
Vol.:(0123456789)1 3

Social Network Analysis and Mining (2023) 13:63
https://doi.org/10.1007/s13278-023-01064-1

ORIGINAL ARTICLE

HAkAu: hybrid algorithm for effective k‑automorphism anonymization
of social networks

Jana Medková1 · Josef Hynek1

Received: 29 December 2022 / Revised: 3 March 2023 / Accepted: 4 March 2023
© The Author(s) 2023

Abstract
Online social network datasets contain a large amount of various information about their users. Preserving users’ privacy
while publishing or sharing datasets with third parties has become a challenging problem. The k-automorphism is the
anonymization method that protects the social network dataset against any passive structural attack. It provides a higher level
of protection than other k-anonymity methods, including k-degree or k-neighborhood techniques. In this paper, we propose a
hybrid algorithm that effectively modifies the social network to the k-automorphism one. The proposed algorithm is based on
the structure of the previously published k-automorphism KM algorithm. However, it solves the NP-hard subtask of finding
isomorphic graph extensions with a genetic algorithm and employs the GraMi algorithm for finding frequent subgraphs. In the
design of the genetic algorithm, we introduce the novel chromosome representation in which the length of the chromosome
is independent of the size of the input network, and each individual in each generation leads to the k-automorphism solution.
Moreover, we present a heuristic method for selecting the set of vertex disjoint subgraphs. To test the algorithm, we run
experiments on a set of real social networks and use the SecGraph tool to evaluate our results in terms of protection against
deanonymization attacks and preserving data utility. It makes our experimental results comparable with any future research.

Keywords  Privacy · Anonymization · k-automorphism · Genetic algorithm · Graph isomorphism · Disjoint subgraphs

1  Introduction

The growing number of users participating in online social
networks (SNs) leads to supplying social network datasets
with more and more information. Since each provider col-
lects various kinds of data about their users, the amount
of information stored in SNs is enormous. Social network
datasets have become a precious source of information about
human behavior, establishing relationships, shopping hab-
its, and mobility patterns for academic (Macià and García
2016), medical (Kanai et al 2012; Myneni et al 2020), and
marketing (Harvey et al 2020) research all over the world.

Anonymization enables providers to share or publish
their datasets and preserve the individual’s privacy. It aims
to modify the original datasets to satisfy the required level

of anonymity and keep as much data utility as possible at
the same time. Modifying datasets to anonymized ones
requires making semantic and structural changes, and each
modification causes information loss. Hence, the goal of the
anonymization method is to find the optimal processes to
achieve a high level of privacy while causing minimal infor-
mation loss in the dataset.

The anonymization problem can be viewed as the opti-
mization problem of minimizing information loss where the
constraint is the required level of privacy. The required level
of privacy affects the complexity of the problem. The prob-
lem of finding the k-degree anonymous graph is proved to
be NP-hard by Hartung et al (2014), the problems finding
k-neighborhood and k-symmetry graphs are proved to be
NP-complete by Chester et al (2013), and the problem of
finding k-automorphism graph is proved to be NP-hard by
Zou et al (2009).

The k-automorphism anonymization method proposed
by Zou et al (2009) is the edge editing k-anonymity-based
method protecting against any structural attack. Together
with k-isomorphism (Cheng et al 2010) and k-symmetry
(Wu et al 2010), it provides the highest security level among

 *	 Jana Medková
	 jana.medkova@uhk.cz

	 Josef Hynek
	 josef.hynek@uhk.cz

1	 University of Hradec Králové, Rokitanského 62,
500 03 Hradec Králové, Czech Republic

http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-023-01064-1&domain=pdf

	 Social Network Analysis and Mining (2023) 13:63

1 3

 63   Page 2 of 21

the edge editing SN anonymization methods based on the
k-anonymity (Zou et al 2009). However, providing a high
level of privacy protection entails extensive modifications
in the graph structure during the anonymization procedure.
Due to the significant information loss, the k-automor-
phism methods have not been widely developed. The recent
research in edge editing SN anonymization methods focused
on k-degree and k-neighborhood methods. However, these
methods were proven vulnerable to deanonymization attacks
by Ji et al (2015).

In this paper, we demonstrate that the k-automorphism
is a competitive SN anonymization approach providing a
high-security level by proposing Hybrid Algorithm for k
-Authomorphism anonymization (HAkAu). HAkAu is based
on the structure of the KM algorithm published by Zou et al
(2009). It combines the original approach with the genetic
algorithm (GA).

The motivation for applying the GA arises from the fact
that the k-automorphism anonymization problem is proved
to be NP-hard, and GA is a powerful tool for solving search-
based optimization NP-hard problems. Using our novel rep-
resentation, finding the k-automorphism graph is an optimi-
zation problem of minimizing information loss. Moreover,
the solution space can be modeled very well, and the par-
ticular solutions are easily comparable with each other
with respect to the information loss function. Thus, GA is a
good fit for finding the optimal solution to such a problem.
Moreover, GA has been successfully used to improve the
k-degree anonymization method (Rajabzadeh et al 2020),
k-neighborhood method (Alavi et al 2019) and clustering
k-anonymization methods (Srivatsan and Maheswari 2022;
Yazdanjue et al 2020; Sihag 2012). Hence, it motivated us to
use it to improve the k-automorphism method too. Applying
GA enhances the computations and increases the quality of
the final solution. The resulting hybrid algorithm is more
efficient and preserves the data utility better than the KM
algorithm.

Except for the employment of GA in the k-automorphism
method, we highlight the following three novel aspects in the
proposed solution: chromosome representation in GA, the
algorithm for effective selection of disjoint subgraphs, and
the procedure of copying crossing edges.

We propose a new chromosome representation in which
the chromosome length is independent of the size of the
input network. Each chromosome describes not the whole
graph but the set of isomorphic subgraphs. The set of iso-
morphic subgraphs can be represented with a single adja-
cency matrix and a list of vertices. The chromosome consists
of specific elements of the adjacency matrix and the list
of vertices. Moreover, the length of the chromosome can
be regulated by setting the maximal size of the subgraphs.

Thus, the length of the chromosome and the size of the solu-
tion space of GA are independent of the size of the input
network. It increases the applicability of HAkAu on larger
networks and the effectivity of the computation. It is a nov-
elty in the usage of GA on the k-anonymization problems. In
the previously published solutions (Sihag 2012; Yazdanjue
et al 2020; Rajabzadeh et al 2020; Alavi et al 2019), the
chromosome always represents the whole graph. Therefore,
the length of the chromosome and the solution space always
grew with the size of the input network.

Furthermore, the proposed chromosome representation
keeps the isomorphism between the subgraphs “by design.”
Each chromosome in each generation leads to the k-auto-
morphism anonymized output graph. Thus, it is not neces-
sary to check whether the solution leads to k-automorphism
output graph by the fitness or selection function. Usually,
the requirement to check k-anonymity and minimize the
anonymization cost by fitness or selection function makes
the k-anonymization optimization problem two-dimensional
and more challenging to be solved by GA. Our representa-
tion enables the fitness function to aim only at the problem
of minimizing the anonymization cost.

In the preprocessing stage of HAkAu, it is required to find
k vertex disjoint isomorphic subgraphs in the input graph. At
first, the problem of finding the frequent subgraph with mini-
mal support higher than k is addressed with the GraMi algo-
rithm proposed by Elseidy et al (2014). The output of GraMi
is the list of matches of the frequent subgraph in the input
graph, which are not vertex disjoint. Since GA in HAkAu
requires the list of k vertex disjoint subgraphs, we have to
address the problem of selecting k vertex disjoint subgraphs
from the set of subgraphs. We prove that the problem is NP-
hard and introduce the “divide and conquer” algorithm with
effective heuristics for minimizing the computational time
in average cases.

We improve the procedure of copying crossing edges.
While the KM algorithm adds k copies for each crossing
edge, the HAkAu only copies the subsection of selected
crossing edges. Hence, the effect of anonymization on the
degree distribution is significantly smaller.

Furthermore, we show the usability of the HAkAu by
running experiments on real-world SN datasets. We perform
three kinds of experiments. At first, we run HAkAu on the
Prefuse network to compare the results of HAkAu with the
results of KM published by Zou et al (2009). Then, we run
HAkAu on three SN datasets differing in size to provide the
data utility analysis. Finally, we tested the resistance of the
data anonymized by HAkAu against the deanonymization
attacks. The SecGraph evaluation tool is used to compute
utility and network metrics and perform the deanonymiza-
tion attacks.

Social Network Analysis and Mining (2023) 13:63 	

1 3

Page 3 of 21  63

In summary, the innovation of this paper is in the follow-
ing aspects. The employment of GA in the k-automorphism
method is innovative since it enables the reduction in two NP-
hard problems into a single one. In the original solution, the
isomorphic graphs were found, then they were extended in
such a way that the isomorphism was lost, and then, it was
necessary to make them isomorphic again. We make the pro-
cess more efficient by extending the isomorphic subgraphs
“isomorphically” with GA. Hence, the algorithm solves only
one NP-hard problem instead of two.

The original KM algorithm was based on the application
of edge addition operation. Furthermore, its copying edges
procedure created a large number of dummy edges. Employing
the edge deletion together with a more efficient copying cross-
ing edges procedure in HAkAu causes the degree distribution
of the anonymized dataset to be much closer to the input one.
Hence, the final solution keeps more data utility.

The proposed chromosome representation is inventive since
it increases the applicability of the anonymization method
based on GA. As far as we know, this is the first anonymization
method based on GA where chromosomes do not represent
the whole graph.

The minor innovations in our solutions are the proposal
of the algorithm for selecting the subset of vertex disjoint
graphs from the set of edge disjoint graphs and the empha-
sis on the comparability of the produced results. Nearly all
published studies have their own methodology for data utility
measurement. Hence, it is difficult to compare the particular
results with each other. We show that applying the proposed
algorithm on the whole available dataset and measuring the
data utility with the external evaluation tool enable generat-
ing results that can be easily compared with the results of any
future research. Hence, the main contributions of our paper
are as follows

1.	 the proposal of the novel hybrid k-automorphism
anonymization algorithm HAkAu which improves the
previous k-automorphism method by employing GA

2.	 introducing the novel chromosome representation for
k-automorphism problem. The chromosome representa-
tion preserves the k-anonymity property of the chromo-
somes “by design”; hence, it is not necessary to test the
k-anonymity property with fitness or selection function.

3.	 the proposal of the novel “divide and conquer” algo-
rithm for effective selection of vertex disjoint subgraphs

4.	 the application of the GraMi algorithm in the anonymi-
zation method. As far as we know, this is the first paper
where the GraMi algorithm is used in the anonymization
procedure.

5.	 running experiments on the real-world SN datasets and
evaluating the experimental results with SecGraph eval-
uation tool

2 � Related work

This section summarizes the studies introducing k-ano-
nymity methods that address the identity disclosure prob-
lem in undirected SN datasets. The comprehensive survey
of all privacy-preserving solutions developed for SN is
given by Majeed et al (2022).

The well-known k-anonymity method was introduced
by Samarati and Sweeney (1998). The process anonymizes
relational datasets such that at least k individuals have the
same value of quasi-identifiers, attributes that can re-iden-
tify the individual in the records. The k-anonymity ensures
that any individual is indistinguishable from the k − 1 other
individuals in the anonymized dataset.

Since background knowledge about the network struc-
ture can lead to revealing the identity of the individual,
social ties in SNs are also considered to be quasi-identifi-
ers. Modifying the edge set of the original graph such that
there exist at least k nodes with the same degree for each
degree value in the graph is the ground of SN anonymiza-
tion methods based on k-anonymity: k-degree anonymity
(Liu and Terzi 2008; Casas-Roma et al 2017), k-neighbor-
hood anonymity (Zhou and Pei 2008), k(d)-neighborhood
(Alavi et al 2019), k-symmetry (Wu et al 2010), k-iso-
morphism (Cheng et al 2010) and k-automorphism (Zou
et al 2009).

