
Yang et al. Cybersecurity (2023) 6:17
https://doi.org/10.1186/s42400-023-00153-0

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Cybersecurity

Jeu de mots paronomasia:
a StackOverflow‑driven bug discovery approach
Yi Yang1,2*, Ying Li1,2   , Kai Chen1,2* and Jinghua Liu1,2 

Abstract 

Locating bug code snippets (short for BugCode) has been a complex problem throughout the history of software
security, mainly because the constraints that define BugCode are obscure and hard to summarize. Previously, secu-
rity analysts attempted to define such constraints manually (e.g., limiting buffer size to detect overflow), but were
limited to the types of BugCode. Recent researchers address this problem by extracting constraints from program
documentation, which shows the potential for API misuse. But for bugs beyond the scope of API misuse, such an
approach becomes less effective since the corresponding constraints are not defined in documents, not to mention
the programs without documentation In this paper, inspired by the fact that expert programmers often correct the
BugCode on open forums such as StackOverflow, we design an approach to automatically extract knowledge from
StackOverflow and leverage it to detect BugCode. As we all know, the contexts in StackOverflow come from ordinary
developers. Their writing tends to be loosely organized and in various styles, which are more challenging to analyze
than program documentation. To address the challenges, we design a custom tokenization approach to segment sen-
tences and employ sentiment analysis to find the Controversial Sentences (CSs) that typically contain the constraints
we need for code analysis. Then we use constituency parsing to extract knowledge from CSs, which helps locate Bug-
Code. We evaluated our system on 41,144 comments from the questions tagged with Java and Android. The results
show that our approach achieves 95.5% precision in discovering CSs. We have discovered 276 pieces of BugCode
proved to be true through manual validation including an assigned CVE. 89.3% of the discovered bugs remained in
the current version of answers, which are unknown to users.

Keywords  Bug detection, Natural language processing, Open forum

Introduction
One of the root causes of information system security
threats is vulnerability. It usually takes the form of a bug,
flaw, or omission in software and hardware that exists as
a result of poor design or poor implementation and can
be exploited by the attacker Joshi et al. (2015). To address

this issue, security analysts search for and eliminate vul-
nerabilities in software and hardware. Dynamic and static
methods are common approaches. Fuzzing is a dynamic
method for detecting program crashes by analyzing a
large number of inputs, which may overcome missing
specific vulnerability types such as authentication bypass
caused by API misuse Lv et al. (2020). Several static meth-
ods are developed to address this problem (Ren et al.
2020, 2020; Zhou et al. 2017), including extracting API-
related rules/constraints from source code and official
documents. Several reasons may lead to limited vulner-
ability types: (1) implicit API usage description resulting
in missing part of the API-related bugs Lv et al. (2020; 2)
incomplete API-related description in the official docu-
ment, which yields missing specific types of bugs which

*Correspondence:
Yi Yang
yangyi@iie.ac.cn
Kai Chen
chenkai@iie.ac.cn
1 SKLOIS, Institute of Information Engineering, Chinese Academy
of Sciences, Beijing, China
2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00153-0&domain=pdf
http://orcid.org/0000-0002-2628-3737

Page 2 of 17Yang et al. Cybersecurity (2023) 6:17

cannot be discovered merely through a document; (3) for
other types of bugs such as API confusion, merely using
the information in the documents is not enough since the
documents rarely compare two similar APIs.

Finding bug in StackOverflow: challenges Natural Lan-
guage Processing techniques have advanced in recent
years. Unlike traditional research on official API docu-
mentation, we innovate on the data source onto StackO-
verflow, an open-source forum for developers discussing
real-world practices. Our goal is to unearth knowledge
buried in billions of question threads in order to locate
bug code snippets that may influence real development.
During the software development cycle, software engi-
neers are expected to use official documents, GitHub,
and open-source forums to solve problems. Due to the
diverse API-usage practices and knowledge of errors
in reality which are not included in official documents,
people are more likely to use open-source forums like
StackOverflow, to solve problems when faced. Shared
knowledge proved its important role in developing
software when facing bugs. In an open-source forum,
for example, there will be multiple answers under one
question thread, and users are free to show their opin-
ions or suggestions under each answer directly. Figure 1

illustrates the complete context in the question page.
We assume the vote-up of each answer indicates the
current answer is followed by some of the developers in
real practice and the other users may express their atti-
tude towards this answer and point out in the comment if
there exists a bug. We aim to explore if there exist secu-
rity issues on shared knowledge, which may be adopted
to affect the development. In Fig. 1, it is easy for users
to learn that using method “StrictMode.ThreadPolicy()”
according to the sentence “You should not change the
thread’s policy” in the comment is not recommended.
While it is hard to do it automatically merely by analyz-
ing documentation.

However, it is highly challenging to extract rules from
open-source forums for bug detection due to the follow-
ing reasons. (C1) Loosely organized context. Writings
on StackOverflow vary a lot, and no patterns or keywords
exist to guide the discovery of incorrect code descrip-
tions. For example, in Fig. 1, the sentence This is a really
bad answer. indicates the current answer is controversial,
and the sentence “You should not change the thread’s
policy...” describes the incorrect operation in the answer.
How to locate the sentences describing incorrect opera-
tions among numerous comments is the first challenge.

Fig. 1  The example case of StackOverflow

Page 3 of 17Yang et al. Cybersecurity (2023) 6:17 	

(C2) Hard to locate bugs in code. The descriptions
of erroneous operations are in natural language. They
usually do not include method names for direct com-
parison. How to detect bugs in the answer with the guid-
ance of the description is another challenge. In Fig. 1,
the description extracted in the comment is “change the
thread policy” with which we should locate the piece of
code using StrictMode.ThreadPolicy(). It is not straight-
forward to locate the buggy code from the writings.

The new discovery approach We design a new bug-dis-
covery approach to exploit the hidden knowledge in dis-
cussions to discover bugs on StackOverflow and measure
security issues in open-source software. Our approach
is capable of conquering the several obstacles above by
discovering the Controversial Sentences, locating the Bug
Code Context, and discovering the Bug Code Snippet in
the Potential Controversial Answers.

Based on our observation, though there are billions of
APIs or method names that contain error codes and are
also mentioned in the comments, it is still very hard to
locate the wrongly-used APIs automatically due to the
complicated writing styles on StackOverflow. Fortunately,
we find that when criticizing errors in the answers, peo-
ple tend to express negativity to get attention. For exam-
ple, the sentence This is a really bad answer is recognized
with a strong negative attitude indicating that there must
exist some errors in the answer and the developers should
give up following this solution. For sentences expressing
negativity, we name them controversial sentences (CS for
short), as they point out the controversy in the answer. To
discover CSs, we perform a customized sentence tokeni-
zation of the comments since the proportion of attitude
words may influence the sentiment analysis. After that,
CSs are automatically located through sentiment analy-
sis from the discussions in loosely-organized natural lan-
guage. Then, considering that the clauses may contain
the Bug Code Context (BugText for short) that contains
the buggy code, we further extract verb phrases (VP) and
noun phrases (NP) through constituency parsing and
execute another round of sentiment analysis to accurately
locate the phrases describing the bugs. Noticing the large
gap between the phrases in natural languages and the
buggy code in programming languages, we choose key-
words that characterize bugs (called anchors) and uti-
lize these anchors to identify the Bug Code Snippet in
answers.

