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Abstract
We study the problem of multimodal embedding-based entity alignment (EA) between different knowledge graphs. Recent 
works have attempted to incorporate images (visual context) to address EA in a multimodal view. While the benefits of 
multimodal information have been observed, its negative impacts are non-negligible as injecting images without constraints 
brings much noise. It also remains unknown under what circumstances or to what extent visual context is truly helpful to 
the task. In this work, we propose to learn entity representations from graph structures and visual context, and combine fea-
ture similarities to find alignments at the output level. On top of this, we explore a mechanism which utilizes classification 
techniques and entity types to remove potentially un-helpful images (visual noises) during alignment learning and inference. 
We conduct extensive experiments to examine this mechanism and provide thorough analysis about impacts of the visual 
modality on EA.

Keywords Entity alignment · Multimodality · Visual context · Knowledge graph

1 Introduction

Entity alignment (EA) is a task aiming to find entities from 
different knowledge graphs (KGs) that refer to the same real-
world object. It plays an important role in KG construc-
tion and knowledge fusion as KGs are often independently 

created and suffer from incompleteness. Most existing mod-
els for EA leverage graph structures and/or side informa-
tion of entities such as name and attributes along with KG 
embedding techniques to achieve alignment [1, 2]. Several 
recent methods enrich entity representations by incorporat-
ing images, a natural component of entity profiles in many 
KGs such as DBpedia [3] and Wikidata [4], to address EA 
in a multimodal view [5–7].

While experimental results have demonstrated that incor-
porating visual context benefits the EA task [5, 7], it is worth 
noting that the use of entity images may introduce noises. 
An error analysis in EVA [7] pointed out that hundreds of 
source entities were correctly matched to their counterparts 
before injecting images but were mismatched with images 
present. Different visual representations of equivalent 
entities could be potential noises that induce mismatches, 
and there are various reasons for the visual inconsistency 
between two equivalent entities. One major reason is that 
entities naturally have multiple visual representations. As 
shown in Fig. 1, images (visual context) at left are dissimilar 
from their counterparts at right, yet they refer to same real-
world entities. In addition, the incompleteness of visual data 
is also a challenging issue for multimodal EA, as reported 
in [7] that ca. 15–50% entities in the most commonly used 
benchmark DBP15K [8] are not provided with images.
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The aforementioned observations raise a doubt: to what 
extent or under what circumstances is visual context truly 
helpful to the EA task? Is there a way to filter potential 
noises and better use entity images? To investigate the 
above issues, in this work, we propose MMEA-s+v, a simple 
approach which combines embedding similarities between 
entities from structural and visual modalities at the output 
level. In order to fully exploit visual context, we explore a 
mechanism with classification techniques and entity types 
to identify potential visual noises and meanwhile generate 
binary entity mask vectors, which are used with MMEA-s+v 
to filter images during alignment learning and inference.

In summary, our main contributions are three-fold: (1) 
To the best of our knowledge, we are the first to investigate 
the positive and negative aspects of incorporating visual 
context for EA. We provide insights on actual visual noises 
that tend to induce misalignment in the multimodal EA. (2) 
We explore a mechanism with classification techniques and 
entity types to locate potential visual noises, and conduct 
extensive experiments to examine this mechanism. (3) We 
construct the multimodal version of DBP15K which con-
tains a full set of entity images. With the proposed dataset, 
we hope to facilitate the community in the development of 
multimodal learning apporaches for KGs.

2  Related Work

Embedding-based approaches for entity alignment (EA) 
can be generally divided into two categories: that only uti-
lized graph structures and that used additional side infor-
mation of entities [2]. Among the first category, MTransE 

[9] adopted TransE [10] to encode language-specific KGs 
in separate embedding spaces and learned a transformation 
to align counterpart entities across embeddings. IPTransE 
[11] and BootEA [12] embedded two KGs in a unified space 
and bootstrapped the labeled alignments iteratively. Among 
the second category, GCN-Align [13], JAPE [8] and AttrE 
[14] used attribute triples in the KGs to refine structural 
embeddings. MultiKE [15] explored more types of features. 
It learned entity embeddings from three different views 
including entity names, relations and attributes. HMAN 
[16] further exploited literal descriptions of entities to boost 
performance. UEA [17] utilized useful features from side 
information in an unsupervised framework to perform EA 
in the open world.