The k-anonymity was extended to the k-degree anonym-
ity by Liu and Terzi (2008). In the k-degree anonymous
graph, there are at least k nodes with the same degree
for every degree value in the graph. Hence, the prob-
ability that the attacker distinguishes their target node
in the anonymized graph is 1

k
 if the attacker knows only

the degree of their target node. The proposed algorithm
was improved in later published studies in terms of speed
and preserving data utility (Hartung et al 2014; Lu et al
2012; Medková 2020) or its usability in larger networks
(Casas-Roma et al 2017). The k-degree method was
recently extended with the node-based differential privacy
approach to provide the protection against mutual friend
attack by Shakeel et al (2021). However, the model of the
attacker in the k-degree anonymization method is limited.

The k-neighborhood anonymity was introduced by Zhou
and Pei (2008, 2011). The proposed k-neighborhood ano-
nymity model protects against the attacker who knows the
target’s neighbors and their connections. The model was
extended to k(d)-neighborhood anonymity by Alavi et al
(2019). The k(d)-neighborhood anonymity protects against
the attacker who has the background structural knowledge
about nodes in the path distances up to d from the target
node.

There were published three anonymization methods
that protected against any structural attack: k-isomorphism

	 Social Network Analysis and Mining (2023) 13:63

1 3

 63   Page 4 of 21

(Cheng et al 2010), k-symmetry (Wu et al 2010) and
k-automorphism (Zou et al 2009). The definition of the
k-isomorphic anonymized network in Cheng et al (2010),
as well as the definition of the k-symmetry anonymized
network in Wu et al (2010), is equivalent to the definition
of the k-automorphic anonymized network in Zou et al
(2009). The k-isomorphism anonymization algorithm,
proposed by Cheng et al (2010), is very similar to the
KM algorithm introduced by Zou et al (2009). Both algo-
rithms aim to partition the input graph into k subgraphs
and make them isomorphic to each other with edge addi-
tions. Neither Cheng et al. nor Wu et al. did not compare
their experimental results with the results of other known
k-anonymity algorithms as Zou et al. did.

Zou et al. presented the KM algorithm that ensured
k-automorphism anonymization. The KM algorithm trans-
forms the input graph G to the k-automorphism graph G∗ .
The algorithm starts with finding the frequent subgraph gs(k)
with the given minimal support k in G by running the grow-
and-store SiGraM algorithm (Kuramochi and Karypis 2005).
Then, the KM algorithm finds k matches of gs(k) in G. The
found isomorphic subgraphs are expanded, meaning some
neighborhood vertices and edges are added to each of them.
The expansion is necessary for decreasing the total anonymi-
zation cost. Thus, the subgraphs are larger, but they are not
isomorphic to each other anymore. However, since the aim
of the algorithm is to obtain k-automorphic graph G∗ , its
subgraphs have to be isomorphic. Thus, dummy edges are
added to make the expanded subgraphs isomorphic to each
other again.

Contrarily, HAkAu expands the subgraphs “isomorphi-
cally.” It means that the expanded graphs are isomorphic
after the expansion and do not require further modification.
Moreover, HAkAu employs a more effective algorithm for
finding frequent subgraphs and improves the crossing edges
procedure where fewer edges are added to the final solution.
The KM algorithm solved the task as two separate NP-hard
problems: finding the optimal graph partitioning and finding
the optimal graph alignment. On the other hand, HAkAu
merges these problems and solves them together with a sin-
gle GA.

GAs have been recently exploited in the SN analysis for
community detection in large networks (Azaouzi et al 2019),
graph clustering (Bello-Orgaz et al 2012; Cai et al 2015),
and predicting dynamics of SN (Caschera et al 2019). Sev-
eral SN anonymization methods based on GA have been
recently presented as well.

Sihag (2012) proposed GA that anonymized SN by clus-
tering nodes into supernodes. However, the algorithm was
tested only on small SNs (up to 67 nodes) and cost more
significant information loss than the previously published

deterministic clustering algorithm Sangreea (Campan and
Truta 2008).

Another genetic clustering algorithm was proposed
by Yazdanjue et al (2020). They optimized the clustering
procedure in the k-anonymity method employing particle
swarm optimization. They presented a hybrid solution that
combined particle swarm optimization with GAs. Their
solutions were represented with binary matrices describ-
ing which node belonged to which supernode. Each chro-
mosome contained all nodes and all supernodes of the
whole graph. Hence, while anonymizing large networks,
it can be used only large values of the anonymizing param-
eter k since larger k meant fewer supernodes and smaller
chromosomes.

The genetic k-degree edge modification was introduced
by Rajabzadeh et al (2020). At first, the algorithm detected
communities in the SN graph. Then, it modified the edge
set in each community with GA. Hence, the SN graph
was anonymized by adding edges between vertices inside
detected communities.

Alavi et al (2019) introduced the k(d)-neighborhood ano-
nymity approach and presented GA for graph anonymiza-
tion called GAGA. The GAGA was the edge editing algo-
rithm that prioritized edge switching over edge adding or
removing. They showed that GA was an efficient tool for
anonymizing large SNs. Using the SecGraph framework (Ji
et al 2015), GAGA algorithm was proved to be resistant
against five deanonymization attacks. Moreover, the Sec-
Graph was used to measure information loss after anonymi-
zation and compare GAGA with existing approaches. We
agree that evaluating anonymization algorithms with an
independent tool like SecGraph can lead to a better compari-
son of proposed algorithms. However, GAGA is tested only
on the subgraph of the DBLP co-authorship network (Yang
and Leskovec 2015), not on the whole DBLP dataset. Since
we can not find which subgraph they used, we can not com-
pare our results with those published by Alavi et al (2019).

Other evolutionary methods have rarely been employed
in social network anonymization. As mentioned above,
the particle swarm optimization was employed in Yazdan-
jue et al (2020); however, the final solution combined it
with the genetic algorithm. The ant colony optimization
was employed in Bhattacharya and Roy (2015), where the
method for preventing the walked-based attack was pre-
sented. The method focused only on preventing one kind
of attack, while we present a more universal approach pro-
tecting against any structural attack. Kiabod et al (2021)
aimed to increase the anonymization speed and enhance the
usability of anonymization in big data SN datasets. They
combined the univariate micro-aggregation anonymization
with the firefly algorithm with neighborhood attraction. All

Social Network Analysis and Mining (2023) 13:63 	

1 3

Page 5 of 21  63

mentioned and recently published studies focused mainly
on data utility and omitted the level of privacy protection.
The datasets anonymized by them satisfy only the k-degree
anonymity, which is not a sufficient level of privacy.

Finding subgraphs with the given minimal support in
the single graph is one of the subtasks that have to be
solved by the k-automorphism anonymization algorithms.
It is an NP-hard problem that has already been studied
(Elseidy et al 2014; Kuramochi and Karypis 2005). It is
possible to exploit some of the previously presented algo-
rithms to solve the subtask. Zou at el. used the SiGraM
algorithm proposed by Kuramochi and Karypis (2005).
The SiGraM algorithm is based on the grow-and-store
method. The SiGraM stored all appearances of each
examined subgraph which requires much space and com-
putational time.

Recently, some more effective algorithms have been
proposed. The HAkAu uses the GraMi algorithm pro-
posed by Elseidy et al (2014). GraMi stores only the tem-
plates of the frequent subgraphs, not the whole subgraphs,

and models the frequency evaluation as the constraint sat-
isfaction problem. The GraMi algorithm is proved to be
faster than the SiGraM algorithm (Elseidy et al 2014).

3 � Preliminaries

In this section, we formalize the system and define the
basic terms from the graph theory and genetic algorithms.
For reference, the summary of notation used throughout
this paper is presented in Table 1.

3.1 � Graph theory

Definition 1  (Isomorphic graphs, Zou et al 2009) Given
two graphs P1 and P2 , P1 is isomorphic to P2 (denoted
by P1 ⋍ P2 ), if and only if there exists at least one bijec-
tive function F ∶ V(P1) ⟶ V(P2) such that for any edge

Table 1   Summary of the
notation

Notation Definition

G A social network graph
G∗ An anonymized social network graph
G̃ A released social network
E(G) The edge set of G
V(G) The vertex set of G
(vi, vj) The edge between nodes vi and vj
k An anonymization parameter
Fj An automorphism on G∗

Q A structural query
gf (s) A frequent subgraph with the minimal support s
H,Pij Subgraphs of G
P′
ij

Supergraphs of Pij

Qij Subgraphs of P′
ij
 ; E(Qij) = E(P�

ij
) ⧵ E(Pij)

M A matrix
r
i
(M) The ith row of M

rc(M) The number of rows of M
Adji The adjacency matrix of P�

i1
,… ,P�

ik

CH The bit part of the chromosome
varCH The part of the chromosome representing the list of vertices
Cost(G,G∗) The total anonymization cost
VCost(G,G∗) The anonymization cost caused by vertex edits
ExCost(G,G∗) The extension cost
ExCosti(H) The extension cost caused in the i-th round
CECost(G,G∗) The crossing edges cost
FF(I) The fitness function on the individual I
GA Genetic algorithm
SN Social network

	 Social Network Analysis and Mining (2023) 13:63

1 3

 63   Page 6 of 21

(u, v) ∈ E(P1) , there is an edge (F(u),F(v)) ∈ E(P2) . The
function F is called the isomorphism of P1 and P2.

Definition 2  (Graph automorphism) Let G be a graph, and
the bijective function F ∶ V(G) ⟶ V(G) be the isomor-
phism. Then F is the automorphism on G.

The terms isomorphism and automorphism are frequently
used in Sect. 6. The same function F is marked as isomor-
phism in one paragraph and automorphism in another. To
explain the double marking, Lemma 1 is formulated below.

Lemma 1  Let P1,P2 ⊂ G be vertex disjoint subgraphs of G,
V(P1) ∩ V(P2) = � . Let F ∶ G ⟶ G be an automorphism
on G such that F(P1) = P2 . Then, the restriction F|P1

 of F
on P1 F|P1

∶ P1 ⟶ P2 is the isomorphism from P1 to P2.

Proof  If F is the automorphism of G and P1 is the sub-
graph of G, then for all edges (u, v) ∈ E(P1) holds that
(F(u),F(v)) ∈ E(P2) . The same condition holds under
the restriction of F: for all edges (u, v) ∈ E(P1) holds that
(F|P1

(u),F|P1
(v)) ∈ E(P2) . Moreover, since F(P1) = P2 , then

for all u ∈ V(P1) its image F(u) ∈ V(P2) and for all v ∈ V(P2)
its preimage F−1(v) ∈ V(P1) . Hence, the restriction F|P1

 maps
P1 to P2 , and it is a bijection since F is a bijection. Thus, F|P1

 is
the isomorphism from P1 to P2 . 	� ◻

Thus, if F is the automorphism of G, then its restriction
of a particular subgraph P1 is the isomorphism of P1 and
P2 . To simplify the notation in Sect. 6, the notation for
the restriction is omitted, and the same functions Fi,j are
characterized both as automorphisms and isomorphisms.
Note that Fi,j are automorphisms on G, but when we focus
on subgraphs that are mapped with Fi,j , then Fi,j are iso-
morphisms of these subgraphs.

Definition 3  (Isomorphism extension) Let P1 and
P2 be two vertex disjoint graphs. Let there be two
g raph i somor ph i sms F1 ∶ V(P1) ⟶ V(H1) and
F2 ∶ V(P2) ⟶ V(H2) , where V(H1) ∩ V(H2) = � . Then,
F ∶ V(P1) ∪ V(P2) ⟶ V(H1) ∪ V(H2) , where F|V(P1)

= F1
and F|V(P2)

= F2 , is called the extension of F1 and F2 . The
operation of extension is denoted by F = F1 ⊕ F2 . Clearly,
F is also the graph isomorphism.

Definition 4  (Frequent subgraph with minimal support,
Kuramochi and Karypis 2005) Given a graph G and the min-
imum support s, a graph gf (s) is called a frequent subgraph
of G if and only if there exist s subgraphs of G, P1,… ,Ps ,
that are isomorphic to gf (s) and

E(Pi) ∩ E(Pj) = � i ≠ j ∀i, j ∈ N ∶ 1 ≤ i < j ≤ s.

