically and inextricably
linked to video content, often suffer from reduced accuracy
and non-real-time performance.

Histogram techniques for video segmentation are popular
for being fast, reliable, and independent of the application
domain [3]. A camera break indicates the simplest form of
the boundary between two different shots. A more complex
form of shot change can be a gradual transition such as a
fade-in or fade-out, a dissolve, or a wipe. Cameramovements
(e.g., pan and zoom) can be considered a boundary between
two shots. The textbook approach for detecting video shots
relies on the comparison of intensity level histograms of adja-
cent frames. This comparison is largely unaffected by slow
camera movements and general in-shot object motion since
it ignores spatial changes inside a frame.

SDi =
G∑

j=1

‖Hi (j) − Hi+1(j)‖. (1)

SDi is normalized by M × N , the total number of pixels in
the frame. If the sum of differences between two adjacent
frames is higher than a given threshold Tb, a camera shot is
detected. A good threshold Tb will increase the accuracy of
the method. Low thresholds might allow many false posi-
tives, while an attempt to catch camera shots with a tighter
threshold would be prone to missing some true transitions.
Tb can be determined experimentally (i.e., by calculating all
full-length histogram differences on the video) and by the
formula Tb = μ + α · σ , where μ and σ are the median
and standard deviation, respectively, of the frame-to-frame
differences and α is a constant. Experimental evidence [26]
indicates that a good value for α is between 5 and 6. Under a
Gaussian distribution, the probability that a frame difference
that does not belong in a transition will be over this threshold
is close to zero. For detecting gradual transitions, the Twin-

123

Video2Flink: real-time video partitioning... Page 3 of 15 42

Fig. 1 A sequence of histogram differences with a camera cut, and a
gradual transition between frames Fs and Fe

Fig. 2 Accumulated sumof differences surpassing Ta and Tb thresholds
(red and yellow dashed lines)

Comparisonmethod applies a second lower threshold Ta too.
If a frame-to-frame difference, calculated with Eq. 1 is over
Ta , the frame is marked and the next differences are contin-
uously summed up. If the accumulated sum of differences is
over Tb, then a gradual transition is found. The accumulation
of the differences continues until a single frame-to-frame dif-
ference drops below the Ta threshold. Figure1 illustrates the
detection of both types of camera shots. Figure2 shows the
accumulated sumof histogram differences to detect a gradual
transition.

The problem with video processing is the performance
especially when video data become big, or acquired in real
time (e.g., streaming video). Video processing on a single
machine cannot be a real-time process. Several attempts (e.g.,
Parallel Horus [21]) take advantage of distributed and paral-
lel processing infrastructures (e.g., a grid of machines) and
reported significant speed-up compared to the processing
of the entire video on a single machine. Video is split into
smaller chunks, and video frames (one from each chunk) are
processed individually on different machines. This allows
a high degree of parallelization with excellent (i.e., many
times) speed-up for batched video. The authors report 45:1
speed-up (compared to a sequential implementation) on a
grid with 64 servers. The solution cannot work with online
data sources (i.e., streaming video). Along the same lines,
streaming video engine (SVE) [11] is a parallel video pro-
cessing framework for Facebook. The videos are split into
smaller chunks (i.e., 2min at the most) that are processed
separately on a large cluster of machines. The processing
tasks include encoding, segmentation, and video track extrac-

tion. SVE parallelizes the storing of videos while processing.
Although faults are inevitable due to the incomplete control
of processing massive video data, SVE managed to improve
system reliability with no impact on latency. SVE achieves a
speed-up ranging from two times for short videos (i.e., up to
1MB size) up to nine times for large videos (i.e., 1GB size or
more). SVE is designed for processing stored videos rather
than video streams in real time as Video2Flink does.

SIAT [24] is a distributed video processing framework
that provides multiple video analytics services such as video
encoding, RGB to grayscale conversion, keyframe extraction
shape extraction, compression, segmentation, and classifica-
tion. It uses Apache Kafka to distribute video to multiple
server machines on the cloud and canworkwith both streams
andbatches of data. To achieve high throughput, SIATdefines
separate topics and multiple partitions in Apache Kafka for
different processing and analysis tasks. The video process-
ing layer is built on top of Apache Spark [22] in conjunction
with OpenCV [19]. SIAT achieved up to 3.5 times speed-
up. Similar to Video2Flink, SIAT is designed for processing
video streams. Video2Flink achieved an even higher speed-
up by decomposing the video into smaller chunks (i.e., pixel
blocks) and by applying operations at an even lower (i.e.,
pixel) level than SIAT.

RIDE (2018) [12] is a real-timemassive image processing
platform on a distributed environment of server machines on
the cloud to take advantage of both coarse and fine-grained
parallelism (i.e., across multiple machines and multiple CPU
or GPU cores). RIDE shares similar ideas with Video2Flink
and exploits Apache Kafka for distributing video stream
input from multiple sources (e.g., satellites, surveillance
cameras) to multiple topics (i.e., one per source type). Mul-
tiple workers are assigned to process videos on multiple
topic partitions of each video source (i.e., topic). The authors
reported up to 5:1 speed-up on six servers (virtual machines)
in the cloud. Similar to Video2Flink, video frames are split
into blocks for finer parallel processing. To avoid commu-
nication overhead, all parts of the same frame are sent to
the same worker. As a result, it is possible that some work-
ers remain idle. Compared to Video2Flink, RIDE relies on a
custom implementation of both hardware and software. As
such, the solution is less principled and hardly replicable.
Instead, Video2Flink is replicable and portable to servers or
the cloud running Apache Flink (a popular and open-source
stream processing platform).

