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Abstract
Stochastic gradient Markov chain Monte Carlo (SGMCMC) is a popular class of algorithms for scalable Bayesian inference.
However, these algorithms include hyperparameters such as step size or batch size that influence the accuracy of estimators
based on the obtained posterior samples. As a result, these hyperparameters must be tuned by the practitioner and currently no
principled and automated way to tune them exists. Standard Markov chain Monte Carlo tuning methods based on acceptance
rates cannot be used for SGMCMC, thus requiring alternative tools and diagnostics.Wepropose a novel bandit-based algorithm
that tunes the SGMCMC hyperparameters by minimizing the Stein discrepancy between the true posterior and its Monte
Carlo approximation. We provide theoretical results supporting this approach and assess various Stein-based discrepancies.
We support our results with experiments on both simulated and real datasets, and find that this method is practical for a wide
range of applications.

Keywords Stochastic gradient · Stein discrepancy · Markov chain Monte Carlo · Hyperparameter optimization

1 Introduction

Most MCMC algorithms contain user-controlled hyperpa-
rameters which need to be carefully selected to ensure
that the MCMC algorithm explores the posterior distri-
bution efficiently. Optimal tuning rates for many popular
MCMC algorithms such the random-walk (Gelman et al.
1997) or Metropolis-adjusted Langevin algorithms (Roberts
and Rosenthal 1998) rely on setting the tuning parameters
according to the Metropolis-Hastings acceptance rate. Using
metrics such as the acceptance rate, hyperparameters can
be optimized on-the-fly within the MCMC algorithm using
adaptive MCMC (Andrieu and Thoms 2008; Vihola 2012).
However, in the context of stochastic gradientMCMC(SGM-
CMC), there is no acceptance rate to tune against and the
trade-off between bias and variance for a fixed computa-
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tion budget means that tuning approaches designed for target
invariant MCMC algorithms are not applicable.

1.1 Related work

Previous adaptive SGMCMC algorithms have focused on
embedding ideas from the optimization literature within
the SGMCMC framework, e.g. gradient preconditioning (Li
et al. 2016), RMSprop (Chen et al. 2016) and Adam (Kim
et al 2020). However, all of these algorithms still rely on
hyperparameters such as learning rates and subsample sizes
which need to be optimized. To the best of our knowledge,
no principled approach has been developed to optimize the
SGMCMC hyperparameters. In practice, users often use a
trial-and-error approach and run multiple short chains with
different hyperparameter configurations and select the hyper-
parameter settingwhichminimizes ametric of choice, such as
the kernel Stein discrepancy (Nemeth and Fearnhead 2020)
or cross-validation (Izmailov et al. 2021).However, this labo-
rious approach is inefficient and not guaranteed to produce
the best hyperparameter configuration.
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1.2 Contribution

In this paper we propose a principled adaptive SGMCMC
scheme that allows users to tune the hyperparameters, e.g.
step-sizes h (also known as the learning rate) and data sub-
sample size n. Our approach provides an automated trade-off
between bias and variance in the posterior approximation for
a given computational time budget.Our adaptive schemeuses
amulti-armed bandit algorithm to select SGMCMChyperpa-
rameters which minimize the Stein discrepancy between the
approximate and true posterior distributions. The approach
only requires a user-defined computational budget as well
as unbiased estimates of the gradients of the log-posterior,
which are already available to us via the stochastic gradi-
ent MCMC algorithm. A second contribution in this paper is
a rigorous assessment of existing tuning methods for SGM-
CMC, which to our knowledge is not present in the literature.

2 Background

2.1 Stochastic Gradient Langevin Algorithm

We are interested in sampling from a target density π(θ),
where for some parameters of interest θ ∈ R

d the unnormal-
ized density is of the form π(θ) ∝ exp{−U (θ)}. We assume
that the potential function U (θ) is continuous and differ-
entiable almost everywhere. If we have independent data,
y1, . . . , yN then π(θ) ∝ p(θ)

∏N
i=1 f (yi | θ) is the poste-

rior density, where p(θ) is the prior density and f (yi | θ) is
the likelihood for the i th observation. In this setting, we can
define U (θ) = ∑N

i=1Ui (θ), where Ui (θ) = − log f (yi |
θ) − (1/N ) log p(θ).

We can sample from π(θ) by simulating a stochastic pro-
cess that has π as its stationary distribution. Under mild
regularity conditions, the Langevin diffusion (Roberts and
Tweedie 1996; Pillai et al. 2012) has π as its stationary distri-
bution, however, in practice it is not possible to simulate the
Langevin diffusion exactly in continuous time and instead
we sample from a discretized version. That is, for a small
time-interval h > 0, the Langevin diffusion has approximate
dynamics given by

θk+1 = θk − h

2
∇U (θ(t)) + √

hξ k, k = 0, . . . , K (1)

where ξ k is a vector of d independent standard Gaussian ran-
dom variables. In the large data setting, we replace ∇U (θ)

with an unbiased estimate ∇Ũ (θ) = N
n

∑
i∈Sn

∇Ui (θ), cal-
culated using a subsample of the data of size n << N ,
where Sn is a random sample, without replacement, from
{1, . . . , N }. This algorithm is known as the stochastic gradi-
ent Langevin dynamics (SGLD, Welling and Teh 2011).

In this paper we present our adaptive stochastic gradient
MCMC scheme in the context of the SGLD algorithm for
simplicity of exposition. However, our proposed approach is
readily generalizable to all other stochastic gradient MCMC
methods, e.g. stochastic gradient Hamiltonian Monte Carlo
(Chen et al. 2014). Details of the general class of stochas-
tic gradient MCMC methods presented under the complete
recipe framework are given inMa et al. (2015). See Sect. C of
the SupplementaryMaterial for a summary of the SGMCMC
algorithms used in this paper.

2.2 Stein discrepancy

We define π̃ as the empirical distribution generated by the
stochastic gradient MCMC algorithm (1). We can define a
measure of howwell this distribution approximates our target
distribution of interest, π , by defining a discrepancy met-
ric between the two distributions. Following Gorham and
Mackey (2015) we consider the Stein discrepancy

D(π̃, π) = sup
φ∈F
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(2)

where φ : R
d → R

d is any smooth function in the Stein set
F which satisfies Stein’s identity Eπ [Aπφ(θ)] = 0 for all
φ ∈ F .

2.2.1 Kernel Stein discrepancy

To obtain an analytic form of the Stein discrepancy, Liu et al.
(2016) and Chwialkowski et al. (2016) introduced the ker-
nelized Stein discrepancy (KSD) where F is the unit ball of
a d-dimensional reproducing kernel Hilbert space. The KSD
has the closed form solution

KSD(π̃, π) :=
√

Eπ̃(θ)π̃(θ ′)
[
kπ (θ, θ ′)

]
(3)

where

kπ (θ, θ ′) =∇θU (θ)�∇θ ′U (θ ′)k(θ, θ ′)
−∇θU (θ)�∇θ ′k(θ , θ ′)
−∇θ ′U (θ ′)�∇θk(θ , θ ′) + ∇�

θ ∇θ ′k(θ, θ ′).

