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Abstract
Hearing loss is one of the most prevalent chronic health problems worldwide and a com-
mon intervention is the wearing of hearing aids. However, the tedious fitting procedures
and limited hearing experts pose restrictions for the popularity of hearing aids. This paper
introduced a hearing loss classification method based on the insertion gain of hearing aids,
which aims to simplify the fitting procedure and achieve a fitting-free effect of the hear-
ing aid, in line with current research trends in key algorithms for fitting-free hearing aids.
The proposed method innovatively combines the insertion gain of hearing aids with the
covariates of patient’s gender, age, wearing history to form a new set of hearing loss vec-
tors, and then classifies the hearing loss into six categories by unsupervised cluster analysis
method. Each category of representative parameters characterizes a typical type of hearing
loss, which can be used as the initial parameter to improve the efficiency of hearing aid
fitting. Compared with the traditional audiogram classification method AMCLASS (Auto-
mated Audiogram Classification System), the proposed classification method reflect the
actual hearing loss of hearing impaired patients better. Moreover, the effectiveness of the
new classification method was verified by the comparison between the obtained six sets of
representative insertion gains and the inferred hearing personalization information.
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1 Introduction

The WHO defines hearing loss as a “silent epidemic” because more than 1.5 billion people
worldwide suffer from varying degrees of hearing loss [9]. According to the latest WHO
hearing report in 2021, nearly 2.5 billion people are expected to have different degrees of
hearing loss and at least 700 million will need hearing rehabilitation by 2050 [34]. A host
of adverse effects of hearing loss can be mitigated through early detection and intervention.
Among them, wearing hearing aids is one of the most effective means of hearing rehabilita-
tion, and the main way to improve the daily communication impairment of hearing-impaired
patients [27]. However, the hearing aid fitting usually requires audiological expertise to par-
ticipate in the entire process that has cumbersome procedures. Hearing-impaired patients,
especially the elderly, are difficult to tolerate the procedure, which will seriously affect the
fitting efficiency. In addition, the fitting effect of hearing aids is also directly related to
professional knowledge and techniques. In some underdeveloped communities, the extreme
lack of audiological experts results in low utilization of hearing aids.

To improve this situation, on October 19, 2021 the FDA released a proposal to create a
new category of hearing aids aimed at developing an OTC hearing aid so that tens of millions
of Americans with hearing loss can more easily access hearing aid products to improve
communication and their lives. The main difference between OTC and traditional hearing
aids is whether it is necessary to select hearing aids under the guidance of professionals
[33]. Nowadays, fitting-free and self-fitting hearing aids have attracted the attention of many
experts and scholars in the field of audiology [17, 28]. It is the research focus to enable
hearing-impaired patients to obtain a better hearing experience without fitting. One research
idea is to classify hearing-impaired patients and set a series of hearing aid parameters for
each type of user. Then, these parameters can be optimized by means of interaction with
patients. An effective classification method can help ordinary patients with hearing loss
find a more reasonable initial parameter for fitting, thus simplifying the hearing aid fitting
process and increasing the user satisfaction with hearing aids [30].

The audiogram classification process is not only a valid method for modeling individual
hearing loss but can also be used to study the prevalence of different types of hearing loss
[12, 16, 35]. Generally, the degree of hearing loss of patients is represented by an audio-
gram. An audiogram shows a person’s ability to hear at different frequencies and preserves
valuable information related to the underlying causes of hearing impairment [14, 24]. There-
fore, it is a technical means worth investigating to classify patients according to audiograms
to apply fitting-free hearing aids. Raymond Carhart who proposed the first standardized
audiogram classification system [8] highlighted the importance of hearing loss research as
early as 1945. In recent years, various classification systems have been proposed, which
are mainly divided into two categories: rule-based classification and deep learning-based
classification [15, 23, 25].