Recently, a few attempts have been made to incorpo-
rate entity images into KGs and build multimodal embed-
dings for EA. MMEA [5] applied TransE to learn structural 
embeddings for entities, and utilized image features to learn 
visual representations. It integrated multiple representations 
of entities via common space learning. HMEA [6] adopted 
the hyperbolic graph convolutional networks (HGCNs) to 
learn structural and visual embeddings of entities separately, 
then merged them in the hyperbolic space by a weighted 
Mobius addition. EVA [7] employed GCNs [18] to learn 
structural representations for entities, and used feed-for-
ward networks to learn embeddings from image, relation 
and attribute features, respectively. Then it fused embed-
dings of different modalities by a trainable weighted con-
catenation. MCLEA [19] considered task-oriented modality 
and utilized contrastive learning to model the intra-modal 
and inter-modal interactions for each entity representation. 
Although existing multimodal entity alignment approaches 
have shown promising performance, all of them ignored the 
negative impact of leveraging visual context for EA.

3  Method

We start with the task definition and notations. A KG is 
denoted as G = (E,R, T , I) , where E, R, T, I are the sets 
of entities, relations, triples and images, respectively. 
Given a source KG G1 =

(
E1,R1, T1, I1

)
 and a target KG 

G2 =
(
E2,R2, T2, I2

)
 , multimodal entity alignment (MMEA) 

aims to find every pair (e1, e2) where e1 ∈ E1 , e2 ∈ E2 and e1 
and e2 refer to the same real-world object. To solve this task, 
we adopt different encoders to encode structural informa-
tion and visual context of entities, and propose a late fusion 
mechanism, which combines embedding similarity scores at 
the output level to find alignment. We name this approach 
as MMEA-s+v. For comparison, we also present two vari-
ants MMEA-avg and MMEA-cat, which adopt different early 
fusion strategies and learn multimodal joint embeddings to 
achieve alignment. The main structures of the three variants 

Fig. 1  Thumbnail examples of DBpedia entities. A and C corre-
spond to entities Oakland_(Californie) and Little_Mix in the French 
version of DBpedia, respectively. B and D correspond to entities 
Oakland, _California and Little_Mix in the English version of DBpe-
dia, respectively
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are shown in Fig. 2. We further explore a mechanism to fil-
ter potential visual noises and generate entity mask vectors, 
which are used with MMEA-s+v, aiming to exploit visual 
context for EA. Section 3.1 details about how to identify 
visual noises. Sections 3.2 and 3.3 focus on entity represen-
tation learning, alignment learning and inference.

3.1  Visual Noise Identification

We observe that in most cases visual representations of enti-
ties vary largely from a type to another, while they are less 
different within a type. Based on the findings, we take entity 
types as classes of images to train a classifier, and use it to 
identify images whose predicted class is semantically distant 
from their actual class, i.e., visual noises. To this end we 
obtain entity types and inter-class conflicts from the ontol-
ogy of KGs, and design mask vectors to store identification 
results.

3.1.1  Entity Types

The ontology of KGs usually contains properties and hier-
archical classes, and defines subsumption relationships 
between classes and class disjointness optionally [20]. 
Types (classes) are often organized in a hierarchical tree 
structure in the ontology of a KG, and an entity is often 
associated to a set of types. For example, as shown in 
Fig. 3, the entity Barack Obama in French DBpedia has 
four types declared (we do not include the root owl#Thing ): 
Agent, Person, Politician and President, with Agent as the 
most generic type and President as the most specific and a 
leaf node. As we observe that entities of fine-grained types 
like President and Senator are more semantically different 
than visually different, and therefore, we take the type of 
each entity at most at the fourth level (Politician in this 
example) as the label of its image. We also empirically 

find the choice of the fourth level, rather than the third or 
the fifth, yields better classification performance.

3.1.2  Inter‑class Conflicts

To measure the semantic discrepancy between the pre-
dicted and real classes of an entity image, and inspired by 
OntoEA [21], we use a class conflict dictionary (CCD) to 
store the inter-class conflicts. Given two classes a and b, 
we calculate their conflict degree as C[a, b]. For better 
illustration, we let V denote the hierarchical class tree in 
which each node refers to a unique class and o the root 
(typically owl#Thing ), and define Sc

x
 as the set of children 

(subclasses) of node x and Sd
x
 as the set of all the descend-

ants of x in V, respectively. We assume that all subclasses 
of the root in V are mutually disjoint, which is in accord-
ance with the design intent for the class hierarchy, and we 
regard any two descendants of two disjoint classes as dis-
joint. Let D denote the set of all disjoint class pairs, thus 
D = {(a, b) ∣ a, b ∈ Sco, a ≠ b or ∀c1, c2 ∈ Sco,
a ∈ Sdc1 , b ∈ Sdc2 , c1 ≠ c2} . Given two classes a and b, we 
firstly determine if a ≡ b or a ∈ Sd

b
 or b ∈ Sd

a
 , and set 

C[a, b] = 0 if they satisfy the condition, which ensures that 
a class does not conflict with itself or its descendant class, 
otherwise we look up D and set C[a, b] = 1 if (a, b) ∈ D , 
i.e., two disjoint classes are treated as conflicted. If neither 
of the above two conditions is met, we follow OntoEA and 
calculate C[a, b] as:

where S(a) and S(b) denote the sets of classes passed by 
routing from a and b to the root class, respectively, and ∣ ⋅ ∣ 
denotes the set cardinality.