Findings In this work, we leverage sentiment analysis,
constituency parsing and dependency parsing to imple-
ment our discovery approach on question threads from
StackOverflow focusing on java and android, and further
evaluate the effectiveness compared with the other state-
of-the-art tools on CS discovery and bug discovery. Our

method shows an average accuracy of 95.5% on CS dis-
covery and 92.0% on bug discovery.

Through our discovery of 1,000 threads, our approach
automatically discovers 1088 pieces of BugCode. After
manual validation on randomly selected 300 pieces
of BugCode, we find that 276 of them (92.0%) are real
bugs, many of them are security-related bugs includ-
ing program crash, memory leak, stack overflow and
null dereference, etc.1 The erroneous writings causing
these problems are mostly incomplete answers, incor-
rect answers, out-of-date answers and potentially incor-
rect answers, etc. To the best of our knowledge, this is
the first bug-discovery approach for uncovering hidden
knowledge in StackOverflow discussions, a step forward
to automatically exploiting information extracted from
expert knowledge to find bugs. We also find that even
the answers with 183 upvotes under 439k view counts
remained incorrect for nearly 5 years and resulted in a
vulnerability CVE (2022). This vulnerability allows an
attacker with access to the machine to potentially access
data in a temporary directory created by this deprecated
API. One of the answers contains the bug which has
already been reported before, however, the developers
still believed in their own experience rather than pub-
lic bug report Bug (2022). After manual confirmation,
we find that only 10.7% of the potentially controversial
answers in SO which contain BugCode according to our
approach are revised by the author, which means that
89.3% answers still contain bugs in the current version,
continuing to mislead future readers.

Contributions We summarize our main contributions
as follows.

•	 New approach for bug discovery We develop a new
bug discovery approach that leverages loosely organ-
ized textual descriptions in StackOverflow. To extract
useful knowledge from comments written in natural
languages, we design a set of new techniques, such as
anchor-based bug code discovery. To the best of our
knowledge, we are the first to leverage discussions on
StackOverflow to help detect bugs.

•	 New findings Working on 1000 threads from Stack-
Overflow, our approach discovered 1088 pieces of
BugCode through automatic processing discussions
on StackOverflow. We also find that among the
potentially controversial answers, 89.3% of them still
contain errors, which may mislead readers to write
flawed code.

1  https://anonymous.4open.science/r/SO-bugs-discovered-BF8A/

Page 4 of 17Yang et al. Cybersecurity (2023) 6:17

Background
Vulnerability detection
The existing methods of vulnerability detection usually
include code-based and text-based ones.

Code-based vulnerability detection method The code-
based detection methods, classified as dynamic methods,
static methods and the ones combining both static and
dynamic methods, are to detect vulnerability directly on
the target program. Fuzzing is one of the dynamic meth-
ods through feeding abnormal or random inputs into the
program to trigger unexpected behaviours, which can be
mainly classified as coverage-based fuzzing and directed
fuzzing (Böhme et al. 2017, Chen et al. 2018, Li et al. 2018,
Zong et al. 2020). Although static methods are supposed
to figure out the suspicious part of the program without
running the code, dynamic methods could discover the
exception which could be the potential root cause for
the bug, including potential security violation, run-time
error and logic inconsistency (Ayewah et al. 2008). And
also the detection methods combining both the dynamic
analysis and static analysis can not only detect the vul-
nerabilities which can only be detected by static analysis
but also detect the vulnerabilities when implementing
dynamic analysis (Aggarwal 2006; Amin et al. 2019; Kiss
et al. 2015). Such methods combine the advantages of
both methods, but are also limited by the current tech-
niques and are in need of further development.

Text-based vulnerability detection method With the
increasing development of Natural Language Process-
ing techniques and the abundant context information,
using official documentation for vulnerability detection
is becoming popular (Chen et al. 2019; Zhou et al. 2017;
Ren et al. 2020, 2020). Software engineers are supposed
to follow the official documentation to properly use
APIs. However, knowledge asymmetry exists between
the writers and the users of the documentation, includ-
ing implicit API usage and misunderstanding of the API
constraints, which may result in bugs during software
development. The majority of the research is analyz-
ing API-related context to detect bugs. We also unveil
the hidden knowledge in discussions on an open-source
forum which does not focus merely on API.

Natural language processing
To process the comments from StackOverflow, we lever-
aged several NLP techniques, as illustrated here.

Sentiment analysis Sentiment analysis is one of the
NLP techniques, designed to output a score indicat-
ing the given sentence’s attitudes, opinions or emotions
(Medhat et al. 2014). The major task of sentiment analy-
sis is to classify the input sentences with a score indicat-
ing a negative attitude, positive attitude or neutral. In our

research, we utilize the existing open-source tool Google
Language API (GoogleNLP 2022) to process the com-
ments on StackOverflow to select the sentences describ-
ing the controversy of the answers and the verb phrases
illustrating the incorrect operations. We also utilize sen-
timent analysis to classify the CSs to narrow the scope of
PCAs and help locate bug code snippets according to the
negative sentences and verb phrases.

Constituency parsing Constituency parsing is a sen-
tence-level syntactic analysis, aiming to unveil the
internal relations between constituents of the sentence
(Zhang 2020). Noun phrases, verb phrases and the rela-
tions between them are shown in the constituent parsing
tree. We utilize the constituency parser from AllenNLP
(Gardner et al. 2017) to help extract each constituent of
the sentence to locate the VPs under answers.

Dependency parsing Dependency parsing is designed
for both syntactic analysis and semantic analysis (Chen
and Manning 2014). It describes the binary relations
between each word in a sentence, which is clearly illus-
trated according to the dependency tree. In our work, we
utilize the dependency parser to locate the noun words
related to a given VP, which turn out to be the anchors in
finding BugCode.

Design
In this section, we elaborate on the observation and
design of our new approach for automatically discovering
buggy code through analysis on StackOverflow. We first
give an overview of the whole design, its measurement
pipeline and an example that shows how it works, and
then move to how its individual component is designed.

Overview
Discovery approach We aim to dig out the knowledge
buried in comments to locate the bug code snippets in
the answer. Figure 2 illustrates the design of our discov-
ery approach: Controversial Sentence(CS) Discovery,
Bug Code Context(BugText) Location and Bug Code
Snippet(BugCode) Discovery. For discovered bug code
snippets, we manually validate them with third-party
resources, the process of which is illustrated in Sect. 6 by
introducing a case study. During the workflow, we merely
use the comments under each answer on StackOverflow
(2022) as our input dataset.

StackOverflow answers are made up of code snippets
and natural language descriptions. CSs are automatically
located in Controversial Sentence Discovery via senti-
ment analysis from comments under answers in loosely-
organized natural language. The Potential Controversial
Answers are confirmed after being filtered by custom-
ized rules and containing at least one CS in the com-
ments below the answer. Then, using syntactic analysis

Page 5 of 17Yang et al. Cybersecurity (2023) 6:17 	

and linguistic parsing, BugText is located among the sen-
tences from comments under each answer. Following the
extraction of the anchors from BugText, our approach
can detect Bug Code Snippets in the answers by matching
the anchors with the code snippets in the given answers.
Finally, we manually validate the discovered BugCode for
real bugs using third-party resources.