Most rule-based classification systems rely on manual rules that relate to the common
description of hearing loss. The configuration of the audiogram, the symmetry of the bin-
aural hearing loss, and the severity are currently the common terms used to describe the
hearing loss shown in the pure tone audiogram, and they can provide information for
audiological diagnosis. Margolis and Saly developed a sophisticated rule-based system,
AMCLASS, specifically for classifying audiograms generated by automated audiometers
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[25]. Rules within the system are derived by audiologists and can automatically generate
standardized descriptors of the shape, severity, symmetry, and type of lesion (sensorineural,
conductive, or mixed) of hearing loss. AMCLASS system consists of more than 160 manu-
ally derived and refined rules, which can maximize the consistency between the ruleset and
five audiologists’ annotations to audiograms. The purpose of AMCLASS was to determine
whether there was a standardized definition of different types of hearing loss. However, it
was found that even with the standardized descriptors, experts still had significant bifurca-
tion on how to best summarize hearing loss. For example, an audiogram may appear flat to
one audiologist but skewed to another; the current classification system does not consider
this fact. Second, the existing methods have not considered factors such as the age and gen-
der of the subjects. These factors have been confirmed to affect the compensation effect
in many classical fitting formulas, such as NAL2 or DSL. Finally, when more data arrives,
rule-based systems are not flexible enough to learn and adapt to the new data [11].

In the era of big data, the application of machine learning algorithms is becoming more
and more widespread [1–4]. Data-driven methods are equally applicable to the classifica-
tion of hearing loss, as they can learn rules directly from the data [6, 22, 26]. An audiogram
classification approach [10] is based on a decision tree to classify audiograms which are
labeled in detail by experts. However, this method requires experts to label various audio-
gram data, which is resource-intensive and the classification result is easily affected by
the professional level and subjective preference of experts. Additionally, unsupervised clus-
tering algorithms can be used to derive standard audiogram configuration classification
[5, 7]. Unlike supervised learning, unsupervised clustering methods can divide a dataset
into different categories or clusters according to a certain criterion (such as distance) for
data with unknown labels. An unsupervised clustering method suggested by Anwar was
applied in the processing of audiology medical records by using the k-means algorithm to
classify the audiograms of hearing-impaired patients. The classification results were then
combined with textual information about the relevant diagnosis or hearing aid type using
the Self-Organizing Map (SOM) statistical method. A method utilizing vector quantiza-
tion was also proposed to derive standard audiograms and obtain classifications of different
types by exploiting the idea of unsupervised learning [7]. Compared to rule-based methods,
the cluster-based method is quantitative which introduces the concept of similarity (or dis-
tance) between audiograms. The clustering-based methods are more flexible than traditional
rule-based methods and can mine more information from the audiogram, but the existing
classification methods have certain limitations. On the one hand, the methods employ the
hearing threshold vector marked on the audiogram as a classification feature. It can partly
reflect the hearing level of the patients with hearing loss, but cannot reflect the required
compensation in actual hearing loss. On the other hand, the existing methods do not con-
sider factors that have a significant impact on hearing loss, such as the subjects’ age, gender,
and other factors. Moreover, it is likely to exert an influence on the users, such as primary
care physicians to understand the hearing loss. Therefore, selecting an effective feature is a
feasible idea to improve the performance of the hearing loss classification system.

In the fitting process of hearing aid, the actual effect on the signal is the hearing aid
insertion gain. Insertion gain refers to the gain value obtained when the sound pressure near
the eardrum of the external auditory canal changes after wearing the hearing aid. The com-
pensation effect of the insert gain is directly applied to the human ear which reflects the
compensation performance of the hearing aids [13]. The value of the insertion gain is not
only related to the audiogram, but also affected by other objective factors. As many exper-
iments have shown, objective factors that affect the compensation performance of hearing
aids include age, gender, wearing experience, and tone of language [18–20, 31]. It can be
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seen that the final compensation effect of hearing aids is affected by multiple factors. Conse-
quently, it is difficult to fully describe the hearing loss of patients only from the perspective
of the audiogram.

To address the challenges that the existing classification models cannot comprehensively
consider the information of hearing loss patients, a novel hearing loss classification algo-
rithm is proposed in this contribution, which covers the individualized information of the
hearing-impaired people in the fitting process of hearing aids from a new perspective. The
method takes the insertion gain of the hearing aid as a feature, which includes the relevant
information of patients as covariates in the model. Then, the proposed method employed
unsupervised cluster analysis to classify hearing loss into six categories, and a set of rep-
resentative insertion gains can be obtained for different categories. According to different
representative gain vectors, the personalized information of the patient was obtained by
calculating the shortest distance. The information was used as the category information of
fitting-free hearing aids, and the corresponding parameters can be the initial point in the
next fitting process. The new approach can assist hearing-impaired patients to obtain a better
hearing experience without fitting.

The main contributions of this paper were as follows:

1. The insertion gain was innovatively used as a feature to classify hearing-impaired
patients, which could better reflect the hearing loss difference among patients.