(1)C[a, b] = 1 −
|S(a) ∩ S(b)|
|S(a) ∪ S(b)| ,

Fig. 2  An illustration of the 
framework, including the entity 
embedding module, two mul-
timodal early fusion strategies, 
the visual noises identification 
and late fusion mechanisms
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3.1.3  Entity Mask

We use M as an entity mask vector and denote Mei
 as 

the mask value of the ith entity ei in E. If the image of ei 
is determined as potential noise, we set Mei

= 0 , which 
means ei is masked and its image should be filtered in 
the training or test phase; otherwise, we set Mei

= 1 . Note 
that the length of M depends on the sum of the number 
of source entities and the number of target entities in a 
dataset. We initialize M with all zeros and update it itera-
tively. Specifically, given a conflict degree threshold � , 
for e ∈ E , we feed its corresponding image to a classifier 
to obtain top k predictions (denoted as p1 , ..., pk ), and if 
the minimum conflict degree between the predictions and 
the actual class (denoted as g) of e is no greater than � , 
i.e., min1≤i≤k

{
C
[
pi, g

]}
≤ � , we reset the mask value of 

e to be 1.

3.2  Entity Embedding

To better analyze the impacts of visual context on MMEA, 
we only model two modalities in the entity embeddings, 
i.e., graph structures and visual context.

3.2.1  Structural Embedding

Graph convolutional networks (GCNs) have proven to be 
effective in capturing information from graph structures 
and have been used for embedding-based EA recently [1]. 
Formally, given as input the adjacency matrix A of a KG 
and randomly initialized feature matrix H(0) of its entities, 
a multi-layer GCN iteratively updates entity representa-
tions from the ith layer to the (i + 1) th layer with the fol-
lowing propagation rule:

where Â = A + I and I is an identity matrix, D̂ is the diago-
nal degree matrix of Â , W(i) denotes learnable parameters in 
the ith layer and � is the activation function ReLU. Follow-
ing previous works [13, 16], we adopt GCNs to encode the 
neighborhood information of entities and take the output of 
the last GCN layer as the structural embeddings.

3.2.2  Visual Embedding

We choose ResNet-152 [22] pre-trained on the ImageNet 
[23] recognition task as the initial image classifier and 
fine-tune it with our datasets for EA. The fine-tuning 
details are given in Sect. 4.1. The fine-tuned model is 
used to extract image features. We feed each image i ∈ I , 
through a forward pass and take the output of last layer 
before logits as its feature vector. Then, we project the 
feature into a low-dimensional space by a linear transfor-
mation to obtain visual embedding ev:

where Wv is the projection matrix and bv is the bias vector.

3.2.3  Multimodal Representation

Given an entity e, its structural embedding es and visual 
embedding ev , we present two strategies to combine es and 
ev into a multimodal embedding e as the joint representa-
tion of entity e.

(1) Weighted concatenation. Following the same setting 
in EVA [7], we calculate e as:

(2)H
(i+1) = 𝜙

(
D̂

−
1

2 ÂD̂
−

1

2H
(i)
W

(i)

)
,

(3)ev = Wv ⋅ ResNet(i) + bv,

Fig. 3  Subfigure a is an example of hierarchical classes. Subfigure 
b presents four entities (denoted by red texts), their finest types in 
the parentheses and their thumbnails. Because we take entity types 

at most at the fourth level as image labels, Barack_Obama and Jeff_
Flake share the same label Politician, while labels of Rich_Nash and 
Lake_Ontario are Athlete and BodyOfWater, respectively
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where ws and wv represent the weight of structural modality 
and the weight of visual modality, respectively, and both are 
trainable during learning. The symbol ⊕ means concatena-
tion of embeddings. We denote the variant using this kind 
of fusion as MMEA-cat, which is the same as the setting in 
EVA where only structural information and visual context 
are kept.