Example Figure 3 illustrates the workflow of our
approach with an example. The comment illustrates the
incorrect API selection without mentioning the method
name, which is “This is a really bad answer. You should
not change the thread’s policy...”. The comment delivers
the information that the answer may be controversial.
Note that StackOverflow is very different from the doc-
umentation that usually introduces API usage. Previous
studies (Lv et al. 2020; Pandita et al. 2016; Zhong et al.
2011) can extract rules from the documents. However,
comments in StackOverflow tend to be more loosely
organized, which renders previously studied methods
ineffective. In other words, generating rules or fixed pat-
terns related to specific APIs from StackOverflow seem
impossible. So we put in the effort to unveil the expertise
buried in discussions and exploit them to contribute to
bug discovery on StackOverflow.

Our approach first automatically identifies CS, which
is “You should not change the thread’s policy.”, indicat-
ing the answer is incorrect with a negative attitude. Then,
we extract the VP (“change the thread’s policy”) from
the sentence. “change the thread’s policy” is confirmed
as the BugText according to our approach by describing
the bug code operation. Note that merely using BugText
to locate BugCode in the answer is not straightforward.
Our approach automatically discovers the anchors

“change”, “thread’s”, “policy”, and locates the piece of Bug-
Code StrictMode.ThreadPolicy policy = new StrictMode.
ThreadPolicy.Builder(). permitAll().build(); StrictMode.
setThreadPolicy(policy); which contains the anchors. We
further confirm that the discovered BugCode is a real bug
according to the Github Commit.2

Controversial sentence discovery
Unlike the API documentation designed to introduce
usages of APIs, loosely-organized context on open-source
forums such as StackOverflow is hard to be processed
with fixed patterns or rules. Therefore, after manually
identifying and analyzing a set of sentences, we observe
that CSs are in a strong negative attitude, which could be
utilized to discover such sentences. We find these sen-
tences can be classified into two types: (1) Bare CS: this
type of CS only includes a negative attitude towards the
answer without describing the bug code snippet of the
answer. From this kind of CS, users could only sense that
the answer may be incorrect. However, it is hard for users
to tell which part of the code snippet is buggy. (2) CS
with objects: this type of CS describes the details of the
bug code snippet in the answers. From this kind of CS,
users could explicitly locate the BugCode of the answer.
In Table 1, we illustrate each category with examples.

Due to the huge amount of answers on StackOverflow,
it is hard to locate the potential controversial answers.
Therefore, we pre-process the attributes related to both
the comments and the answers to narrow the scope of

Fig. 2  The workflow of our discovery approach

2  https://​github.​com/​avalax/​FitBu​ddy/​commit/​065e0​35c3a​5592f​08ffb​409de​
312e8​bee10​48779

https://github.com/avalax/FitBuddy/commit/065e035c3a5592f08ffb409de312e8bee1048779
https://github.com/avalax/FitBuddy/commit/065e035c3a5592f08ffb409de312e8bee1048779

Page 6 of 17Yang et al. Cybersecurity (2023) 6:17

PCAs to be processed. We design several customized
constraints from four dimensions to filter comments: (a)
Votesanswer should be over 0: the vote-up for each answer
indicates the current answer is useful or appropriate to
the community (sovoteup 2022) and is believed to be fol-
lowed by other developers in practice, thus we drop all
the answers with votes under 0, which means this answer
is probably not used by actual developers. (b) Votescomment
should be top 2: the vote number of each comment indi-
cates the level of agreement by other users. In order to
achieve higher precision and recall in extracting CS,
we select the comments whose vote number ranks top

2 among all the comments under the given answer. (c)
Authorcomment is not the same as Authoranswer : we need
to select the comment which is criticized by other users,
which means the author of the comment should not be
the same as the author of the answer. (d) “@” is not sup-
posed to appear in the comment: users are supposed to
use “@” to reply to other users on StackOverflow. For
such comments starting with “@”, little has been found
useful for CS discovery. Therefore, we drop the com-
ments starting with “@” to achieve higher accuracy.

After the preparation of the dataset, we utilize the
existing sentiment analysis tool to score each sentence

Fig. 3  The example of knowledge extracted from StackOverflow

Table 1  Category of controversial sentence

Category Description Example

a. Bare CS Only expressing the negative attitude to the answer. “This is a really bad answer.”

b. CS with objects Illustrating the problematic operations in the answer with negative attitude. “Directly calling setSeed is
very dangerous.”

Page 7 of 17Yang et al. Cybersecurity (2023) 6:17 	

extracted from the questions tagged with [java] and
[android]. In Sect. 4, we discuss the selection process of
the threshold. In the evaluation, we show our comparison
results which achieve a higher precision rate.

Bug code context locating
In this part, we aim to locate the Bug Code Context in the
comment, which describes the bug code through natural
language in the answer and belongs to “CS with objects”
in Table 1. After extracting the CSs, we confirm the scope
of Potential Controversial Answers (PCAs) and the com-
ments which constitute the dataset for further BugText
locating.

After analyzing the sentences identified in Sect. 3.2,
we chose the comments containing both negative atti-
tudes and bug code descriptions to help locate BugText.
Negative attitudes indicate the current answer is incor-
rect from the users’ aspect, and bug code descriptions are
written in natural language. We define 2 types of CSs to
cover the maximum scope of PCAs. After that, we need
to extract BugText, which describes the bug code snippet
of the given PCA. We propose a solution that combined
constituency parsing, sentiment analysis and dependency
parsing altogether to locate the BugText in the comments
under PCA. Details will be illustrated in the following.

Sentiment-based BugText locating We observe that
BugText comes along with a verb phrase indicating a
negative attitude. For example, “Directly calling setSeed”
is the BugText in “Directly calling setSeed is very danger-
ous.”, and “is very dangerous” expresses a relatively strong
negative attitude. Therefore, we extracted VPs from each
sentence by utilizing constituency parsing(see Fig. 4) and
did sentiment analysis of each extracted VP. Sampling
on the classified VPs, we set the threshold to select the
qualified VPs and the selection process is illustrated in
Sect. 4. However, not all the qualified sentences contain
specific incorrect operations. For example, the sentence
“This test is flawed.” contains a negative attitude and the
NP extracted is “This test”. The NP does not describe any
specific incorrect operations but a demonstrative pro-
noun referring to the incorrect answer. Therefore, we
construct a keyword list containing the demonstrative
pronouns (such as “it”,“that”,“this”,etc) to filter out the NPs
which describe specific incorrect operations.

We find that a sentence with a detailed description
may affect the results of sentiment analysis. For exam-
ple, “This test is flawed.” is correctly classified as CS after
being separated from the sentence “This test is flawed as
it runs all 3 tests in the same JVM instance.”. However, the
longer sentence can not be correctly classified by senti-
ment analysis. The context directly referenced using “”
or the inline code examples using <code></code> do not
need to be analyzed, thus we directly extract the context

referenced or tagged. For example, “double” from “the
entire detour with <code>double</code> ” and “pro-
vided the implementation doesn’t change” from the sen-
tence “‘provided the implementation doesn’t change’ - and
there’s the problem.”.