The graphs P1,… ,Ps are called the matches of gf (s) in G.

Note that the above definition assures that the matches are
edge disjoint but not vertex disjoint. In large graphs, there
can be several frequent subgraphs with given support s. In
that case, the k-automorphism algorithms take the frequent
subgraph with the largest number of edges.

Definition 5  (Social network) A social network is
represented by the graph G = (V(G),E(G)) , where
V(G) = {v1,… , vn} is the set of nodes representing the par-
ticipating users and E(G) = {e1,… , em} is the set of edges
representing the social relationships between users. The edge
between nodes vi and vj is denoted by (vi, vj) . The network is
considered to be unlabeled.

To guarantee privacy against any structural attack, the
given SN graph G is anonymized to become k-automorphic
graph G∗ , where k is the anonymization parameter.

Definition 6  (k-automorphic graph (Zou et al 2009)) Let G∗
be a graph. If there exist at least k − 1 automorphisms Fj in
G∗, j = 1,… , k − 1 , and

then G∗ is called a k-automorphic graph.

Definition 7  (Crossing edge) Let G be a graph and P the sub-
graph of G. Each edge (u, v) ∈ E(G) such that u ∈ V(P) and
v ∈ V(G)⧵V(P) is called a crossing edge between P and G.

The crossing edges are essential when subgraph P is
separated from G. In case two graphs P1,P2 are separated
from G, then the set of crossing edges can be defined as
{(u, v) ∈ E(G); ∃j ∈ {1, 2} ∶ u ∈ V(Pj) ∧ v ∉ V(Pj)} . A
similar situation happens when more than two graphs are
separated from G.

Since the description of the proposed algorithms uses
matrices and manipulations with their rows, the following
definition introduces the necessary notation.

Definition 8  (Matrix notation) Let M(m, n) be a matrix with
m rows and n columns. Then rc(M) denotes the number of
rows of M and ri(M) denotes the i-th row of M . The fact that
the element e is contained in the i-th row of M is denoted by
e ∈ ri(M) . Adding the vector r as the last row if M is denoted
by M ∪ r . Removing the row r from M is denoted by M ⧵ r.

3.2 � Genetic algorithm

GAs originally developed by Holland (1973) are based on
mimicking the processes of natural evolution: the Mendelian

∀v ∈ V(G∗) ∶ Fj1
(v) ≠ Fj2

(v) ∀j1, j2 ∈ N ∶ 1 ≤ j1 < j2 ≤ k − 1,

Social Network Analysis and Mining (2023) 13:63 	

1 3

Page 7 of 21  63

principles of inheritance, the Darwinian theory of the sur-
vival of the fittest, and the genetic recombination operators
allowing the inheritance of specific features and traits as well
as the introduction of small but necessary changes. GAs are
very variable; here, we outline the pattern of the GA used in
HAkAu. The specifications of the proposed functions, opera-
tors, and chromosome representation are given in Sect. 7.

The search for a suitable solution to a given problem
is viewed as the competition amongst the whole popula-
tion of individuals representing potential solutions to the
problem. These individuals are encoded as chromosomes
of fixed length. At the beginning of the process, the ini-
tial population of individuals is randomly generated. All
individuals are evaluated with the fitness function. The
evaluation of individuals forms the basis of their chance
to be selected for survival and reproduction. The selection
function is employed to emulate the processes of natural
selection where the fitter individuals are given a higher
chance to be selected. Consequently, the selected individu-
als go through the process of reproduction. The reproduc-
tion operators used in this paper are crossover and muta-
tion. Crossover is two-parent operation. It combines two
parent individuals into a single child individual. Mutation
is an asexual recombination operator maintaining genetic
diversity between generations. After producing offspring,
a new population of individuals is created. The repeti-
tion of this process, the selection of fitter individuals, the
inheritance of their potentially favourable features, and
newly introduced random changes are the main powers
enabling the subsequent generations of potential solutions
might include one or even several individuals presenting
a suitable or even optimal solution to the given problem
(Hynek 2002).

4 � Problem definition

In this paper, we focus on the problem of privacy-preserv-
ing protection against structural attacks. Additionally, the
attacker could have other non-structural information like
vertex labels or edge labels. However, this paper does not
address the problem of preserving protection against non-
structural attacks.

More precisely, the privacy-preserving issue addressed in
this paper is the identity disclosure problem in SN datasets.
Assume the provider possesses the graph G representing the
SN network. The provider desires to share or publish the
data. The version of G that is shared or published is called
the released graph G̃ . The released graph G̃ equals G or any
anonymized version of G depending on the privacy level
guaranteed by the provider. The identity disclosure occurs if
an attacker can identify the target individual in the released

dataset G̃ . In other words, the identity is disclosed if the
attacker can link v ∈ V(G̃) with the particular individual that
is represented with v.

Definition 9  (Query (Zou et al 2009)) Given a social net-
work G, a query Q represents any information that the
attacker can exploit to extract private information from G.
The result of Q is a set of vertices W ⊂ V(G) . Each w ∈ W
is called a match vertex.

Definition 10  (Structural attack (Zou et al 2009)) Given a
released network G̃ , if a query Q over G̃ launched by an
attacker has a limited number of match vertices in G̃ , then
target individual t might be uniquely identified. If Q is based
on the structural information about t in G̃ , this is called a
structural attack.

Structural attacks include degree attacks, subgraph
attacks, neighbor graph attacks and hub fingerprint attacks
(Zou et al 2009). The presented k-automorphism concept
defends against all kinds of structural attacks since for every
vertex v ∈ V(G∗) , there are at least other k − 1 vertices with
the same l-neighborhood in G∗ for any l ∈ N  . Therefore,
the result of any structural query Q on G∗ contains at least k
vertices. The attacker cannot identify their target node with
a higher probability than 1

k
 in the k-automorphic graph G∗.

5 � Theoretical part

Before we describe the proposed solution to the issue stated
in the previous section, we present some theoretical aspects
of our solution.

5.1 � Anonymization cost

The information loss caused by the anonymization is called
the anonymization cost. In the edge editing anonymization
methods, the anonymization cost corresponds to the number
of edge edits made during the anonymization process. Since
making a graph k-automorphic also requires node edits in
the input graph, the total anonymization cost of HAkAu
equals the sum of edge edits and node edits.

The number of node edits depends on |V(G)|. If G∗ is
k-automorphic, then for each node v there exist k − 1 nodes
that are isomorphic to v. Hence, |V(G∗)| is divisible by k. If
|V(G)| is not divisible by k, adding or removing some verti-
ces is necessary. Let us denote z ∶= mod(|V(G)|, k) . In case
z ≤

k

2
 , then z vertices are removed by HAkAu; otherwise,

k − z dummy vertices are added. Thus, the number of node
edits, denoted by VCost(G,G∗) , is equal to or less than k

2
.

	 Social Network Analysis and Mining (2023) 13:63

1 3

 63   Page 8 of 21

Edge edits have a more significant impact on the
anonymization cost. HAkAu uses both edge-removing and
edge-adding operations. Edge modifications are applied
in two parts of HAkAu: when chosen subgraphs of G are
extended by GA and in the adding crossing edges procedure.
Hence, the total anonymization cost caused by modifying G
to G∗ with HAkAu is

where ExCost(G,G∗) is the number of edge edits made
by GA and CECost(G,G∗) is the number of edge edits
made in the adding crossing edges procedure. Both costs,
ExCost(G,G∗) and CECost(G,G∗) , are computed in Sect. 6,
after HAkAu is explained.

5.2 � NP‑hard problems

The issue addressed in this paper contains NP-hard prob-
lems. In this section, we present the problems and prove
their NP-hardness. Methods for solving them are proposed
in the next section.

Problem 1  Let G be a graph and M be a set of subgraphs of G.
Select S ⊆ M such that ∀P1,P2 ∈ S ∶ |V(P1)| ∩ |V(P2)| = �.

We prove the NP-hardness of Problem 1. Since all sub-
graphs in M are isomorphic, they have the same number of
vertices. We define the matrix M such that the i-th row of M
is the list of vertices of the i-th subgraph of M. The selection
of the subset S corresponds to the selection of the set of rows
in M that do not contain any identical number. The selected
rows represent the isomorphic subgraphs with the mutually
vertex disjoint set of vertices.

Now we show that the problem of selecting matrix rows
that do not contain any identical number is polynomially
reducible to the maximum independent set problem. This
problem is known to be a strongly NP-hard (Garey and John-
son 1978). Let us suppose that the individual rows in M will
be represented by vertices of a completely new graph (with-
out any assumption of what kind of graph is represented
by the specific row). Let us add edges in our newly created
graph in such a way that there will be an edge between two
vertices just when the intersection between the respective
rows is non-empty. This simple transformation changed our
problem into the maximum independent set problem. Hence,
Problem 1 is NP-hard.

Problem 2  Let G be a graph and G∗ be a k-automorphism
graph such that Cost(G,G∗) is minimal. Let Pi,1,… ,Pi,k ,
be subgraphs of G such that Pi,j is isomorphic to Pi,l ,
∀j, l ∶= 1,… , k . For Pi,1,… ,Pi,k find graphs P�

i,1
,… ,P�

i,k

and isomorphism Fi,j such that

Cost(G,G∗) = VCost(G,G∗) + ExCost(G,G∗) + CECost(G,G∗)

–	 P′
i,j

 is subgraph of G∗

–	 P′
i,j

 is the supergraph of Pi,j

–	 Fi,j(P
�
i,j
) = P�

i,j+1
, j = 1,… , k − 1,

–	 Fi,k(P
�
i,k
) = P�

i,1

Problem 2 is the core of finding k-automorphic graph
G∗ for the given G. Naturally, G∗ is not known before the
anonymization procedure, and the real goal is to find G∗ such
that Cost(G,G∗) is minimal. The problem repeatedly arises
in HAkAu, and the index i denotes the number of its repeti-
tions. It is a combination of two NP-hard problems proposed
by Zou et al (2009): finding optimal graph partitioning of
G and finding the optimal graph alignment for the set of
subgraphs. We show how to reduce one of those problems
to Problem 2 to show its NP-hardness.

Zou et al (2009) firstly find the frequent subgraph of G with
the minimal support k and its matches in G. The found
matches form the set of subgraphs denoted by Ui . Then sub-
graphs in Ui are extended to graphs Pi,j , which are still sub-
graphs of G but are not isomorphic to each other. The exten-
sion is made so that Cost(G,G∗) is minimal. The procedure is
repeated until G is completely partitioned into sets Ui . This
issue is called finding the optimal graph partitioning. Then,
for each set Ui , some edges are added into Pi,j to create new
graphs P′

ij
 that are isomorphic to each other. The edge addition

procedure requires minimization of Cost(G,G∗) . The align-
ment vertex table defined in Zou et al (2009) described how
vertices are mapped to each other under the isomorphism.
This issue is called finding the optimal graph alignment.

To reduce the finding of the optimal graph alignment prob-
lem to Problem 2, we set Pi,1,… ,Pi,k to be the matches of the
frequent subgraph with the suppor t k . Then
Ui ∶= {Pi,j; j ∶= 1,… , k} before the extension is applied.
After all P′

i,j
 and Fi,j are found for each i, j with HAkAu, then

subgraphs P′
i,j

 requested in finding the optimal graph alignment
problem are P�

i,j
∶= P�

i,j
 . The graphs P′

i,j
 are isomorphic. More-

over, the isomorphisms Fi,j give the alignment vertex table.

6 � HAkAu algorithm

In this section, we give a detailed description of the novel
Hybrid Algorithm for k-Automorphism anonymization. The
proposed HAkAu modifies the graph G representing the given
SN to the anonymized k-automorphism graph G∗ . The algo-
rithm addressed the privacy-preserving problem outlined in
Sect. 4. The final G∗ is resistant to any structural attack.