Table 1 summarizes all methods reviewed above and
their comparison with Video2Flink. Video2Flink is the only
method to achieve high speed-up for real-time (stream) video
processing or on non-dedicated hardware infrastructures.
Parallel Horus or SVE also reported a significant speed-up on
custom software and hardware infrastructures and for stored
video only.

123

 42 Page 4 of 15 D. Kastrinakis, E.G.M Petrakis

Ta
bl
e
1

V
id
eo

pr
oc
es
si
ng

sy
st
em

s:
co
m
pa
ri
so
n
ba
se
d
on

sy
st
em

fe
at
ur
es

Pr
op
er
tie
s
sy
st
em

A
pp
lic
at
io
n

Pr
oc
es
si
ng

un
it

H
ar
dw

ar
e
pl
at
fo
rm

So
ft
w
ar
e
pl
at
fo
rm

Ty
pe

of
pr
oc
es
si
ng

M
ax
im

um
sp
ee
d-
up

H
or
us

O
bj
ec
td

et
ec
tio

n
Im

ag
e
fr
am

es
G
ri
d

C
us
to
m

B
at
ch

45
:1

(6
4)

SV
E

V
id
eo

se
gm

en
ta
tio

n
V
id
eo

se
gm

en
ts

G
ri
d

C
us
to
m

B
at
ch

9:
1
(N

/A
)

R
ID

E
V
id
eo

an
al
yt
ic
s

Im
ag
e
bl
oc
ks

C
lo
ud

K
af
ka
,H

ad
oo
p

R
ea
lt
im

e
5:
1
(6
)

SI
A
T

V
id
eo

an
al
yt
ic
s

Im
ag
e
fr
am

es
C
lo
ud

K
af
ka
,S

pa
rk
,H

ad
oo
p

R
ea
lt
im

e
3.
5:
1
(N

/A
)

V
id
eo
2F

lin
k

V
id
eo

se
gm

en
ta
tio

n
Im

ag
e
bl
oc
ks

C
lo
ud

(K
8s
)

K
af
ka
,F

lin
k

R
ea
lt
im

e
7.
5:
1
(8
)

3 Video2Flink architecture

Apache Flink provides a toolbox of operators for implement-
ing transformations on data streams (e.g., filtering, updating
state, aggregating). The data flows or Jobs (i.e., operations
chained together) form directed graphs (Job Graphs) that
start with one or more sources and end at one or more sinks.
The Flink cluster consists of a Job Manager and a number
of Task Managers (workers). The Job Manager controls the
operation of the entire cluster: schedules the workers, reacts
to finished or failed tasks, load balances the workload among
Task Managers, and coordinates checkpoints and recovery
from failures. The Task Managers are the machines (servers)
that execute the tasks of a workflow. A task represents a
chain of one or more operators that can be executed in a sin-
gle thread or server. A task can be executed in parallel (on
separate Task Managers). Each parallel instance of a task is
a subtask. The number of subtasks running in parallel is the
parallelism of that particular task.

Apache Flink receives data records (or events) from
streaming sources such as Apache Kafka? [18,25]. Apache
Kafka is an open-source platform that reads data streams in
parallel from application sources such as databases, sensors,
mobile devices, and cloud services. The workload represents
the number of records per second the system receives. Fea-
tures that make Apache Kafka popular are its customization,
portability, scalability, fault tolerance, and security. It applies
a custom binary protocol based on TCP and employs a clus-
ter of brokers in order to maintain good performance. The
messages are categorized into topics, and for each topic, the
messages are published to disk partitions. Each publisher
specifies the topic and the partitions to publish and writes
the messages to the partitions in a round-robin fashion. Each
new message is written (as a byte array) at the end of a parti-
tion. As the message load increases, the brokers, the storage
as well as the number of subscribers have to increase too to
prevent bottlenecks. If the number of brokers is not sufficient
to handle the message load, messages may be lost (the pro-
ducer requests will time-out). Throughput increases with the
number of partitions and with the number of consumers that
read messages in parallel. The number of consumers reading
messages from a topic cannot be greater than the number of
partitions.

The system comprises the Clients, the Kafka broker, and
the Flink cluster. Each client reads a video and extracts its
frames. The input video of Fig. 3 is split into frames, and
each frame is split into smaller parts (or blocks). Each block
is uniquely identified by a key. Each key–block pair forms
a message. The messages of a frame are evenly distributed
to the Kafka partitions. Each video producer (application)
specifies the partitions to publish and writes the messages to
these partitions in round-robin. Throughput increases with
the number of partitions and with the number of Flink (com-

123

Video2Flink: real-time video partitioning... Page 5 of 15 42

Fig. 3 Video splitting into frames and into a sequence of blocks

pute) nodes processingmessages. The number of Flink nodes
equals the number N of Kafka partitions.

Figure 4 illustrates three clients (on the left) that send
video to N Apache Kafka partitions. In Apache Flink, the
messages can be categorized into topics. In Video2Flink,
there is one input topic for all video producers. This topic can
acceptmore than one video (of any resolution and frame rate)
in parallel. On the right of Fig. 4, N parallel Flink pipelines
request data from the Kafka broker. Each pipeline reads from
one partition of the input topic. If any shot is detected, it is
announced at the output topic of the Kafka producer. The
output topic has one partition. The Flink cluster comprises a
number of Flink nodes that apply a sequence of five opera-
tions (in a pipeline) that readmessages fromKafka partitions.