The kernel k must be positive definite, which is a condition
satisfied by most popular kernels, including the Gaussian
andMatérn kernels. Gorham andMackey (2017) recommend
using the inverse multi-quadric kernel, k(θ, θ ′) = (c2+||θ −
θ ′||22)β , which they prove detects non-convergence when c >

0 and β ∈ (−1, 0).
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2.2.2 Finite set Stein discrepancy

KSD is a natural discrepancy measure for stochastic gradient
MCMC algorithms as π(θ) is only required up to a normal-
ization constant and the gradients of the log-posterior density
are readily available. The drawback of KSD is that the com-
putational cost is quadratic in the number of samples. Linear
versions of the KSD (Liu et al. 2016) are an order of magni-
tude faster, but the computational advantage is outweighed by
a significant decrease in the accuracy of the Stein estimator.

Jitkrittum et al. (2017) propose a linear-timeStein discrep-
ancy, the Finite Set SteinDiscrepancy (FSSD), which utilizes
the Stein witness function g(θ ′) :=
Eθ∼π̃

[−∇θU (θ)�k(θ, θ ′) + ∇�
θ k(θ, θ ′)

]
. The function g

canbe thought of aswitnessing the differences between π̃ and
π , where a discrepancy in the region around θ is indicated by
large |g(θ)|. The Stein discrepancy is essentially then mea-
sured via the flatness of g, where the measure of flatness
can be computed in linear time. The key to FSSD is to use
real analytic kernels k, e.g, Gaussian kernel, which results
in g1, . . . , gd also having a real analytic form. If gi 
= 0
then this implies almost surely that gi (v1), . . . , gi (vJ ) are
not zero for a finite set of test locations V = {v1, . . . , vJ }.
Under the same assumptions as KSD, FSSD is defined as,

FSSD(π̃, π) :=
√
√
√
√ 1

d J

d∑

i=1

J∑

j=1

g2i (v j ). (4)

Theorem 1 of Jitkrittum et al. (2017) guarantees that
FSSD2 = 0 if and only if π̃ = π for any choice of test
locations {v}Jj=1. However, some test locations will result in
an improved test power for finite samples and so, following
Jitkrittum et al. (2017), we optimize the test locations by first
sampling them from a Gaussian fit to the posterior samples
and then use gradient ascent so that theymaximise the FSSD.

3 Hyperparameter learning

In this section we introduce an automated and generally-
applicable approach to learning the user-controlled param-
eters of a stochastic gradient MCMC algorithm, which
throughout wewill refer to as hyperparameters. For example,
in the case of SGLD, this would be the stepsize parameter
h and batch size n, or in the case of stochastic gradi-
ent Hamiltonian Monte Carlo, this would also include the
number of leap frog steps. Our adaptive scheme relies on
multi-armed bandits (Slivkins 2019) to identify the optimal
setting for the hyperparameters such that, for a given time
budget, the selected parameters minimize the Stein discrep-
ancy, and therefore maximize the accuracy of the posterior
approximation. Our proposed approach, the Multi-Armed

MCMCBanditAlgorithm (MAMBA),works by sequentially
identifying and pruning, i.e. removing, poor hyperparameter
configurations in a principled, automatic and online setting to
speed-up hyperparameter learning. The MAMBA algorithm
can be used within any stochastic gradient MCMC algorithm
and only requires the user to specify the training budget and
the number of hyperparameter sets.

3.1 Multi-armed bandits with successive halving

Multi-armed bandits are a class of algorithms for sequential
decision-making that iteratively select actions from a set of
possible decisions. These algorithms can be split into two
categories: 1) best arm identification in which the goal is to
identify the action with the highest average reward, and 2)
exploration vs. exploitation, where the goal is to maximize
the cumulative reward over time (Bubeck and Cesa-Bianchi
2012). In the best-arm identification setting, an action, aka
arm, is selected and produces a reward, where the reward is
drawn from a fixed probability distribution corresponding to
the chosen arm. At the end of the exploration phase, a single
arm is chosen which maximizes the expected reward. This
differs from the typical multi-armed bandit setting where the
strategy for selecting arms is basedonminimizing cumulative
regret (Lattimore and Szepesvári 2020).

The successive halving algorithm (Karnin et al. 2013;
Jamieson and Talwalkar 2016) is a multi-armed bandit algo-
rithm based on best arm identification. Successive halving
learns the best hyperparameter settings, i.e. the best arm,
using a principled early-stopping criterion to identify the
best arm within a set level of confidence, or for a fixed
computational budget. In this paper, we consider the fixed
computational budget setting, where the algorithm proceeds
as follows: 1) uniformly allocate a computational budget to
a set of arms, 2) evaluate the performance of all arms against
a chosen metric, 3) promote the best 1/η of arms to the next
stage, where typically η = 2 or 3, and prune the remain-
ing arms from the set. The process is repeated until only
one arm remains. As the total computational budget is fixed,
pruning the least promising arms allows the algorithm to allo-
cate exponentially more computational resource to the most
promising hyperparameter sets.

3.2 Tuning stochastic gradients with amulti-armed
MCMC bandit algorithm (MAMBA)

We describe our proposed algorithm, MAMBA, to tune the
hyperparameters of a generic stochastic gradient MCMC
algorithm. For ease of exposition, we present MAMBA in
the context of the SGLD algorithm (1), where a user tunes
the step size h and batch size n. Details on other SGMCMC
algorithms canbe found inAppendixC.WepresentMAMBA
as the following three stage process:
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Algorithm 1 MAMBA
Require: Initial number of configurations M , total time budget T and
pruning rate η (default η = 3). Sample M hyperparameter configura-
tions and store in the set S0.

for i = 0 to �logη M� − 1 do
- Calculate ri = T

|Si |�logη M�
- Run each SGLD sampler using (1) for time budget of ri seconds.
- Calculate KSD or FSSD for each sampler using (3) or (4), respec-

tively.
- Let Si+1 be the set of �|Si |/η� samplers with lowest KSD/FSSD.

end for

3.2.1 Initialize

In our multi-armed bandit setting we assume M possible
stochastic gradient MCMC hyperparameter configurations,
which we refer to as arms. Each arm s in the initial set S0 =
{1, . . . , M} represents a hyperparameter tuple φs = (hs, ns).
The hyperparameters in the initial set are chosen from a uni-
form grid.

3.2.2 Evaluate and prune

At each iteration of MAMBA, i = 0, 1, . . ., each arm s
is selected from the set Si and the sth SGLD algorithm is
run for ri seconds using the hyperparameter configuration
φs . Each arm is associated with a reward νs that measures
the quality of the posterior approximation. We use the nega-
tive Stein discrepancy as the reward function that we aim to
maximize. Specifically, we calculate the Stein discrepancy
from the SGMCMC output using KSD (3) or FSSD (4), i.e.
νs = −KSD(π̃s, π) or νs = −FSSD(π̃s, π). Without loss of
generality, we can order the set of arms Si by their rewards,
i.e. ν1 ≥ ν2 ≥ . . . ≥ νM , where ν1 is the arm with the opti-
mal reward at each iteration of MAMBA. The top 100/η%
of arms in Si with the highest rewards are retained to produce
the set Si+1. The remaining arms are pruned from the set and
not evaluated again at future iterations.

3.2.3 Reallocate time

Computation time allocated to the pruned samplers is reallo-
cated to the remaining samplers, ri+1 = ηri . As a result, by
iteration i , each of the remaining SGLD samplers has run for
a time budget of R = r0 +ηr0 +η2r0 + ...+ηi−1r0 seconds,
where r0 is the time budget for the first MAMBA iteration.
This process is repeated for a total of �logη M� MAMBA
iterations. We use a logη base as we are dividing the number
of arms by η at every iteration. Furthermore, we use a floor
function for the cases where the initial number of arms M is
not a power of η. The MAMBA algorithm is summarized in
Algorithm 1.

