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Abstract 

Locating bug code snippets (short for BugCode) has been a complex problem throughout the history of software 
security, mainly because the constraints that define BugCode are obscure and hard to summarize. Previously, secu-
rity analysts attempted to define such constraints manually (e.g., limiting buffer size to detect overflow), but were 
limited to the types of BugCode. Recent researchers address this problem by extracting constraints from program 
documentation, which shows the potential for API misuse. But for bugs beyond the scope of API misuse, such an 
approach becomes less effective since the corresponding constraints are not defined in documents, not to mention 
the programs without documentation In this paper, inspired by the fact that expert programmers often correct the 
BugCode on open forums such as StackOverflow, we design an approach to automatically extract knowledge from 
StackOverflow and leverage it to detect BugCode. As we all know, the contexts in StackOverflow come from ordinary 
developers. Their writing tends to be loosely organized and in various styles, which are more challenging to analyze 
than program documentation. To address the challenges, we design a custom tokenization approach to segment sen-
tences and employ sentiment analysis to find the Controversial Sentences (CSs) that typically contain the constraints 
we need for code analysis. Then we use constituency parsing to extract knowledge from CSs, which helps locate Bug-
Code. We evaluated our system on 41,144 comments from the questions tagged with Java and Android. The results 
show that our approach achieves 95.5% precision in discovering CSs. We have discovered 276 pieces of BugCode 
proved to be true through manual validation including an assigned CVE. 89.3% of the discovered bugs remained in 
the current version of answers, which are unknown to users.

Keywords  Bug detection, Natural language processing, Open forum

Introduction
One of the root causes of information system security 
threats is vulnerability. It usually takes the form of a bug, 
flaw, or omission in software and hardware that exists as 
a result of poor design or poor implementation and can 
be exploited by the attacker Joshi et al. (2015). To address 

this issue, security analysts search for and eliminate vul-
nerabilities in software and hardware. Dynamic and static 
methods are common approaches. Fuzzing is a dynamic 
method for detecting program crashes by analyzing a 
large number of inputs, which may overcome missing 
specific vulnerability types such as authentication bypass 
caused by API misuse Lv et al. (2020). Several static meth-
ods are developed to address this problem (Ren et  al. 
2020, 2020; Zhou et al. 2017), including extracting API-
related rules/constraints from source code and official 
documents. Several reasons may lead to limited vulner-
ability types: (1) implicit API usage description resulting 
in missing part of the API-related bugs Lv et al. (2020; 2) 
incomplete API-related description in the official docu-
ment, which yields missing specific types of bugs which 
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cannot be discovered merely through a document; (3) for 
other types of bugs such as API confusion, merely using 
the information in the documents is not enough since the 
documents rarely compare two similar APIs.

Finding bug in StackOverflow: challenges Natural Lan-
guage Processing techniques have advanced in recent 
years. Unlike traditional research on official API docu-
mentation, we innovate on the data source onto StackO-
verflow, an open-source forum for developers discussing 
real-world practices. Our goal is to unearth knowledge 
buried in billions of question threads in order to locate 
bug code snippets that may influence real development. 
During the software development cycle, software engi-
neers are expected to use official documents, GitHub, 
and open-source forums to solve problems. Due to the 
diverse API-usage practices and knowledge of errors 
in reality which are not included in official documents, 
people are more likely to use open-source forums like 
StackOverflow, to solve problems when faced. Shared 
knowledge proved its important role in developing 
software when facing bugs. In an open-source forum, 
for example, there will be multiple answers under one 
question thread, and users are free to show their opin-
ions or suggestions under each answer directly. Figure 1 

illustrates the complete context in the question page. 
We assume the vote-up of each answer indicates the 
current answer is followed by some of the developers in 
real practice and the other users may express their atti-
tude towards this answer and point out in the comment if 
there exists a bug. We aim to explore if there exist secu-
rity issues on shared knowledge, which may be adopted 
to affect the development. In Fig.  1, it is easy for users 
to learn that using method “StrictMode.ThreadPolicy()” 
according to the sentence “You should not change the 
thread’s policy” in the comment is not recommended. 
While it is hard to do it automatically merely by analyz-
ing documentation.

However, it is highly challenging to extract rules from 
open-source forums for bug detection due to the follow-
ing reasons. (C1) Loosely organized context. Writings 
on StackOverflow vary a lot, and no patterns or keywords 
exist to guide the discovery of incorrect code descrip-
tions. For example, in Fig. 1, the sentence This is a really 
bad answer. indicates the current answer is controversial, 
and the sentence “You should not change the thread’s 
policy...” describes the incorrect operation in the answer. 
How to locate the sentences describing incorrect opera-
tions among numerous comments is the first challenge. 

Fig. 1  The example case of StackOverflow
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(C2) Hard to locate bugs in code. The descriptions 
of erroneous operations are in natural language. They 
usually do not include method names for direct com-
parison. How to detect bugs in the answer with the guid-
ance of the description is another challenge. In Fig.  1, 
the description extracted in the comment is “change the 
thread policy” with which we should locate the piece of 
code using StrictMode.ThreadPolicy(). It is not straight-
forward to locate the buggy code from the writings.

The new discovery approach We design a new bug-dis-
covery approach to exploit the hidden knowledge in dis-
cussions to discover bugs on StackOverflow and measure 
security issues in open-source software. Our approach 
is capable of conquering the several obstacles above by 
discovering the Controversial Sentences, locating the Bug 
Code Context, and discovering the Bug Code Snippet in 
the Potential Controversial Answers.

Based on our observation, though there are billions of 
APIs or method names that contain error codes and are 
also mentioned in the comments, it is still very hard to 
locate the wrongly-used APIs automatically due to the 
complicated writing styles on StackOverflow. Fortunately, 
we find that when criticizing errors in the answers, peo-
ple tend to express negativity to get attention. For exam-
ple, the sentence This is a really bad answer is recognized 
with a strong negative attitude indicating that there must 
exist some errors in the answer and the developers should 
give up following this solution. For sentences expressing 
negativity, we name them controversial sentences (CS for 
short), as they point out the controversy in the answer. To 
discover CSs, we perform a customized sentence tokeni-
zation of the comments since the proportion of attitude 
words may influence the sentiment analysis. After that, 
CSs are automatically located through sentiment analy-
sis from the discussions in loosely-organized natural lan-
guage. Then, considering that the clauses may contain 
the Bug Code Context (BugText for short) that contains 
the buggy code, we further extract verb phrases (VP) and 
noun phrases (NP) through constituency parsing and 
execute another round of sentiment analysis to accurately 
locate the phrases describing the bugs. Noticing the large 
gap between the phrases in natural languages and the 
buggy code in programming languages, we choose key-
words that characterize bugs (called anchors) and uti-
lize these anchors to identify the Bug Code Snippet in 
answers.