By utilizing the qualified VPs on the former method,
we could locate BugText, shown as two types of forms:
(1) “modal verb. + negative words + verb phrase”. This
type of BugText always appears after a negative word
(such as “not”,“never”, etc) and is followed by the bug code
snippet description. For example, the extracted VP from
the sentence “You cannot change the size of the list!” is
“cannot change the size of the list”, which is classified as
qualified VP after analysis and the verb phrase after the
negative word “not” indicating the error in the answer.
(2) “noun phrase + verb phrase”. For example, the quali-
fied VP extracted from the sentence “the entire detour
with <code> double <code> values makes no sense at
all” is “makes no sense at all”, after a fine-grained sen-
tence tokenization and the BugText is “the entire detour
with <code>double</code>”. In this way, no modal verb.
is detected in the sentence. Therefore we try to find the
NP in relation to the given VP after dependency pars-
ing, according to the dependency tree. Besides the above,
there rest types of BugText in the dataset, which are ref-
erenced directly by the comment. For example, “‘pro-
vided the implementation does not change’ - and there is
the problem.” shows that the referenced context “provided
the implementation does not change” directly rewriting
from the answer is incorrect. We drop such cases since
they are pointing out the incorrect part written in natural
language rather than code.

Bug code Snippet discovery
The BugText extracted from Sect. 3.3 is used to find Bug-
Code in this stage. Different from BugText, BugCode is in
the form of a programming language. We come up with
a solution by extracting anchors to help locate BugCode
since anchors could connect BugText to BugCode. In this
stage, we split the procedure into two steps: Anchor Dis-
covery and Bug Code Snippet Locating.

Anchor discovery In this part, we aim to extract
anchors which could be used to locate BugCode. We
define the anchors as keywords which can be found
in BugText, describing the operation of BugCode. The
example in Fig. 4 shows that the qualified BugText is
either a noun phrase or a verb phrase according to con-
stituency parsing. We tagged the part-of-speech of each
BugText to extract the noun words accompanied by
its modifier, and the process is shown in Fig. 5. On the
left, after PoS tagging for each word in NP, detour and
<code>double<code> values is tagged NN. from the tag-
ger, since double is the inline code examples from the

Page 8 of 17Yang et al. Cybersecurity (2023) 6:17

Fig. 4  The example of BugText

Page 9 of 17Yang et al. Cybersecurity (2023) 6:17 	

source data, we directly extract “detour” and “dou-
ble” as the anchors to discover BugCode.

Bug code matching In this stage, we utilize the anchors
to locate BugCode, the process is to discover the piece

of code snippets containing any forms of the anchors.
We first did lemmatization to acquire the original verb
form of the anchors, and the anchors which do not have
verb form remained in the noun form. For example, the

Fig. 5  The discovery process of Anchor and BugCode

Page 10 of 17Yang et al. Cybersecurity (2023) 6:17

anchor of “The assertion to check for overflow is wrong.” is
“assertion”, it should be lemmatized to “assert”
to match the BugCode “assert(Integer.MAX_VALUE
-a>=b:)” in the answer.

Two examples are shown in Fig. 5 to describe the pro-
cess in detail. For sentence-a, the anchors are “detour”
and “<code> double </code>”, thus we use them as
keywords to locate the BugCode shown in the answer
which is double jointdigits = semilastdigit + lastdigit;
1.0 + 0.2 = 1.2. For sentence-b, the extracted anchors
are “double-infested”, “random”, “int” and
“generation”, using each anchor to match the line
of code snippets which contains the most anchors, we
finally find the BugCode is sb.append(leftPad(Long.
toString(round(random() *pow(36,n)),36),n,‘0’));. For mul-
tiple lines of code containing the same anchor, we manu-
ally validate them. Our work discovered 1,088 pieces of
BugCode in total. After manually checking on the 300
random pieces of them, we find 276 pieces of BugCode
are true. 89.3% of them remain incorrect in the current
version of answers, still unknown to SO users and may
mislead users to write flawed code

Implementation
Controversial sentence discovery In this stage, we
designed a sentiment-based approach to discover CSs.
First, we built the dataset for our research. Due to
the special mechanism of StackExchange API Stack-
exchange (2022), people are not allowed to crawl the
questions directly from StackOverflow. We queried a
question_id first and then got the content under each
question, including several answers and comments
stored in JSON format. Since our goal is to detect bugs
in the answers, therefore we delete the answers without
code segments. To confirm the selected comments are
accurate, we performed a statistical analysis of the top
3 comments under each answer. Table 2 shows the sta-
tistical analysis of the comments in terms of the num-
ber of votes. We selected the top 2 comments as our
dataset as it has the highest F1 score. For fine-grained
sentence tokenization, we utilized NLTK (2022) with
custom constraints in order to acquire accurate results
after sentiment analysis: a. Deleting the context tagged
with “”” and “()”; b. Segmenting subordinate clauses and
using “,” to split complex sentences into simple ones,
to fine-grained tokenize sentences. In the following,
we deployed Google Natural Language API (2022) to
analyze our pre-processed sentences. After doing sen-
timent analysis, we used 1,000 random sentences to
figure out their accuracy, recall, and F1 score. We drew
the broken line graph with the results. The point where
the lines meet is supposed to be the right point of bal-
ance for the indicators. In Fig. 6, when the threshold is

set to −0.5, after which the precision and F1 score are
going down and the growth rate for the recall is promi-
nent slowly. Therefore, we set α to −0.5 to achieve bet-
ter performance for our approach.

Bug code context locating In this stage, we implement
four steps to locate the BugText among the comments.
We first utilized NLTK (2022) to tokenize each com-
ment into sentences, reserving the detailed description
of BugText, including subordinate clauses and context
rewritten directly. Then, we leveraged the Constituency
Parser (2022) from AllenNLP (2017) to extract verb
phrases and fed them to the Google Natural Language
API (2022) to implement sentiment analysis. After
analyzing randomly selected 1000 pieces of sentences,
Fig. 7 shows the growth rate is limited while the thresh-
old is bigger than −0.5 and the precision and F1 score
reached the peak in the meanwhile. Therefore, we set
β to −0.5 for our approach. At the final stage, we pro-
posed two solutions to locate BugText. For qualified
VPs containing negative words (such as “not”, “never”,
etc) following a modal verb, we directly extracted the
phrase (always in the form of VP) after the negative
word as the BugText. For other situations, we utilized
the dependency parser from SpaCy (2022) to build a
dependency tree to extract the BugText related to the
qualified VPs.

Bug code Snippet discovery
In this part, we utilized different tools for these two
steps. First, we utilized the NLTK (2022) to tokenize

Fig. 6  The Performance of CS Discovery under different thresholds

Table 2  Statistics for selecting comments

Range Precision Recall F1 score

Top 1 comments 0.98 0.78 0.87

Top 2 comments 0.96 0.89 0.92

Top 3 comments 0.86 0.96 0.91

Page 11 of 17Yang et al. Cybersecurity (2023) 6:17 	

each word from the BugText, tagging the Part-of-Speech
of them with StanfordNLP (2022) to recognize the noun
words and their modifiers. Besides this, the information
referenced directly and the inline code examples using
“<code> </code>” from the source data are extracted
directly to serve as anchors. For example, in Fig. 5 “dou-
ble” will be extracted from “<code>double</code>”
as the anchor to locate the BugCode directly. In the fol-
lowing, we did lemmatization with NLTK (2022) to
transform the forms of anchors into the original verb
form. For example, in Fig. 5 one of the anchors in “dou-
ble-infested random int generation” is “generation”
and after lemmatization, we get “generate” as the
anchor. For all the anchors, we located the code snip-
pets containing the most anchors to be the BugCode in
our work. There may exist some cases in which anchors
appear in multiple lines of code in the answer. For such
situations, our approach will extract all the pieces of code
snippets for manual validation. And the results show
that our approach covers the majority of BugCode on
StackOverflow.