2. The effects of different factors on classification results were analyzed, including age,
wearing experience, and tone of language.

3. Unsupervised clustering algorithm was applied to classify the hearing loss, and classi-
fication results were compared with those of the AMCLASS system. The rationality of
the classification algorithm was thus verified.

4. The personalized parameters that represented the characteristics of different types of
hearing-impaired users were studied which reflected the design idea of fitting-free
hearing aids.

2 Principle of algorithm

2.1 Audiogram and loudness compensation

Generally, the patient’s hearing condition is represented by an audiogram. The audiogram
depicts the patient’s hearing loss(or hearing threshold) as a function of frequency and is
obtained by a hearing test performed on the patient by a physician or audiologist. In early,
hearing aid fitting is the process of adjusting the gain parameters of a hearing aid accord-
ing to hearing level of the hearing-impaired patients, so that the hearing aid can provide
the appropriate loudness compensation for the wearer. The block diagram of loudness com-
pensation in hearing aid is shown in Fig. 1. The prescription formula is based on the pure
tone audiogram, combined with the spectrum of speech and the patient’s auditory loudness
information, and developed some regular parameters, whose function is to calculate the tar-
get gain at different frequencies according to the patient’s audiogram. The commonly used
prescription formulas for fitting are NAL-NL2, DSL and FIG6 [19, 21, 31].

Unlike Fig6, NAL-NL2 and DSL take into account more personalized information
beyond the audiogram, such as age, gender, etc. Keidser and Dillon analyzed the actual
insertion gain value of 187 adults under the input sound pressure level of 65dB. The objec-
tive factors that affected the compensation performance of hearing aids include age, gender,
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Fig. 1 The block diagram of loudness compensation in hearing aid

wearing experience, and tone of language [18]. Regardless of the degree of hearing loss
or the hearing aid wearing experience, female hearing aid wearers require less gain than
male wearers and such difference has been statistically significant [31]. From the analy-
sis of widely used NAL-NL2 and DSL, these fitting formulas also take these factors into
account. The same data set showed [32] that there was no difference in overall gain prefer-
ence between new hearing aid users and experienced hearing aid users when the degree of
hearing loss is mild. However, new users preferred less gain than experienced users when
the hearing loss is above the intermediate. level. Related research revealed that young peo-
ple prefer higher gains than adults [29]. In addition, the gain at the low frequency of tonal
language is usually higher than that of non-tone language, because the tonal language has
sufficient gain at low frequency to help improve speech intelligibility [18].

2.2 K-means clustering algorithm

The unsupervised learning method is an important branch of machine learning. In recent
years, there has been an increasing number of studies on hearing loss classification by using
unsupervised clustering algorithm methods.

K-means is a common unsupervised algorithm in machine learning, which can divide
the data with unknown labels into different groups according to their characteristics. Each
group of data is called a “cluster” and the center of the corresponding cluster is called
the “centroid”. The number of sub-clusters can be determined by calculating the relevant
quantitative metrics. The clustering algorithm can use its own advantages to process the
data and obtain statistically significant clustering results. The process of classification using
K-means is as follows:

1) Arbitrarily select K initial centers of centroids (which may not be sample points), find
the nearest centroid for each sample point, and classify the sample points and centroids
into the same cluster, thus generating K clusters.

2) When all sample points are divided, for each cluster, the new centroid (the average
coordinate value of all points in the same cluster) is recalculated

3) Keep iterating until the position of the centroids does not change or the maximum
number of iterations is reached.

The above classification process can make the relatively close sample points divided into
the same group and form one class cluster so that the similarity of sample points in the same
class and the difference of sample points not in the same class is as large as possible.
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2.3 Hearing loss classification based on insertion gain

This paper proposes a hearing loss classification method that takes the insertion gain of
hearing aids as input and implicitly considers the patient’s personalized information, which
intends to explore the research idea of a fitting-free hearing aid. The main classification
steps are as follows.