Findings In this work, we leverage sentiment analysis, 
constituency parsing and dependency parsing to imple-
ment our discovery approach on question threads from 
StackOverflow focusing on java and android, and further 
evaluate the effectiveness compared with the other state-
of-the-art tools on CS discovery and bug discovery. Our 

method shows an average accuracy of 95.5% on CS dis-
covery and 92.0% on bug discovery.

Through our discovery of 1,000 threads, our approach 
automatically discovers 1088 pieces of BugCode. After 
manual validation on randomly selected 300 pieces 
of BugCode, we find that 276 of them (92.0%) are real 
bugs, many of them are security-related bugs includ-
ing program crash, memory leak, stack overflow and 
null dereference, etc.1 The erroneous writings causing 
these problems are mostly incomplete answers, incor-
rect answers, out-of-date answers and potentially incor-
rect answers, etc. To the best of our knowledge, this is 
the first bug-discovery approach for uncovering hidden 
knowledge in StackOverflow discussions, a step forward 
to automatically exploiting information extracted from 
expert knowledge to find bugs. We also find that even 
the answers with 183 upvotes under 439k view counts 
remained incorrect for nearly 5 years and resulted in a 
vulnerability CVE (2022). This vulnerability allows an 
attacker with access to the machine to potentially access 
data in a temporary directory created by this deprecated 
API. One of the answers contains the bug which has 
already been reported before, however, the developers 
still believed in their own experience rather than pub-
lic bug report Bug (2022). After manual confirmation, 
we find that only 10.7% of the potentially controversial 
answers in SO which contain BugCode according to our 
approach are revised by the author, which means that 
89.3% answers still contain bugs in the current version, 
continuing to mislead future readers.

Contributions We summarize our main contributions 
as follows.

•	 New approach for bug discovery We develop a new 
bug discovery approach that leverages loosely organ-
ized textual descriptions in StackOverflow. To extract 
useful knowledge from comments written in natural 
languages, we design a set of new techniques, such as 
anchor-based bug code discovery. To the best of our 
knowledge, we are the first to leverage discussions on 
StackOverflow to help detect bugs.

•	 New findings Working on 1000 threads from Stack-
Overflow, our approach discovered 1088 pieces of 
BugCode through automatic processing discussions 
on StackOverflow. We also find that among the 
potentially controversial answers, 89.3% of them still 
contain errors, which may mislead readers to write 
flawed code.

1  https://anonymous.4open.science/r/SO-bugs-discovered-BF8A/
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Background
Vulnerability detection
The existing methods of vulnerability detection usually 
include code-based and text-based ones.

Code-based vulnerability detection method The code-
based detection methods, classified as dynamic methods, 
static methods and the ones combining both static and 
dynamic methods, are to detect vulnerability directly on 
the target program. Fuzzing is one of the dynamic meth-
ods through feeding abnormal or random inputs into the 
program to trigger unexpected behaviours, which can be 
mainly classified as coverage-based fuzzing and directed 
fuzzing (Böhme et al. 2017, Chen et al. 2018, Li et al. 2018, 
Zong et al. 2020). Although static methods are supposed 
to figure out the suspicious part of the program without 
running the code, dynamic methods could discover the 
exception which could be the potential root cause for 
the bug, including potential security violation, run-time 
error and logic inconsistency (Ayewah et al. 2008). And 
also the detection methods combining both the dynamic 
analysis and static analysis can not only detect the vul-
nerabilities which can only be detected by static analysis 
but also detect the vulnerabilities when implementing 
dynamic analysis (Aggarwal 2006; Amin et al. 2019; Kiss 
et  al. 2015). Such methods combine the advantages of 
both methods, but are also limited by the current tech-
niques and are in need of further development.

Text-based vulnerability detection method With the 
increasing development of Natural Language Process-
ing techniques and the abundant context information, 
using official documentation for vulnerability detection 
is becoming popular (Chen et al. 2019; Zhou et al. 2017; 
Ren et al. 2020, 2020). Software engineers are supposed 
to follow the official documentation to properly use 
APIs. However, knowledge asymmetry exists between 
the writers and the users of the documentation, includ-
ing implicit API usage and misunderstanding of the API 
constraints, which may result in bugs during software 
development. The majority of the research is analyz-
ing API-related context to detect bugs. We also unveil 
the hidden knowledge in discussions on an open-source 
forum which does not focus merely on API.

Natural language processing
To process the comments from StackOverflow, we lever-
aged several NLP techniques, as illustrated here.

Sentiment analysis Sentiment analysis is one of the 
NLP techniques, designed to output a score indicat-
ing the given sentence’s attitudes, opinions or emotions 
(Medhat et al. 2014). The major task of sentiment analy-
sis is to classify the input sentences with a score indicat-
ing a negative attitude, positive attitude or neutral. In our 

research, we utilize the existing open-source tool Google 
Language API (GoogleNLP 2022) to process the com-
ments on StackOverflow to select the sentences describ-
ing the controversy of the answers and the verb phrases 
illustrating the incorrect operations. We also utilize sen-
timent analysis to classify the CSs to narrow the scope of 
PCAs and help locate bug code snippets according to the 
negative sentences and verb phrases.

Constituency parsing Constituency parsing is a sen-
tence-level syntactic analysis, aiming to unveil the 
internal relations between constituents of the sentence 
(Zhang 2020). Noun phrases, verb phrases and the rela-
tions between them are shown in the constituent parsing 
tree. We utilize the constituency parser from AllenNLP 
(Gardner et al. 2017) to help extract each constituent of 
the sentence to locate the VPs under answers.