3.2.4 Algorithmic guarantees

It is possible that MAMBAwill eliminate the optimal hyper-
parameter set during one of the arm-pruning phases. Through
examination of the 1−1/2η quantile, we can derive a bound
on the probability that MAMBA will incorrectly prune the
best hyperparameter configuration (see Theorem 1). Using
this result, we are also able to bound the maximum compu-
tational budget required for MAMBA to identify the optimal
hyperparameters.

Definition 1 Let s ∈ {2, . . . , M} be an arm with reward νs ,
then we define the suboptimality gap between νs and the
optimal reward ν1 as αs := ν1 − νs , and we define H2 :=
maxs 
=1 s/α2

s as the complexity measure, see Audibert et al.
(2010) for details.

Theorem 1 i) MAMBA correctly identifies the best hyper-
parameter configuration for a stochastic gradient MCMC
algorithm with probability at least

1 − (2η − 1) logη M · exp
(

− ηT

4σ 2
KSDH2(logη M + 1)

)

,

where σ 2
KSD = maxs∈S Varπ̃s (Eπ̃s

[
kπ (θ , θ ′)

]
).

ii) For a probability of at least 1−δ that MAMBAwill suc-
cessively identify the optimal hyperparameter set, MAMBA
requires a computational budget of

T = O

(

σ 2
KSD logη M log

(
(2η − 1) logη M

δ

))

.

A proof of Theorem 1 is given in Appendix A and builds
on the existing work of Karnin et al. (2013) for fixed-time
best-arm identification bandits. Theorem 1 highlights the
contribution of KSD variance in identifying the optimal arm.
In particular, the total computation budget depends on the
arm with the largest KSD variance.

3.3 Practical guidance for usingMAMBA

3.3.1 Choice of budget

There is flexibility in the choice of budget in MAMBA. We
advocate for the use of a compute time budget for fast but
biased sampling algorithms like SGMCMCbecause it allows
users to view these algorithms as a trade-off between statis-
tical accuracy and runtime. The goal is then to identify the
hyperparameters that produce the bestMonteCarlo estimates
under a given time constraint. A compute time budget allows
users to optimise the batch size in a principled way and ties
the hyperparameter optimisation to the available hardware
and software, such as whether or not the model was imple-
mented using vectorisation.
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Alternative choices for the budget could be based on the
total number of iterations or the total number of gradient eval-
uations. The former would be helpful for storage constraints
but has no natural mechanism for tuning the batch size. The
total number of gradient evaluations would allow for batch
size tuning but is less closely linked to the available hardware
and software, and would not take into account implementa-
tion decisions such as vectorising the gradient estimator.

3.3.2 Estimating KSD/FSSD

CalculatingKSD/FSSDusing (3) or (4) requires the gradients
of the log-posterior and the SGMCMC samples. Typically,
one would calculate the KSD/FSSD using fullbatch gradi-
ents (i.e. using the entire dataset) on the full chain of samples.
However, aswe only use SGMCMCwhen the dataset is large,
this would be a computationally expensive approach. Two
natural solutions are to i) use stochastic gradients (Gorham
et al. 2020), calculated through subsampling, or ii) use a
thinned chain of samples. We investigate both options in
terms of KSD/FSSD accuracy in Appendix 3.4.2. We find
that using the stochastic KSD/FSSD produces results sim-
ilar to the fullbatch KSD/FSSD. However, calculating the
KSD/FSSD for a large number of high dimensional samples
is computationally expensive, so for our experimental study
in Sect. 4 we use fullbatch gradients with thinned samples.
This leads to lower variance KSD/FSSD estimates at a rea-
sonable computational cost. Note that fullbatch gradients are
only used for MAMBA iterations and not SGMCMC iter-
ations. We find that this does not significantly increase the
overall computational cost as for each iteration of MAMBA
there are thousands of SGMCMC iterations.

3.3.3 Alternative metrics

Stein-based discrepancies are a natural metric to assess the
quality of the posterior approximation as they only require
the SGMCMC samples and log-posterior gradients. How-
ever, alternative metrics to tune SGMCMC can readily be
applied within the MAMBA framework. For example, there
is currently significant interest in understanding uncertainty
in neural networks via metrics such as expected calibra-
tion error (ECE), maximum calibration error (MCE, Guo
et al. 2017), and out-of-distribution (OOD) tests (Lakshmi-
narayanan et al. 2017). Thesemetrics have the advantage that
they are more scalable to very high dimensional problems,
compared to theKSD(Gong et al. 2020).As a result, although
KSD is a sensible choice when aiming for posterior accuracy,
alternative metrics may be more appropriate for some prob-
lems, for example, in the case of very high-dimensional deep
neural networks.

3.4 Tuningmethods

3.4.1 Grid search and heuristic method

We test the efficacy of MAMBA on a simpler grid search
approach. For the grid search method we run the sam-
pler using the training data, and calculate the RMSE/log-
loss/accuracy on the test dataset. To have a fair comparison
to MAMBA (see Sect. 3.4.2), we always start the sampler
from the maximum a posteriori estimate (the MAP, found
using optimization). As a result we need to add noise around
this MAP or else the grid search tuning method will recom-
mend the smallest step size available which results in the
sampler not moving away from the starting point. This hap-
pens because the MAP has the smallest RMSE/ log-loss (or
highest accuracy). To fix this we add Gaussian noise to the
MAP, and report the scale of the noise for eachmodel in Sect.
B.

The heuristic method fixes the step size to be inversely
proportional to the dataset size, i.e. h = 1

N (Brosse et al.
2018). For both the grid search and heuristic approaches, we
use a 10% batch size throughout.

3.4.2 MAMBA

We investigate the tradeoffs involved in estimating the KSD
from samples in MAMBA. We can estimate this using the
stochastic gradients estimated in the SGMCMC algorithm.
However we can also calculate the fullbatch gradients and
use these to estimate the KSD. Although the latter option is
too computationally expensive in the big data setting, we can
also thin the samples to estimate the KSD which may result
in the fullbatch gradients being computationally tractable.

In Fig. 1 we estimate the KSD of samples using the logis-
tic regression model over a grid of step sizes. We run SGLD
for the three models for 1 s and with a batch size of 1%.
We estimate the KSD in 4 ways: fullbatch using all the
samples, fullbatch using thinned samples (thin by a factor
of 5), stochastic gradients using all samples, and stochastic
gradients using thinned samples. In Fig. 2 we do the same
but varying the batch size (and keeping the step size fixed
to h = 10−4.5. We can see that the KSD estimated using
stochastic gradients and unthinned samples follows the full-
batch KSD well. However as calculating the KSD for many
high dimensional samples is computationally expensive, we
opt for using thinned fullbatch gradients in all our experi-
ments.

4 Experimental study

In this section we illustrate MAMBA (Algorithm 1) on three
different models and compare it to alternative tuning meth-
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Fig. 1 Grid search for different step sizes using both fullbatch and stochastic-KSD for logistic regression, PMF, and NN (from left to right). The
sampler used is SGLD

Fig. 2 Grid search for different batch sizes using both fullbatch and stochastic-KSD for logistic regression, PMF, and NN (from left to right). The
sampler used is SGLD

ods. We use three core tuning methods for all three models:
i) MAMBA-KSD, ii) grid search with log-loss as metric,
and iii) the heuristic approach. For the logistic regression
model only, we also try two alternative tuning methods: iv)
MAMBA-FSSDand v) grid search-KSD.We show inTable 4
an overview of the tuningmethods used in these experiments.