Evaluation
In this section, we will introduce our experiment set-
ting including the platform and dataset, and evaluate the
bug discovery approach including the end-to-end effec-
tiveness and the effectiveness of each stage. And we will
illustrate the comparison of our individual stage with the
state-of-the-art methods since there exists no similar
end-to-end approach for comparison.

Experiment setting
Dataset To evaluate the process of bug discovery, we lev-
erage 2 datasets for our approach. First, we will introduce
the corpora of StackOverflow and the Ground_Truth
dataset for our approach. Then, we will illustrate the
dataset for each stage evaluation in Sect. 5.2.

•	 Corpora of StackOverflow for experiment Based on
the statistics from StackOverflow (2022), the total
number of question threads focusing on java and
android ranked top one among all the tags on the
forum. Thus we selected these question threads as
our research objects which could be found through
tags. 1000 question threads constitute the corpora of
Stack Overflow for experiment and validation, with
21,713 answers, 41,144 comments, and 82,718 sen-
tences in total.

•	 Ground_truth dataset To measure the feasibility of
the design, we manually analyzed a set of known Bug-
Code validated from the revision history of StackO-
verflow, which is confirmed by two authors within 3
weeks. For questions under [java] and [android], we
manually checked 2000 sentences from 72 question
threads beyond the 1000 threads for the experiment,
with 502 answers and 848 comments. Detecting 249
pieces of Controversial Sentences distributed in 190
answers. 63 pieces of BugCode are confirmed in total.

Platform All the experiments in our study were con-
ducted on the macOS with 2.3 GHz CPU, 16 GB memory
and 256 GB hard drive.

Effectiveness
End-to-end effectiveness. In our experiment, we ran our
discovery approach on randomly selected 1000 threads
from StackOverflow tagged with [java] and [android] to
show the performance. Our approach discovered 1088
pieces of BugCode in total. We randomly selected 300
pieces of BugCode for manual check and it took two
researchers one week to validate the results. 276 pieces
of BugCode were proved to be accurate with third-party
validations with a precision rate of 92.02%, 24 cases are
false positives.

We analyze the 24 false positives from two aspects:
tools and contexts. First, both the sentiment analysis
tool and the dependency parser used in Sect. 3.3 could
introduce incorrect results. We found that 16 of 24 false
positives were mainly introduced by the NLP tools. For
example, the VP extracted from the sentence “Somehow
the branch prediction only has a 25% miss rate, how can
it do better than 50% miss?” is “has a 25% miss rate” and
the VP was recognized as qualified after sentiment analy-
sis. However, it did not contain a negative attitude, this
VP would be misclassified and yielded a false positive in
locating BugCode. Another reason is the complicated
descriptions, they confused both the users and tools by
including both positive attitudes while pointing out the
incorrect part of the answers. For example, in comment
“+1 This I agree with. You should never return half-
initialized objects.”, the first sentence shows a positive

Fig. 7  The performance of VP extraction under different thresholds

Page 12 of 17Yang et al. Cybersecurity (2023) 6:17

attitude, however, it is confusing for both the users and
tools since it does not explicitly mention which object it
agrees with. The tools cannot correctly classify the sen-
tences since the comments’ attitude is unclear.

Effectiveness of CS discovery We randomly selected
1000 sentences from questions under [java] and [android]
to evaluate our approach. To prove the feasibility of our
approach to discovering CSs on all the question threads
on StackOverflow, we also included question threads
tagged with [c++]. Our approach found 266, 263 and
238 CSs, respectively. The results show an average accu-
racy of 94.6% with a relatively low false negatives rate of
4% on [java] compared to evaluations on [android] and
[c++] shown in Table 3, which proved our approach
could be applied to discover CS which are not limited to
specific tags.

We will discuss the methods utilized to handle both
false negatives and false positives. First, the proportion of
negative words may affect the results of sentiment analy-
sis and introduce false negatives. For example, “Try not
to use DISPLAY, HOST or ID - these items could change.”
scored − 0.4 showing a lower negative attitude, while

it indicates the answer may have an error in using DIS-
PLAY, HOST OR ID. However, the sentence “- these items
could change.” reduces the effect of negative words and
affects the result. Most of the false positives were intro-
duced by the tools, since the sentiment analysis tool is
black-boxed, we did fine-grained tokenization for each
sentence by deleting clauses and tokenising the sentence
using custom rules to decrease the false positives.

Then, we compared the tool utilized in our approach
which is Google NLP with the other open-source senti-
ment analysis tools to show remarkable effectiveness.
We manually annotated 2,000 pieces of sentences and
VPs according to our definition of Controversial Sen-
tences and Qualified Verb phrases. Statistics of F1-score,
precision and recall for each selected tool were done for
evaluation. We chose the open source tools ParallelDots,
TextProcessing and Google Natural Language API (2022)
to compare on our dataset. Figure 8 illustrates the perfor-
mance of these tools from three dimensions. On the left,
Google API performed the best on CS discovery from
all three dimensions. When implemented on extracting
qualified VPs, ParallelDots and Google API demonstrate

Table 3  Accuracy of CS extractor

Tags S# CS Non-CS OUR WORK S-HAN Keywords

Acc FNR FPR Acc FNR FPR Acc FNR FPR

Java 1000 266 734 0.96 0.04 0.08 0.26 0.74 0.66 0.08 0.92 0.14

Android 1000 263 737 0.95 0.05 0.07 0.27 0.73 0.31 0.09 0.91 0.03

C++ 1000 238 762 0.93 0.07 0.06 0.24 0.76 0.44 0.03 0.97 0.01

Fig. 8  The performance of different sentiment analysis tools for a CSs and b VPs

Page 13 of 17Yang et al. Cybersecurity (2023) 6:17 	

an equal precision rate while ParallelDots has a lower
recall. In general, Google Natural Language API per-
forms the best and shows that it is the proper choice for
our research.

Then, we further evaluate the effectiveness of our tool
and the tools proposed by top conference papers. Since
there does not exist the exact same tools or models aim-
ing to extract CSs as we did, we chose S-HAN from
Advance Lv et al. (2020) and the keywords extracted from
Ren et al. (2019). Because of the tool developed by Ren
et al. (2019) is not publicly available to access, therefore
we utilize the keywords listed in their work for com-
parison. In Table 3, compared with the method using
keywords-matching, S-HAN showed a relatively higher
accuracy rate and lower false negative rate. The rea-
son for such a dissatisfied performance is that S-HAN
is designed to catch the sentence in a strong tone, while
merely one-quarter of sentences in CSs may have a
strong negative attitude and most of the CSs do not score
with an absolutely high score due to the small proportion
of negative words in each sentence. Not to mention the
keyword-matching methods, one of the obstacles to pro-
cessing the discussions between users is that there do not
exist any fixed patterns or keywords to match. According
to the comparison results, our method shows better per-
formance on CS discovery.