Data can move between worker machines. This adds
additional flexibility in defining complex sequences of oper-
ators to accomplish even complicated processing tasks. The
first operator (A) transforms these pixel data to grayscale if
encoded in RGB. If the blocks are in grayscale, the operator
is skipped (i.e., forward the grayscale pixel data to the next
operator). The next operator (B) generates the histogram of
the intensity of each grayscale block it receives. Next, all the
histograms generated from all the blocks of a single frame
are forwarded to a single operator (C). There, the block his-
tograms of each frame are all summed together to produce the
total histogramof that frame. The next operator (D) computes
the difference between the histograms of adjacent frames.
The last operator (E) receives checks for differences that sur-
pass threshold Tb. In that case, a camera break is detected.
This operator also searches for potential gradual transitions.
This requires that the differences are kept in the memory; all
the differences of adjacent frames exceeding threshold Ts are
accumulated and their sum is checked against threshold Tb.
In that case, a shot is detected as a result of a gradual change.
Key generation Each block is assigned a key. Figure5 is an
example of a block key. It contains the unique identifier of
the video (a and b). It also contains the identifier of the block
itself (h) and the frame it came from (g). Component (a)
is the time when the video started being read by the client

(in milliseconds since the Unix epoch); component (b) is a
random integer between 0 and 10,000. Together, (a) and (b)
compose a unique identifier for each video. Component (c)
is the resolution and (d) is the total number of frames. Block
size is defined in (e). It indicates how many rows each block
contains. If the frame’s height is known, the number of blocks
per frame can be calculated. Part (f) of the key represents the
encoding of the pixel data; 0 is for grayscale and 1 for RGB
color. Based on keys, Flink operations know exactly how to
distribute the blocks among operations in different pipelines
which is essential for accomplishing the required processing.
Video format Video2Flink can process video in grayscale
or in a color format using either raw RGB (RGB888) or
YUV (YUV420p) encoding. In RGB888, there are 24 bits
per pixel (8 bits per color channel). The first Flink operator
will transform it to grayscale data (8 bits per pixel) using the
formula

Y ′ = 0.299R + 0.587G + 0.114B, (2)

where R,G, and B are the original red, green, and blue image
components, respectively, and Y ′ is the gamma-corrected
light-intensity (i.e., grayscale) value that takes into account
the gamma compression that occurs when creating a color
image, and the increased sensitivity toward lower luminance.
In the YUV420p encoding, the Y component of each frame
is the grayscale frame. The client reads the grayscale frame
and sends it to Kafka. Each frame’s U and V components are
skipped from the file stream.YUVencoding saves bandwidth
and processing time on the Flink cluster since no grayscale
conversion is necessary.
Block size Splitting a video frame into multiple smaller parts
allows to parallelize the processing of a single frame on mul-
tiple worker nodes. Smaller blocks of data obviously require
less processing power to be processed, and this, in turn,
allows the use of multiple weaker worker nodes instead of
fewer and larger ones. If the Flink cluster uses more powerful
nodes, a larger size for each block can be set. Alternatively,
with weaker nodes, a much smaller size can be configured.
This allows using the Flink cluster and its resources opti-

123

 42 Page 6 of 15 D. Kastrinakis, E.G.M Petrakis

Fig. 4 Video2Flink abstract architecture

Fig. 5 Example block key

mally. If Video2Flink accepts different videos in the input
and each block has the size of a single row, then Video2Flink
can runwith different block sizes (e.g., for different video res-
olutions). For a 2560x1440 resolution color frame (24 bits per
pixel, 8 bits per color channel), there will be 1,440 blocks,
7.5KB each. For a grayscale frame, the size of a block is
exactly one-third of the previous value (i.e., 2.5KB). How-
ever, the size of a block need not be equal to the size of a
row. The configurability of the block size is an advantage on
its own.
Acknowledgment of receipt Apache Kafka is responsible for
providing Apache Flink with data. Each block can be sent at
most once no matter whether it is received or not by Flink
or can be sent at least once provided that an acknowledg-
ment of receipt has been received by the publisher (i.e., if a
message is not received it is re-routed to be resent). Apache
Kafka supports three levels of acknowledgment.Video2Flink
applies to the lowest level (i.e., a producer does not wait for
any acknowledgment). The messages are sent at most once,
asynchronously, and are immediately considered sent. This
improves the latency (and the throughput), but the producers
will not be notified if a message is not received. As will be
shown in the experiments, evenwith very high input through-
put, all messages are received.
Flink pipeline The pipeline can process both streams and
batches of raw video data. Multiple videos can be processed

concurrently. They can have different resolutions, encodings,
or even block sizes. The distinction between them is achieved
through the unique key that the clients generate for each
block. Each frame is split into K blocks which are evenly
distributed in the N partitions of the input topic.

Video2Flinkdefinesfiveoperators in eachpipeline denoted
by the letter A, B, C , D, and E. A pipeline is a single set of
instances of different operators (e.g., A.1 → B.1 → C .1 →
D.1 → E .1, or A.1 → B.1 → C .3 → D.2 → E .1 in
Fig. 4). A Video2Flink application can run with only one
pipeline or multiple. Each operator either processes its input
data immediately (e.g., operator A and B) or waits for multi-
ple input data (e.g., operatorsC , D, E). Some operatorsmake
use of a local on-memory keyed state. Each operator A is cou-
pled with a Kafka consumer that consumes (i.e., processes)
messages from a partition of the input topic. Likewise, each
operator E is coupled with a Kafka producer that produces
the application’s output messages to the output topic. The
arrows between the operators indicate the redistribution of
data among operations and pipelines during the processing.