The initial arms in MAMBA are set as an equally spaced
grid over batch sizes and step sizes (and number of leapfrog
steps for SGHMC). The heuristic method fixes the step size
to be inversely proportional to the dataset size, i.e. h = 1

N
(Brosse et al. 2018). For both the grid search and heuristic
approaches, we use a 10% batch size throughout.

Note that only the tuningmethods that use KSD/FSSD are
able to estimate both step size and batch size. This is because
the log-loss metric used for grid search is not particularly
sensitive to the choice of batch size, and over a range of
batch sizes the log-loss produces similar values. In contrast,
KSD and FSSDmeasure the quality of the posterior samples
and their approximation accuracy to the posterior, which is
strongly affected by the batch size as well as the available
computational budget.

Full details of the experiments can be found in Appendix
B. Experiments were conducted using the Python package
SGMCMCJax (Coullon andNemeth 2022) and code to repli-

cate the experiments can be found at https://github.com/
jeremiecoullon/SGMCMC\_bandit\_tuning.All experiments
were carried out on a laptop CPU (MacBook Pro 1.4 GHz
Quad-Core Intel Core i5). For each example, the figures show
results over a short number of tuning iterations and tables give
results for longer runs.

4.1 Logistic regression

We consider logistic regression on a simulated dataset with
10 dimensions and 1million data points (details of the model
and prior are in Appendix B.1). We sample from the poste-
rior using six samplers: SGLD, SGLD with control variates
(SGLD-CV, Baker et al. 2019), stochastic gradient Hamilto-
nianMonte Carlo (SGHMC, Chen et al. 2014), SGHMC-CV,
stochastic gradient NoséHoover Thermostats (SGNHT), and
SGNHT-CV (Ding et al. 2014a).

We recall that we tune each samplers’ hyperparameters
using i) MAMBA-KSD, ii) grid search with log-loss, and iii)
the heuristic approach. In this section, we also run MAMBA
using FSSD as the metric, as well as grid search with KSD
as the metric, to assess the practicality of these approaches.

For MAMBA, we set R = 1sec (i.e.: the run time of the
longest sampler). We point out that this time budget is small
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Fig. 3 KSD curves for the six samplers applied to a logistic regression model

compared towhat would be used bymost practitioners. How-
ever, this example illustrates the MAMBAmethodology and
compares it against a full MCMC algorithm which provides
us with “ground-truth” posterior samples. To calculate the
KSD/FSSD efficiently, we thin the samples and use fullbatch
gradients.

Applying the grid search approach with KSD as the met-
ric: we thin the samples and use fullbatch gradients as we
have done with KSD and FSSD. To allow a close compari-
son to MAMBA-KSD, we choose a time budget rather than
number of iterations and we tune the batch size as well as the
step size. The objective of this experiment is to see how grid
searchwould workwith ametric that can capture whether the
samples are from the correct distribution. We choose 1sec as
the time budget, which is the same amount of time that the
final sampler will have run for in MAMBA-KSD. So, in the
best arm in MAMBA-KSD, as well as for all the combina-
tions of gridsearch-KSD, the sampler will have run for 1sec
before the final KSD is computed. We discuss these results
below and present them in Table 6 in the appendix.

In Fig. 3, we plot the KSD calculated from the poste-
rior samples for each of the tuning methods. We calculated
the KSD curves for ten independent runs and plotted the
mean curve along with a confidence interval (two standard
deviations). The optimal hyperparameters given by each
method can be found in Table 5 of Appendix B.1. Our
results from Fig. 3 show that optimizing the hyperparameters
with MAMBA, using either KSD or FSSD, produces sam-
ples that have the lowest KSD out of all but one of the six
samplers. For the SGNHT sampler, the heuristic approach
gives the lowest KSD, however, as shown in Table 5 in
Appendix B.1, MAMBA-FSSD finds an optimal step size
of h = N−1, which coincides with step size given by the
heuristic approach. Therefore, the difference in KSD from
these two methods is a result of the batch size, which when

taking into account computation time, MAMBA-FSSD finds
1% to be optimal,whereas the heuristicmethod does not learn
the batch size and this is fixed at 10%. Ignoring computation
time, a larger batch size is expected to produce a better pos-
terior approximation. However, it is interesting to note that
for the five out of six samplers where MAMBA performs the
best in terms of KSD, MAMBA chooses an optimal batch
size of 1%.

For this simulated data example with only 1 million sam-
ples we can compare the posterior accuracy of the SGMCMC
algorithms against the ground-truth using NumPyro’s (Bing-
ham et al. 2018; Phan et al. 2019) implementation of NUTS
(Hoffman and Gelman 2014) on the full dataset for 20K iter-
ations (after a burn-in of 1K iterations).We then calculate the
relative error in the posterior standard deviation for each sam-
pler: ξ(σ̂ ) := ‖σ̂−σNUTS‖2/‖σNUTS‖2. The results are given
in Table 1 and further results including predictive accuracy
on a test dataset and the number of samples obtained within
the time budget are given in Table 6 of Appendix B.1. We
tested each sampler by running each sampler for 10 s.

We find that the MAMBA-optimized samplers perform
among the best in terms of KSD. As a result, the Monte
Carlo estimates of the posterior standard deviations generally
perform well. As described above we also run grid search
withKSDas ametric and tune the step size aswell as the batch
size.Wefind that although grid searchwithKSDgives results
that are comparable to MAMBA-KSD, the running time for
this tuning method is slower than MAMBA-KSD. Indeed
grid search with KSD ranged from 1.2 to 2.2 times slower
thanMAMBA-KSD. As a result, we will not use this method
for the models in the next sections, as this computational cost
would only increase.

Furthermore, when tuning SGHMC and SGHMC-CV, we
tune three hyperparameters using MAMBA (step size, batch
size, and number of leapfrog steps), and two hyperparam-
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Table 1 Logistic regression.
For each tuning method and
each SGMCMC sampler we
report the relative standard
deviation error and the KSD. We
abbreviate MAMBA-KSD and
MAMBA-FSSD to M-KSD and
M-FSSD respectively. In bold
are the best results for a given
sampler and metric

SGLD SGLD-CV SGHMC SGHMC-CV SGNHT SGNHT-CV

M-KSD

KSD 66 13 85 18 69 3

ξ(σ̂ ) × 102 28.3 5.2 107.7 8.4 55.7 0.8

M-FSSD

KSD 58 23 56 43 68 11

ξ(σ̂ ) × 102 68.5 5.9 82.5 26.3 102.5 2.0

Grid

KSD 106 38 174 131 73 12

ξ(σ̂ ) × 102 12.0 12.4 34.5 31.2 15.0 10.5

Heuristic

KSD 100 102 53,972 51,565 51 9

ξ(σ̂ ) × 102 12.1 27.5 3000.3 3084.0 71.4 20.4

Fig. 4 KSD curves for the six samplers applied to the probabilistic matrix factorization model

eters using grid-search (step size and number of leapfrog
steps). We find that althoughMAMBA is tuning more hyper-
parameters, the method finds optimal hyperparameters with
approximately 3x speedup. As grid search scales poorly with
dimension, we expect this gap to widen when tuning more
hyperparameters.