(2) Weighted averaging. We have e =
∑

i∈{s,v} wiei , where 
wi is calculated by:

and ē = 1

2

(
es + ev

)
 . By assigning weights to modality-spe-

cific entity embeddings, this kind of combination allows the 
model to emphasize important modalities. We denote the 
corresponding variant which adopts this fusion strategy as 
MMEA-avg.

3.3  Alignment Learning and Inference

This section presents details about alignment learning and 
inference. We integrate G1 and G2 as one KG and learn 
both structural embeddings and visual embeddings of enti-
ties in E1 and E2 in a unified space. For notations, we let 
Es and Et denote the sets of source entities and the cor-
responding target entities, respectively, where Es ⊆ E1 , 
Et ⊆ E2 and |Es| = |Et| . We rearrange the elements in both 
sets in order that the ith entity in Es corresponds to the 
ith in Et . We denote P as the set of all aligned pairs, i.e., 
P = {(e1, e2) ∣ e1 ≡ e2, e1 ∈ Es, e2 ∈ Et} , and M ∈ ℝ

|Es|+|Et| 
as the entity mask used to filter potential noisy images. The 
training and test sets are obtained by splitting P with a ratio r.

3.3.1  Alignment Learning

Let Ês and Êt denote the source entities and target entities, 
respectively, in the training set. We align each modality 
separately. For the structural modality s, we compute a simi-
larity matrix Sim(s) = ⟨Ê(s)

s
, Ê

(s)

t
⟩ ∈ ℝ

∣Ês∣×∣Êt∣ , where Ê
(s)

s
 ( ̂E

(s)

t
 ) 

represents the structural embeddings of entities in Ês ( Êt ), 
and each entry Sim(s)

ij
 corresponds to the cosine similarity 

between the ith entity in Ês and jth in Êt . To better punish 
hard negatives and mitigate the hubness problem [24], we 
choose the HAL loss [25] as the objective function and apply 
it to obtain the loss of structural modality L(s) and train the 
structural embeddings:

(4)e =
ews

ews + ewv

es ⊕
ewv

ews + ewv

ev,

(5)wi =
cos

�
ei, ē

�

∑
j∈{s,v} cos

�
ej, ē

� , i ∈ {s, v},

where � , � are temperature scales and N is the batch size. 
Likewise, we compute Sim(v) and L(v) for the visual modal-
ity v. Thus the final loss L of MMEA-s+v is formulated as:

To apply the entity mask vectors M to MMEA-s+v in 
alignment learning, we obtain a new set of alignment pairs 
P� = {(e1, e2) ∣ e1 ≡ e2, e1 ∈ Ês, e2 ∈ Êt,Me1

= 1,Me2
= 1} 

with P and M , determine from P′ new sets of source 
entities and target entities, denoted by Ẽs and Ẽt , respec-
tively, and compute the visual similarity matrix as 
Sim

(v) = ⟨Ẽ(v)

s
, Ẽ

(v)

t
⟩ ∈ ℝ

�Ẽs�×�Ẽt�.
For MMEA-avg and MMEA-cat, because we use the 

multimodal embeddings of entities to find alignment, we 
also optimize the joint representations and calculate a mul-
timodal loss L(mm) similar to Eq. (6). Then the final loss L of 
MMEA-avg/MMEA-cat is:

3.3.2  Inference

Given source entity set Ēs and target entity set Ēt used 
for inference, we compute Sim(s) = ⟨Ē(s)

s
, Ē

(s)

t
⟩ and 

Sim
(v) = ⟨Ē(v)

s
, Ē

(v)

t
⟩ , where Sim(r),Sim(v) ∈ ℝ

|Ēs|×|Ēt| are 
cosine similarity matrices for the structural and visual 
modalities, respectively. For MMEA-s+v, we simply com-
bine them by a weighted addition to obtain the final simi-
larity matrix Sim = w ⋅ Sim

(s) + (1 − w) ⋅ Sim(v) , where 
w ∈ (0, 1) is a hyper-parameter to balance the two modalities.

To hinder the potential negative impact of visual informa-
tion when measuring the similarity between two entities, i.e., 
pulling closer two nonequivalent entities or pushing farther 
two identical entities, we use the entity mask vector on top 
of MMEA-s+v. Specifically, we define the similarity score 
between the ith entity ei in Ēs and the jth ej in Ēt , i.e., the 
(i, j) entry of Sim as:

Equation (9) illustrates the principal idea of fusing the two 
modalities: for source entity ei and candidate target entity ej , 
the in-between similarity is predicted from both aspects of 

(6)

L
(s) =

1

N

N∑

i=1

(
1

�
log

(
1 +

∑

m≠i

e�Sim
(s)

mi

)

+
1

�
log

(
1 +

∑

n≠i

e�Sim
(s)

in

)
− log

(
1 + �Sim

(s)

ii

))
,

(7)L = L
(s) + L

(v).