There are N instances of each operator working in par-
allel (i.e., the parallelism is N). The optimal parallelism of
the system is estimated experimentally or can be determined
automatically by an auto-scaler agent [9].
Keyed state A normal stream of data (e.g., the output of all
parallel instances of Operator B) can be transformed into
a keyed stream based on a key (e.g., each frame’s unique
identifier). This is used to group the related results of all
the previous operator instances (e.g., all partial histograms
of a frame). Each group of related results will be processed
together on the same instance of the next operator. For each
specific key, a state is created. The state of each key is stored
in a single operator instance.All output of the previous opera-
tor with the same key will be redirected to that same operator

123

Video2Flink: real-time video partitioning... Page 7 of 15 42

instance. Figure6 illustrates an example data flow between
operator B and operator C . Operator B outputs partial his-
tograms. Operator C receives the partial histograms of each
frame and outputs the full histogram. The partial histograms
of frame 1 of video 1 (denoted as Frame1_Video1) are all
sent to the instance C .1 of operator C . There, the partial
histograms are summed up and sent to the next operator. In
order to sum the partial histograms that will arrive at different
times, that key’s associated state is used to store them locally.

4 Video2Flink operators

Video2Flink defines five operators plus a Source operator
(Kafka consumer) and a Sink operator (Kafka producer).
Each operator applies a single transformation and has N
instances that work in parallel. The number of partitions for
the input Kafka topic is always set to the same value.
Source operator It is the host of a Kafka consumer that
requests messages from the input topic. Each consumer is
automatically assigned a specific partition. No other con-
sumer can use the same partition. The messages from the
input topic contain the block pixel data and that block’s
unique key. The different key components are parsed in order
to be used by the operators. The key and raw pixel data are
sent to operator A.
Operator A: RGB to grayscale transformation If the input
block is in color (24 bits per pixel), it will be converted to
grayscale (8 bits per pixel). Otherwise, it is simply forwarded
to the next operator unchanged. Figure7 illustrates this pro-
cess. The operator identifies if it’s in color or in grayscale by
the block’s key.

If K is the number of blocks of a frame and N is the
parallelism of the operator, then each instance of operator A
will process K/N blocks per frame. Each block that arrives in
theKafka consumer from the input topic is sent to the pipeline
of operator A. Each instance of operator A converts each
input block to grayscale (if needed) ignoring which frame or
video each block it comes from. Figure 8 details this process.
Operator B: block histogram computation This operator
receives blocks with grayscale pixel data. For each input
block, its intensity histogram is computed. As shown in
Fig. 8, the output of this operator is redistributed across oper-
atorsC based on the identifier of the source frame (i.e., in the
key of each block) so that each operator C receives data (i.e.,
block histograms) of the same frame.Whenever a new partial
histogram arrives, the operator uses its corresponding state
(e.g., the state assigned to key Frame10_Video3) to identify
the video and the frame it comes from. Figure9 illustrates
this process.

In Fig. 8, four partial histograms of the same frame are
routed from operator B (i.e., from all instances of operator
B) to operator C .1 Similarly, a different set for four partial

histograms of another frame (from the same or from a differ-
ent video) are routed to operator C .2. Similar to operator A,
each instance of operator B will process K/N blocks of data,
per frame for each video and will output the same number of
partial histograms. Operator A, operator B, and the source
Kafka consumer are chained together and are co-located in
the same thread. No data redistribution between these remote
operators occurs. This increases the performance and latency
of these operators, by reducing the communication overhead
to the next operators.
Operator C: full-frame histogram computation The operator
receives the histograms of all the blocks of a frame. The
operator sums up all the partial histograms and generates the
total histogram of that frame. If a frame is split into K blocks,
then the operator will wait for K blocks and then will output
the histogram. The operation times out after a few seconds
and the histogram is computed with the partial histograms
received up to this time.Multiple frames can be processed on
the same operator concurrently, even from different videos.
Each output (i.e., full histogram of a frame) is sent out twice,
each time with a different key for adjacent frames in order to
compute the difference between any two consecutive frames
at the next operator D.

In Fig 12, each instance of operator B outputs K/N partial
histograms (only 4 shown). All partial histograms of frame
1 from video 1 (with key Frame1_V ideo1) are routed to
operatorC .1 (i.e., the first instance of operatorC). Similarly,
all partial histograms of each frame are routed to an instance
of operator C . The same operator instance will output that
specific frame’s full histogram. The routing of the keyed data
to the correct operator instances is handled by Flink.
Operator D: histogram difference computation The operator
receives the histogram of two adjacent frames and com-
putes their difference. A key is used for every two sequential
frames. For example, for four example frames, F1, F2, F3,
F4, three keys are created: F1_F2, F2_F3 and F3_F4. For
each key, a unique state is created and stored on an operator
instance. To distinguish between frames of different videos,
the identifier of each video is also added to each key. Fig-
ure11 visualizes this process.