Dependency parsing Dependency parsing is designed 
for both syntactic analysis and semantic analysis (Chen 
and Manning 2014). It describes the binary relations 
between each word in a sentence, which is clearly illus-
trated according to the dependency tree. In our work, we 
utilize the dependency parser to locate the noun words 
related to a given VP, which turn out to be the anchors in 
finding BugCode.

Design
In this section, we elaborate on the observation and 
design of our new approach for automatically discovering 
buggy code through analysis on StackOverflow. We first 
give an overview of the whole design, its measurement 
pipeline and an example that shows how it works, and 
then move to how its individual component is designed.

Overview
Discovery approach We aim to dig out the knowledge 
buried in comments to locate the bug code snippets in 
the answer. Figure 2 illustrates the design of our discov-
ery approach: Controversial Sentence(CS) Discovery, 
Bug Code Context(BugText) Location and Bug Code 
Snippet(BugCode) Discovery. For discovered bug code 
snippets, we manually validate them with third-party 
resources, the process of which is illustrated in Sect. 6 by 
introducing a case study. During the workflow, we merely 
use the comments under each answer on StackOverflow 
(2022) as our input dataset.

StackOverflow answers are made up of code snippets 
and natural language descriptions. CSs are automatically 
located in Controversial Sentence Discovery via senti-
ment analysis from comments under answers in loosely-
organized natural language. The Potential Controversial 
Answers are confirmed after being filtered by custom-
ized rules and containing at least one CS in the com-
ments below the answer. Then, using syntactic analysis 
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and linguistic parsing, BugText is located among the sen-
tences from comments under each answer. Following the 
extraction of the anchors from BugText, our approach 
can detect Bug Code Snippets in the answers by matching 
the anchors with the code snippets in the given answers. 
Finally, we manually validate the discovered BugCode for 
real bugs using third-party resources.

Example Figure  3 illustrates the workflow of our 
approach with an example. The comment illustrates the 
incorrect API selection without mentioning the method 
name, which is “This is a really bad answer. You should 
not change the thread’s policy...”. The comment delivers 
the information that the answer may be controversial. 
Note that StackOverflow is very different from the doc-
umentation that usually introduces API usage. Previous 
studies (Lv et  al. 2020; Pandita et  al. 2016; Zhong et  al. 
2011) can extract rules from the documents. However, 
comments in StackOverflow tend to be more loosely 
organized, which renders previously studied methods 
ineffective. In other words, generating rules or fixed pat-
terns related to specific APIs from StackOverflow seem 
impossible. So we put in the effort to unveil the expertise 
buried in discussions and exploit them to contribute to 
bug discovery on StackOverflow.

Our approach first automatically identifies CS, which 
is “You should not change the thread’s policy.”, indicat-
ing the answer is incorrect with a negative attitude. Then, 
we extract the VP (“change the thread’s policy”) from 
the sentence. “change the thread’s policy” is confirmed 
as the BugText according to our approach by describing 
the bug code operation. Note that merely using BugText 
to locate BugCode in the answer is not straightforward. 
Our approach automatically discovers the anchors 

“change”, “thread’s”, “policy”, and locates the piece of Bug-
Code StrictMode.ThreadPolicy policy = new StrictMode.
ThreadPolicy.Builder(). permitAll().build(); StrictMode.
setThreadPolicy(policy); which contains the anchors. We 
further confirm that the discovered BugCode is a real bug 
according to the Github Commit.2

Controversial sentence discovery
Unlike the API documentation designed to introduce 
usages of APIs, loosely-organized context on open-source 
forums such as StackOverflow is hard to be processed 
with fixed patterns or rules. Therefore, after manually 
identifying and analyzing a set of sentences, we observe 
that CSs are in a strong negative attitude, which could be 
utilized to discover such sentences. We find these sen-
tences can be classified into two types: (1) Bare CS: this 
type of CS only includes a negative attitude towards the 
answer without describing the bug code snippet of the 
answer. From this kind of CS, users could only sense that 
the answer may be incorrect. However, it is hard for users 
to tell which part of the code snippet is buggy. (2) CS 
with objects: this type of CS describes the details of the 
bug code snippet in the answers. From this kind of CS, 
users could explicitly locate the BugCode of the answer. 
In Table 1, we illustrate each category with examples.

Due to the huge amount of answers on StackOverflow, 
it is hard to locate the potential controversial answers. 
Therefore, we pre-process the attributes related to both 
the comments and the answers to narrow the scope of 

Fig. 2  The workflow of our discovery approach

2  https://​github.​com/​avalax/​FitBu​ddy/​commit/​065e0​35c3a​5592f​08ffb​409de​
312e8​bee10​48779

https://github.com/avalax/FitBuddy/commit/065e035c3a5592f08ffb409de312e8bee1048779
https://github.com/avalax/FitBuddy/commit/065e035c3a5592f08ffb409de312e8bee1048779
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PCAs to be processed. We design several customized 
constraints from four dimensions to filter comments: (a) 
Votesanswer should be over 0: the vote-up for each answer 
indicates the current answer is useful or appropriate to 
the community (sovoteup 2022) and is believed to be fol-
lowed by other developers in practice, thus we drop all 
the answers with votes under 0, which means this answer 
is probably not used by actual developers. (b) Votescomment 
should be top 2: the vote number of each comment indi-
cates the level of agreement by other users. In order to 
achieve higher precision and recall in extracting CS, 
we select the comments whose vote number ranks top 

2 among all the comments under the given answer. (c) 
Authorcomment is not the same as Authoranswer : we need 
to select the comment which is criticized by other users, 
which means the author of the comment should not be 
the same as the author of the answer. (d) “@” is not sup-
posed to appear in the comment: users are supposed to 
use “@” to reply to other users on StackOverflow. For 
such comments starting with “@”, little has been found 
useful for CS discovery. Therefore, we drop the com-
ments starting with “@” to achieve higher accuracy.

After the preparation of the dataset, we utilize the 
existing sentiment analysis tool to score each sentence 

Fig. 3  The example of knowledge extracted from StackOverflow

Table 1  Category of controversial sentence

Category Description Example

a. Bare CS Only expressing the negative attitude to the answer. “This is a really bad answer.”

b. CS with objects Illustrating the problematic operations in the answer with negative attitude. “Directly calling setSeed is 
very dangerous.”