(8)L = L
(s) + L

(v) + L
(mm).

(9)

Simij =

{
w ⋅ Sim

(s)

ij
+ (1 − w) ⋅ Sim

(v)

ij
if Mei

= 1 and Mej
= 1

Sim
(s)

ij
otherwise

.
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knowledge only when their images are regarded as poten-
tially useful; otherwise it is solely based on the structural 
similarity.

For MMEA-avg and MMEA-cat, the cosine similarity 
matrix Sim is simply computed based on multimodal embed-
dings of entities in Ēs and Ēt , i.e., Sim = ⟨Ēs, Ēt⟩ . After 
obtaining Sim , we further use cross-domain similarity local 
scaling (CSLS) [24] to post-process it. Then for ei ∈ Ēs , we 
retrieve the similarity scores of the ith row in Sim , rank 
them in a descending order, and take the top ranked entity 
as the match.

4  Experiments

4.1  Experimental Settings

4.1.1  Dataset

We construct the multimodal version of DBP15K and evalu-
ate the methods on this benckmark. DBP15K is a widely 
used cross-lingual dataset extracted from DBpedia (2016-
04) and contains three bilingual subsets: Chinese-English 
(ZH-EN), Japanese-English (JA-EN), and French-English 
(FR-EN). Each subset has 15K aligned entity pairs. DBpedia 
has provided links of thumbnails for many entities; how-
ever, it does not cover all of them. Statistics show that ca. 
50–85% entities in DBP15K have images [7]. To solve the 
problem of data incompleteness, for (almost) every entity 
without an image in DBP15K, We construct a request URL 
with its surface name, obtain top 10 image URLs ranked 
by the keyword “selectedIndex” from Bing Images search 
and download the images. In our experiments, we take the 
most relevant image (with “selectedIndex = 0” in the URL) 
as the visual representation of an entity. The statistics of 
image coverage are presented in Table 1. To retrieve entity 
types, we query the classes of each entity with rdf : type via a 
public SPARQL endpoint.1 We also obtain the subsumption, 
disjoint relationships between classes, which are explicitly 
defined by rdfs : subClassOf and owl#disjointWith properties 
in the DBpedia ontology, respectively.

4.1.2  Implementation Details

Alignment We employ a three-layer GCN (including the 
input layer) to encode structural information of entities. 
The dimensions of the input and hidden layers are both set 
to 400. For MMEA-cat and MMEA-s+v, we set both the 
dimension of the output layer of GCN and the dimension 
of visual embeddings to 200. Whereas for MMEA-avg, we 
set both the output dimension of GCN and the dimension 
of visual embeddings to 400, so that its final embedding 
dimension is the same as MMEA-cat. For all there variants, 
we adopt AdamW to update parameters, and set the learn-
ing rate to 5 × 10−4 . When calculating losses, we set � = 5 , 
� = 10 for L(s) , and � = 15 , � = 10 for L(v) and L(mm) . We 
train MMEA-avg and MMEA-s+v for 1000 epochs, while 
we only train MMEA-cat for 600 epochs because we observe 
an evident overfitting after epoch 600. For MMEA-s+v, we 
set w = 0.5 as the weight of structural similarities between 
entities during inference.

Following conventions, we use 30% of the aligned pairs 
for training and the remaining for evaluation, and choose 
H@1 (Hits@1), H@10 (Hits@10) and mean reciprocal rank 
(MRR) as the evaluation metrics. For the proposed variants, 
MMEA-avg, MMEA-cat and MMEA-s+v, we conduct five 
experiments with different random seeds and present the 
averaged results along with their standard deviations.

Classification We collect unique entities from all three 
subsets of DBP15K, filter those either without a type or 
an image, and use the remaining entities E′ as indices to 
retrieve their images and labels. For each split of DBP15K, 
we fine-tune a classifier based on the pre-trained ResNet152 
[22], and build the test and training data from Es ∪ Et and 
E� ⧵ (Es ∪ Et) , respectively. We adopt stochastic gradient 
descent (SGD) to update parameters of classifiers with a 
learning rate of 0.001 and a momentum of 0.9. We set the 
batch size to 32 and the number of epochs for training to 
25. During test, we obtain top 5 predictions for each entity 
image, and calculate the mask value of an entity based on 
its groundtruth class and predictions.