Each full-frame histogram is routed twice by the previous
operator C . For example, operator C sends the histogram of
frame F3 twice, once with key F2_F3 and a second time
with key F3_F4. Figure12 illustrates the distribution of his-
tograms from operator C to operator D. The histogram of
frame F3 with key F2_F3 will be compared against the his-
togram of frame F2 (with the same key) on operator instance
D.2 (i.e., the second instance of operator D). That operator
instance will output their difference. Likewise, in operator
D.3, the difference between frame F3 and F4 will be cal-
culated. Each parallel operator instance will hold data of
multiple keys (keyed states). For each key, it waits for the
histograms of two adjacent frames to arrive. When the first

123

 42 Page 8 of 15 D. Kastrinakis, E.G.M Petrakis

Fig. 6 Example data flow with
local key-value state

Fig. 7 Operator A

Fig. 8 Graph of operators A and B

123

Video2Flink: real-time video partitioning... Page 9 of 15 42

Fig. 9 Operator B

Fig. 10 Operator C

histogram arrives, it saves it in the key’s local state. When
the second histogram arrives, it calculates their difference
and outputs the result.
Operator E: shot detection The operator receives all his-
togram differences between all adjacent frames and outputs
shot changes (camera cuts and gradual fades) to the out-
put topic. A key is also used on this operator, to distinguish
between different videos being processed. The histogramdif-
ferences do not come in order. The histogram differences are
grouped based on the identifier of the video they come from
(e.g., V ideo1) by assigning them the same key.All histogram
differences with the same key are routed to the same opera-
tor instance. The histogram differences from V ideo1 (black
arrows) are all sent to instance E .1. Likewise, all histogram
differences from V ideo2 are sent to instance E .2 (purple
arrows). In each instance, the histogram differences of the
same video share a local state. Figure13 provides a detailed
view of the operator.

Each instance of operator E checks for differences that
surpass threshold Tb. In that case, a camera break is detected.
It also searches for potential gradual transitions. This requires
that the differences are kept in thememory; all the differences
of adjacent frames exceeding threshold Ts are accumulated
and their sum is checked against threshold Tb. In that case,
a shot is detected as a result of a gradual change. Any shot
detection messages from that operator instances are sent to
the Kafka output topic.

The histogram differences are generated without taking
into account the order of the frames. A priority queue on each
instance of E operator holds all the histogram differences of
each video that has arrived. The top element of the priority
queue is always the earliest available histogram difference.
Whenever the next histogram difference is required (by the
shot detection algorithm), the operator first checks the top
element of the queue. If found, it continues with the shot
detection algorithm. Otherwise, it waits. In the meanwhile,
the arriving elements are inserted into the queue. Figure14
illustrates the priority queue on operator E .1.
Sink operator The results of the above sequence of opera-
tions are aggregated and reported at the output for each video
separately. Figure15 illustrates the mapping or Flink opera-
tor instances to N Flink nodes (i.e., parallelism = N). Each
node is the host of 5 operator instances. Operator instances
chained together are mapped to the same thread. For the sake
of simplicity, each node in Fig. 15 has four threads.

5 Experiments

All methods referred to in Sect. 2 (related work) use ded-
icated or proprietary platforms (e.g., a grid) that cannot be
replicated in the Google Cloud Platform (GCP) of our exper-
iments nor they are available to us. Our main concern is to
demonstrate the efficacy of Video2Flink based on compari-
son results reported in the literature (Table 1). The purpose
of the following set of experiments is twofold: (a) to confirm
that theVideo2Flink shot detectionmethodworks as intended
(i.e., detects all shots correctly without missing any) and (b)
to prove that Video2Flink achieves a significant speed-up
compared to its sequential counterpart (i.e., running on a sin-
gle worker machine).

Video2Flink was deployed on two virtual machines (VM)
in the Google Cloud Platform. Each VM runs Ubuntu 16.04.
Apache Kafka runs in a VM with 8 virtual CPUs (vCPUs)
of 3.1GHz base frequency (3.8 turbo frequency) and 32GB
RAM. For storage, a high-performance HDD was used with
a theoretical maximum of above 700MB/s for sequential
reads/writes. The VM was used to run a number of clients
(i.e., video producers)while hostingApacheKafkawithmul-
tiple topic partitions. Both processes require significant I/O
performance (i.e., the data is all in one place and is read
in order) and multiple cores for the parallel workload and
multiple I/O threads. The eight vCPUs and especially the
high-performance HDD are crucial (i.e., a bottleneck in this
part of the system would significantly constrain the perfor-
mance of Video2Flink).

123

 42 Page 10 of 15 D. Kastrinakis, E.G.M Petrakis

Fig. 11 Operator D

Fig. 12 Distribution of frame histograms from operator C to operator D

Apache Flink runs on Kubernetes 1 on the second VM.
The Kubernetes cluster has a pool with eight nodes. Each
node has two vCPUs (2.0 GHz base frequency and 2.8 GHz
turbo frequency) and 8GB of RAM. For storage, the mini-
mum available option of 30GBwas used, since Apache Flink
required no local storage. Each node runs on a container-
optimizedOSwith containers provided byGoogle. To initiate
a Flink Job, the job is submitted to the Flink cluster along

1 https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/
deployment/resource-providers/native_kubernetes/

with the desired number of parallel Flink pipelines (to run on
Flink nodes).