Page 7 of 17Yang et al. Cybersecurity            (2023) 6:17 	

extracted from the questions tagged with [java] and 
[android]. In Sect. 4, we discuss the selection process of 
the threshold. In the evaluation, we show our comparison 
results which achieve a higher precision rate.

Bug code context locating
In this part, we aim to locate the Bug Code Context in the 
comment, which describes the bug code through natural 
language in the answer and belongs to “CS with objects” 
in Table 1. After extracting the CSs, we confirm the scope 
of Potential Controversial Answers (PCAs) and the com-
ments which constitute the dataset for further BugText 
locating.

After analyzing the sentences identified in Sect.  3.2, 
we chose the comments containing both negative atti-
tudes and bug code descriptions to help locate BugText. 
Negative attitudes indicate the current answer is incor-
rect from the users’ aspect, and bug code descriptions are 
written in natural language. We define 2 types of CSs to 
cover the maximum scope of PCAs. After that, we need 
to extract BugText, which describes the bug code snippet 
of the given PCA. We propose a solution that combined 
constituency parsing, sentiment analysis and dependency 
parsing altogether to locate the BugText in the comments 
under PCA. Details will be illustrated in the following.

Sentiment-based BugText locating We observe that 
BugText comes along with a verb phrase indicating a 
negative attitude. For example, “Directly calling setSeed” 
is the BugText in “Directly calling setSeed is very danger-
ous.”, and “is very dangerous” expresses a relatively strong 
negative attitude. Therefore, we extracted VPs from each 
sentence by utilizing constituency parsing(see Fig. 4) and 
did sentiment analysis of each extracted VP. Sampling 
on the classified VPs, we set the threshold to select the 
qualified VPs and the selection process is illustrated in 
Sect. 4. However, not all the qualified sentences contain 
specific incorrect operations. For example, the sentence 
“This test is flawed.” contains a negative attitude and the 
NP extracted is “This test”. The NP does not describe any 
specific incorrect operations but a demonstrative pro-
noun referring to the incorrect answer. Therefore, we 
construct a keyword list containing the demonstrative 
pronouns (such as “it”,“that”,“this”,etc) to filter out the NPs 
which describe specific incorrect operations.

We find that a sentence with a detailed description 
may affect the results of sentiment analysis. For exam-
ple, “This test is flawed.” is correctly classified as CS after 
being separated from the sentence “This test is flawed as 
it runs all 3 tests in the same JVM instance.”. However, the 
longer sentence can not be correctly classified by senti-
ment analysis. The context directly referenced using “” 
or the inline code examples using <code></code> do not 
need to be analyzed, thus we directly extract the context 

referenced or tagged. For example, “double” from “the 
entire detour with <code>double</code> ” and “pro-
vided the implementation doesn’t change” from the sen-
tence “‘provided the implementation doesn’t change’ - and 
there’s the problem.”.

By utilizing the qualified VPs on the former method, 
we could locate BugText, shown as two types of forms: 
(1) “modal verb. + negative words + verb phrase”. This 
type of BugText always appears after a negative word 
(such as “not”,“never”, etc) and is followed by the bug code 
snippet description. For example, the extracted VP from 
the sentence “You cannot change the size of the list!” is 
“cannot change the size of the list”, which is classified as 
qualified VP after analysis and the verb phrase after the 
negative word “not” indicating the error in the answer. 
(2) “noun phrase + verb phrase”. For example, the quali-
fied VP extracted from the sentence “the entire detour 
with <code> double <code> values makes no sense at 
all” is “makes no sense at all”, after a fine-grained sen-
tence tokenization and the BugText is “the entire detour 
with <code>double</code>”. In this way, no modal verb. 
is detected in the sentence. Therefore we try to find the 
NP in relation to the given VP after dependency pars-
ing, according to the dependency tree. Besides the above, 
there rest types of BugText in the dataset, which are ref-
erenced directly by the comment. For example, “‘pro-
vided the implementation does not change’ - and there is 
the problem.” shows that the referenced context “provided 
the implementation does not change” directly rewriting 
from the answer is incorrect. We drop such cases since 
they are pointing out the incorrect part written in natural 
language rather than code.

Bug code Snippet discovery
The BugText extracted from Sect. 3.3 is used to find Bug-
Code in this stage. Different from BugText, BugCode is in 
the form of a programming language. We come up with 
a solution by extracting anchors to help locate BugCode 
since anchors could connect BugText to BugCode. In this 
stage, we split the procedure into two steps: Anchor Dis-
covery and Bug Code Snippet Locating.

Anchor discovery In this part, we aim to extract 
anchors which could be used to locate BugCode. We 
define the anchors as keywords which can be found 
in BugText, describing the operation of BugCode. The 
example in Fig.  4 shows that the qualified BugText is 
either a noun phrase or a verb phrase according to con-
stituency parsing. We tagged the part-of-speech of each 
BugText to extract the noun words accompanied by 
its modifier, and the process is shown in Fig.  5. On the 
left, after PoS tagging for each word in NP, detour and 
<code>double<code> values is tagged NN. from the tag-
ger, since double is the inline code examples from the 
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Fig. 4  The example of BugText
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source data, we directly extract “detour” and “dou-
ble” as the anchors to discover BugCode.

Bug code matching In this stage, we utilize the anchors 
to locate BugCode, the process is to discover the piece 

of code snippets containing any forms of the anchors. 
We first did lemmatization to acquire the original verb 
form of the anchors, and the anchors which do not have 
verb form remained in the noun form. For example, the 

Fig. 5  The discovery process of Anchor and BugCode
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anchor of “The assertion to check for overflow is wrong.” is 
“assertion”, it should be lemmatized to “assert” 
to match the BugCode “assert(Integer.MAX_VALUE 
-a>=b:)” in the answer.