Table 1  Statistics of image 
coverage

Source FR-EN JA-EN ZH-EN

FR EN JA EN ZH EN

Image covered (by DBpedia) 13,858 14,174 12,739 13,741 15,910 14,125
Image covered (by web source) 5794 5816 7011 6035 3421 5441
No. of entities with images 19,652 19,990 19,750 19,776 19,322 19,566
All entities 19,661 19,993 19,814 19,780 19,388 19,572

1 http:// dbped ia. org/ sparql.

http://dbpedia.org/sparql
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4.1.3  Comparative Methods

To investigate the effectiveness of unimodal data, we 
develop two variants named RelEA using only structural 
information (relational triples), and VisEA using only vis-
ual context (entity images) to achieve alignment, respec-
tively. To generally verify the effectiveness of incorporat-
ing visual context, we compare MMEA-s+v with RelEA 
and other public structure-based EA approaches including: 
MTransE, IPTransE, MuGNN [26], SEA [27] and AliNet. 
To compare the effects of leveraging visual context with 
that of using other types of side information, such as entity 
names and/or attributes, we include other methods, which 
are JAPE, GCN-Align, HMAN and MultiKE. Note that for 
fair comparison, the results of HMAN are from its vari-
ant that only uses training data in DBP15K as alignment 
signals.

Recent multimodal approaches for entity alignment, such 
as MCLEA, EVA, MSNEA [28], etc. use three or more types 
of information including structural data, numerical/attribute 
triples, visual knowledge and surface names of entities to 
improve alignment performance. Because our work focuses 
on probing the impact of visual context, and, therefore, 
only utilized graph structure and visual context to conduct 

experiments, for fair comparison we have not included these 
methods (Table 2).

4.2  Alignment Results and Analyses

4.2.1  Performance Comparison

We analyze the alignment results from the following per-
spectives: (1) comparison between our unimodal variants 
(i.e., RelEA and VisEA) and baselines; (2) comparison 
between our multimodal variants and the rest of methods to 
verify the effects of visual context; (3) comparison of dif-
ferent fusion strategies.

(1) our variant RelEA using only structural information 
is comparable to other structure-based approaches, and 
even surpasses two models using additional side informa-
tion, JAPE and GCN-Align. We think that many factors, 
such as the choice of models to learn structural embeddings 
for entities, the choice of loss functions, and the settings of 
hyperparameters for training, have an impact on the model 
performance. In detail, both MTransE and RelEA only used 
relational triples to embed entities, however, the former uti-
lized TransE and the latter adopted GCNs. We deem that 
model capacity limits the quality of entity embeddings that 

Table 2  Entity alignment 
results on DBP15K. Bold 
denotes the best results, and 
underline denotes the averaged 
results under five experiments 
with different random seeds. 
The gray shading and blue 
shading represents our 
proposed variants, including 
RelEA,VisEA, MMEA-avg, 
MMEA-cat and MMEA-
s+v, and Means

±Stds.
 are shown
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directly determine alignment accuracy. Traning (or infer-
ence) settings and design of losses also affect performance. 
Both the uses of HAL loss (rather than the simple margin-
based ranking loss) and CSLS in RelEA greatly improved 
performance, which may explain why it outperforms GCN-
Align that additionaly used attribute triples in learning entity 
embeddings. VisEA performs worse than RelEA on all there 
datasets, indicating that leveraging visual context alone is 
insufficient to achieve satisfactory results.

(2) The proposed three multimodal variants, i.e., MMEA-
avg, MMEA-cat and MMEA-s+v, all outperform other 
baselines using structural and/or side information, indicat-
ing that visual context is equally useful as other side infor-
mation like entity attributes and names. They gain over 
RelEA 20.8–22.1% (absolute) improvement of Hits@1 on 
FR-EN, 12.2–13.8% improvement of Hits@1 on JA-EN and 
13.3–14.5% improvement of Hits@1 on ZH-EN, respec-
tively, which demonstrates that the incorporation of the 
visual context can substantially improve the EA system.

(3) As for the modality combination strategies, MMEA-
cat achieves slightly better results than MMEA-avg and 
MMEA-s+v. We think this is due to the attention mechanism 
during modality fusion, which allows automatic learning of 
modality weights. Overall there is no prominent difference 
in the effectiveness among the three strategies.