The correctness of the shot detection method is verified
using two videos from a TV show, referred to as Video A and
Video B. The duration of each video is 60 swith 24 frames per
second. Four copies are created from each video with four
different resolutions (i.e., 960x540, 1280x720, 1920x1080,
2560x1440). The two threshold values Tb and TS of the
twin comparison shot detection algorithm was computed in
advance (i.e., offline). To determine the actual number of
shots, the shot detection algorithm was run as a monolithic

123

https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/deployment/resource-providers/native_kubernetes/
https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/deployment/resource-providers/native_kubernetes/

Video2Flink: real-time video partitioning... Page 11 of 15 42

Fig. 13 Histogram differences with the same key are routed from D to the same instance of E operator

Fig. 14 A priority queue holding the histogram differences that have arrived on operator E1

Java program on each video. The parallelization was set to
four pipelines (i.e., four parallel instances of each operator)
which is also the number of Apache Kafka partitions. The
detected shots were displayed per type of shot (i.e., camera
cuts or gradual fades). Video2Flink gave the same results for
all the different resolutions and for both videos (i.e., 14 shots
for Video A and 7 for Video B). The results were also visually
inspected for correctness. This verified that no false shots
were detected without missing any.

5.1 Speed-up

The goal of this experiment is to study the latency and the
speed-up of Video2Flink as a function of the input through-
put. Latency is the delay (in seconds) between the time a
video is routed to Apache Kafka until shot detection is com-
plete. Throughput is the amount of video data (inMB/second)
that is transferred and processed. Latency and throughput are
correlated (i.e., latency declines with throughput). The input
throughput can derive fromany number of clientswith videos

123

 42 Page 12 of 15 D. Kastrinakis, E.G.M Petrakis

Fig. 15 Mapping of operators to Flink nodes and threads

of the same or even different resolutions. An input through-
put of 35.6MB/s can come from two clients sending a 540p
video (17.8MB/s bitrate) each. The size of the block was
fixed to 200KB.

For each input throughput, Video2Flink was run with par-
allelization 8 and its latency is compared against that of a
monolithic Java program (i.e., Video2Flink with paralleliza-
tion 1). The number of Apache Kafka partitions is equal to
the respective parallelization values of each run (i.e., 8 and 1).
Figure16 summarizes the results of this experiment for YUV
video. For all but the highest input throughput, the latency
is less than 60s (i.e., the duration of the videos). This result
supports the claim that Video2Flink can process in real time
(e.g., streaming video).

Video2Flink is at least three times faster (for low through-
put) reaching amaximumspeed-upof 7.19 at 178MB/second
input throughput. After that throughput value, speed-up
started to decline. The decline can be attributed to Apache
Kafka’s performance. At the highest input throughput (over
200MB/second), Apache Kafka struggles to send data fast
enough to Flink. This is in line with the results reported by

Lazidis and Petrakis [15]. Increasing the parallelization at
this point would not improve speed-up. The performance
bottleneck of Apache Kafka is due to the I/O with the hard
disk. The highest throughput for a system requires a high
degree of customization of both, system and hardware which
is not possible to do a public cloud (i.e., Video2Flink runs on
GCP).

This claim is supported by the results of Fig. 17 showing
the latency of Apache Kafka and Apache Flink as well as
the Flink to Kafka lag. The Flink to Kafka lag indicates how
much slower (in seconds) was Flink compared to the time
it takes Kafka to send the video. For example, for low input
throughput, Apache Kafka took 10s less (on average) to send
the video than it took Apache Flink to process it. For higher
throughput, the processing time of Flink was at least equal
to the time that Apache Kafka required to send the video. At
that point, the performance of Apache Flink is constrained
by the performance of Apache Kafka.

The lowspeed-upobserved for low throughput is attributed
to the fact that a small part of each video (i.e., equal to
block size) cannot be parallelized. This has a negative impact

123

Video2Flink: real-time video partitioning... Page 13 of 15 42

Fig. 16 Video2Flink latency (in
seconds) for parallelization 8 on
YUV video

Fig. 17 Video2Flink speed-up
and Flink to Kafka lag for
parallelization 8 and YUV video

on performance especially for low input throughput [10] as
worker machines may run under-utilized. On the other hand,
smaller block sizes also adversely affect performance (i.e.,
the communication within Flink nodes increases). The opti-
mal value of block size depends on the infrastructure (GCP in
this work) and can only be determined by experimentation.

Figure 18 shows the latency for RGB video. The results
show up to 15% slower response times compared to the
results for the YUV video. The RGB videos are slightly
harder to transfer and process since the full data has to be
sent to Flink. For the YUV videos, only two-thirds of the
video data (the Y component) has to be sent. RGB video has
to be transformed into grayscale, whereas the Y component
data of YUV videos is already in that form.

Figure 19 reports the latency of Apache Kafka and Flink
as well as the Flink to Kafka lag for RGB video. Regarding
the decline of speed-up for the highest resolution video, it
is attributed again to the same root cause as in the previous
experiment for YUV videos.

6 Conclusions and future work

Video2Flink2F is a distributed video processing method for
Apache Flink. It takes full advantage of Apache Flink’s capa-
bilities to process small video chunks (i.e., at the size of a
frame row or smaller) in parallel. The experimental results
support our claim that Video2Flink can process video in real
time (e.g., streaming video). Video2Flink achieved a very
high speed-up (i.e., 7.19 for YUV video) for input through-
put 200 MB/second on 8 processors, which is close to the
theoretical limit (i.e., the speed-up cannot be higher than the
number of processors working in parallel). This high speed-
up is attributed to the optimal mapping of the shot detection
algorithm to low level (i.e., at the finer pixel level) Apache
Flink operations while minimizing their inter-dependencies.
Video2Flink is a reasonably complex system with a plethora
of intertwined configurations.Optimizing the performance of
the processing platform required deep analysis of its capa-
bilities (i.e., features, strengths, and weaknesses) and of its

123

 42 Page 14 of 15 D. Kastrinakis, E.G.M Petrakis

Fig. 18 VVideo2Flink2F
response time (in seconds) for
parallelization 8 on RGB video

Fig. 19 Video2Flink speed-up
and Flink to Kafka lag for
parallelization 8 and RGB video

interoperability with Apache Kafka which is challengedwith
the task of driving a large amount of video data to Apache
Flink.