Two examples are shown in Fig. 5 to describe the pro-
cess in detail. For sentence-a, the anchors are “detour” 
and “<code> double </code>”, thus we use them as 
keywords to locate the BugCode shown in the answer 
which is double jointdigits = semilastdigit + lastdigit; 
1.0 + 0.2 = 1.2. For sentence-b, the extracted anchors 
are “double-infested”, “random”, “int” and 
“generation”, using each anchor to match the line 
of code snippets which contains the most anchors, we 
finally find the BugCode is sb.append(leftPad(Long.
toString(round(random() *pow(36,n)),36),n,‘0’));. For mul-
tiple lines of code containing the same anchor, we manu-
ally validate them. Our work discovered 1,088 pieces of 
BugCode in total. After manually checking on the 300 
random pieces of them, we find 276 pieces of BugCode 
are true. 89.3% of them remain incorrect in the current 
version of answers, still unknown to SO users and may 
mislead users to write flawed code

Implementation
Controversial sentence discovery In this stage, we 
designed a sentiment-based approach to discover CSs. 
First, we built the dataset for our research. Due to 
the special mechanism of StackExchange API Stack-
exchange (2022), people are not allowed to crawl the 
questions directly from StackOverflow. We queried a 
question_id first and then got the content under each 
question, including several answers and comments 
stored in JSON format. Since our goal is to detect bugs 
in the answers, therefore we delete the answers without 
code segments. To confirm the selected comments are 
accurate, we performed a statistical analysis of the top 
3 comments under each answer. Table 2 shows the sta-
tistical analysis of the comments in terms of the num-
ber of votes. We selected the top 2 comments as our 
dataset as it has the highest F1 score. For fine-grained 
sentence tokenization, we utilized NLTK (2022) with 
custom constraints in order to acquire accurate results 
after sentiment analysis: a. Deleting the context tagged 
with “”” and “()”; b. Segmenting subordinate clauses and 
using “,” to split complex sentences into simple ones, 
to fine-grained tokenize sentences. In the following, 
we deployed Google Natural Language API (2022) to 
analyze our pre-processed sentences. After doing sen-
timent analysis, we used 1,000 random sentences to 
figure out their accuracy, recall, and F1 score. We drew 
the broken line graph with the results. The point where 
the lines meet is supposed to be the right point of bal-
ance for the indicators. In Fig. 6, when the threshold is 

set to −0.5, after which the precision and F1 score are 
going down and the growth rate for the recall is promi-
nent slowly. Therefore, we set α to −0.5 to achieve bet-
ter performance for our approach.

Bug code context locating In this stage, we implement 
four steps to locate the BugText among the comments. 
We first utilized NLTK (2022) to tokenize each com-
ment into sentences, reserving the detailed description 
of BugText, including subordinate clauses and context 
rewritten directly. Then, we leveraged the Constituency 
Parser (2022) from AllenNLP (2017) to extract verb 
phrases and fed them to the Google Natural Language 
API (2022) to implement sentiment analysis. After 
analyzing randomly selected 1000 pieces of sentences, 
Fig. 7 shows the growth rate is limited while the thresh-
old is bigger than −0.5 and the precision and F1 score 
reached the peak in the meanwhile. Therefore, we set 
β to −0.5 for our approach. At the final stage, we pro-
posed two solutions to locate BugText. For qualified 
VPs containing negative words (such as “not”, “never”, 
etc) following a modal verb, we directly extracted the 
phrase (always in the form of VP) after the negative 
word as the BugText. For other situations, we utilized 
the dependency parser from SpaCy (2022) to build a 
dependency tree to extract the BugText related to the 
qualified VPs.

Bug code Snippet discovery
In this part, we utilized different tools for these two 
steps. First, we utilized the NLTK (2022) to tokenize 

Fig. 6  The Performance of CS Discovery under different thresholds

Table 2  Statistics for selecting comments

Range Precision Recall F1 score

Top 1 comments 0.98 0.78 0.87

Top 2 comments 0.96 0.89 0.92

Top 3 comments 0.86 0.96 0.91
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each word from the BugText, tagging the Part-of-Speech 
of them with StanfordNLP (2022) to recognize the noun 
words and their modifiers. Besides this, the information 
referenced directly and the inline code examples using 
“<code> </code>” from the source data are extracted 
directly to serve as anchors. For example, in Fig. 5 “dou-
ble” will be extracted from “<code>double</code>” 
as the anchor to locate the BugCode directly. In the fol-
lowing, we did lemmatization with NLTK (2022) to 
transform the forms of anchors into the original verb 
form. For example, in Fig. 5 one of the anchors in “dou-
ble-infested random int generation” is “generation” 
and after lemmatization, we get “generate” as the 
anchor. For all the anchors, we located the code snip-
pets containing the most anchors to be the BugCode in 
our work. There may exist some cases in which anchors 
appear in multiple lines of code in the answer. For such 
situations, our approach will extract all the pieces of code 
snippets for manual validation. And the results show 
that our approach covers the majority of BugCode on 
StackOverflow.

Evaluation
In this section, we will introduce our experiment set-
ting including the platform and dataset, and evaluate the 
bug discovery approach including the end-to-end effec-
tiveness and the effectiveness of each stage. And we will 
illustrate the comparison of our individual stage with the 
state-of-the-art methods since there exists no similar 
end-to-end approach for comparison.

Experiment setting
Dataset To evaluate the process of bug discovery, we lev-
erage 2 datasets for our approach. First, we will introduce 
the corpora of StackOverflow and the Ground_Truth 
dataset for our approach. Then, we will illustrate the 
dataset for each stage evaluation in Sect. 5.2.

•	 Corpora of StackOverflow for experiment Based on 
the statistics from StackOverflow (2022), the total 
number of question threads focusing on java and 
android ranked top one among all the tags on the 
forum. Thus we selected these question threads as 
our research objects which could be found through 
tags. 1000 question threads constitute the corpora of 
Stack Overflow for experiment and validation, with 
21,713 answers, 41,144 comments, and 82,718 sen-
tences in total.

•	 Ground_truth dataset To measure the feasibility of 
the design, we manually analyzed a set of known Bug-
Code validated from the revision history of StackO-
verflow, which is confirmed by two authors within 3 
weeks. For questions under [java] and [android], we 
manually checked 2000 sentences from 72 question 
threads beyond the 1000 threads for the experiment, 
with 502 answers and 848 comments. Detecting 249 
pieces of Controversial Sentences distributed in 190 
answers. 63 pieces of BugCode are confirmed in total.