The crucial idea of our approach is as follows. The k iso-
morphic subgraphs are found in G. They are isomorphically
extended to minimize Cost(G,G∗) . Then, the extended iso-
morphic subgraphs are removed from the input graph, and

Social Network Analysis and Mining (2023) 13:63 	

1 3

Page 9 of 21  63

the process is rerun on the smaller graph. After the whole
input graph is processed, we get the set of disconnected
graphs such that for every graph, there are at least k − 1 other
graphs that are isomorphic to it. The disconnected graphs
are linked together, making the final graph k-automorphic.

Algorithm 1 HAkAu algorithm
Require: anonymization parameter k, input network G, minimal support s
Ensure: k-automorphism network G∗

1: Set i := 1, H := G, C := ∅, M := ∅, S := ∅ and G∗ to be an empty graph.
Set Fj := 0, j := 1, . . . , k.

2: while |V (H)| ≥ k do
3: Run GraMi on (H, s) to find the frequent subgraph gf (s) and the set

M := {I1, . . . , Is; Ij is a match of gf (s) in H, j := 1, . . . , s}.
4: Run Algorithm 2 on (M, s, k) to find the set of k vertex-disjoint matches

S := {Pij ∈ M ; V (Pij) ∩ V (Pil) = ∅, j �= l, j, l = 1, . . . , k} (see
Section 6.1)

5: Run GA on (S,H, k) to find graphs P ′
ij and isomorphism Fij such that

- P ′
ij is the supergraph of Pij

- Fij(P ′
i,j) = P ′

i,j+1, j = 1, . . . , k − 1,
- Fik(P ′

i,k) = P ′
i,1

- Cost(G,G∗) is minimal

(see Sections 7)
6: Ci := {(u, v) ∈ H : ∃j ∈ {1, . . . , k} : u ∈ V (P ′

ij) ∧ v /∈ V (P ′
ij)}

7: C := C ∪ Ci

8: V (H) := V (H) \
⋃k

j=1(V (P ′
ij) ∩ V (H))

9: E(H) := E(H) \ (C ∪
⋃k

j=1(E(P ′
ij) ∩ E(H)))

10: Fj := Fj ⊕ Fij j := 1, . . . , k
11: i := i+ 1.
12: end while
13: m := i− 1
14: C := C ∪ E(H)
15: if |V (H)| ≥ k

2 then
16: m := m+ 1
17: Add k − |V (H)| dummy edges in V (H).
18: for j := 1, . . . , k do
19: Select v ∈ V (H) and set P ′

mj := v
20: V (H) := V (H) \ {v}
21: end for
22: end if
23: G∗ :=

⋃m
i=1

⋃k
j=1 P

′
ij

24: Run Algorithm 3 on (C,G,G∗, k, Fj) to add selected crossing edges and
their isomorphic copies in G∗ (see Section 6.2).

25: Return G∗.

The detailed description of HAkAu is given in Algo-
rithm 1. The graph H is the rest of the input graph after the
ith round of the while cycle (see line 2). While there are at
least k vertices in H, H is partitioned. GraMi algorithm is run
to find the frequent subgraph gf (s) and s matches of gf (s) in
H (see line 3). If GraMi finds more than one frequent sub-
graph, gf (s) is the largest. The set of subgraphs matching gf (s)
in H is denoted by M. After selecting k vertex disjoint sub-
graphs Pij from M (see line 4), the GA is run to find isomor-
phic supergraphs P′

ij
 (see line 5). The proposed GA solves the

NP-hard Problem 2. The graphs P′
ij
 are removed from H (see

lines 8 and 9) and the crossing edges between P′
ij
 and H are

added into the set of crossing edges C (see line 7). When
|V(H)| < k , the edges remaining in H are added into C, and
the remaining vertices become the last found isomorphic

subgraphs (see lines 14–20). All the found subgraphs P′
ij
 are

the core of the anonymized graph G∗ . To make G∗ connected,
selected crossing edges and their copies are isomorphically
added into G∗ (see line 24). The detailed description of add-
ing crossing edges procedure is given in Sect. 6.2.

Note the following interesting aspects of the algorithm.
At first, we explain the issue of finding isomorphisms Fj . In
the first round of the while cycle GA finds k isomorphic
graphs P�

11
,… ,P�

1k
 . The set of k isomorphic graphs deter-

mines k isomorphisms F11,… ,F1k as shown in line 10.

	 Social Network Analysis and Mining (2023) 13:63

1 3

 63   Page 10 of 21

Since Fj is a zero homomorphism at the beginning, Fj ∶= F1j
after the first round. After the second round, Fj is the exten-
sion of F1j and F2j and it is still the isomorphism, since
V(P�

1j
) ∩ V(P�

2j
) = �, ∀j = 1,… , k . Similarly, after the i-th

round Fj is extended with Fij (see line 10). After the while
c y c l e e n d s , t h e r e a r e m ⋅ k g r a p h s
P�
ij
, i = 1,… ,m, j = 1,… , k , and k isomorphisms Fj:

•	 Fj(P
�
i,j
) = P�

i,j+1
, i = 1,… ,m, j = 1,… , k − 1,

•	 Fk(P
�
i,k
) = P�

i,1
, i = 1… ,m

Secondly, note that Pij are subgraphs of H, but P′
ij
 are not

subgraphs of H . Natural ly, V(Pij) ⊆ V(P�
ij
) and

E(Pij) ⊆ E(P�
ij
) , since Pij are supergraphs of Pij . Moreover,

V(P�
ij
) ⊆ V(H) , but E(P�

ij
) ⊈ E(H).1 Some edges from H are

preserved in P′
ij
 , some new edges can be added between

nodes of V(P�
ij
) by GA, some edges that were between some

nodes of V(P�
ij
) in H do not exist in P′

ij
.

Thirdly, the aim of GA is to set up graphs P′
ij
 such that they

are isomorphic to each other and Cost(G,G∗) is minimal.

Putting back a single crossing edge caused adding other k − 1
edges that are isomorphic to the graph. By finding larger graphs
P′
ij
 and replacing them with smaller Pij , the amount of crossing

edges is reduced; hence, CECost(G,G∗) is significantly reduced.
Finally, the HAkAu algorithm requires the input dataset

and two parameters: the anonymization parameter k and the
minimal support parameter s. The anonymization parameter
is the independent parameter corresponding to the required
anonymization level. The minimal support s is the dependent
parameter. It holds that s > k since we select k vertex disjoint
subgraphs from the set of s edge disjoint subgraphs.

6.1 � Finding the subset of vertex disjoint subgraphs

GraMi algorithm has been utilized to find the largest fre-
quent subgraph gf (s) and its matches in H. We denoted

Naturally, there might be partially overlapping subgraphs in
M having one or more common vertices. To proceed further,
we need to find k mutually vertex disjoint subgraphs in M.

M ∶= {I1,… , Is; Ij is a match of gf (s) in H, j ∶= 1,… , s}.

1  The statement V(P�
ij
) ⊆ V(H) simplifies slightly the real situa-

tion. In some cases, a few new nodes have to be added, and for some
j ∶ V(P�

ij
) ⊈ V(H) (see Sect. 7.2).

Algorithm 2 Finding the subset of mutually vertex-disjoint subgraphs
Require: the set of s isomorphic subgraphsM = {I1, . . . , Is}, the anonymiza-

tion parameter k
Ensure: the set of k vertex-disjoint isomorphic subgraphs S
1: Set {vj1, . . . , vjn} := V (Ij) and M := {vji }i,j to be a matrix,

i := 1, . . . , |V (I1)| , j := 1, . . . , s.
2: R := ∅, S := ∅.
3: while rc(M) > 1 do
4: Calculate the frequency of all vertices contained in M. Let v be the

vertex with the highest frequency of occurrence in M.
5: for j := 1, . . . , rc(M) do
6: if v ∈ rj(M) then
7: M := M \ rj(M)
8: R := R ∪ rj(M)
9: end if

10: end for
11: if rc(M) = 1 then
12: S := M.
13: end if
14: end while
15: repeat
16: Calculate the frequency of vertices contained in S.
17: Find r := r(R) such that ∀v ∈ r(R) frequency of v in S equals 0.
18: R := R \ r
19: S := S ∪ r
20: until r = ∅ or rc(S) = k
21: Return S := {I ∈ M ; ∃i : ri(S) = V (I)}

Social Network Analysis and Mining (2023) 13:63 	

1 3

Page 11 of 21  63

The output of the GraMi algorithm is in tabular form
with s rows, where each row represents one subgraph Ij
as the list of its vertices. Since I1,… , Is are isomorphic,
|V(I1)| = ⋯ = |V(Is)| . The set of the rows can be represented
by a matrix M with s rows and |V(I1)| columns. The issue
is formulated in Problem 1 and is proved to be NP-hard in
Sect. 5.

Therefore, a naive approach based on a brute-force algo-
rithm that successively compares each row with another
one is impractical, and we need some heuristic approach to
speed up the search. Our idea is based on the “divide and
conquer” design paradigm where the frequency of the indi-
vidual vertices (numbers) in matrix M is utilized to break

different subgraphs, v ∈ V(P�
ij
) , w ∈ V(P�

ab
) , where i ≠ a or

j ≠ b . If we add (v, w) into G∗ , then it is necessary to add
other k − 1 edges (Fj(v),Fj(w)) into G∗ , j = 1,… , k − 1 , to
keep G∗ k-automorphic.

The crossing edge (v, w) is added into G∗ if there are at
least k

2
− 1 other crossing edges in C that are isomorphic

to (v, w). Hence, adding (v, w) into G∗ causes fewer edge
edits than not adding it. Except that, HAkAu adds cross-
ing edges that are significant for matching the structure
of G∗ to the structure of G. The procedure, including also
the computation of CECost(G,G∗) , is described in detail
in Algorithm 3.

Algorithm 3 Adding crossing edges
Require: the set of crossing edges C, input network G, anonymized network

G∗, anonymized parameter k, isomorphisms Fj (j := 1, . . . , k)
Ensure: k-automorphism network G∗, CECost(G,G∗)
1: CECost(G,G∗) := 0
2: while C �= ∅ do
3: Select (v, w) from C.
4: Set C̃ := {(Fj(v), Fj(w)) ∈ C}.
5: if |C̃| ≥ k

2 − 1or (degG∗(v) < degG(v)or degG∗(w) < degG(w)) then
6: E(G∗) := E(G∗) ∪ {(Fj(v), Fj(w)), j := 1, . . . , k}
7: C := C \ {C̃ ∪ (v, w)}
8: CECost(G,G∗) := CECost(G,G∗) + k − 1− |C̃|
9: else

10: C := C \ {(v, w)}
11: CECost(G,G∗) := CECost(G,G∗) + 1
12: end if
13: end while
14: Return G∗, CECost(G,G∗).

down the main task into two subtasks. In the first subtask,
the rows of M containing the most frequent vertices are step
by step removed and stored in auxiliary matrix R . The last
row remaining in M is the cornerstone of the solution repre-
sented by the matrix S . In the second subtask, we select rows
from R that are disjoint with rows already stored in S and
add them step by stem into S . The algorithm terminates if it
can find no such a row in R or S have k rows. The algorithm
described in detail in Algorithm 2 delivers a subset of mutu-
ally vertex disjoint subgraphs.

6.2 � Adding crossing edges

The crossing edges are edges stored in the set C. Note that a
crossing edge (v, w) is the edge that connects vertices from

6.3 � Computing the extension cost

The extension cost ExCost(G,G∗) is the anonymization cost
caused by replacing Pij with P′

ij
 , i ∶= 1,… , k , j ∶= 1,… ,m .

Let ExCosti(H) denote the extension cost caused in the i-th
round of while cycle in Algorithm 1 where H is processed.
Then

where ExCost(Pij,P
�
ij
) is the anonymization cost caused by

extending Pij to P′
ij
 , i, j fixed. The cost ExCost(Pij,P

�
ij
) equals

ExCost(G,G∗) ∶=

m∑

i=1

ExCosti(H)

ExCosti(H) ∶=

k∑

j=1

ExCost(Pij,P
�
ij
)

	 Social Network Analysis and Mining (2023) 13:63

1 3

 63   Page 12 of 21

to the number of edges that exist in P′
ij
 and not exist in G plus

the number of edges (u, v) ∈ E(G) such that u, v ∈ V(P�
ij
) and

(u, v) ∉ E(P�
ij
) . More precisely,

7 � Genetic algorithm

We used the model of the genetic algorithm described in
Sect. 3.2. In this section, we describe the chromosome rep-
resentation, fitness and selection function, and how genetic
operators are applied to the used representation.