Future extensions of the system include incorporating
an auto-scaling agent [9] to support the automatic adapta-
tion of parallelism to varying video workloads in the input,
a method for automatically adapting the twin comparison
method thresholds to the input video type, and an extension
to support the processing of native MPEG-2- and MPEG-
4-encoded video. Processing MPEG-encoded videos with
minimal transcoding [5] would ultimately solve multiple
of this system’s bottlenecks, mainly its Kafka transferring
times between the video providers and the Flink processing
pipeline. Video segmentation research is currently limited
by the lack of benchmark datasets [7,20]. To the extent these
benchmarks become available soon, testing Video2Flink on
more datasets and comparing its performance with other
state-of-the-art methods is also left as future work.

Acknowledgements We are grateful to Google for the Google Cloud
Platform Education Grants program. The work has received funding
from the European Union’s Horizon 2020—Research and Innovation
Framework ProgrammeH2020-SU-SEC-2019, underGrantAgreement
No. 883272—BorderUAS.

Funding Open access funding provided by HEAL-Link Greece.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Video2Flink: real-time video partitioning... Page 15 of 15 42

References

1. Amazon: Detecting video segments in stored video, Amazon
Rekognition Developer Guide. (2022) https://docs.aws.amazon.
com/rekognition/latest/dg/segments.html

2. Baier J.: Getting Started with Kubernetes. Packt Publishing, Birm-
ingham - Mumbai (2017) https://www.oreilly.com/library/view/
getting-started-with/9780135237823/, 2nd Edition

3. Cotsaces, C., Nikolaidis, N., Pitas, I.: Video shot detection and
condensed representation. A review. IEEE Signal Process. Mag.
23(2), 28–37 (2006)

4. Couto, J., Lazama, F.: A guide to video analytics: applications and
opportunities (2022) https://tryolabs.com/guides/video-analytics-
guide, tryo-Labs

5. Doulaverakis, C., Vagionitis, V., Zervakis, M., et al.: Adaptive
Methods for Motion Characterization and Segmentation of MPEG
Compressed Frame Sequence. In: Intern. Conference on Image
Analysis and Recognition (ICIAR 2004), Porto, Portugal, pp 310–
317 (2004) https://link.springer.com/book/10.1007/b100437

6. Flink: Apache Flink - Stateful Computations over Data Streams.
(2022) https://flink.apache.org/, the Apache Software Foundation

7. Galasso, F., Nagaraja, N., Cardenas, T., et al.: A unified video
segmentation benchmark: Annotation, metrics and analysis. In:
IEEE International Conference on Computer Vision (ICCV 2013),
pp. 3527–3534. Los Alamitos, CA, USA (2013) https://doi.
ieeecomputersociety.org/10.1109/ICCV.2013.438

8. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., et al.: A survey on
deep learning techniques for image and video semantic segmen-
tation. Appl. Soft Comput. 70, 41–65 (2018). https://doi.org/10.
1016/j.asoc.2018.05.018

9. Giannakopoulos, P., Petrakis, E.G.: Smilax: Statistical Machine
Learning Autoscaler Agent for Apache FLINK. In: Advanced
Information Networking and Applications (AINA 2021), pp. 433–
444. Canada, Toronto (2021) https://link.springer.com/chapter/10.
1007/978-3-030-75075-6_35

10. Gustafson, J.L.: Amdahl’s Law. In: Encyclopedia of Parallel Com-
puting. Springer Link (2011) https://doi.org/10.1007/978-0-387-
09766-4_77

11. Huang, Q., Petchean, A., Knowles, P., et al.: SVE: Distributed
Video Processing at Facebook Scale. In: ACM Symposium on
Operating Systems Principles (SOSP 2017), pp. 87–103. Shang-
hai, China (2017) https://doi.org/10.1145/3132747.3132775

12. Kim, Y.K., Kim, Y., Jeong, C.S.: RIDE: real-time massive image
processing platform on distributed environment. EURASIP J.
Image Video Process. (2018). https://doi.org/10.1186/s13640-
018-0279-5

13. Kleppmann, M.: Making Sense of Stream Processing. O’
Reilly, Sevastopol, CA (2016) https://www.oreilly.com/library/
view/making-sense-of/9781492042563/, 2nd Edition

14. Kubernetes: Kubernetes - Production-Grade Container Orchestra-
tion (2022) https://kubernetes.io

15. Lazidis, A., Tsakos, K., Petrakis, E.G.M.: Publish-subscribe
approaches for the IoT and the cloud: functional and performance
evaluation of open-source systems. Internet of Things 19(100), 538
(2022) https://doi.org/10.1016/j.iot.2022.100538

16. Lendave, V.: A guide to video object segmentation for beginners
(2021) https://analyticsindiamag.com/a-guide-to-video-object-
segmentation-for-beginners/