Firstly, based on the audiograms and personal information of N hearing-impaired
patients, the corresponding insertion gain is calculated using the prescription formula, such
as NAL-NL2. Then, the insertion gain of the hearing aid and the covariates of the patient
information are combined into a new vector, denoted as the association gain, which can be
expressed as

Gi = {g1, g2, ..., gM, Gender,Age,Experience, Language}, 0 < i < N . (1)

where Gi denotes the association gain vector corresponding to the i - th audiogram, and
{g1, g2, ..., gM } is the M-dimensions insertion gain. Four covariates are introduced, namely,
gender, age, hearing aid wearing experience, and whether it is a tonal or non-tonal language.
Gender represents gender, and takes values in 0 and 1, with 0 indicating male and 1 indicat-
ing female; Age represents age, and has 8 values, corresponding to 8 age groups, including
10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80; Experience represents whether or not
the patient has experience with hearing aids, taking a value between 0 and 1, with 0 indicat-
ing no experience and 1 indicating a history of wearing a hearing aid. Language represents
whether the patient’s language is tonal or not, and the values are 0 and 1, with 0 indicating
non-tonal language and 1 indicating tonal language. This shows that there are 64 combina-
tions of covariates. After obtaining the above association gains, the k-means algorithm is
applied to conduct the classification, and the set of association gain vectors is noted as

CG = {G1,G2, ...,GN }. (2)

Assuming that hearing loss is classified into k categories, an association gain is randomly
selected from the set of association gains as the first cluster center μ1. For each association
gain sample Gi , calculate its minimum distance Di from the selected cluster center

Di = min
{
‖Gi − μ1‖22 , ‖Gi − μ2‖22 , ..., ‖Gi − μr‖22

}
(3)

where r represents the number of clustering centers that have been selected. Then, the point
with the largest Di is selected as the new cluster center μr+1. The distance from each
association gain Gi to center vector of each cluster μj (j = 1, 2, · · · , k) is calculate in the
next step:

dij = ∥∥Gi − μj

∥∥2
2 (4)

TheGi is classified into the category cj corresponding to the smallest dij . For all samples
in category cj , the mean value is calculated as the new cluster center μj . Repeat this step,
if all k cluster center vectors μj do not change or reach the maximum number of iterations,
then the current classification is completed and k cluster centers are selected.

The average of the association gain of hearing aids under different categories is calcu-
lated to characterize each type of individual hearing loss. Each category of hearing loss
corresponds to a set of hearing aid fitting parameters. When a new patient arrives, the
hearing-impaired patient performs audiometry from the k types configuration and selects
one of the most satisfying parameters as the initial parameter, thus simplifying the fitting
process.
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3 Results and discussion

3.1 Dataset preprocessing

The data for the experiment were obtained from the National Health and Nutrition Exam-
ination Survey (NHANES), which works in part to assess the hearing status of subjects
through pure-tone audiometry, and therefore the NHANES dataset contains many pure-tone
audiograms. The audiograms were obtained according to pure-tone audiometric standard
and contained air conduction thresholds at seven test frequencies: 500 Hz, 1,000 Hz, 2,000
Hz, 3,000 Hz, 4,000 Hz, 6,000 Hz, and 8,000 Hz for participants aged 12 to 85 years (mean:
39 ± 21 years).

For a better assessment of the effects, we preprocessed the data: 1) removing incomplete
audiograms with at least one threshold missing and 2) removing audiograms where hearing
was clearly within the normal range in both ears. According to the American Speech-
Language-Hearing Association (ASHA) guidelines on hearing loss [19], all audiograms
with thresholds less than or equal to 20 dB and 15 dB are considered to indicate normal
hearing for adults and children, respectively, and there is essentially no need for hearing
aids in these populations.

A representative audiogram dataset was screened out by preprocessing the original audio-
grams. A total of 300 audiograms were selected in this experiment, including 110 for mild
hearing loss, 120 for moderate hearing loss, and 70 for severe hearing loss. The covariate
information of the four patients was gender, age, hearing aid wearing experience, and tone
of language. The association gain values were calculated using the NAL-NL2 prescription
formula under different combinations of covariates. The 133 dimensions of the NAL-NL2
insertion gain were calculated at 19 frequency points 125, 160, 200, 250, 315, 400, 500,
630, 800, 1000, 1250, 1600, 2000, 2500, 3150, 4000, 5000, 6300, 8000 Hz under 50, 55,
60, 65, 70, 80 and 90 dB SPL input sound pressure level.