7.1 � Chromosome representation

In this section, we introduce the novel chromosome repre-
sentation used in GA. The goal of GA is to find k graphs P′

ij
 ,

j ∶= 1,… , k , i fixed that are isomorphic to each other (line
5 in Algorithm 1). Therefore, in the rest of this section, the
index i is fixed, and indices j, l ∶= 1,… , k.

Each individual in GA represents one solution; hence,
each individual represents all graphs P′

ij
 . For all j, the graph

P′
ij
 is the supergraph of Pij . We denote Qij = P�

ij
⧵Pij to be the

s u b g r a p h o f P′
ij

 w i t h V(Qij) = V(P�
ij
) a n d

E(Qij) = E(P�
ij
) ⧵ E(Pij) (see Fig. 1). The graphs Pij are found

with Algorithm 2, and they do not change during the run of

ExCost(Pij,P
�
ij
) ∶= |E(P�

ij
) ⧵ (E(Pij�) ∩ E(G))|

+ |{(u, v) ∈ E(G); u, v ∈ V(P�
ij
) ∧ (u, v) ∉ E(P�

ij
)}|

GA. Thus, GA aims to find the optimal Qij for each j. Since
P′
ij
⋍ P′

il
 and Pij ⋍ Pil , then Qij ⋍ Qil.

Furthermore, since P′
ij
⋍ P′

il
 , then P�

i1
,… ,P�

ik
 have the

same adjacency matrix (see the example with P′
i1
 and P′

i2
 in

Fig. 2). Let us denote the adjacency matrix of P�
i1
,… ,P�

ik
 by

Adji . The part of Adji representing edges of Pij is known
before GA is run and corresponds to gf (s) found with GraMi
(line 3 in Algorithm 1). Thus, the part of Adji representing
edges of Pij is constant in all possible solutions of GA and
all individuals in all generations. Therefore, to encode the
individuals in chromosomes, it is enough to encode some
part of Adji and the ordered lists of vertices of Qij . Hence,
each chromosome consists of two parts

•	 CH = bits representing elements of Adji
•	 varCH = ordered lists of vertices from V(Qi1),… ,V(Qik)

More precisely, CH represents the elements of Adji cor-
r e s p o n d i n g t o E(Qij) a n d
(uij, vij) ∈ E(P�

ij
) ∶ uij ∈ V(Qij) ∧ vij ∈ V(Pij) (see Fig. 3).

The chromosome representation guarantees that each indi-
vidual corresponds to graphs P�

i1
,… ,P�

ik
 that are supergraphs

of Pi1,… ,Pik and P′
ij
⋍ P′

il
 . Hence, the representation keeps

the k-automorphism in the final solution G∗ , and it is unnec-
essary to check the k-anonymity property during GA
processing.

7.2 � Fitness function

A fitness function FF(I) evaluates how close the solution
represented by the individual I is to the optimal solution of
the problem. The aim of GA in HAkAu is to find the solution
with minimal Cost(G,G∗) . GA runs several times in HAkAu
(see line 5 in Algorithm 1). In each run, GA finds the opti-
mal graphs P�

i1
,…P�

ik
 for fixed i. Thus, minimizing

ExCosti(H) in each run of GA is necessary. Except that,
CECost(G,G∗) should be minimized. However, during the
particular run of GA, it is impossible to compute
CECost(G,G∗) properly since the decision, whether to add
a crossing edge in G∗ or not is made after all runs of GA.
CECost(G,G∗) is directly proportional to the number of
crossing edges between V(P�

ij
) and other nodes of H. Hence,

instead of minimizing CECost(G,G∗) in GA, we minimize
the number of crossing edges. Thus, the fitness function of
the individual I is defined as the two-tuple

where ExCost(H, I) means ExCosti(H) and nCE(H, I) means
the number of crossing edges between P′

ij
 and H,

j ∶= 1,… , k , i fixed, where P′
ij
 are constructed according

to the individual I. Referring to the line 6 in Algorithm 1

FF(I) =
[
nCE(H, I); ExCost(H, I)

]

Fig. 1   Subgraphs of P′
ij
 . Vertex sets of particular subgraphs

are V(P′
ij) = {1, 2, 3, 4, 5, 6, 7, 8, 9} , V(Pij) = {1, 2, 3, 4, 6} ,

V(Qij) = {1, 2, 4, 5, 6, 7, 8, 9}

Social Network Analysis and Mining (2023) 13:63 	

1 3

Page 13 of 21  63

nCE(H, I) = |Ci| . If two values FF(I1) and FF(I2) are com-
pared in GA, then

FF(I1) ≤ FF(I2)

if nCE(H, I1) < nCE(H, I2)

or nCE(H, I1) = nCE(H, I2) ∧ ExCost(H, I1) ≤ ExCost(H, I2)

The number of crossing edges has more weight while com-
paring FF values. It has three reasons. Firstly, the aim of
GA is to search for the expansion of subgraphs found with
GraMi. Why are the subgraphs Pij found with GraMi not
used? By the expansion of Pij , CECost(G,G∗) is reduced
significantly. Thus, we aim to minimize CECost(G,G∗) as
much as possible during GA runs. Moreover, we experimen-
tally found that ExCost(H, I) is much smaller than nCE(H, I).

Fig. 2   Adjacency matrix of
isomorphic graphs P′

i1
 and P′

i2

( k = 2)

Adjacency matrix of P ′
i1:

1 2 3 4 5 6 7 8 9
1 0 1 1 0 1 0 0 1 0
2 1 0 1 0 0 0 0 1 0
3 1 1 0 1 0 0 0 0 0
4 0 0 1 0 0 1 0 0 0
5 1 0 0 0 0 0 1 0 0
6 0 0 0 1 0 0 0 0 0
7 0 0 0 0 1 0 0 0 0
8 1 1 0 0 0 0 0 0 1
9 0 0 0 0 0 0 0 1 0

Adjacency matrix of P ′
i2:

15 12 17 18 16 14 13 10 11
15 0 1 1 0 1 0 0 1 0
12 1 0 1 0 0 0 0 1 0
17 1 1 0 1 0 0 0 0 0
18 0 0 1 0 0 1 0 0 0
16 1 0 0 0 0 0 1 0 0
14 0 0 0 1 0 0 0 0 0
13 0 0 0 0 1 0 0 0 0
10 1 1 0 0 0 0 0 0 1
11 0 0 0 0 0 0 0 1 0

Graph isomorphism F1 : P ′
i1 −→ P ′

i2:
F1(1) = 15 F1(4) = 18 F1(7) = 13
F1(2) = 12 F1(5) = 16 F1(8) = 10
F1(3) = 17 F1(6) = 14 F1(9) = 11

Fig. 3   Chromosome representa-
tion for k = 2 . The part of Adji
representing E(Pij) is high-
lighted with red (dark) color,
and the part of Adji represent-
ing E(Qij) is highlighted with
green (light) color. The part of
Adji in the black tetragon makes
the bit part of the chromo-
some CH. The bits are taken in
columns. Ordered lists of nodes
from V(Qi1) and V(Qi2) makes
varCH 

Adji 1 2 3 4 5 6 7 8 9
1 0 1 1 0 1 0 0 1 0
2 1 0 1 0 0 0 0 1 0
3 1 1 0 1 0 0 0 0 0
4 0 0 1 0 0 1 0 0 0
5 1 0 0 0 0 0 1 0 0
6 0 0 0 1 0 0 0 0 0
7 0 0 0 0 1 0 0 0 0
8 1 1 0 0 0 0 0 0 1
9 0 0 0 0 0 0 0 1 0

Adji 15 12 17 18 16 14 13 10 11
15 0 1 1 0 1 0 0 1 0
12 1 0 1 0 0 0 0 1 0
17 1 1 0 1 0 0 0 0 0
18 0 0 1 0 0 1 0 0 0
16 1 0 0 0 0 0 1 0 0
14 0 0 0 1 0 0 0 0 0
13 0 0 0 0 1 0 0 0 0
10 1 1 0 0 0 0 0 0 1
11 0 0 0 0 0 0 0 1 0

CH = 00010 000010 1100000 00000001
varCH = 6 7 8 9 14 13 10 11
Whole chromosome: 00010000010110000000000001 6 7 8 9 14 13 10 11

	 Social Network Analysis and Mining (2023) 13:63

1 3

 63   Page 14 of 21

Finally, if one crossing edge is added in G∗ , then other k − 1
copies of it have to be added in G∗ to keep G∗ k-automorphic.
On the other hand, increasing ExCost(H, I) by one corre-
sponds only to the single change in G∗.

7.3 � Selection function

The selection function chooses individuals from the current
population to create the next generation. We propose a two-
step selection function. Let N be the number of requested
parents. In the first step, 2N individuals are selected from the
whole current population using the roulette wheel selection
where the expectations are computed with nCE(H, I). In
the second step, N parents are selected from the 2N chosen
individuals using tournament selection where expectations
are computed with ExCost(H, I).

7.4 � Genetic operators

We use the usual genetic operations: crossover and muta-
tion. Crossover combines two parent individuals I1 and I2
into a single child individual I1+2 . Let CH1 , CH2 and CH1+2
be the bit parts of chromosomes corresponding to I1, I2 and
I1+2 , respectively, and varCH1 , varCH2 and varCH1+2 be
the “node” parts of chromosomes corresponding to I1, I2
and I1+2 , respectively. CH’s and varCH’s are crossed over
separately.

The two-point crossover is applied on CH1 and CH2
(Hynek 2008). CH1 and CH2 have the same length lCH . We
select two random integers a, b ∈ (1;lCH) . The bit part of the
child individual CH1+2 gets 1st,… , a-th bit from CH1 , (a + 1)

-th,… , b-th bit from CH2 and (b + 1)-th,… , lCH-th bit from
CH1 (see Fig. 4).

Before varCH1 and varCH2 are crossed over, varCH1 and
varCH2 are cut into k segments corresponding to Qi1,… ,Qik .
The two-point crossover is applied to every segment. The
i-th segment of varCH1 is crossed with the i-th segment of
varCH2 , i = 1,… , k . We select two random integers c, d

between 1 and the length of the segment. Then all segments
are crossed at the same points corresponding to c and d (see
Fig. 4).

The probability that an individual is mutated is given by
the mutation rate. Then it is randomly decided whether CH
or varCH is mutated. When CH is mutated, one random bit
is reversed in CH. When varCH is mutated, one random
vertex from varCH is replaced with a new one.

7.5 � Heuristic for selecting new vertices
proportionally to their degree

If it is necessary to add a new vertex in varCH, then the
vertex is selected from the set of unused vertices
V(H)⧵V(P�

ij
) , i fixed, j = 1,… , k . There are three situations

where vertices are added to varCH:

•	 Creating initial population. The bit parts of chromosomes
CH are generated randomly. The vertices are added one
by one to varCH from the unused vertices.

•	 When CH1 and CH2 are crossed over, Adji corresponding
to CH1+2 can lead to graphs with more vertices than the
parents’ graphs. Hence, it is necessary to add new verti-
ces to varCH1+2 . Similarly, CH after mutation can lead
to a graph with more vertices.

•	 varCH is mutated.

Selecting new vertices proportionally to their degree reduces
nCE(H, I). The bit string CH is usually spare after several
generations of GA. Most vertices in varCH are connected
with Pij with a single edge. Hence, their other edges become
crossing edges. The fewer links the vertices in varCH have,
the fewer crossing edges are produced. Thus, we use a sto-
chastic selection method where the probability of selecting
the vertex is proportional to its degree. More precisely, we
choose the new vertex to varCH with roulette selection
where expectations are computed with the metric 1

deg(v)
 ,

where deg(v) is the vertex’s degree.