Platform All the experiments in our study were con-
ducted on the macOS with 2.3 GHz CPU, 16 GB memory 
and 256 GB hard drive.

Effectiveness
End-to-end effectiveness. In our experiment, we ran our 
discovery approach on randomly selected 1000 threads 
from StackOverflow tagged with [java] and [android] to 
show the performance. Our approach discovered 1088 
pieces of BugCode in total. We randomly selected 300 
pieces of BugCode for manual check and it took two 
researchers one week to validate the results. 276 pieces 
of BugCode were proved to be accurate with third-party 
validations with a precision rate of 92.02%, 24 cases are 
false positives.

We analyze the 24 false positives from two aspects: 
tools and contexts. First, both the sentiment analysis 
tool and the dependency parser used in Sect.  3.3 could 
introduce incorrect results. We found that 16 of 24 false 
positives were mainly introduced by the NLP tools. For 
example, the VP extracted from the sentence “Somehow 
the branch prediction only has a 25% miss rate, how can 
it do better than 50% miss?” is “has a 25% miss rate” and 
the VP was recognized as qualified after sentiment analy-
sis. However, it did not contain a negative attitude, this 
VP would be misclassified and yielded a false positive in 
locating BugCode. Another reason is the complicated 
descriptions, they confused both the users and tools by 
including both positive attitudes while pointing out the 
incorrect part of the answers. For example, in comment 
“+1 This I agree with. You should never return half-
initialized objects.”, the first sentence shows a positive 

Fig. 7  The performance of VP extraction under different thresholds
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attitude, however, it is confusing for both the users and 
tools since it does not explicitly mention which object it 
agrees with. The tools cannot correctly classify the sen-
tences since the comments’ attitude is unclear.

Effectiveness of CS discovery We randomly selected 
1000 sentences from questions under [java] and [android] 
to evaluate our approach. To prove the feasibility of our 
approach to discovering CSs on all the question threads 
on StackOverflow, we also included question threads 
tagged with [c++]. Our approach found 266, 263 and 
238 CSs, respectively. The results show an average accu-
racy of 94.6% with a relatively low false negatives rate of 
4% on [java] compared to evaluations on [android] and 
[c++] shown in Table  3, which proved our approach 
could be applied to discover CS which are not limited to 
specific tags.

We will discuss the methods utilized to handle both 
false negatives and false positives. First, the proportion of 
negative words may affect the results of sentiment analy-
sis and introduce false negatives. For example, “Try not 
to use DISPLAY, HOST or ID - these items could change.” 
scored −  0.4 showing a lower negative attitude, while 

it indicates the answer may have an error in using DIS-
PLAY, HOST OR ID. However, the sentence “- these items 
could change.” reduces the effect of negative words and 
affects the result. Most of the false positives were intro-
duced by the tools, since the sentiment analysis tool is 
black-boxed, we did fine-grained tokenization for each 
sentence by deleting clauses and tokenising the sentence 
using custom rules to decrease the false positives.

Then, we compared the tool utilized in our approach 
which is Google NLP with the other open-source senti-
ment analysis tools to show remarkable effectiveness. 
We manually annotated 2,000 pieces of sentences and 
VPs according to our definition of Controversial Sen-
tences and Qualified Verb phrases. Statistics of F1-score, 
precision and recall for each selected tool were done for 
evaluation. We chose the open source tools ParallelDots, 
TextProcessing and Google Natural Language API (2022) 
to compare on our dataset. Figure 8 illustrates the perfor-
mance of these tools from three dimensions. On the left, 
Google API performed the best on CS discovery from 
all three dimensions. When implemented on extracting 
qualified VPs, ParallelDots and Google API demonstrate 

Table 3  Accuracy of CS extractor

Tags S# CS Non-CS OUR WORK S-HAN Keywords

Acc FNR FPR Acc FNR FPR Acc FNR FPR

Java 1000 266 734 0.96 0.04 0.08 0.26 0.74 0.66 0.08 0.92 0.14

Android 1000 263 737 0.95 0.05 0.07 0.27 0.73 0.31 0.09 0.91 0.03

C++ 1000 238 762 0.93 0.07 0.06 0.24 0.76 0.44 0.03 0.97 0.01

Fig. 8  The performance of different sentiment analysis tools for a CSs and b VPs
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an equal precision rate while ParallelDots has a lower 
recall. In general, Google Natural Language API per-
forms the best and shows that it is the proper choice for 
our research.

Then, we further evaluate the effectiveness of our tool 
and the tools proposed by top conference papers. Since 
there does not exist the exact same tools or models aim-
ing to extract CSs as we did, we chose S-HAN from 
Advance Lv et al. (2020) and the keywords extracted from 
Ren et  al. (2019). Because of the tool developed by Ren 
et al. (2019) is not publicly available to access, therefore 
we utilize the keywords listed in their work for com-
parison. In Table  3, compared with the method using 
keywords-matching, S-HAN showed a relatively higher 
accuracy rate and lower false negative rate. The rea-
son for such a dissatisfied performance is that S-HAN 
is designed to catch the sentence in a strong tone, while 
merely one-quarter of sentences in CSs may have a 
strong negative attitude and most of the CSs do not score 
with an absolutely high score due to the small proportion 
of negative words in each sentence. Not to mention the 
keyword-matching methods, one of the obstacles to pro-
cessing the discussions between users is that there do not 
exist any fixed patterns or keywords to match. According 
to the comparison results, our method shows better per-
formance on CS discovery.

Effectiveness of Bug code context locating From Sect. 3.2, 
2155 PCAs were located, after which 5074 pieces of VPs 
were extracted and classified as qualified VPs for Bug-
Text Locating. We located 4718 pieces of BugText with 
an accuracy rate of 93.2% and a false positive rate of 
14.1%. This stage includes three steps of evaluation: VP 
extraction, sentiment analysis for VP and dependency 
parsing for NP. First, constituency parsing is utilized to 
extract VPs from sentences. Looking into the false nega-
tives, we did fine-grained tokenization before extracting 
VP, the only reason for some false negatives is the vari-
ous expressing characters may not exist in our custom 
rules of tokenization which affected the results. And the 
false positives are introduced by the model itself. Second, 
another round of sentiment analysis on the extracted VPs 
to further located the BugText. Finally, 5074 VPs scored 
below − 0.5 are fed into a dependency tree to locate the 
VPs or NPs who serve as the BugText in the sentence. 
When looking into the false negatives, we found they 
may be introduced by the limited categories of BugText. 
For any false positives, they could be introduced by the 
tools utilized in former steps by classifying incorrectly 
the sentences in a positive attitude.