17. Minaee, S., Boykov, Y., Porikli, F., et al.: Image Segmenta-
tion Using Deep Learning: A Survey. IEEE Trans on Pattern
Analysis and Machine Intelligence (IEEE PAMI) 44(7), 3523–
3542 (2022) https://www.computer.org/csdl/journal/tp/2022/07/
09356353/1rigXK0s5Ak

18. Narkhede, N., Shapira, G., Palino, T.: Kafka The definitive guide.
O’Reilly media, real time data and stream processing at scale
(2017) https://spark.apache.org/

19. OpenCV: OpenCV AI Courses (2022) https://opencv.org/, the
OpenCV team

20. Perazzi, F., Pont-Tuset, J., McWilliams, B., et al.: A Benchmark
Dataset and Evaluation Methodology for Video Object Segmen-
tation. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2016), Las Vegas, USA, pp 724–732 (2016)
https://ieeexplore.ieee.org/document/7780454

21. Seinstra, F.J., Geusebroek, J., Koelma, D., et al.: High-performance
distributed video content analysis with parallel-horus. IEEE Mul-
tiMedia 14(4), 64–75 (2007)

22. Spark: Apche Spark - Unified engine for large-scale data analytics
(2022) https://spark.apache.org/, the Apache Software Foundation

23. Tekalp,M.: Video and image processing inmultimedia systems. O’
Reilly (2015) https://www.oreilly.com/library/view/digital-video-
processing/9780133991116/

24. Uddin, M.A., Alam, A., Tu, N.A., et al.: SIAT: a distributed video
analytics framework for intelligent video surveillance. Symmetry
11(7), 1–22 (2019)

25. Vinka, E., Johansson, L.: Apache Kafka. Cloudkarafka (2019)
https://www.cloudkarafka.com

26. Zhang, H.J., Kankanhalli, A., Smoliar, W.S.: Automatic partition-
ing of full-motion video.Multimedia Syst. 1, 10–28 (1993). https://
doi.org/10.1007/BF01210504

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Euripides G.M. Petrakis received a B.Sc. in Physics from the National
University of Athens, Greece, in 1986 and a PhD from the Univer-
sity of Crete, Greece, in 1993. Since 2013 he has been a Professor of
Computer Science at the School of Electrical and Computer Engineer-
ing of the Technical University of Crete (TUC). His research activities
cover various fields, starting from Computer Vision and Information
Systems (in his early career years), Semantic Web, and later, Soft-
ware Engineering, IoT, and Cloud Computing. He has authored more
than 160 papers in Tier-1 international journals and conferences. He
is an Associate Editor of Elsevier’s Internet of Things journal. He is
a Senior Member of the IEEE. He has been awarded the TUC ‘excel-
lence award’ for 2022.

Dimitrios Kastrinakis recently graduated from the Technical Univer-
sity of Crete, Chania, Crete, with a degree in Electrical and Computer
Engineering, in 2022. His research focuses on Software Engineering,
Cloud Computing, Video Processing, and Machine Learning. He is
currently a software engineer at Epignosis, an innovative e-learning
company.

123

https://docs.aws.amazon.com/rekognition/latest/dg/segments.html
https://docs.aws.amazon.com/rekognition/latest/dg/segments.html
https://www.oreilly.com/library/view/getting-started-with/9780135237823/
https://www.oreilly.com/library/view/getting-started-with/9780135237823/
https://tryolabs.com/guides/video-analytics-guide
https://tryolabs.com/guides/video-analytics-guide
https://link.springer.com/book/10.1007/b100437
https://flink.apache.org/
https://doi.ieeecomputersociety.org/10.1109/ICCV.2013.438
https://doi.ieeecomputersociety.org/10.1109/ICCV.2013.438
https://doi.org/10.1016/j.asoc.2018.05.018
https://doi.org/10.1016/j.asoc.2018.05.018
https://link.springer.com/chapter/10.1007/978-3-030-75075-6_35
https://link.springer.com/chapter/10.1007/978-3-030-75075-6_35
https://doi.org/10.1007/978-0-387-09766-4_77
https://doi.org/10.1007/978-0-387-09766-4_77
https://doi.org/10.1145/3132747.3132775
https://doi.org/10.1186/s13640-018-0279-5
https://doi.org/10.1186/s13640-018-0279-5
https://www.oreilly.com/library/view/making-sense-of/9781492042563/
https://www.oreilly.com/library/view/making-sense-of/9781492042563/
https://kubernetes.io
https://doi.org/10.1016/j.iot.2022.100538
https://analyticsindiamag.com/a-guide-to-video-object-segmentation-for-beginners/
https://analyticsindiamag.com/a-guide-to-video-object-segmentation-for-beginners/
https://www.computer.org/csdl/journal/tp/2022/07/09356353/1rigXK0s5Ak
https://www.computer.org/csdl/journal/tp/2022/07/09356353/1rigXK0s5Ak
https://spark.apache.org/
https://opencv.org/
https://ieeexplore.ieee.org/document/7780454
https://spark.apache.org/
https://www.oreilly.com/library/view/digital-video-processing/9780133991116/
https://www.oreilly.com/library/view/digital-video-processing/9780133991116/
https://www.cloudkarafka.com
https://doi.org/10.1007/BF01210504
https://doi.org/10.1007/BF01210504

	Video2Flink: real-time video partitioning in Apache Flink and the cloud
	Abstract
	1 Introduction
	2 Related work and background
	3 Video2Flink architecture
	4 Video2Flink operators
	5 Experiments
	5.1 Speed-up

	6 Conclusions and future work
	Acknowledgements
	References