Fig. 4   Crossover operation in
GA

0001000|0010110000|000000001

a b

CH1 1101010|0110110001|100101101

a b

CH2

0001000|0110110001|000000001CH1+2

6 | 7 |89 14 | 13 |1011

c d c d

varCH1 10 |18 | 22 1 7 |25 | 15 16

c d c d

varCH2

61889 14251011varCH1+2

Social Network Analysis and Mining (2023) 13:63 	

1 3

Page 15 of 21  63

8 � Experimental results

In this section, the results of accomplished experiments
with real-world networks are presented. All experiments
were performed on a Windows 10 operating system PC with
8 GB RAM and a 3.2 GHz processor. The programs were
written in Matlab 9.7.0.1261785 (R2019b). The used imple-
mentation of the GraMi algorithm is available at Elseidy and
Abdelhamid (2014). The evaluation tool SecGraph is avail-
able at Ji and Li (2015). In all experiments, the mutation rate
was set to 0.02 and the minimal support parameter s = 2k.

8.1 � Tested datasets

We tested HAkAu on three real-world datasets of different
sizes that are free to use: Prefuse (Heer et al 2005), Pol-
blogs (Adamic and Glance 2005) and WikiVote (Leskovec
et al 2010). We produced three kinds of results. At first, we
compared HAkAu with the KM algorithm. We provided the
comparison on the Prefuse dataset since the results of KM on
Prefuse are presented by Zou et al (2009). Then, we provided
data utility measurements on all three datasets. Finally, we
tested the resistance against deanonymization attacks. Since
the Prefuse dataset was too small to accomplish this testing,
we provided results only on Polblogs and WikiVote. The fea-
tures of all three datasets are summarized in Table 2.

8.2 � The comparison of HAkAu and KM algorithm

We compared the performance of the HAkAu algorithm
with the performance of the original k-automorphism
algorithm KM algorithm. To compare our results with the
ones presented by Zou et al (2009), we ran the experiments
on the Prefuse dataset with the anonymization parameter
k ∈ {5, 10, 15, 20} and computed the following network met-
rics in the anonymized network:

•	 Average clustering coefficient ACC​ (Kemper 2009) the
average of local clustering coefficients of all nodes in the
graph, where the local clustering coefficient is the ratio
of the number of triangles connected to the node and the
number of triplets centered on the node

•	 Average shortest path length APL (Casas-Roma et al
2017)

 where dist(vi, vj) is the length of the shortest path from vi
to vj , meaning the number of edges along the path

•	 Total degree difference the sum of the difference
between the node degree in the original graph and its
degree in the anonymized one

Since HAkAu is a non-deterministic algorithm, it was run
ten times on each parameter setting. The experimental
results are shown in Fig. 5. There is the mean of the ten
metric values as well as the metric value of the best run.

The clustering coefficient describes how well the neigh-
borhood of a node is connected. If it is fully connected, the
clustering coefficient is 1, whereas a value close to 0 implies
hardly any connection (Kemper 2009). Hence, when k is
larger, more edges are added by HAkAu, and ACC increases
on average. However, in the best case, the algorithm can
compile an anonymized graph with ACC very close to the
original network. Interestingly, the ACC values of KM get
lower with larger k even though KM only adds edges.

While the original graph is modified by adding edges,
the distance between each pair of nodes is reduced (see
Fig. 5b). If k ≥ 15 , the GraMi algorithm finds no frequent
subgraph appearing at least 15 times in the original graph
of the Prefuse network since the dataset is small. Hence,
the subgraphs P1,1,… ,P1,15 inputting GA are only isolated
vertices selected randomly.

8.3 � Data utility measurement

The HAkAu algorithm was further evaluated in preserving
other network and application metrics. Three real social net-
works were anonymized with HAkAu, and the anonymized
networks were evaluated using the SecGraph tool (Ji et al
2015; Ji and Li 2015).

SecGraph is an independent evaluation tool that research-
ers can use to analyze the performance of their anonymiza-
tion algorithms. The SecGraph has three modules: anonymi-
zation, utility, and deanonymization. In the anonymization
module, graph data anonymization schemes are imple-
mented. The module can be used to anonymize raw graph
data. The utility module can evaluate anonymized data util-
ity concerning utility and application metrics. Therefore,
it can evaluate how an anonymization algorithm preserves
data utility. In the deanonymization module, data security
can be evaluated with real-world deanonymization algo-
rithms before publishing or sharing. The effectiveness of an

APL =

∑n

i,j=1
dist(vi, vj)

�
n

2

�

Table 2   Tested datasets

Datasets #Nodes #Edges Repository

Prefuse 121 169 Heer et al (2007)
Polblogs 1225 1675 Rossi and Ahmed (2015)
WikiVote 7115 103, 689 Leskovec and Krevl (2014)

	 Social Network Analysis and Mining (2023) 13:63

1 3

 63   Page 16 of 21

anonymization algorithm can be examined in this module as
well. Researchers can test whether the anonymized data of
an anonymization algorithm is resistant to attacks. We refer
to Ji et al (2015) for the detailed description of the imple-
mented anonymization schemes, utility metrics and dean-
onymization algorithms in SecGraph. Table 3 summarizes
the abbreviation of SecGraph terms. SecGraph has been
recently improved by adding two other modules, recom-
mendation and security quantification. The second version
of the tool is called ShareSafe (Tang et al 2019).

We used the following methodology of experiments.
We select the dataset D ∈ {Prefuse, Polblogs, WikiVote}
and the parameter k ∈ {5, 10, 15, 20} . HAkAu was run ten

times on D with k. Utility metrics were measured in all ten
output graphs by the SecGraph utility module, and the mean
value of each metric is shown in Table 4. The dataset D
was anonymized using three schemes from the SecGraph
anonymization module. Since HAkAu is the k-anonymi-
zation method, we select k-degree anonymization method
kDA (Liu and Terzi 2008) and clustering methods tMean
and Union (Thompson and Yao 2009) with parameter t = k .
Utility metrics were measured in the graphs anonymized
with kDA, tMean and Union as well (see Table 4). The val-
ues in Table 4 describe how each metric is preserved in the
anonymized graph compared to the original one. More pre-
cisely, SecGraph measures the cosine similarity between the

0251015

k

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
A

ve
ra

g
e

C
lu

st
er

in
g

 C
o

ef
fi

ci
en

t KM
HAkAu

Original
Best HAkAu

a) Average clustering coefficient.

0251015

k

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

A
ve

ra
g

e
S

h
o

rt
es

t
P

at
h

 L
en

g
th

KM
HAkAu

Original
Best HAkAu

b) Average shortest path length.

0251015

k

250

300

350

400

450

500

550

600

650

700

750

T
o

ta
l d

eg
re

e
d

if
fe

re
n

ce

KM HAkAu

c) Total degree difference.

Fig. 5   Comparison of HAkAu and KM algorithm while anonymizing Prefuse network with the anonymization parameter k ∈ {5, 10, 15, 20}

Social Network Analysis and Mining (2023) 13:63 	

1 3

Page 17 of 21  63

metric’s distributions in the anonymized and the original
graph (Ji et al 2015). Due to the space limits, Table 4 con-
tains only metric values for k = 15.

As we see in the next section, HAkAu offers a much
higher level of security than other algorithms. Since dean-
onymization attacks exploit structural metrics, keeping a

high level of security is paid with worse data utility preser-
vation. The metrics affected the most by HAkAu anonymi-
zation are metrics based on the degree of nodes, like degree
and joint degree distributions (Deg, JD), since the degree of
many nodes is changed significantly by HAkAu. Communi-
ties in the graph are also heavily altered with HAkAu, which

Table 3   SecGraph abbreviations Abbreviation Term

kDA k-degree anonymity (Liu and Terzi 2008)
tMean t-means clustering (Thompson and Yao 2009)
Union Union-split clustering (Thompson and Yao 2009)
AS Authorities score
BC Betweenness centrality
CC Closeness centrality
CD Community detection
Deg Degree distribution
ED Effective diameter
EV Eigenvector
HS Hubs score
Infe Infectiousness
JD Joint degree distribution
LCC Local clustering coefficient
NC Network constraint
PR Page rank
RX Role extraction
NS Narayanan–Shmatikov’s attack (Narayanan and Shmatikov 2009)
Per Yartseva–Grossglauser’s attack (Yartseva and Grossglauser 2013)
Rec Korula–Lattanzzi’s attack (Korula and Lattanzi 2014)

Table 4   Utility measurement

The best result for each parameter setting is highlighted in bold

Prefuse Polblogs WikiVote

k = 15 kDA tMean Union HAkAu kDA tMean Union HAkAu kDA tMean Union HAkAu

AS 0.157 0.199 0.383 0.219 0.849 0.858 0.901 0.608 0.834 0.886 0.881 0.799
BC 0.528 0.834 0.834 0.615 0.904 0.971 0.994 0.420 0.885 0.966 0.991 0.477
CC 0.995 0.913 0.943 0.995 0.999 1.000 1.000 0.993 0.999 1.000 1.000 0.981
CD 0.214 0.810 0.715 0.102 0.857 0.756 1.000 0.061 0.838 0.755 0.960 0.018
Deg 0.795 0.973 0.983 0.779 0.977 0.991 0.998 0.826 0.965 0.992 0.999 0.817
ED 0.802 1.374 1.381 0.826 0.955 1.132 0.987 0.844 0.982 1.013 0.984 0.911
EV 0.904 0.411 0.692 0.905 0.957 0.966 0.997 0.792 0.977 0.989 0.998 0.800
HS 0.276 0.201 0.381 0.041 0.814 0.816 0.881 0.806 0.876 0.846 0.865 0.674
Infe 0.694 0.617 0.602 0.646 0.914 0.896 0.895 0.928 0.848 0.835 0.850 0.870
JD 0.660 0.029 0.124 0.005 0.232 0.230 0.224 0.080 0.318 0.353 0.397 0.087
LCC 0.972 0.970 0.996 0.880 0.955 0.905 0.983 0.827 0.988 0.988 1.000 0.774
NC 0.982 0.982 0.993 0.957 0.998 0.947 1.000 0.781 1.000 0.996 1.000 0.712
PR 0.572 0.537 0.544 0.949 0.518 0.498 0.487 0.666 0.607 0.690 0.678 0.588
RX 0.460 0.937 0.933 0.490 0.335 0.332 0.346 0.398 0.757 0.889 0.971 0.379

	 Social Network Analysis and Mining (2023) 13:63

1 3

 63   Page 18 of 21

was proved by the low values of the community detection
metric (CD).

On the other hand, HAkAu is best in preserving infec-
tiousness (Infe) in 9 parameter settings (Prefuse: k = 10 , Pol-
blogs for all k, WikiVote for all k) and page rank (PR) in 6
parameter settings (Prefuse for all k, Polblogs: k ∈ {5, 15}).

Since HAkAu is non-deterministic, the metric values var-
ied in ten anonymized networks with the same parameter
settings obtained in ten runs. The coefficient of variation was
lower in the metrics values that HAkAu better preserved.
Except for JD and CD metrics, the coefficient of variation
was up to 10% . Furthermore, the coefficient of variation was
lower in larger networks.

8.4 � Resistance to deanonymization attacks

In this section, we show that HAkAu is resistant to dean-
onymization techniques, and the resistance is guaranteed
in every algorithm run. The methodology of experiments
is similar to the one in the previous measurement. We
select dataset D ∈ {Polblogs, WikiVote} and parameter
k ∈ {5, 10, 15, 20} . The HAkAu was run ten times on each
parameter setting, and each output network was attacked
with three deanonymization algorithms implemented in
SecGraph: Narayanan–Shmatikov’s attack (NS) (Narayanan
and Shmatikov 2009), Yartseva–Grossglauser’s attack (Per.)
(Yartseva and Grossglauser 2013), and Korula–Lattanzzi’s
attack (Rec.) (Korula and Lattanzi 2014).