3.2 Selection of the number of categories

It is crucial for unsupervised clustering algorithms to evaluate the performance of cluster-
ing. In this section, the average silhouette coefficient is taken as an indicator to figure out the
number of natural clusters of the association gain [29]. Assuming that all sets of the associ-
ation gain samples are classified according to the proposed algorithm, each well-classified
subset is denoted as CGm, and the number of samples within the corresponding subset is
nm, the silhouette coefficients are:

SC =
1

nm

∑
Gi∈CGm

si [0, 1] (5)

where the silhouette coefficient of the gain sample Gi is

si = bi − ai

max(ai, bi)
(6)

where ai represents the average distance between Gi and samples of the same category and
bi represents the average distance between Gi and all samples in the category closest to it.
The range of values for the silhouette coefficient is generally [-1,1], and the larger value
means the inter-cluster distance is farther and the intra-cluster distance is more compact.
Figure 2 shows the variation of the silhouette coefficient with the number of clusters, and
the number of clusters takes a range from 4 to 30. It can be observed that the value of the
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Fig. 2 Silhouette index as a function of the number of clusters

silhouette coefficient is optimal when the number of clusters is 6. Therefore, this paper
divides hearing loss into six categories.

3.3 Comparison with AMCLASS

To compare the effectiveness of the proposed method with the classical classification algo-
rithm, we first classified the audiograms into six categories according to the AMCLASS
system, and the six types are sloping, flat, rising, peaked, trough-shaped, and other. The
association gains obtained from 300 audiograms under the effect of different covariates
were different, and the experiments were performed to classify 64 groups of association
gains, corresponding to 64 different groups of classification results, as shown in Fig. 3. The

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

si
lh
o
u
et
te
_
sc
o
re

Settings

Proposed

AMCLASS

Fig. 3 Comparison of silhouette coefficients



Multimedia Tools and Applications

0 50 100 150 200 250 300

1

2

3

4

5

6

Gender = male

Gender = female

Same label

la
b
el
s

serial number of audiograms

Fig. 4 Classification results with different gender

horizontal axis corresponds to 64 different sets of covariate combinations, and the verti-
cal axis is the silhouette coefficient of the corresponding classification. The classification
labels of AMCLASS can be obtained in advance using the official online classification tool,
and the labels of the proposed method are obtained by the k-means algorithm. The experi-
mental results show that the silhouette coefficients of the classification method introduced
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Fig. 5 Classification results with different age
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in this contribution are much higher than those of the AMCLASS, which verifies the ratio-
nality and effectiveness of the proposed method for classification. The main reason is that
AMCLASS only utilizes the audiogram without considering the influence of patient infor-
mation, and the role of covariates cannot be reflected in the classification results, so the
silhouette coefficients are lower.

3.4 Effect of different covariates on classification

The experiments in this section compared the effects of different covariates on the classifi-
cation results, including gender, age, the experience of wearing hearing aids, and whether it
is a tonal language. All experiments used the same 300 audiograms as input. In each group
of experiments, one covariate was selected as the control variable, and other covariates were
kept unchanged. Then, the association gains under various conditions were calculated and
classified by a clustering algorithm. Figures 4–7 show the different classification results
with the four covariates as control variables, respectively.

Each graph represents the classification results under a set of control variables. In the
figure, the red and blue plots indicate the two classification labels for a set of covariates tak-
ing different values with the other covariates unchanged, respectively. And the black label
means that the two labels for that point are the same. As can be distinctly seen from the fig-
ures, there are no overlapping items between Figs. 4 and 5, which shows that the association
gain of hearing aids varies greatly with different ages or gender. Figure 6 demonstrates the
difference in association gain between patients with hearing aids experience and those with-
out wearing history. There is a small amount of overlap between the two types of association
gain in Category 1, and the number of overlap samples is 14. Therefore, it can be inferred
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Fig. 6 Classification results with different wearing experience
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that wearing experience has a certain influence on the association gain. Figure 7 compares
the influence of the language on classification results. It can be observed that there are many
overlapping parts and the number of overlapping samples is 179. Consequently, whether
tonal language also influences hearing classification results, but is relatively slight. In sum-
mary, the experimental results are consistent with the conclusions in Section 2.1, that is, the
four covariates have a certain impact on the hearing aid insertion gain. Such a conclusion
also verifies the limitation of relying solely on audiograms for hearing loss classification.
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3.5 Acquisition of representative hearing loss

In this section, we first obtained the 300 audiograms introduced in the previous section
and corresponding patient information. Next, the corresponding 300 association gains were
calculated according to the NAL-NL2 prescription formula. The gain set was then classified
by using the classification algorithm described in Section 2.3. When the number of clusters
is set to six, the clustering results of association gains are shown in Fig. 8.