4.2 Probabilistic matrix factorization

We consider the probabilistic matrix factorization model
(Salakhutdinov and Mnih 2008) on the MovieLens dataset1

(Harper and Konstan 2015), which contains 100K ratings
for 1682 movies from 943 users (see Appendix B.2.1 for
model details).We optimize the hyperparameters for six sam-
plers: SGLD, SGLD-CV, SGHMC, SGHMC-CV, SGNHT,
and SGNHT-CV.

1 Available at https://grouplens.org/datasets/movielens/100k/

To tune these samplersweuse a similar setup as for logistic
regression and use (i) MAMBA-KSD, (ii) grid search with
log-loss, and (iii) the heuristic approach. Details are given in
Appendix B.2.

From Fig. 4 we can see that the samplers tuned using
MAMBA tend to outperform the ones tuned with the other
twomethods.We also test the quality of the posterior samples
against NumPyro’s (Phan et al. 2019; Bingham et al. 2018)
implementation of NUTS (Hoffman and Gelman 2014),
which produces 10K samples with 1K samples as burn-in.
This state of the art sampler obtains high quality samples
but is significantly more computationally expensive, taking
around six hours on a laptop CPU. We estimate the posterior
standard deviations using these samples and treat them as the
ground-truth. We run each SGMCMC sampler for 20 s, and
estimate the standard deviation after removing the burn-in.
We estimate the posterior standard deviation for each sam-
pler and show the relative errors and KSD in Table 2 (further
results are given in Table 8 in Appendix B.2). We find that
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Table 2 Probabilistic matrix
factorization. For each tuning
method and each sampler we
report KSD and the relative
error of the standard deviation
estimates. In bold are the best
results for a given sampler and
metric

SGLD SGLD-CV SGHMC SGHMC-CV SGNHT SGNHT-CV

MAMBA

KSD 213 231 438 543 163 205

ξ(σ̂ ) × 102 69.2 72.1 79.9 83.7 40.8 38.5

Grid

KSD 429 546 3,180 4,289 170 221

ξ(σ̂ ) × 102 119.2 133.0 51.2 55.6 44.2 46.8

Heuristic

KSD 237 284 3,942 4,546 164 210

ξ(σ̂ ) × 102 71.7 75.0 50.3 53.2 40.6 38.7

Fig. 5 ECE curves for the six samplers applied to the Bayesian neural network model

MAMBA consistently identifies hyperparameters that give
the lowest KSD, but that for some samplers the heuristic
approach gives a lower error on the estimated standard devi-
ation. This could be due to the random realisation of the
SGMCMC chain; however, while accuracy in standard devi-
ation is fast to compute, as a metric it is not as useful as
KSD, which measures the quality of the full distribution and
not just the accuracy of the second moment.

Moreover, as in the case of logistic regression in the pre-
vious section, we find that tuning SGHMC and SGHMC-CV
usingMAMBA-KSD is faster than grid-search using log-loss
(approximately 2x faster). This confirms our expectation that
when tuning many hyperparameters MAMBA scales better
than grid search.

4.3 Bayesian neural network

In this section we consider a feedforward Bayesian neu-
ral network with two hidden layers on the MNIST dataset
(LeCun and Cortes 2010) (see Appendix B.3.1 for details).

Here we tune six samplers: SGLD, SGLD-CV, SGHMC,
SGHMC-CV, SGNHT, and SGNHT-CV.

For this example, as with the previous two examples, we
tune these samplers using i) MAMBA-KSD, ii) grid search
with log-loss, and iii) the heuristic approach. However, we
validate the accuracyof the various tuning approaches against
expected calibration error (ECE) and maximum calibration
error (MCE) plotted in Fig. 5.We find that the samplers tuned
using MAMBA tend to outperform the other approaches in
terms of ECE. We assess the performance of the MAMBA-
optimized samplers over a longer time budget and run the
samplers for 300s starting from the maximum aposteriori
value. We then remove the visible burn-in and calculate the
ECE and MCE to compare the quality of the posterior sam-
ples. We report the results in Table 3, where ECE and MCE
are reported as percentages (lower is better).

Overall, the results in Table 3 show that MAMBA-
optimized samplers tend to perform best in terms of KSD and
when not the best they produce results which are very close
to the best performing method. For all samplers, MAMBA
finds an optimal batch size of 1%, which is ten times smaller
than the batch size of the other methods and therefore results
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Table 3 Bayesian neural
network. For each tuning
method and each sampler we
report the ECE and MCE (as
percentages). In bold are the
best results for a given sampler
and metric

SGLD SGLD-CV SGHMC SGHMC-CV SGNHT SGNHT-CV

MAMBA

ECE (%) 1.0 0.9 0.7 0.7 9.3 0.9

MCE (%) 36.4 15.7 47.1 21.3 45.7 27.4

Grid

ECE (%) 14.6 8.8 20.1 25.1 5.4 7.7

MCE (%) 42.1 40.7 65.5 55.2 42.2 42.3

Heuristic

ECE (%) 0.8 0.7 50.9 40.8 6.2 7.0

MCE (%) 23.3 22.0 71.6 74.8 43.2 51.5

in a faster and highly accurate algorithm. For SGNHT, both
MAMBA and grid search found a step size that was slightly
too large (log10(h) = −4.5 and log10(h) = −4 respectively)
which caused the sampler to lose stability for longer chains.
In contrast, the sampler tuned using the heuristic method
is the only one that remained stable. As a result we re-
ran these two tuning methods for a grid with smaller step
sizes: {−5.,−5.5,−6.,−6.5,−7.,−7.5}. This smaller grid
allowed the two tuning algorithms to find a stable step size
(log10(h) = −5 for bothmethods), and so this slight decrease
in step size was enough to make the sampler stable. We note
that there exists samplers with more stable numerical meth-
ods such as the BADODAB sampler which solves the same
diffusion as SGNHT but with a more stable splitting method
(Leimkuhkler and Xiaocheng 2016). Such samplers might
be easier to tune with MAMBA or grid search.

Finally, tuningSGHMCandSGHMC-CVusingMAMBA
is faster than using grid-search (as is the case with themodels
in the previous two sections): in this case the speedup is 4x–6x
faster. This confirms our expectation that when tuning many
hyperparameters MAMBA scales better than grid search.

5 Discussion and future work

5.1 Final remarks

In this paper we have proposed a multi-armed bandit
approach to estimate the hyperparameters for any stochas-
tic gradient MCMC algorithm. Our approach optimizes the
hyperparameters to produce posterior samples which accu-
rately approximate the posterior distribution within a fixed
time budget. We use Stein-based discrepancies as natural
metrics to assess the quality of the posterior approximation.

The generality of theMAMBAalgorithmmeans that alter-
native metrics, such as predictive accuracy, can easily be
employed within MAMBA as an alternative to a Stein-based
metric. We have also compared MAMBA with a grid search
approach using the KSD and have found that although the

results are comparable, MAMBA finds these optimal hyper-
parameters much faster than grid search.

When tuning SGHMC and SGHMC-CV (for all three
models), we tune three hyperparameters using MAMBA
(step size, batch size, and number of leapfrog steps), and
two hyperparameters using gridsearch (step size and number
of leapfrog steps). We find that although MAMBA is tuning
more hyperparameters, the method finds optimal hyperpa-
rameters with a speedup ranging from 2x to 6x compared
to gridsearch. This illustrates how, as we increase the num-
ber of hyperparameters to tune, the speed gains between the
methods widens.