These seed-based passive attacks employ the structural
similarity between the anonymized graph and the aux-
iliary graph to break the anonymity. The input of their

procedures is the anonymized network G∗ , auxiliary net-
work Gaux , and seed mapping s. The auxiliary network Gaux
is a fraction of the original network gained by the attacker
before the passive attack. The seed mapping s is the map-
ping that links some nodes from Gaux with the ones in G∗ .
In our experiment, Gaux was sampled randomly with the
probability of 90% from the original network. The seed s
was set as 50 links between randomly selected nodes from
Gaux and G∗.

The output of deanonymization procedures in SecGraph
is the ratio of successfully deanonymized users. We pre-
sent results in percentages in Table 5. The HAkAu values
are the average ratios in the ten runs with the same param-
eter settings. We also tested the graphs anonymized with
kDA, tMean and Union.

All results prove that the security level of the HAkAu
algorithm is much higher than the security level of other
tested algorithms. In the WikiVote network, the percentage
of deanonymized users was up to 1% for all k. The resist-
ance level is the same for all k values in both networks. The
k-automorphism approach achieves better resistance against
attacks compared to k-degree and clustering methods.

Although HAkAu is heuristic and non-deterministic,
the percentage of deanonymized users did not vary in the
ten runs with the same parameter settings. The coefficient
of variation within the ten runs was up to 4% in all cases,
except the instance with D =WikiVote and k = 10 , where
the coefficient of variation equals 10% . However, the level
of security was the same since the best value equalled
0.85% and the worst one to 1.09% when D =WikiVote and
k = 10.

Table 5   Resistance against
deanonymization attacks

The best result for each parameter setting is highlighted in bold

Polblogs WikiVote

kDA tMean Union HAkAu kDA tMean Union HAkAu

k = 5
NS 92.42% 90.61% 92.42% 4.64% 72.43% 72.61% 72.90% 0.81%
Per 48.83% 11.64% 60.02% 4.96% 9.57% 14.46% 37.40% 0.92%
Rec 96.00% 48.94% 98.94% 4.74% 98.30% 30.02% 99.55% 0.79%
k = 10
NS 90.88% 91.88% 92.33% 4.53% 72.03% 72.67% 72.90% 0.80%
Per 18.77% 53.16% 63.00% 4.65% 2.18% 7.97% 33.11% 0.89%
Rec 91.99% 63.48% 97.14% 4.28% 92.92% 43.22% 98.40% 0.75%
k = 15
NS 91.79% 91.25% 92.42% 4.56% 71.45% 72.84% 72.90% 0.81%
Per 20.76% 43.23% 36.73% 4.65% 8.32% 4.67% 35.42% 0.85%
Rec 81.54% 27.70% 84.72% 4.29% 90.89% 22.98% 97.44% 0.75%
k = 20
NS 90.97% 88.09% 92.15% 4.51% 71.31% 72.53% 72.90% 0.81%
Per 17.51% 61.19% 56.32% 4.59% 2.83% 22.28% 8.47% 0.84%
Rec 69.12% 25.65% 86.36% 4.23% 81.26% 24.53% 94.35% 0.74%

Social Network Analysis and Mining (2023) 13:63 	

1 3

Page 19 of 21  63

8.5 � Discussion

The comparison of KM and HAkAu is limited since only
two structural metrics and the total degree difference are
measured in Zou et al (2009). The total degree difference
is significantly lower while applying HAkAu. Using edge
deletion operation in the procedure of adding crossing edges
decreases the amount of added edges and the final degree
of all nodes. The application of edge deletion operation was
enabled by improving the design of the k-automorphism
algorithm.

The experiments show that the fitness function is not
designed to keep the APL property well. If APL was the
critical property that should not change during the anonymi-
zation process, then the fitness function would have to be
modified to consider distances between vertices.

More structural metrics are measured with the SecGraph
tool. Even though HAkAu does not exceed in preserving
all utility metrics, it keeps Page Rank and Infectiousness
very well. Both metrics are centrality metrics that can iden-
tify influential users in the graph. Thus, the importance of
nodes is preserved in the network anonymized by HAkAu.
The final k-automorphism maps important nodes to each
other. Preserving infectiousness indicates that the commu-
nication channels in the anonymized network are kept very
well even though the graph structure is changed significantly
by HAkAu.

Unlike other tested algorithms, HAkAu was shown to
be resistant to deanonymization attacks. It proves that the
k-automorphism approach provides a higher level of security
than other solutions. Moreover, HAkAu provides the same
level of resistance for all kinds of tested attacks and all val-
ues of the anonymization parameter.

9 � Conclusion

In this paper, we proposed a hybrid anonymization algorithm
HAkAu that modified the social network to the k-automor-
phism network. The core of HAkAu is the genetic algorithm
with the novel chromosome representation in which the
length of the chromosome is independent of the size of the
input network, and each individual in each generation leads
to the k-automorphism solution. Moreover, we presented the
efficient algorithm for finding the largest subset of mutually
vertex disjoint subgraphs that effectively prepare the input
for the genetic algorithm. We also introduced heuristics that
improved the postprocessing stage of the genetic algorithm.

HAkAu makes users indistinguishable with respect to
all structural semantics with the probability of 1 − 1

k
 . The

experiments on real social networks showed that HAkAu

was resistant to deanonymization attacks and provided bet-
ter security than other solutions. The structural changes
enabling the high resistance caused worse data utility pres-
ervation in the anonymized network. However, HAkAu
can preserve utility metrics measuring centrality proper-
ties in the graph and keep the position of important nodes
in the anonymized network.

While presenting our experimental results, we empha-
size keeping the results comparable with any future stud-
ies. To keep experimental results comparable in the future,
we tested HAkAu on datasets that are available to other
researchers. We selected the datasets with the size corre-
sponding to the tested algorithm’s computation capabili-
ties. Moreover, we used the evaluation tool SecGraph for
evaluating experimental results.

The paper highlights several new avenues that could
be explored in future research. Implementing the HAkAu
algorithm can be further improved with more sophisticated
parameter settings in the genetic algorithm. Estimating
the optimal running strategy could raise the quality of
the search process and the found results. The proposed
chromosome representation can be applied to other
genetic algorithms dealing with anonymization tasks.
The possibility of exploiting the representation in other
k-anonymization methods based on genetic algorithms
can also be explored. Similarly, the procedure for finding
the vertex disjoint subgraphs has the potential for broader
application.

Acknowledgements  The authors are grateful to the anonymous review-
ers for their time and valuable comments. The authors are also grateful
to researchers in developing SecGraph: Ada Fu, Michael Hay, Davide
Proserpio, Qian Xiao, Shirin Nilizadeh, Jing S. He, Wei Chen, and
Stanford SNAP developers. The authors are thankful to Mohammed
Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis,
who developed and provided the GraMi source code. This study is
supported by the SPEV 2023 project run at the Faculty of Informat-
ics and Management, University of Hradec Kralove, Czech Republic.

Declarations 

Conflict of interest  The authors have no relevant financial or non-fi-
nancial interests to disclose.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

http://creativecommons.org/licenses/by/4.0/

	 Social Network Analysis and Mining (2023) 13:63

1 3

 63   Page 20 of 21

References

Adamic LA, Glance N (2005) The political blogosphere and the 2004
US election: divided they blog. In: Proceedings of the 3rd inter-
national workshop on link discovery. ACM Press, Chicago, pp
36–43. https://​doi.​org/​10.​1145/​11342​71.​11342​77

Alavi A, Gupta R, Qian Z (2019) When the attacker knows a lot: the
GAGA graph anonymizer. In: Information security. Springer,
Cham, pp 211–230. https://​doi.​org/​10.​1007/​978-3-​030-​30215-
3_​11

Azaouzi M, Rhouma D, Ben Romdhane L (2019) Community detection
in large-scale social networks: state-of-the-art and future direc-
tions. Soc Netw Anal Min 9(1):1–32. https://​doi.​org/​10.​1007/​
s13278-​019-​0566-x

Bello-Orgaz G, Menéndez HD, Camacho D (2012) Adaptive K-means
algorithm for overlapped graph clustering. Int J Neural Syst.
https://​doi.​org/​10.​1142/​S0129​06571​25001​89

Bhattacharya M, Roy S (2015) Prevention of walk based attack on
social network graphs using ant colony optimization. In: 2015
international conference and workshop on computing and commu-
nication (IEMCON), pp 1–5. https://​doi.​org/​10.​1109/​IEMCON.​
2015.​73444​32

Cai Q, Gong M, Ma L et al (2015) Greedy discrete particle swarm
optimization for large-scale social network clustering. Inf Sci
316:503–516. https://​doi.​org/​10.​1016/j.​ins.​2014.​09.​041

Campan A, Truta TM (2008) Data and structural k-anonymity in social
networks. In: International workshop on privacy, security, and
trust in KDD. Springer, Berlin, pp 33–54. https://​doi.​org/​10.​1007/​
978-3-​642-​01718-6_4

Casas-Roma J, Herrera-Joancomartí J, Torra V (2017) K-degree ano-
nymity and edge selection: improving data utility in large net-
works. Knowl Inf Syst 50(2):447–474. https://​doi.​org/​10.​1007/​
s10115-​016-​0947-7

Caschera MC, D’Ulizia A, Ferri F et al (2019) MONDE: a method
for predicting social network dynamics and evolution. Evol Syst
10(3):363–379. https://​doi.​org/​10.​1007/​s12530-​018-​9242-z

Cheng J, Fu AWC, Liu J (2010) K-isomorphism: privacy preserving
network publication against structural attacks. In: Proceedings of
the ACM SIGMOD international conference on management of
data. ACM Press, New York, pp 459–470. https://​doi.​org/​10.​1145/​
18071​67.​18072​18

Chester S, Kapron BM, Srivastava G et al (2013) Complexity of social
network anonymization. Soc Netw Anal Min 3:151–166. https://​
doi.​org/​10.​1007/​s13278-​012-​0059-7

Elseidy M, Abdelhamid E, Skiadopoulos S et al (2014) Grami: frequent
subgraph and pattern mining in a single large graph. Proc VLDB
Endow 7(7):517–528. https://​doi.​org/​10.​14778/​27322​86.​27322​89

Elseidy M, Abdelhamid E (2014) Grami. https://​github.​com/​ehab-​abdel​
hamid/​GraMi. Accessed 13 Nov 2021

Garey MR, Johnson DS (1978) “Strong’’ NP-completeness results:
motivation, examples, and implications. J ACM 25(3):499–508

Hartung S, Hoffmann C, Nichterlein A (2014) Improved upper and
lower bound heuristics for degree anonymization in social net-
works. In: International symposium on experimental algorithms.
Springer, Copenhagen, pp 376–387. https://​doi.​org/​10.​1007/​978-
3-​319-​07959-2_​32

Harvey J, Smith A, Goulding J et al (2020) Food sharing, redistribu-
tion, and waste reduction via mobile applications: a social net-
work analysis. Ind Market Manag 88:437–448. https://​doi.​org/​10.​
1016/j.​indma​rman.​2019.​02.​019

Heer J, Card SK, Landay JA (2005) Prefuse: a toolkit for interactive
information visualization. In: Proceedings of the SIGCHI confer-
ence on Human factors in computing systems. ACM Press, New
York, pp 421–430. https://​doi.​org/​10.​1145/​10549​72.​10550​31

Heer J, Card SK, Landay JA (2007) Prefuse data. https://​github.​com/​
prefu​se/​Prefu​se/​blob/​master/​data/​socia​lnet.​xml. Accessed 13 Nov
2021

Holland JH (1973) Genetic algorithms and the optimal allocation of
trials. SIAM J Comput 2(2):88–105

Hynek J (2002) Genetic algorithms in a nutshell. Econ Manag 5:48–54
Hynek J (2008) Genetické algoritmy a genetické programování. Grada

Publishing, Prague
Ji S, Li W (2015) SecGraph home. https://​nesa.​zju.​edu.​cn/​secgr​aph_​

pages/​home.​html. Accessed 13 Nov 2021
Ji S, Li W, Mittal P et al (2015) SecGraph: a uniform and open-source

evaluation system for graph data anonymization and de-anonymi-
zation. In: 24th USENIX security symposium, pp 303–318