After obtaining six types of gain sets, the average values of the association gains under
different categories are calculated, respectively, and the average gain can be used to charac-
terize the hearing loss of each category. Figure 9 demonstrates six groups of corresponding
representative vectors for different hearing loss.

As shown in Fig. 9, the gain vector of hearing loss 1 corresponds to the hearing loss of
the whole frequency band, with approximately the same gain value obtained in the 0-6000
Hz band range and less gain required in the 6000-8000 Hz range. The gain vector in hearing
loss 2 indicates a better hearing situation in the lower frequencies, while compensation is
required in the frequency band above 1000 Hz. Hearing loss 3 represents the light degree of
hearing loss and the gain required in the whole frequency band is low, which only needs to
be provided in the frequency band around 1000 Hz. Compared to type 3, hearing loss 4 is
obviously the case of severe hearing loss. Thus, the frequency band between 0 and 6000 Hz
requires a gain of more than 30 dB. The curve trends of hearing loss 5 and 6 are similar to
those of 1 and 2, but more gains are needed.

The representative gain vectors are the average association gain of hearing aids in dif-
ferent categories. The distance between the representation vectors and the gain vectors
acquired under 64 combinations of covariates are calculated after obtaining the representa-
tive vectors of each group. The audiogram and covariate within the nearest gain vector were
finally selected as the representation information of each type of hearing loss. Figure 10
shows the audiograms corresponding to the six groups of gain representation vectors.

In Fig. 10, audiogram 1 is from patients with moderate and full-frequency hearing loss.
Audiogram 2 and 3 are both case of mild hearing loss. The patients in audiogram 2 have
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normal hearing at low frequency, and it is difficult for them to identify the middle and high
frequency components in speech. While the patients in audiogram 3 possess normal hearing
at middle and high frequency but have hearing loss at low frequency. Audiogram 4 indicates
the case of severe hearing loss and the hearing threshold is above 80dB, especially at low
frequency. Audiograms 5 and 6 both correspond to moderate hearing loss, but the trend of
the hearing threshold curve is different. Finally, the covariate information corresponding to
each audiogram are as follows: (a) 50 years old, female, with wearing experience; (b) 50
years old, male, with wearing experience; (c) 50 years old, male, with wearing experience;
(d) 20 years old, female, without wearing experience; (e) 20 years old, male, with wearing
experience; (f) 60 years old, female, with wearing experience. According to the previous
discussion, the language has an extremely slight impact on the final gain, so the covariate
information listed includes age, gender, and wearing experience.

The insertion gain reflects the true effect that the hearing aid finally imposes on the
input signal. By observing the audiograms derived from the representative gain vectors, it
is found that similar audiograms correspond to different gains in the presence of covariates.
As shown in Fig. 10, the audiograms are obviously different between audiograms 1 and 5 as
well as audiograms 2 and 6, but the curve trend of the gain vector is very similar. This also
indirectly confirmed the unreasonableness of classifying hearing loss only based on audio-
grams. The method proposed in this paper takes factors such as gender, age, and hearing
aid wearing experience into account. The hearing loss is classified based on the association
gain of hearing aids, and the average association gains under different categories are calcu-
lated to characterize various types of individual hearing loss. This approach can effectively
describe the hearing loss of patients and is more in line with the actual compensation effect
of hearing-impaired patients.
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4 Conclusion

In order to improve the low prevalence of hearing aids, fitting-free technology is currently
the attractive focus in the field of hearing aid fitting. The technology can help hearing-
impaired patients obtain a better hearing experience without fitting. It is a common method
to classify patients according to audiograms to achieve the fitting-free aim. However, there
exists the problem of low accuracy by classifying hearing loss solely based on audiograms.
Based on this, a personalized hearing loss classification method based on the insertion gain
of hearing aids is proposed in this paper. The method chooses the insertion gain of hearing
aids as the feature and takes the information of patients’ gender, age, and wearing history
as covariates in the input of the model. Then, an unsupervised cluster analysis method is
applied to classify and obtain a representative set of insertion gains. Finally, according to
different representation gains, a set of feature information of different categories of patients
was obtained as the initial parameters of hearing aid fitting. Compared with the traditional
audiogram classification method, the novel method based on insertion gain has a higher
quantitative evaluation index and is more suitable for the representation of hearing loss.
Future research will focus on expanding the dataset to optimize the performance of the
algorithm. Another possible research direction is to explore multiple fitting formulas and
analyze the impact of more covariates on actual gain.
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