Effectiveness of Bug code context locating From Sect. 3.2,
2155 PCAs were located, after which 5074 pieces of VPs
were extracted and classified as qualified VPs for Bug-
Text Locating. We located 4718 pieces of BugText with
an accuracy rate of 93.2% and a false positive rate of
14.1%. This stage includes three steps of evaluation: VP
extraction, sentiment analysis for VP and dependency
parsing for NP. First, constituency parsing is utilized to
extract VPs from sentences. Looking into the false nega-
tives, we did fine-grained tokenization before extracting
VP, the only reason for some false negatives is the vari-
ous expressing characters may not exist in our custom
rules of tokenization which affected the results. And the
false positives are introduced by the model itself. Second,
another round of sentiment analysis on the extracted VPs
to further located the BugText. Finally, 5074 VPs scored
below − 0.5 are fed into a dependency tree to locate the
VPs or NPs who serve as the BugText in the sentence.
When looking into the false negatives, we found they
may be introduced by the limited categories of BugText.
For any false positives, they could be introduced by the
tools utilized in former steps by classifying incorrectly
the sentences in a positive attitude.

Effectiveness of Bug code Snippet discovery After locat-
ing the BugText from Sect. 3.3, we tried to discover
anchors to help locate the BugCode and we got 11,121
anchors in total with 1088 pieces of BugCode being

detected. This stage is completed by a result filtration
after PoS-tagging with a selection of noun words. All
the anchors will be fed into the next step to search the
BugCode in the answers. In our evaluation, nearly 40%
of the anchors are demonstrative pronouns, indicating
the answer was incorrect while no BugCode could be
matched. With another small portion of anchors directly
referencing the text in PCA; the rest of the anchors could
precisely locate at least one piece of BugCode. After man-
ually checking all the discovered BugCode, we found that
some of the BugCode cannot be found in the answers
but in the revision history which means the answer has
been revised according to the comments. The correctness
of BugCode is proved by other third-party resources via
manual check.

Comparison with the state‑of‑the‑art
We ran three state-of-the-art static analysis tools (SP’17
2017, Infer 2022 and Advance 2020) to evaluate the per-
formance of our work. We chose 100 cases found by our
work to evaluate their performance. Each of the tools
can detect 22 bugs, 7 bugs and 24 bugs, respectively.
We detailed 20 cases including all the types of cases in
supplementary material, including bugs with API key-
words, non-API keywords, API selection issues and
security issues found by our work to further evaluate the
performance and discuss details. SP’17 (2017) focuses
on crypto-API-related bugs while for other non-API
bugs, it barely detected any. Infer (2022) mainly detects
null-dereference and memory leak bugs and it is inca-
pable of detecting other types of security issues such
as stack overflow. And Advance (2020) seems to have a
similar discovering path as ours, except that they rely on
well-defined API constraints from documentation (we
discussed it in Sect. 5.2), when implementing on loosely-
structured text from StackOverflow, it lost its power.

Note that we did not run our approach on the bugs
found by other tools to cross-evaluate the performance,
since our work is in need of sentences expressing atti-
tudes and descriptions of bug code operations to guide
the bug discovery approach. Apparently, the other
tools are incapable of providing such resources for our
approach. However, our work is capable of detecting vari-
ous bug types which could show our performance in bug
discovery.

Measurement
In this part, we illustrate the process of Counterpart
Discovery and Unknown Bug Discovery by introducing
a case. We give the bugs’ details below with examples,
including their category and impact. We also summarize
lessons from our work.

Page 14 of 17Yang et al. Cybersecurity (2023) 6:17

Finding
In this part, we illustrate our findings on the discovered
bugs by our approach and the context of SO related to
bugs.

Discovered Bugs From 1000 question threads, we found
1088 pieces of BugCode. Some of the bugs are security-
related, including stack overflow, memory leak and null
dereference. After manually checking, we find 32 cases
to be known bugs only took up 10.7% and the unknown
bugs consist of 268 cases (89.3%). In our work, we define
the BugCode as having been revised as known bugs for
users; the other pieces of BugCode remain incorrect in
the current version of answers are unknown bugs for
users. For example, Files.createTempDir() is deprecated
before appeared in the answer SO (2022), the answer with
183 upvotes under 439k view-counts was not revised to
the correct one after the BugText has shown up in the
comment. The delay of modification may result in vul-
nerability, since the attacker with access to the machine
may potentially access data in a temporary directory
CVE (2022) assigned by CVE. Directly using code snip-
pets from StackOverflow without checking could intro-
duce security issues in real-world development and the
answers on StackOverflow may be a little bit “out-of-
date” for fast development nowadays.

Problematic answers Problematic answers may mis-
lead users. The issues from each case can be classified
as (1) incomplete answer: the validity of the answer is
confirmed while part of the question is not answered;
(2) incorrect answer: part of the answer contains incor-
rectness when answering the question introducing issues
such as lower performance; (3) out-of-date answer: the
answer was right when it was first written but with the
lapse of time it is outmoded for answering the question;
and (4) potential insecure answer: the answer contains
bugs which will have a security impact, including pro-
gram crash, stack overflow, memory leak, null-deref-
erence, etc. For those answers containing bugs proved
to be true by third-party resources, some of the authors
revised the answer within one day, however, the others
may take several months or years to revise the answer.
And for those answers containing bugs without revision,
two of them remained incorrect for nearly 10 years till
now, four answers remained incorrect for at least 5 years.
Such updating frequency of answers may influence the
security of software development.

Case study
In this section, we pick one case found in our work that
could not be detected by other works based on documen-
tation analysis Lv et al. (2020) and illustrate the process
of counterpart discovery through third-party resources
(e.g., GitHub Issue, documentation, GitHub Commit,

etc.) and bug validation. Figure 9 illustrates the com-
plete process of counterpart discovery and bug valida-
tion. First, we locate the CS from the comment which
is “Directly calling setSeed is dangerous.”. The BugText
extracted from the CS is “directly calling setSeed”. The
impact of this dangerous operation is “It may replace
the (really random) seed with the date.”. For counterpart
discovery, we refer to the documentation of the correct
usage. And in the middle of the figure, the documenta-
tion does not mention the related information on secu-
rity issues. Therefore, we search the GitHub Issue for any
extra information which could support the comment. The
Issue (2022) clearly summarizes the bugs found related to
when using setSeed and the specific rules generated from
practices. We confirm the BugCode “rand.setSeed(new
Date.getTime())” in the PCA after calling SecureRandom
is buggy. We check the dates of the answer and the com-
ment, the bug is still unknown to users. In total, we found
nearly 89.3% BugCode remained in the current version of
answers on StackOverflow. Note that we have reported
all the BugCode found in our work to users. This will help
them when using StackOverflow to help solve developing
issues.3 We will release our tool in the future.

Lessons learnt from our work
In Sect. 6.1, we summarize the overall finding from our
work related to answer issues and potential impact. We
have the unique opportunity to summarize the lessons
learned from our work.

For StackOverflow community
Control the spreading of incorrect code snippets It is the
StackOverflow community’s responsibility to control the
spreading of bug code snippets, these may either mislead
users looking for proper answers or influence the devel-
opment of open-source software. The community should
either highlight the bug code snippet to users or advise
users to revise their answers to improve the answers’
quality. And also the community should remind the users
to carefully deal with the answers containing incorrect
code snippets.