Effectiveness of Bug code Snippet discovery After locat-
ing the BugText from Sect.  3.3, we tried to discover 
anchors to help locate the BugCode and we got 11,121 
anchors in total with 1088 pieces of BugCode being 

detected. This stage is completed by a result filtration 
after PoS-tagging with a selection of noun words. All 
the anchors will be fed into the next step to search the 
BugCode in the answers. In our evaluation, nearly 40% 
of the anchors are demonstrative pronouns, indicating 
the answer was incorrect while no BugCode could be 
matched. With another small portion of anchors directly 
referencing the text in PCA; the rest of the anchors could 
precisely locate at least one piece of BugCode. After man-
ually checking all the discovered BugCode, we found that 
some of the BugCode cannot be found in the answers 
but in the revision history which means the answer has 
been revised according to the comments. The correctness 
of BugCode is proved by other third-party resources via 
manual check.

Comparison with the state‑of‑the‑art
We ran three state-of-the-art static analysis tools (SP’17 
2017, Infer 2022 and Advance 2020) to evaluate the per-
formance of our work. We chose 100 cases found by our 
work to evaluate their performance. Each of the tools 
can detect 22 bugs, 7 bugs and 24 bugs, respectively. 
We detailed 20 cases including all the types of cases in 
supplementary material, including bugs with API key-
words, non-API keywords, API selection issues and 
security issues found by our work to further evaluate the 
performance and discuss details. SP’17 (2017) focuses 
on crypto-API-related bugs while for other non-API 
bugs, it barely detected any. Infer (2022) mainly detects 
null-dereference and memory leak bugs and it is inca-
pable of detecting other types of security issues such 
as stack overflow. And Advance (2020) seems to have a 
similar discovering path as ours, except that they rely on 
well-defined API constraints from documentation (we 
discussed it in Sect. 5.2), when implementing on loosely-
structured text from StackOverflow, it lost its power.

Note that we did not run our approach on the bugs 
found by other tools to cross-evaluate the performance, 
since our work is in need of sentences expressing atti-
tudes and descriptions of bug code operations to guide 
the bug discovery approach. Apparently, the other 
tools are incapable of providing such resources for our 
approach. However, our work is capable of detecting vari-
ous bug types which could show our performance in bug 
discovery.

Measurement
In this part, we illustrate the process of Counterpart 
Discovery and Unknown Bug Discovery by introducing 
a case. We give the bugs’ details below with examples, 
including their category and impact. We also summarize 
lessons from our work.
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Finding
In this part, we illustrate our findings on the discovered 
bugs by our approach and the context of SO related to 
bugs.

Discovered Bugs From 1000 question threads, we found 
1088 pieces of BugCode. Some of the bugs are security-
related, including stack overflow, memory leak and null 
dereference. After manually checking, we find 32 cases 
to be known bugs only took up 10.7% and the unknown 
bugs consist of 268 cases (89.3%). In our work, we define 
the BugCode as having been revised as known bugs for 
users; the other pieces of BugCode remain incorrect in 
the current version of answers are unknown bugs for 
users. For example, Files.createTempDir() is deprecated 
before appeared in the answer SO (2022), the answer with 
183 upvotes under 439k view-counts was not revised to 
the correct one after the BugText has shown up in the 
comment. The delay of modification may result in vul-
nerability, since the attacker with access to the machine 
may potentially access data in a temporary directory 
CVE (2022) assigned by CVE. Directly using code snip-
pets from StackOverflow without checking could intro-
duce security issues in real-world development and the 
answers on StackOverflow may be a little bit “out-of-
date” for fast development nowadays.

Problematic answers Problematic answers may mis-
lead users. The issues from each case can be classified 
as (1) incomplete answer: the validity of the answer is 
confirmed while part of the question is not answered; 
(2) incorrect answer: part of the answer contains incor-
rectness when answering the question introducing issues 
such as lower performance; (3) out-of-date answer: the 
answer was right when it was first written but with the 
lapse of time it is outmoded for answering the question; 
and (4) potential insecure answer: the answer contains 
bugs which will have a security impact, including pro-
gram crash, stack overflow, memory leak, null-deref-
erence, etc. For those answers containing bugs proved 
to be true by third-party resources, some of the authors 
revised the answer within one day, however, the others 
may take several months or years to revise the answer. 
And for those answers containing bugs without revision, 
two of them remained incorrect for nearly 10 years till 
now, four answers remained incorrect for at least 5 years. 
Such updating frequency of answers may influence the 
security of software development.

Case study
In this section, we pick one case found in our work that 
could not be detected by other works based on documen-
tation analysis Lv et al. (2020) and illustrate the process 
of counterpart discovery through third-party resources 
(e.g., GitHub Issue, documentation, GitHub Commit, 

etc.) and bug validation. Figure  9 illustrates the com-
plete process of counterpart discovery and bug valida-
tion. First, we locate the CS from the comment which 
is “Directly calling setSeed is dangerous.”. The BugText 
extracted from the CS is “directly calling setSeed”. The 
impact of this dangerous operation is “It may replace 
the (really random) seed with the date.”. For counterpart 
discovery, we refer to the documentation of the correct 
usage. And in the middle of the figure, the documenta-
tion does not mention the related information on secu-
rity issues. Therefore, we search the GitHub Issue for any 
extra information which could support the comment. The 
Issue (2022) clearly summarizes the bugs found related to 
when using setSeed and the specific rules generated from 
practices. We confirm the BugCode “rand.setSeed(new 
Date.getTime())” in the PCA after calling SecureRandom 
is buggy. We check the dates of the answer and the com-
ment, the bug is still unknown to users. In total, we found 
nearly 89.3% BugCode remained in the current version of 
answers on StackOverflow. Note that we have reported 
all the BugCode found in our work to users. This will help 
them when using StackOverflow to help solve developing 
issues.3 We will release our tool in the future.