4.2.2  Impacts of Filtering Entity Images

To maximize the benefits that the incorporation of visual 
context brings to EA, we selectively combine the fea-
ture similarities based on MMEA-s+v during inference 
with precomputed entity masks to filter potential visual 
noises. The range of values of the class conflict ratio � , 
calculated according to the rules and Eq. (1) presented in 
Sect. 3.1.2, is a finite set {0, 0.4, 0.5, 0.6, 0.67, 1} . We choose 
� ∈ {0, 0.4, 0.67, 1} to calculate mask values of entities with 
classification results. � = 0 corresponds to the strictest set-
ting and � = 1 is the no-masking setting, where no entity 
images are filtered. Bigger � indicates that more image pairs 
are involved and the visual context has more influence on 
alignment prediction during inference. Additionally, we 

design a special mask based on the alignment result obtained 
when � = 1 . Specifically, we reset the mask value of an entity 
to be 0 if it is correctly matched by only structural similarity 
but is missed by a joint decision of the two modalities.

We conduct experiments under the above different set-
tings and present the results in Table 3. As shown in Table 3, 
Hits@1 increases as � is set larger and the no-masking set-
ting ( � = 1 ) outperforms the strictest setting by 2.7–5.2%. 
We consider that it is mainly attributed to the relatively low 
quality of visual context. Nevertheless, filtering visual noises 
is non-trival, as we observe an average performance gain of 
6.7% in Hits@1 with the special masks over the no-masking 
setting. It is also clear that filtering visual noises with the 
special masks achieves obvious improvements comparing 
with MMEA-cat and MMEA-avg, which implicitly weaken 
the impacts of visual noises with their weighted concatena-
tion and weighted average mechanisms to generate better 
multimodal embeddings. We further analyze the change of 
errors after visual context is injected under three settings, 
i.e., the strictest (mask), the no-masking and the special 
(Spec.). As shown in Fig. 4, on all three datasets the use 
of special masks greatly reduces errors while retaining as 
much benefits as no-masking settings bring. The observa-
tions suggest such complexity of the problem that the model 
will not necessarily output better results with visual context 
considered. They also prove that the visual noise filtering 
is beneficial to the multimodal entity alignment. The key 
challenge lies in locating real visual noises.

4.3  Classification Performance and Analysis

The classification accuracies along with numbers of images 
in training and test sets for each split of DBP15K are 
reported in Table 4. We collect classification results alto-
gether and merge them for general analysis. For better under-
standing, we take nodes at the second level of the hierarchi-
cal class tree as base classes, and then use them to group 
fine-grained types, i.e., image labels used in the classifica-
tion experiments. Note that we additionally treat Person and 
Organization, which are subclasses of Agent, as two base 

Table 3  Alignment results 
and absolute improvements 
(Improv.) against RelEA under 
different settings on DBP15K, 
obtained with random seed as 
2021 in the experiments

“No.” denotes the number of entities with images

Settings FR-EN JA-EN ZH-EN

No Hits@1 Improv. No Hits@1 Improv. No Hits@1 Improv.

RelEA – 0.506 – – 0.497 – – 0.477 –
� = 0 26,090 0.663 + 15.7% 25,532 0.593 + 9.6% 25,092 0.587 + 11.0%
� = 0.4 27,298 0.681 + 17.5% 26,805 0.605 + 10.8% 26,561 0.597 + 12.0%
� = 0.67 27,740 0.687 + 18.1% 27,234 0.606 + 10.9% 27,435 0.606 + 12.9%
� = 1 29,479 0.715 + 20.9% 29,498 0.620 + 12.3% 28,979 0.618 + 14.1%
Spec 28,685 0.769 + 26.3% 28,387 0.701 + 20.4% 28,079 0.683 + 20.6%
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classes, as they are drastically different in both semantics 
and visual representations. A total of 17 base classes are 
identified and including their descendants, the total number 
of classes is 76 for FR-EN and 82 for JA-EN and ZH-EN (cf. 
Table 4). Among them, Top 4 base classes (together with 
their descendants) Person, Place, Work and Organisation 
cover 92% of all test entities over three datasets. Figure 5 

illustrates the distribution of accuracy and number of test 
(entity) images with respect to all classes.