Kanai R, Bahrami B, Roylance R et al (2012) Online social network
size is reflected in human brain structure. Proc R Soc B Biol Sci
279(1732):1327–1334. https://​doi.​org/​10.​1098/​rspb.​2011.​1959

Kemper A (2009) Valuation of network effects in software markets:
a complex networks approach. Springer, Berlin

Kiabod M, Naderi Dehkordi M, Barekatain B (2021) A fast graph
modification method for social network anonymization. Expert
Syst Appl 180(115):148. https://​doi.​org/​10.​1016/j.​eswa.​2021.​
115148

Korula N, Lattanzi S (2014) An efficient reconciliation algorithm for
social networks. Proc VLDB Endow 7(5):377–388. https://​doi.​
org/​10.​14778/​27322​69.​27322​74

Kuramochi M, Karypis G (2005) Finding frequent patterns in a large
sparse graph. Data Min Knowl Disc 11(3):243–271. https://​doi.​
org/​10.​1007/​s10618-​005-​0003-9

Leskovec J, Huttenlocher D, Kleinberg J (2010) Predicting positive
and negative links in online social networks. In: Proceedings
of the 19th international conference on world wide web. ACM
Press, New York, pp 641–650. https://​doi.​org/​10.​1145/​17726​
90.​17727​56

Leskovec J, Krevl A (2014) SNAP datasets: Stanford large network
dataset collection. http://​snap.​stanf​ord.​edu/​data

Liu K, Terzi E (2008) Towards identity anonymization on graphs. In:
Proceedings of the ACM SIGMOD international conference on
management of data. ACM Press, Vancouver, Canada, pp 93–106.
https://​doi.​org/​10.​1145/​13766​16.​13766​29

Lu X, Song Y, Bressan S (2012) Fast identity anonymization on graphs.
In: Database and expert systems applications. Springer, Berlin, pp
281–295. https://​doi.​org/​10.​1007/​978-3-​642-​32600-4_​21

Macià M, García I (2016) Informal online communities and networks
as a source of teacher professional development: a review. Teach
Teach Educ 55:291–307. https://​doi.​org/​10.​1016/j.​tate.​2016.​01.​
021

Majeed A, Khan S, Hwang SO (2022) A comprehensive analysis of
privacy-preserving solutions developed for online social networks.
Electronics. https://​doi.​org/​10.​3390/​elect​ronic​s1113​1931

Medková J (2020) High-degree noise addition method for the k-degree
anonymization algorithm. In: 2020 Joint 11th International confer-
ence on soft computing and intelligent systems and 21st interna-
tional symposium on advanced intelligent systems. IEEE, Hachijo
Island, Japan, pp 1–6. https://​doi.​org/​10.​1109/​scisi​sis50​064.​2020.​
93226​70

Myneni S, Lewis B, Singh T et al (2020) Diabetes self-management in
the age of social media: large-scale analysis of peer interactions
using semiautomated methods. JMIR Med Inf 8(6):25. https://​
doi.​org/​10.​2196/​18441

Narayanan A, Shmatikov V (2009) De-anonymizing social networks.
In: 2009 30th IEEE symposium on security and privacy. IEEE,
Oakland, CA, USA, pp 173–187. https://​doi.​org/​10.​1109/​SP.​2009.​
22

Rajabzadeh S, Shahsafi P, Khoramnejadi M (2020) A graph modi-
fication approach for k-anonymity in social networks using the

https://doi.org/10.1145/1134271.1134277
https://doi.org/10.1007/978-3-030-30215-3_11
https://doi.org/10.1007/978-3-030-30215-3_11
https://doi.org/10.1007/s13278-019-0566-x
https://doi.org/10.1007/s13278-019-0566-x
https://doi.org/10.1142/S0129065712500189
https://doi.org/10.1109/IEMCON.2015.7344432
https://doi.org/10.1109/IEMCON.2015.7344432
https://doi.org/10.1016/j.ins.2014.09.041
https://doi.org/10.1007/978-3-642-01718-6_4
https://doi.org/10.1007/978-3-642-01718-6_4
https://doi.org/10.1007/s10115-016-0947-7
https://doi.org/10.1007/s10115-016-0947-7
https://doi.org/10.1007/s12530-018-9242-z
https://doi.org/10.1145/1807167.1807218
https://doi.org/10.1145/1807167.1807218
https://doi.org/10.1007/s13278-012-0059-7
https://doi.org/10.1007/s13278-012-0059-7
https://doi.org/10.14778/2732286.2732289
https://github.com/ehab-abdelhamid/GraMi
https://github.com/ehab-abdelhamid/GraMi
https://doi.org/10.1007/978-3-319-07959-2_32
https://doi.org/10.1007/978-3-319-07959-2_32
https://doi.org/10.1016/j.indmarman.2019.02.019
https://doi.org/10.1016/j.indmarman.2019.02.019
https://doi.org/10.1145/1054972.1055031
https://github.com/prefuse/Prefuse/blob/master/data/socialnet.xml
https://github.com/prefuse/Prefuse/blob/master/data/socialnet.xml
https://nesa.zju.edu.cn/secgraph_pages/home.html
https://nesa.zju.edu.cn/secgraph_pages/home.html
https://doi.org/10.1098/rspb.2011.1959
https://doi.org/10.1016/j.eswa.2021.115148
https://doi.org/10.1016/j.eswa.2021.115148
https://doi.org/10.14778/2732269.2732274
https://doi.org/10.14778/2732269.2732274
https://doi.org/10.1007/s10618-005-0003-9
https://doi.org/10.1007/s10618-005-0003-9
https://doi.org/10.1145/1772690.1772756
https://doi.org/10.1145/1772690.1772756
http://snap.stanford.edu/data
https://doi.org/10.1145/1376616.1376629
https://doi.org/10.1007/978-3-642-32600-4_21
https://doi.org/10.1016/j.tate.2016.01.021
https://doi.org/10.1016/j.tate.2016.01.021
https://doi.org/10.3390/electronics11131931
https://doi.org/10.1109/scisisis50064.2020.9322670
https://doi.org/10.1109/scisisis50064.2020.9322670
https://doi.org/10.2196/18441
https://doi.org/10.2196/18441
https://doi.org/10.1109/SP.2009.22
https://doi.org/10.1109/SP.2009.22

Social Network Analysis and Mining (2023) 13:63 	

1 3

Page 21 of 21  63

genetic algorithm. Soc Netw Anal Min 10(1):1–17. https://​doi.​
org/​10.​1007/​s13278-​020-​00655-6

Rossi RA, Ahmed NK (2015) The network data repository with inter-
active graph analytics and visualization. In: AAAI. http://​netwo​
rkrep​osito​ry.​com

Samarati P, Sweeney L (1998) Protecting privacy when disclosing
information: k-anonymity and its enforcement through gener-
alization and suppression. In: Technical report SRI-CSL-98-04.
Computer Science Laboratory, SRI International, Palo Alto, CA

Shakeel S, Anjum A, Asheralieva A et al (2021) k-NDDP: an efficient
anonymization model for social network data release. Electronics.
https://​doi.​org/​10.​3390/​elect​ronic​s1019​2440

Sihag VK (2012) A clustering approach for structural k-anonymity in
social networks using genetic algorithm. In: Proceedings of the
CUBE international information technology conference. ACM
Press, Pune, India, pp 701–706. https://​doi.​org/​10.​1145/​23817​
16.​23818​50

Srivatsan S, Maheswari N (2022) Privacy preservation in social net-
work data using evolutionary model. Mater Today Proc 62:4732–
4737. https://​doi.​org/​10.​1016/j.​matpr.​2022.​03.​251

Tang K, Han M, Gu Q et al (2019) ShareSafe: an improved version of
SecGraph. KSII Trans Internet Inf Syst 13(11):5731–5754. https://​
doi.​org/​10.​3837/​tiis.​2019.​11.​025

Thompson B, Yao D (2009) The union-split algorithm and cluster-
based anonymization of social networks. In: Proceedings of the
4th international symposium on information, computer, and
communications security. ACM Press, New York, NY, USA, pp
218–227. https://​doi.​org/​10.​1145/​15330​57.​15330​88

Wu W, Xiao Y, Wang W et al (2010) K-symmetry model for identity
anonymization in social networks. In: Proceedings of the 13th

international conference on extending database technology. ACM
Press, Lausanne, Switzerland, pp 111–122. https://​doi.​org/​10.​
1145/​17390​41.​17390​58

Yang J, Leskovec J (2015) Defining and evaluating network communi-
ties based on ground-truth. Knowl Inf Syst 42(1):181–213. https://​
doi.​org/​10.​1007/​s10115-​013-​0693-z

Yartseva L, Grossglauser M (2013) On the performance of percolation
graph matching. In: Proceedings of the first ACM conference on
Online social networks. ACM Press, New York, NY, USA, pp
119–130. https://​doi.​org/​10.​1145/​25129​38.​25129​52

Yazdanjue N, Fathian M, Amiri B (2020) Evolutionary algorithms for
k-anonymity in social networks based on clustering approach.
Comput J 63(7):1039–1062. https://​doi.​org/​10.​1093/​comjnl/​
bxz069

Zhou B, Pei J (2011) The k-anonymity and l-diversity approaches for
privacy preservation in social networks against neighborhood
attacks. Knowl Inf Syst 28(1):47–77. https://​doi.​org/​10.​1007/​
s10115-​010-​0311-2

Zhou B, Pei J (2008) Preserving privacy in social networks against
neighborhood attacks. In: 2008 IEEE 24th international confer-
ence on data engineering. IEEE, Cancun, Mexico, pp 506–515.
https://​doi.​org/​10.​1109/​icde.​2008.​44974​59

Zou L, Chen L, Özsu MT (2009) K-automorphism: a general frame-
work for privacy preserving network publication. Proc VLDB
Endow 2(1):946–957. https://​doi.​org/​10.​14778/​16876​27.​16877​34

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s13278-020-00655-6
https://doi.org/10.1007/s13278-020-00655-6
http://networkrepository.com
http://networkrepository.com
https://doi.org/10.3390/electronics10192440
https://doi.org/10.1145/2381716.2381850
https://doi.org/10.1145/2381716.2381850
https://doi.org/10.1016/j.matpr.2022.03.251
https://doi.org/10.3837/tiis.2019.11.025
https://doi.org/10.3837/tiis.2019.11.025
https://doi.org/10.1145/1533057.1533088
https://doi.org/10.1145/1739041.1739058
https://doi.org/10.1145/1739041.1739058
https://doi.org/10.1007/s10115-013-0693-z
https://doi.org/10.1007/s10115-013-0693-z
https://doi.org/10.1145/2512938.2512952
https://doi.org/10.1093/comjnl/bxz069
https://doi.org/10.1093/comjnl/bxz069
https://doi.org/10.1007/s10115-010-0311-2
https://doi.org/10.1007/s10115-010-0311-2
https://doi.org/10.1109/icde.2008.4497459
https://doi.org/10.14778/1687627.1687734

	HAkAu: hybrid algorithm for effective k-automorphism anonymization of social networks
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Graph theory
	3.2 Genetic algorithm

	4 Problem definition
	5 Theoretical part
	5.1 Anonymization cost
	5.2 NP-hard problems

	6 HAkAu algorithm
	6.1 Finding the subset of vertex disjoint subgraphs
	6.2 Adding crossing edges
	6.3 Computing the extension cost

	7 Genetic algorithm
	7.1 Chromosome representation
	7.2 Fitness function
	7.3 Selection function
	7.4 Genetic operators
	7.5 Heuristic for selecting new vertices proportionally to their degree

	8 Experimental results
	8.1 Tested datasets
	8.2 The comparison of HAkAu and KM algorithm
	8.3 Data utility measurement
	8.4 Resistance to deanonymization attacks
	8.5 Discussion

	9 Conclusion
	Acknowledgements
	References