For users sharing knowledge on SO
Write complete and explicit comments for answers
improvement When leaving comments about the doubts
or incorrectness of the answers, users are required to pro-
vide the correct and explicit information to help improve
the answers. Based on our observation, a certain amount
of users would not correct the answers and just indicate
the current answer may not be correct, which may result

3  https://​anony​mous.​4open.​scien​ce/r/​SO-​bugs-​disco​vered-​BF8A/.

https://anonymous.4open.science/r/SO-bugs-discovered-BF8A/

Page 15 of 17Yang et al. Cybersecurity (2023) 6:17 	

in severe impact when the buggy answer remained incor-
rect. Lack of useful information to correct the answer or
implicit information from the comments may influence
the time period of answer updating, since the author of
the answer may not know how to locate and fix the buggy
part of the answers by reading the comments.

For users requiring knowledge from SO
Use SO as a supplementary resource for software devel-
opment After our manual check, we find that the bug
found in SO could be validated from GitHub Commits
or Issues, which indicates that the buggy code snippets
from SO may have been utilized to develop software.
The accepted answers or the relatively higher votes-up
of each answer may influence the users when choosing
the solutions. Since SO is a combination of knowledge
resources including expertise, official documentation
links related to the question and third-party links used to
validate the answer. Therefore, it is proper to utilize SO

as a supplementary resource to develop software rather
than directly copying the code snippets from answers.

Discussion
In this section, we illustrate the limitations of our work
as follows.

Problematic answers In Sect. 3.2, Google Natural
Language API is adopted to complete sentiment analy-
sis. Since the model inside is black-box, only the output
of the tool is available for users, thus any false positives
or false negatives yielded are inextricable. These errors
introduced by the tool may influence our results in bug
discovery.

False positives introduced by the context of SO The
complicated content of comments also yielded false
positives for our work. We found some of the comments
included both positive attitudes towards the answer and
the description of the incorrect operation. Natural lan-
guage understanding techniques may have the poten-
tial to avoid such cases, however, they may need a great

Fig. 9  The API-selection case for counterpart discovery and unknown bug discovery and validation

Page 16 of 17Yang et al. Cybersecurity (2023) 6:17

amount of high-quality corpus to build a solid knowledge
database. The current version of our work is incapable of
handling such a situation.

Related work
Recent years have witnessed the emerging demand for
knowledge sharing and its impact on security-related
code practice. In this section, we discuss the related work
on bug detection through documentation and code, and
the research related to StackOverflow. We classify them
into three types: bug detection through document analy-
sis, bug detection through code comparison and fuzzing,
and research on StackOverflow.

Bug detection through document analysis In recent
years, the amount of research on document analysis
for bug detection are increasing rapidly. Researchers
attempt to exact API constraints from official manuals to
help with bug detection. Advance (2020) is designed to
extract rules from C++ official documentation, and gen-
erate verification code from API descriptions to detect
unknown bugs on open-source projects. Zhong et al.
(2011) and Pandita et al. (2016) propose different ways to
extract API constraints and API call-order rules, respec-
tively, to detect the inconsistency between the context
information and source code. Different from them, our
work detects bugs by analyzing comments in StackOver-
flow which has more loosely organized writings.

Bug detection through code comparison and fuzz-
ing Another general way to detect bugs is code analysis.
Code comparison and fuzzing are two of the common
methods. Ahmadi et al. (2021) propose a method to com-
pare the structure of similar code snippets to detect bugs.
Yamaguchi et al. (2013) propose to do a taint analysis on
code to extract security-related objects exceptions and
missing conditions to speed up the manual check. You
et al. (2017 propose SemFuzz to extract vulnerability-
related information to guide fuzzing. Zong et al. (2020)
propose FuzzGuard to filter the seed for fuzzing to
increase the efficiency of fuzzers.

Research on StackOverflow Security research on Stack-
Overflow includes several research areas: Meldrum et al.
(2020) propose a measurement work on evaluating the
answers’ quality on StackOverflow, and the result shows
users need to be cautious when reusing the code snip-
pets from StackOverflow. Fischer et al. (2017) utilize
a static code analysis tool to detect the code similarity
between code snippets from SO and applications from
the Android market to label the insecure code snip-
pets on SO. Chen et al. (2019) conduct a measurement
work on the security-related posts on StackOverflow
and found that insecure posts had more view counts and
higher scores. Ren et al. (2019) propose a similar work
to ours, they proposed an approach to find controversial

answers among all the accepted answers on StackOver-
flow and combined the extracted information with offi-
cial API documentation to help users better understand
the controversies. In our work, we propose a new dis-
covery approach to dig out the buried knowledge from
comments with no guidance of any API keywords and
discover the bugs on SO.

Conclusion
In this paper, we propose an automatic approach to
exploit the knowledge from discussions on the guidance
of bug discovery on StackOverflow. Utilizing NLP tech-
niques, we leverage sentiment analysis to discover CSs
from discussions, constituency parsing and dependency
parsing to assist the process of BugText Locating. Then
a fine-grained tokenization method is adopted to extract
anchors which help the discovery process of BugCode.
We applied our approach on 1000 threads from StackO-
verflow and discovered 1088 pieces of BugCode in total,
achieving a precision rate of 95.5% in CS Discovery. In
randomly selected 300 pieces of BugCode, 276 real bugs
were discovered by our approach and 89.3% of them
remained in the current version of answers without revi-
sion which may further mislead the users.

Acknowledgements
We would like to thank the anonymous reviewers for their detailed comments
and useful feedback.

Author contributions
YY: investigation, conceptualization, methodology, materials, writing, editing,
experiment, validation, review, resources. YL: experiment, validation, review.
KC: discussion, review, supervision. JL: experiment, review. All authors read and
approved the final manuscript.

Funding
Not applicable.

Availibility of data and materials
Not applicable.

Declarations

Competing interests
We confirm that none of the authors has any competing interests in the
manuscript.

Received: 28 December 2022 Accepted: 19 March 2023

References
Aggarwal A, Jalote P (2006) Integrating static and dynamic analysis for detect-

ing vulnerabilities. In: 30th annual international computer software and
applications conference (COMPSAC’06), vol 1, pp 343–350. IEEE

Ahmadi M, Farkhani RM, Williams R, Lu L (2021) Finding bugs using your own
code: detecting functionally-similar yet inconsistent code. In: 30th USE-
NIX security symposium (USENIX Security 21), pp 2025–2040

Page 17 of 17Yang et al. Cybersecurity (2023) 6:17 	

Amin A, Eldessouki A, Magdy MT, Abdeen N, Hindy H, Hegazy I (2019)
Androshield: automated android applications vulnerability detection, a
hybrid static and dynamic analysis approach. Information 10(10):326

Ayewah N, Pugh W, Hovemeyer D, Morgenthaler JD, Penix J (2008) Using static
analysis to find bugs. IEEE Softw 25(5):22–29

Böhme M, Pham V-T, Nguyen M-D, Roychoudhury A (2017) Directed greybox
fuzzing. In: Proceedings of the 2017 ACM SIGSAC conference on com-
puter and communications security, pp 2329–2344

Bug-java (2022) http://​bugs.​java.​com/​bugda​tabase/​view_​bug.​do?​bug_​id=​
50035​95