Lessons learnt from our work
In Sect. 6.1, we summarize the overall finding from our 
work related to answer issues and potential impact. We 
have the unique opportunity to summarize the lessons 
learned from our work.

For StackOverflow community
Control the spreading of incorrect code snippets It is the 
StackOverflow community’s responsibility to control the 
spreading of bug code snippets, these may either mislead 
users looking for proper answers or influence the devel-
opment of open-source software. The community should 
either highlight the bug code snippet to users or advise 
users to revise their answers to improve the answers’ 
quality. And also the community should remind the users 
to carefully deal with the answers containing incorrect 
code snippets.

For users sharing knowledge on SO
Write complete and explicit comments for answers 
improvement When leaving comments about the doubts 
or incorrectness of the answers, users are required to pro-
vide the correct and explicit information to help improve 
the answers. Based on our observation, a certain amount 
of users would not correct the answers and just indicate 
the current answer may not be correct, which may result 

3  https://​anony​mous.​4open.​scien​ce/r/​SO-​bugs-​disco​vered-​BF8A/.

https://anonymous.4open.science/r/SO-bugs-discovered-BF8A/
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in severe impact when the buggy answer remained incor-
rect. Lack of useful information to correct the answer or 
implicit information from the comments may influence 
the time period of answer updating, since the author of 
the answer may not know how to locate and fix the buggy 
part of the answers by reading the comments.

For users requiring knowledge from SO
Use SO as a supplementary resource for software devel-
opment After our manual check, we find that the bug 
found in SO could be validated from GitHub Commits 
or Issues, which indicates that the buggy code snippets 
from SO may have been utilized to develop software. 
The accepted answers or the relatively higher votes-up 
of each answer may influence the users when choosing 
the solutions. Since SO is a combination of knowledge 
resources including expertise, official documentation 
links related to the question and third-party links used to 
validate the answer. Therefore, it is proper to utilize SO 

as a supplementary resource to develop software rather 
than directly copying the code snippets from answers.

Discussion
In this section, we illustrate the limitations of our work 
as follows.

Problematic answers In Sect.  3.2, Google Natural 
Language API is adopted to complete sentiment analy-
sis. Since the model inside is black-box, only the output 
of the tool is available for users, thus any false positives 
or false negatives yielded are inextricable. These errors 
introduced by the tool may influence our results in bug 
discovery.

False positives introduced by the context of SO The 
complicated content of comments also yielded false 
positives for our work. We found some of the comments 
included both positive attitudes towards the answer and 
the description of the incorrect operation. Natural lan-
guage understanding techniques may have the poten-
tial to avoid such cases, however, they may need a great 

Fig. 9  The API-selection case for counterpart discovery and unknown bug discovery and validation
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amount of high-quality corpus to build a solid knowledge 
database. The current version of our work is incapable of 
handling such a situation.

Related work
Recent years have witnessed the emerging demand for 
knowledge sharing and its impact on security-related 
code practice. In this section, we discuss the related work 
on bug detection through documentation and code, and 
the research related to StackOverflow. We classify them 
into three types: bug detection through document analy-
sis, bug detection through code comparison and fuzzing, 
and research on StackOverflow.

Bug detection through document analysis In recent 
years, the amount of research on document analysis 
for bug detection are increasing rapidly. Researchers 
attempt to exact API constraints from official manuals to 
help with bug detection. Advance (2020) is designed to 
extract rules from C++ official documentation, and gen-
erate verification code from API descriptions to detect 
unknown bugs on open-source projects. Zhong et  al. 
(2011) and Pandita et al. (2016) propose different ways to 
extract API constraints and API call-order rules, respec-
tively, to detect the inconsistency between the context 
information and source code. Different from them, our 
work detects bugs by analyzing comments in StackOver-
flow which has more loosely organized writings.

Bug detection through code comparison and fuzz-
ing Another general way to detect bugs is code analysis. 
Code comparison and fuzzing are two of the common 
methods. Ahmadi et al. (2021) propose a method to com-
pare the structure of similar code snippets to detect bugs. 
Yamaguchi et al. (2013) propose to do a taint analysis on 
code to extract security-related objects exceptions and 
missing conditions to speed up the manual check. You 
et  al. (2017 propose SemFuzz to extract vulnerability-
related information to guide fuzzing. Zong et  al. (2020) 
propose FuzzGuard to filter the seed for fuzzing to 
increase the efficiency of fuzzers.

Research on StackOverflow Security research on Stack-
Overflow includes several research areas: Meldrum et al. 
(2020) propose a measurement work on evaluating the 
answers’ quality on StackOverflow, and the result shows 
users need to be cautious when reusing the code snip-
pets from StackOverflow. Fischer et  al. (2017) utilize 
a static code analysis tool to detect the code similarity 
between code snippets from SO and applications from 
the Android market to label the insecure code snip-
pets on SO. Chen et  al. (2019) conduct a measurement 
work on the security-related posts on StackOverflow 
and found that insecure posts had more view counts and 
higher scores. Ren et  al. (2019) propose a similar work 
to ours, they proposed an approach to find controversial 

answers among all the accepted answers on StackOver-
flow and combined the extracted information with offi-
cial API documentation to help users better understand 
the controversies. In our work, we propose a new dis-
covery approach to dig out the buried knowledge from 
comments with no guidance of any API keywords and 
discover the bugs on SO.

Conclusion
In this paper, we propose an automatic approach to 
exploit the knowledge from discussions on the guidance 
of bug discovery on StackOverflow. Utilizing NLP tech-
niques, we leverage sentiment analysis to discover CSs 
from discussions, constituency parsing and dependency 
parsing to assist the process of BugText Locating. Then 
a fine-grained tokenization method is adopted to extract 
anchors which help the discovery process of BugCode. 
We applied our approach on 1000 threads from StackO-
verflow and discovered 1088 pieces of BugCode in total, 
achieving a precision rate of 95.5% in CS Discovery. In 
randomly selected 300 pieces of BugCode, 276 real bugs 
were discovered by our approach and 89.3% of them 
remained in the current version of answers without revi-
sion which may further mislead the users.
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