Whilst not explored in this paper, it is possible to apply
MAMBA beyond the stochastic gradient MCMC setting and
directly applyMAMBA to standardMCMCalgorithms, such
as Hamiltonian Monte Carlo, to estimate the MCMC hyper-
parameters. A variety of metrics including KSD and absolute
difference between the average and optimal acceptance rate
could be used in this context. However, existing algorithms
like adaptive MCMC (Andrieu and Thoms 2008; Vihola
2012) may be more efficient for standard MCMC because
the computational budget that makes MAMBA useful for
tuning batch sizes in SGMCMC is less necessary when there
is no inherent bias-variance trade-off.

Finally, in this paper we performed a systematic study of
different SGMCMC tuning methods for various models and
samplers, which to our knowledge is the first rigorous com-
parison of thesemethods.While these alternative approaches
can work well they are only able to tune the step size param-
eter, and unlike MAMBA, they do not tune the batch size
or other SGMCMC hyperparameters, such as the number of
leap frog steps.

5.2 Future work

A limitation of this method is that computing the KSD can
be expensive when there are many posterior samples. One
solution we explored in this paper is to use the FSSD as a
linear-time metric. In the case of KSD, we significantly low-
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ered the cost of this by thinning the Markov chain, but the
KSD remains an expensive metric to compute. The KSD also
suffers from the curse of dimensionality (Gong et al. 2020),
though our results show that the KSD gave good results even
for our two high-dimensional problems. As a result, further
work in this area should explore alternative discrepancy met-
rics which are both scalable in sample size and dimension.
For example, scalable alternatives to KSD, such as sliced
KSD (Gong et al. 2020), could be appropriate for very high-
dimensional problems.

Supplementary information

The supplementary material for this article is available
online. It contains a proof of Theorem 1, further details of
experiment settings and details of the various SGMCMC
algorithms considered.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-023-10233-
3.
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Appendix A: Proof of Theorem 1

Lemma 1 Assume {θ i }Pi=1 are P samples from π̃ and k(θ , θ ′)
is a positive definite kernel in the Stein class of π̃ and π . If
Eπ̃

[
kπ (θ , θ ′)2

]
< ∞, and π̃ 
= π , then for a Monte Carlo

approximation of the kernel Stein discrepancy (3), we have

√
P
(
̂KSD2(π̃, π) − KSD2(π̃, π)

)
D−→ N (0, σ 2),

where σ 2 = Varπ̃ (Eπ̃

[
kπ (θ , θ ′)

]
).

This lemma follows directly from Sects. 5.5.1 and 5.5.2
of Serfling (2009).

Lemma 2 Let s be an arm from the set of arms Si =
{1, 2, . . .} at iteration i of the MAMBA algorithm. We let
s = 1 be the optimal arm with expected reward ν̄1 and we
assume that the optimal arms was not eliminated at iteration
i − 1 of the MAMBA algorithm. We then have for any arm
s ∈ Si with estimated reward ν̂s ,

P(ν̄1 < ν̂s) ≤ exp

(

−α2
s ri
2σ 2

s

)

.

Proof Using the CLT result from Lemma 1 we assume that
ν̂s is an unbiased estimate of the reward for arm s with sub-
Gaussian proxy σ 2

s , then by theHoeffding inequality we have

P
(
ν̂s − ν̄s ≥ αs

) ≤ exp

(

−α2
s ri
2σ 2

s

)

,

where αs := ν̄1 − ν̄s and therefore P
(
ν̂s − ν̄s ≥ αs

) =
P(ν̄1 < ν̂s) and the lemma follows. ��

Lemma 3 The probability that the best arm is eliminated at
iteration i of MAMBA (Algorithm 1) is at most

(2η − 1) exp

(

− ηT

4σ 2
s (logη M + 1)

· α2
si

si

)

,

where si = M/ηi+1.

Proof This result follows a similar process to Lemma 4.3
from Karnin et al. (2013) but for a general η. If the best arm
is removed at iteration i , then there must be at least (1−1/η)

arms in Si (i.e. 1
η
|Si | = M/ηi+1) with empirical reward

larger than that of the best arm (i.e. a KSD score lower than
the arm with the best possible KSD score). If we let S′

i be the
set of arms in Si , excluding the |Si |/2η = M/2ηi+1 arms
with largest reward, then the empirical reward for at least
|S′

i |/(2η − 1) = M/2ηi+1 arms in |S′
i | must be greater than

the best arm at iteration i .
Let Ni be the number of arms in S′

i with empirical reward
greater than the reward of the optimal arm, then by Lemma
2 we have,

E [Ni ] =
∑

s∈S′
i

P(ν̄1 < ν̂s) ≤
∑

s∈S′
i

exp

(

−α2
s ri
2σ 2

s

)

≤
∑

s∈S′
i

exp

(

− α2
s

2σ 2
s

· T

|Si |(logη(M) + 1)

)
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≤ |S′
i |max

s∈S′
i

exp

(

− α2
s

2σ 2 · ηi T

M(logη M + 1)

)

≤ |S′
i | exp

(

− ηT

4σ 2(logη M + 1)
· α2

si

si

)

,

whereσ 2 = maxs∈S′
i
σ 2
s and the final inequality follows from

the fact that there are at least si − 1 arms that are not in S′
i

with reward greater than any arm in S′
i . Applying Markov’s

inequality we can obtain,

P(Ni > |S′
i |/(2η − 1)) ≤ (2η − 1)E [Ni ] /|S′

i |

≤ (2η − 1) exp

(

− ηT

4σ 2(logη M + 1)
· α2

si

si

)

.

��

Using Lemmas 2 and 3 we can now prove Theorem 1.

Proof The algorithm cannot exceed the budget of T (in our
case T is given in seconds). If the best arm survives then the
algorithm succeeds as all other armsmust be eliminated after
logη M iterations. Finally, usingLemma3 and a union bound,
the best arm is eliminated in one of the logη M iterations of
the algorithm with probability at most

(2η − 1)

logη(M)
∑

i=1

exp

(

− ηT

4σ 2(logη(M) + 1)
· α2

si

si

)

≤ (2η − 1) logη(M) · exp
(

− ηT

4σ 2(logη(M) + 1)
· 1

maxs sα
−2
s

)

≤ (2η − 1) logη(M) · exp
(

− ηT

4σ 2H2(logη(M) + 1)

)

.

This result completes the proof of Theorem 1. ��

Appendix B: Details of Experiments

We use the SGMCMC samplers in the package SGMCMC-
Jax for the experiments, and we use NumPyro for the NUTS
sampler (Bingham et al. 2018; Phan et al. 2019).

We present in table 4 an overview of the tuning methods
used in these experiments. We use three core tuning methods
for all three models: i) MAMBA-KSD, ii) grid search with
log-loss as metric, and iii) the heuristic approach. For the
logistic regression example only, we also try two alternative
tuningmethods: iv)MAMBA-FSSDandv) grid search-KSD.

B.1 Logistic regression

B.1.1 Model

Consider a binary regression model where y = {yi }Ni=1 is a
vector of N binary responses and X is a N × d matrix of
covariates. If θ is a d−dimensional vector of model param-
eters, then the likelihood function for the logistic regression
model is,

p(y,X | θ) =
N∏

i=1

[
1

1 + exp(−θ�xi )

]yi

×
[

1 − 1

1 + exp(−θ�xi )

]1−yi

where xi is a d−dimensional vector for the i th observation.
The prior distribution for θ is a zero-mean Gaussian with
covariance matrix �θ = 10Id , where Id is a d × d identity
matrix.