Chen M, Fischer F, Meng N, Wang X, Grossklags J (2019) How reliable is the
crowdsourced knowledge of security implementation? In: 2019 IEEE/
ACM 41st international conference on software engineering (ICSE), pp
536–547 (2019). IEEE

Chen D, Manning CD (2014) A fast and accurate dependency parser using
neural networks. In: Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pp 740–750

Chen H, Xue Y, Li Y, Chen B, Xie X, Wu X, Liu Y (2018) Hawkeye: Towards a
desired directed grey-box fuzzer. In: Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security, pp
2095–2108

Constituency Parser (2022) https://​github.​com/​nitis​hgupta/​const​ituen​cy-​
parse-​predi​ctor

CVE-2020-8908. https://​cve.​mitre.​org/​cgi-​bin/​cvena​me.​cgi?​name=​CVE-​2020-​
8908 (2022)

Fischer F, Böttinger K, Xiao H, Stransky C, Acar Y, Backes M, Fahl S (2017) Stack
overflow considered harmful? the impact of copy & paste on android
application security. In: 2017 IEEE symposium on security and privacy
(SP), pp 121–136. IEEE

Gardner M, Grus J, Neumann M, Tafjord O, Dasigi P, Liu NF, Peters M, Schmitz
M, Zettlemoyer LS (2017) Allennlp: a deep semantic natural language
processing platform arXiv:​1803.​07640

Google NLP API (2022) https://​cloud.​google.​com/​docs/
Infer (2022) https://​github.​com/​faceb​ook/​infer/
Issue-3 (2022) https://​github.​com/​rakcy/​code-​scann​er-​demo/​issues/​3/
Joshi C, Singh UK, Tarey K (2015) A review on taxonomies of attacks and

vulnerability in computer and network system. Int J 5(1)
Kiss B, Kosmatov N, Pariente D, Puccetti A (2015) Combining static and

dynamic analyses for vulnerability detection: illustration on heartbleed.
In: Hardware and software: verification and testing: 11th international
Haifa verification conference, HVC 2015, Haifa, Israel, November 17–19,
2015, Proceedings 11, pp 39–50. Springer, Berlin

Li J, Zhao B, Zhang C (2018) Fuzzing: a survey. Cybersecurity 1(1):1–13
Lv T, Li R, Yang Y, Chen K, Liao X, Wang X, Hu P, Xing L (2020) Rtfm! automatic

assumption discovery and verification derivation from library document
for api misuse detection. In: Proceedings of the 2020 ACM SIGSAC confer-
ence on computer and communications security, pp 1837–1852

Medhat W, Hassan A, Korashy H (2014) Sentiment analysis algorithms and
applications: a survey. Ain Shams Eng J 5(4):1093–1113

Meldrum S, Licorish SA, Owen CA, Savarimuthu BTR (2020) Understanding
stack overflow code quality: a recommendation of caution. Sci Comput
Program 199:102516

NLTK (2022) https://​nltk.​org/
Pandita R, Taneja K, Williams L, Tung T (2016) Icon: inferring temporal con-

straints from natural language API descriptions. In: 2016 IEEE interna-
tional conference on software maintenance and evolution (ICSME), pp
378–388. IEEE

Ren X, Sun J, Xing Z, Xia X, Sun J (2020) Demystify official API usage directives
with crowdsourced API misuse scenarios, erroneous code examples and
patches. In: Proceedings of the ACM/IEEE 42nd international conference
on software engineering, pp 925–936

Ren X, Xing Z, Xia X, Li G, Sun J (2019) Discovering, explaining and summariz-
ing controversial discussions in community q &a sites. In: 2019 34th IEEE/
ACM international conference on automated software engineering (ASE),
pp 151–162. IEEE

Ren X, Ye X, Xing Z, Xia X, Xu X, Zhu L, Sun J (2020) API-misuse detection driven
by fine-grained API-constraint knowledge graph. In: 2020 35th IEEE/ACM
international conference on automated software engineering (ASE), pp
461–472 . IEEE

SO-617414 (2022) https://​stack​overf​low.​com/​quest​ions/​617414/​how-​to-​cre-
ate-​a-​tempo​rary-​direc​tory-​folder-​in-​java/​64038​80#​64038​80

SO-vote-up (2022) https://​stack​overf​low.​com/​help/​privi​leges/​vote-​up
Spacy (2022) https://​spacy.​io/
Stackexchange (2022) https://​api.​stack​excha​nge.​com/
Stackoverflow. https://​stack​overf​low.​com/ (2022)
Stanfordnlp (2022) https://​nlp.​stanf​ord.​edu/​softw​are/
Yamaguchi F, Wressnegger C, Gascon H, Rieck K (2013) Chucky: exposing

missing checks in source code for vulnerability discovery. In: Proceedings
of the 2013 ACM SIGSAC conference on computer & communications
security, pp.499–510

You W, Zong P, Chen K, Wang X, Liao X, Bian P, Liang B (2017) Semfuzz:
semantics-based automatic generation of proof-of-concept exploits. In:
Proceedings of the 2017 ACM SIGSAC conference on computer and com-
munications security, pp 2139–2154

Zhang M (2020) A survey of syntactic-semantic parsing based on constituent
and dependency structures. Sci China Technol Sci 63(10):1898–1920

Zhong H, Zhang L, Xie T, Mei H (2011) Inferring specifications for resources
from natural language API documentation. Autom Softw Eng
18(3):227–261

Zhou Y, Gu R, Chen T, Huang Z, Panichella S, Gall H (2017) Analyzing APIs docu-
mentation and code to detect directive defects. In: 2017 IEEE/ACM 39th
international conference on software engineering (ICSE), pp 27–37. IEEE

Zong P, Lv T, Wang D, Deng Z, Liang R, Chen K (2020) {FuzzGuard} : Filtering out
unreachable inputs in directed grey-box fuzzing through deep learning.
In: 29th USENIX security symposium (USENIX security 20), pp 2255–2269

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://bugs.java.com/bugdatabase/view_bug.do?bug_id=5003595
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=5003595
https://github.com/nitishgupta/constituency-parse-predictor
https://github.com/nitishgupta/constituency-parse-predictor
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8908
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8908
http://arxiv.org/abs/1803.07640
https://cloud.google.com/docs/
https://github.com/facebook/infer/
https://github.com/rakcy/code-scanner-demo/issues/3/
https://nltk.org/
https://stackoverflow.com/questions/617414/how-to-create-a-temporary-directory-folder-in-java/6403880#6403880
https://stackoverflow.com/questions/617414/how-to-create-a-temporary-directory-folder-in-java/6403880#6403880
https://stackoverflow.com/help/privileges/vote-up
https://spacy.io/
https://api.stackexchange.com/
https://stackoverflow.com/
https://nlp.stanford.edu/software/

	Jeu de mots paronomasia: a StackOverflow-driven bug discovery approach
	Abstract
	Introduction
	Background
	Vulnerability detection
	Natural language processing

	Design
	Overview
	Controversial sentence discovery
	Bug code context locating
	Bug code Snippet discovery

	Implementation
	Bug code Snippet discovery

	Evaluation
	Experiment setting
	Effectiveness
	Comparison with the state-of-the-art

	Measurement
	Finding
	Case study
	Lessons learnt from our work
	For StackOverflow community
	For users sharing knowledge on SO
	For users requiring knowledge from SO

	Discussion
	Related work
	Conclusion
	Acknowledgements
	References