We summarize the classification errors into two kinds: 
(1) the predicted class of an (entity) image and its true class 
are relatively close and in the same group, i.e., one is the 
super class of the other or they are siblings or cousins, and 
(2) the predicted class and the true class are disjoint. We 
find that without the first kind of errors, the accuracies of 
four base classes Person, Place, Organization, and Work rise 
from 0.53, 0.65, 0.36 and 0.31 to 0.91, 0.83, 0.51 and 0.52, 
respectively, which indicates that entities of Person or Place 
are more visually distinguishable, while entities of Organi-
zation and Work have less stable visual characteristics. By 
investigating the mispredictions, we identify several reasons 
that may explain the poor classification performance on 
many classes, which also provides insights into the quality of 

Fig. 4  Number of new errors 
caused (left) and number of 
errors eliminated (right) with 
the use of images on DBP15K. 
Different colors indicate the 
results from different settings 
(cf. Sect. 4.2.2)

Table 4  Entity image classification results on the DBP15K dataset

Training images Test images Classes Hits@1 Hits@5

FR-EN 54,117 29,479 76 0.513 0.828
JA-EN 54,799 29,498 82 0.509 0.821
ZH-EN 55,146 28,979 82 0.480 0.805

Fig. 5  The distribution of classification accuracy and the number of 
test images w.r.t. all classes. Each base class is denoted with a unique 
marker. The same markers scattered at different positions denote 
fine-grained types that share a common base class, such as blue stars 
denoting Royalty, Athlete and Cleric sharing the base class Person, 

and cyan dots denoting Country and Settlement sharing the base class 
Place. Because of limited space, we only present top 4 base classes 
and explicitly annotate top 10 classes (ranked by classification accu-
racy) beside their markers
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visual data used for MMEA. First, an image provided for an 
entity can be irrelevant to the entity itself. Second, the visual 
representations of entities of some classes are unstable. For 
example, entities of type Single or Album often have covers 
as their thumbnails, and these covers often vary widely from 
one to another depending on the design styles which are also 
easily misclassified into other classes like Artist and Settle-
ment. Third, it is difficult to find accurate visual representa-
tions for conceptual entities, namely the entities referring to 
cognitive objects instead of physical objects. A typical type 
is MusicGenre, and its accuracy is as low as 0.03.

4.4  Study of Alignment Errors

In this subsection, we analyze alignment errors and investi-
gate how visual context impacts entity alignment. Generally, 
The incorporation of entity images can reduce thousands of 
errors; but on the other hand, it also brings in much noise 
leading to many new mismatches, as illustrated in Fig. 4. 
Overall, it improves the alignment performance.

For the positive impact, we find that visual context is 
particularly helpful when structural information is insuffi-
cient to make correct alignment predictions. This finding is 
supported by the observation that among 3011 newly aligned 
entity pairs under the no-masking setting on FR-EN, 78% 
of them have a summed degree below the mean value of 
the summed degrees of all aligned entity pairs (i.e., long-
tailed entities), and a lower degree of an entity indicates less 
structural information available to learn reliable structural 
embeddings.

To gain some insights into the negative impact of inject-
ing visual context, we take results of FR-EN as an example 
and collect new errors occurred under the no-masking set-
ting. These new errors shed light on true visual noises that 
should be filtered. Among the 818 errors on FR-EN, 139 
source entities have mask values of 0 s, meaning that the 
top 1 predicted class of their image by the classifier is dis-
joint with their actual (entity) type, and that 139 errors could 
be reduced if these images are filtered. The remaining 679 
errors are mostly about source entities with mask values of 
1 s, which we divide into three categories for detailed analy-
sis: (1) The first category contains 436/679 source entities 
where both the mask values of their aligned counterparts and 
their predicted matches are 1 s, and 80% of the mismatches 
are between entities of same or very close types, such as 
siblings, with Person and Place as two largest base classes. 
These mismatches are quite difficult to address because these 
entity types show relatively stable visual characteristics and 
the corresponding entity images are less visually distinguish-
able from those of the same types. (2) The second category 
includes 154/679 source entities where one of the mask val-
ues of their aligned counterparts and their predicted matches 
is 0, indicating that inappropriate or inconsistent images 

induced mismatches and these errors could be avoided when 
the noises are excluded. (3) Errors of the last category, mak-
ing up about 9% of the total errors, are about source entities 
mismatched to entities without images, which means these 
images are not as useful as structural information in multi-
modal entity alignment.

5  Conclusion

This paper investigated impacts of incorporating visual con-
text (entity images) for multimodal entity alignment. We 
proposed to learn entity embeddings from structural infor-
mation and visual context, and integrate feature similarities 
at the output level. On top of this fusion strategy, we further 
explored a mechanism which uses image classification tech-
niques and entity types to filter potential noises, and con-
ducted extensive experiments to examine this mechanism. 
We found that visual context overall is beneficial and that 
while challenging, filtering noises can further boost perfor-
mance. We experimentally proved that selectively using vis-
ual context brings the most benefits to EA, though the results 
largely depend on the quality of visual data. Our work also 
examined the quality of entity images in some multimodal 
KGs, which has not been inspected by existing studies.
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