B.1.2 Grid search

For grid search we choose the step size using 14 equally
spaced step sizes (on a log10 scale) that result in the best
log-loss on a test dataset: {−1.,−1.5,−2.,−2.5,−3.,−3.5,
−4.,−4.5,−5.,−5.5,−6.,−6.5,−7,−7.5}. To tune
SGHMC we use the same step size grid with two leapfrog
values: 5 and 10. We fix the batch size ratio to be 10% for
the grid search tuning method as well as the baseline.

Table 4 Overview of tuning
methods for the different
models. dt denotes that the
method tunes the step size, and
(dt , BS) denotes that the method
tunes both step size and batch
size. Note that whenever
SGHMC or SGHMC-CV is
used, all methods also tune the
number of leapfrog steps

MAMBA-KSD Grid search log-loss Heuristic MAMBA-FSSD Grid search KSD

Logistic regression

(dt , BS) dt dt (dt , BS) (dt , BS)

PMF

(dt , BS) dt dt

NN

(dt , BS) dt dt

123

https://github.com/jeremiecoullon/SGMCMCJax


Statistics and Computing            (2023) 33:66 Page 13 of 18    66 

Table 5 Logistic regression:
hyperparameters for the results
in Table 1. The batch size is
given by τ : the percentage of the
total number of data. Namely:
batch size n = �τN/100�

MAMBA-KSD MAMBA-FSSD Grid Search Heuristic

SGLD

log10(h) −6 −5.5 −6 −6

τ (%) 1 1 10 10

SGLD-CV

log10(h) −5 −5 −5 −6

τ (%) 0.1 1 10 10

SGHMC

log10(h) −7 −6 −7 −6

τ (%) 0.1 1 10 10

L 10 5 10 10

SGHMC-CV

log10(h) −6.5 −6 −6.5 -6

τ (%) 0.1 1 10 10

L 10 5 10 10

SGNHT

log10(h) −7.5 −6 −7.5 −6

τ (%) 1 1 10 10

SGNHT-CV

log10(h) −5.5 −5 −4.5 −6

τ (%) 1 10 10 10

We start from the MAP with Gaussian noise (scale: σ =
0.2) and run the samplers for 5, 000 for each grid point.

B.1.3 MAMBA

We use the same grid for step sizes as grid search and use
a grid of four batch sizes: 100%, 10%, 1%, and 0.1%. To
calculate the KSD and FSSD we thin the samples by 10 and
calculate the fullbatch gradients. For FSSD-opt we samples
10 test locations from a Gaussian fit to the samples and opti-
mize them using Adam.

B.1.4 Results

Table 5 gives the hyperparameters used to produce the runs
in Table 1.

B.2 Probabilistic matrix factorization

B.2.1 Model

In this example, we will consider the MovieLens dataset 2

(Harper and Konstan 2015) which contains 100,000 ratings
(taking values {1, 2, 3, 4, 5}) of 1682 movies by 943 users,
where each user has provided at least 20 ratings. The data are
already split into 5 training and test sets (80%/20% split) for

2 Available at https://grouplens.org/datasets/movielens/100k/

a 5-fold cross-validation experiment. Let R ∈ R
N×M be a

matrix of observed ratings for N users and M movies where
Ri j is the rating user i gave tomovie j .We introducematrices
U and V for users and movies respectively, where Ui ∈ R

d

and V j ∈ R
d are d−dimensional latent feature vectors for

user i and movie j . The likelihood for the rating matrix is

p(R|U,V, α) =
N∏

i=1

M∏

j=1

[
N (Ri j |U�

i V j , α
−1)

]Ii j

where Ii j is an indicator variable which equals 1 if user i gave
a rating for movie j . The prior distributions for the users and
movies are

p(U|¯U,�U) =
N∏

i=1

N (Ui |¯U,�−1
U ) and

p(V|¯V,�V) =
M∏

j=1

N (V j |¯V,�−1
V ),

with prior distributions on the hyperparameters (whereW =
U or V) given by,

¯W ∼ N (¯W|¯0,�W) and �W ∼ Gamma(a0, b0).
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Table 6 Comparison of tuning
methods for Logistic regression.
For each tuning method and
each sampler we report the
relative error of the standard
deviation estimates, the KSD,
the predictive accuracy, and the
number of samples. Note that
the number of samples
generated within a fixed time
budget depends on the
subsample size. We try two
version of MAMBA, one with
KSD as a metric, and the other
with FSSD-opt. We also try
gridsearch with KSD as the
metric (using a time budget, and
tuning batch size as well as step
size). In bold are the best results
for a given sampler and metric

MAMBA-KSD MAMBA-FSSD Grid Search Heuristic gridsearch-KSD

SGLD

ξ(σ̂ ) × 102 28.3 68.5 12 12.1 68.5

KSD 66 58 106 100 53

Pred. acc. (%) 93.9 93.9 93.9 93.9 93.9

# of samples 22,255 21,851 4005 3484 22,535

SGLD-CV

ξ(σ̂ ) × 102 5.2 5.9 12.4 27.5 4.9

KSD 13 23 38 102 11

Pred. acc. (%) 93.9 93.9 93.9 93.9 93.9

# of samples 55,580 18,792 3232 2809 66,136

SG-HMC

ξ(σ̂ ) × 102 107.7 82.5 34.5 3000.3 147

KSD 85 56 174 53972 66

Pred. acc. (%) 93.9 93.9 93.9 92.7 93.9

# of samples 28,268 5145 435 428 44,839

SGHMC-CV

ξ(σ̂ ) × 102 8.4 26.3 31.2 3084.0 18.1

KSD 18 43 131 51,565 16

Pred. acc. (%) 93.9 93.9 93.9 92.7 93.9

# of samples 24,001 4194 355 346 37,633

SGNHT

ξ(σ̂ ) × 102 55.7 102.5 15.0 71.4 97.5

KSD 69 68 73 51 67

Pred. acc. (%) 93.9 93.9 93.9 93.9 93.9

# of samples 21,955 19,845 4055 4056 22,385

SGNHT-CV

ξ(σ̂ ) × 102 0.8 2.0 10.5 20.4 16.9

KSD 3 11 12 9 3

Pred. acc. (%) 93.9 93.9 93.9 93.9 93.9

# of samples 19,323 3105 3329 3329 65,222

The parameters of interest in our model are then θ =
(U, ¯U,�U,V, ¯V,�V) and the hyperparameters for the
experiments are τ = (α, μ0, a0, b0) = (3, 0, 4, 5). We are
free to choose the size of the latent dimension and for these
experiments we set d = 20.

B.2.2 Grid search

To run grid search we use a grid of 12 step sizes in grid search
(on a log10 scale): {−2.,−2.5,−3.,−3.5,−4.,−4.5,−5.,
−5.5,−6.,−6.5,−7,−7.5}. For SGHMC we also try two
values of leapfrog steps: 5 and 10.

We start from theMAPwithGaussian noise (scale:σ = 1)
and run 2, 000 iteration per grid point.

B.2.3 MAMBA

We use a time budget of R = 10sec (time of longest run-
ning sampler), and the same step size grid as for gridsearch:
{−2.,−2.5,−3,−3.5,−4,−4.5,−5,−5.5,−6,−6.5,
−7,−7.5}.Wealsouse agrid for batch sizes: 100%, 10%, 1%.
For SGHMC we try two values of leapfrog steps: 5 and 10.

B.2.4 Results

We show in Table 7 the hyperparameters for the runs in Table
2.
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Table 7 PMF: Hyperparameters for the results in Table 2. The batch
size is given by τ : the percentage of the total number of data. Namely:
batch size n = �τN/100�

MAMBA-KSD Grid Search Heuristic

SGLD

log10(h) −5 −3.5 −4.9

τ (%) 1 10 10

SGLD-CV

log10(h) −5 −3.5 −4.9

τ (%) 1 10 10

SGHMC

log10(h) −6 −5 −4.9

τ (%) 1 10 10

L 5 10 10

SGHMC-CV

log10(h) −6 −5 −4.9

τ (%) 1 10 10

L 5 10 10

SGNHT

log10(h) −5 −5.5 −4.9

τ (%) 10 10 10

SGNHT-CV

log10(h) −5 −5.5 −4.9

τ (%) 10 10 10

B.3 Neural network

B.3.1 Model

We consider the problem of multi-class classification on
the popular MNIST dataset3 (LeCun and Cortes 2010).
The MNIST dataset consists of a collection of images of
handwritten digits from zero to nine, where each image is
represented as 28 × 28 pixels. We model the data using a
two layer Bayesian neural networkwith 100 hidden variables
(using the same setup as Chen et al. (2014)). We fit the neu-
ral network to a training dataset containing 60, 000 images
and the goal is to classify new images as belonging to one
of the ten categories. The test set contains 10, 000 handwrit-
ten images, with corresponding labels. Let yi be the image
label taking values yi ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and xi is
the vector of pixels which has been flattened from a 28× 28
image to a one-dimensional vector of length 784. If there are
N training images, then X is a N × 784 matrix representing
the full dataset of pixels. We model the data as categorical
variables with the probability mass function,

p(yi = k | θ , xi ) = βk(θ, xi ), (B1)

3 https://creativecommons.org/licenses/by-sa/3.0/.

Table 8 Comparison of tuning methods for PMF. For each tuning
method and each sampler we report the relative error of the standard
deviation estimates, the RMSE on test dataset, and the number of sam-
ples. In bold are the best results for a given sampler and metric

MAMBA Grid Search Heuristic

SGLD

ξ(σ̂ ) × 102 69.2 119.2 71.7

KSD 213 429 237

RMSE 1.13 1.25 1.13

# of samples 15,681 10,099 9946

SGLD-CV

ξ(σ̂ ) × 102 72.1 133.0 75.0

KSD 231 546 284

RMSE 1.13 1.25 1.13

# of samples 11,774 6827 6897

SGHMC

ξ(σ̂ ) × 102 79.9 51.2 50.3

KSD 438 3180 3942

RMSE 1.13 1.25 1.25

# of samples 3503 1184 1021

SGHMC-CV

ξ(σ̂ ) × 102 83.7 55.6 53.2

KSD 543 4289 4546

RMSE 1.10 1.25 1.25

# of samples 2045 848 847

SGNHT

ξ(σ̂ ) × 102 40.8 44.2 40.6

KSD 163 170 164

RMSE 1.12 1.15 1.11

# of samples 9687 9743 9683

SGNHT-CV

ξ(σ̂ ) × 102 38.5 46.8 38.7

KSD 205 221 210

RMSE 1.12 1.16 1.11

# of samples 6527 5930 6546

where βk(θ , xi ) is the kth element of β(θ , xi ) = σ(
σ
(
x�
i B + b

)
A + a

)
andσ(xi ) = exp (xi )/(

∑N
j=1 exp (xi ))

is the softmax function, a generalization of the logistic link
function. The parameters θ = (A, B, a, b) will be estimated
using SGMCMC,where A, B, a and b arematrices of dimen-
sion: 100× 10, 784× 100, 1× 10 and 1× 100, respectively.
We set normal priors for each element of these parameters

Akl |λA ∼ N (0, 1), Bjk |λB ∼ N (0, 1),

al |λa ∼ N (0, 1), bk |λb ∼ N (0, 1),

j = 1, . . . , 784; k = 1, . . . , 100; l = 1, . . . , 10;.
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Table 9 NN: Hyperparameters for the results in Table 3. The batch size
is given by τ : the percentage of the total number of data. Namely: batch
size n = �τN/100�

MAMBA-KSD Grid Search Heuristic

SGLD

log10(h) −5.5 −3.5 −4.8

τ (%) 1 10 10

SGLD-CV

log10(h) −5.5 −3.5 −4.8

τ (%) 1 10 10

SGHMC

log10(h) −6.5 −5 −4.8

τ (%) 1 10 10

L 5 10 10

SGHMC-CV

log10(h) −6 −5 −4.8

τ (%) 1 10 10

L 5 10 10

SGNHT

log10(h) −5 −5 −4.8

τ (%) 1 10 10

SGNHT-CV

log10(h) −7.5 −4.5 −4.8

τ (%) 1 10 10

B.3.2 Grid search

We use the same grid as for PMF: {−2.,−2.5,−3.,−3.5,
−4,−4.5,−5,−5.5,−6,−6.5,−7.,−7.5}. For SGHMC
we also try two values of leapfrog steps: 5 and 10.

We start from theMAPwithGaussian noise (scale:σ = 1)
and run 1, 000 iteration per grid point.

B.3.3 MAMBA

We use a time budget of R = 10sec (time of longest run-
ning sampler), and the same step size grid as for gridsearch:
{−2,−2.5,−3,−3.5,−4.,−4.5,−5,−5.5,−6,−6.5,−7,
−7.5}. We also use a grid for batch sizes: 100%, 10%, 1%.
For SGHMC we try two values of leapfrog steps: 5 and 10.

B.3.4 Results

We show in Table 9 the hyperparameters for the runs in Table
3.

Table 10 Comparison of tuningmethods for the neural networkmodel.
For each tuning method and each sampler we report the ECE and MCE
(as percentages), as well as the test accuracy and the number of samples.
In bold are the best results for a given sampler and metric

MAMBA-KSD Grid Search Heuristic

SGLD

ECE (%) 1.04 14.6 0.8

MCE (%) 36.4 42.1 23.3

Test acc 93.1 93.8 93.3

# of samples 96,922 16,343 15,192

SGLD-CV

ECE (%) 0.9 8.8 0.7

MCE (%) 15.7 40.7 22.0

Test acc 93.1 94.2 93.2

# of samples 67,395 9659 9534

SGHMC

ECE (%) 0.7 20.1 50.9

MCE (%) 47.1 65.5 71.6

Test acc 93.0 92.5 91.7

# of samples 23,671 1761 1717

SGHMC-CV

ECE (%) 0.7 25.1 40.8

MCE (%) 21.3 55.2 74.8

Test acc 93.1 82.9 90.1

# of samples 15,327 1013 984

SGNHT

ECE (%) 9.3 5.4 6.2

MCE (%) 45.7 42.2 43.2

Test acc 94.0 95.1 95.2

# of samples 88,021 17,062 16,727

SGNHT-CV

ECE (%) 0.9 7.7 7.0

MCE (%) 27.4 42.3 51.5

Test acc 93.1 94.6 95.0

# of samples 62,389 9372 9382
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