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Abstract
This paper considers an auctioneer who has a non-monotonic utility function with 
a unique maximizer. The auctioneer is able to reject all bids over some amount by 
using rejection prices. We show that the optimal rejection price for such an auction-
eer is lower than and equal to that maximizer in first-price and second-price sealed-
bid auctions, respectively. Further, in each auction we characterize a necessary and 
sufficient condition that by using the optimal rejection price not only the auctioneer 
but also bidders can be better off, compared to a standard auction. Finally, we find 
that the auctioneer strictly prefers a first-price sealed-bid auction if he is risk-averse 
when his revenue is lower than the maximizer or if the distribution of revenues which 
are lower than the maximizer in a standard first-price sealed-bid auction is first-order 
stochastic dominant over the one in a standard second-price sealed-bid auction.

Keywords Auction · Rejection prices · Non-monotonic utility · Pareto improvement

JEL Classification D44 · D82

1 Introduction

In standard auction theory, it is assumed that an auctioneer’s utility monotonically 
increases with money. In this paper, contrary to the standard assumption, we con-
sider an auctioneer with non-monotonic utility.

Here is a real-life example.1 Nowadays, in land auctions many of China’s local 
governments set a highest selling price for each land and then the land auction will 
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be ended if the bids go above it. The news reported that why the local governments 
introduced the mechanism was to control surging land costs that had been driving up 
home prices. This is because the local governments are concerned about the impacts 
of high home prices such as aggravating the real estate bubble, declining the fertility 
rate,2 slashing people’s living standards and so on. Therefore, the local governments 
would like to keep the land price within a reasonable range.

Two features are important in this example. First, the auctioneer (the local govern-
ments in China) has a non-monotonic utility function with a unique maximizer (interior). 
This is because the land price imposes a negative externality which increases with money 
on his utility. Hence the utility of the auctioneer increases with money while the exter-
nality is small but decreases while it is large enough. Second, the auctioneer may refuse 
all bids over some amount (in this paper we call it a rejection price). Being afraid of the 
negative externality, the auctioneer would like to refuse the bid which is higher than the 
rejection price in order to maximize his expected utility.

In fact, such a kind of auctioneer is not uncommon in reality. In a large auction 
in which the worth of a good is large compared to the wealth of a bidder, the auc-
tioneer may also have a non-monotonic utility function. This is because winners can 
declare bankruptcy if the good is worth less than expected. Therefore similar to the 
local governments in China, the auctioneer is also concerned about high hammer 
prices. For example, in the 1996 radio frequency spectrum auction in the U.S., the 
winning bids totaled 10.2 billion dollars, but the auctioneer raised only 400 million 
dollars in the next three years, since many of the winners declared bankruptcy.3

The goal of this paper is to study how an auctioneer who has a non-monotonic 
utility function with a unique maximizer can use the rejection price to increase 
expected utility in a first-price sealed-bid auction (FPA) and a second-price sealed-
bid auction (SPA). We also investigate whether using the rejection price can also 
increase bidders’ expected utilities or not. And we examine which auction does an 
auctioneer with non-monotonic utility prefer.

In our model, an auctioneer announces publicly a rejection price before a given 
FPA or SPA starts. Subsequently, n risk-neutral bidders bid for an object. At the end 
of bidding, the bids which do not exceed the rejection price are called effective bids. 
The bidder with the highest bid among the effective bids gets the object and pays 
the highest and second-highest one among the effective bids in the FPA and SPA, 
respectively.

For a given FPA or SPA with a rejection price in an environment with indepen-
dently and identically distributed private values, we first show an equilibrium bid-
ding behavior which is based on a natural equilibrium bidding behavior in a standard 
FPA or SPA.4 In an SPA with a rejection price the optimal strategy for the bidder is 
bidding the lower one between his private value and the rejection price, since there 
is no incentive for a bidder to bid higher than his private value (suffer a loss) or the 
rejection price (be rejected). In an FPA with a rejection price, we find that in the 

2 Yi and Yi (2008) investigate the effect of increasing housing prices on Hong Kong’s fertility rate.
3 See Zheng (2001) and Board (2007).
4 Note that standard FPAs and SPAs can be regarded as FPAs or SPAs with infinite rejection prices, 
respectively.
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equilibrium bidding strategy there exists a jump point below which bidders bid the 
same as the standard model and above which bidders bid the rejection price. Why 
does the jump point exist? If the equilibrium bidding strategy were continuous at 
that point, a bidder whose value is slightly lower than that point would improve his 
payoff by bidding the rejection price. This is because he could win bidders whose 
value is higher than that point. So the equilibrium bidding strategy should be discon-
tinuous at that point.

Then we show the optimal rejection price for the auctioneer by assuming that the 
auctioneer believes that all bidders will follow the equilibrium bidding behavior if 
he announces a rejection price. In an SPA with a rejection price, the optimal rejec-
tion price is just the unique maximizer. In an FPA with a rejection price, the optimal 
rejection price could be the unique maximizer. But due to the discontinuous bidding 
strategy, with a lower rejection price bidders are more likely to bid it in an FPA than 
in an SPA, i.e., the auctioneer has much more probability of receiving the rejection 
price. Hence the optimal rejection price will be lower than the unique maximizer if a 
loss by receiving the lower rejection price can be negligible.

Note that no matter an FPA or an SPA becomes inefficient with a rejection price, 
since the object may not end up in the hands of the bidder who values it the most ex 
post if there are more than two bidders whose values are higher than the rejection 
price. Perhaps more surprisingly, not only the auctioneer but also bidders are better 
off under the optimal rejection price. This is the case if and only if the bidder with 
the maximum value is better off. Namely, the optimal rejection price results in a 
Pareto improvement.

Finally, we study the preferences of the auctioneer over the two auctions. In 
standard auction theory, Matthews (1979) and Waehrer et  al. (1998) show that a 
risk-averse auctioneer strictly prefers an FPA to an SPA. Similarly, we prove that 
with the optimal rejection price the auctioneer also strictly prefers an FPA to an SPA 
if he is risk-averse when his revenue is lower than the maximizer or if the distribu-
tion of revenues which are lower than the maximizer in a standard FPA is first-order 
stochastic dominant over the one in a standard SPA. And we also find some cases 
where the auctioneer strictly prefers an SPA to an FPA.

Our paper is related to the literature on buy prices. In an auction with a buy price, 
a winner bidding the buy price pays it. In contrast, in the SPA with a rejection price, 
a winner bidding the rejection price pays the second-highest effective bid. Due to 
the difference, in an SPA with a buy price, a natural equilibrium candidate where 
each bidder bids the lower one between his private value and the buy price is not an 
equilibrium. In fact, the extant papers do not study buy prices in SPAs with continu-
ously distributed types. Budish and Takeyama (2001) study a simple model with two 
bidders and two types, and find that a risk-neutral auctioneer gains by augmenting 
his auction with a buy price when bidders are risk-averse. And Inami (2011) extends 
these results to a model with n bidders where bidders’ types are discretely distrib-
uted. Hidvegi et al. (2006) study buy prices in English auctions with continuously 
distributed types. They find a unique equilibrium which depends on the information 
structure of the English auction. Mathews (2003) and Mathews and Katzman (2006) 
study temporary buy prices in auctions with continuously distributed types. They 
show that a risk-averse auctioneer can gain from augmenting his auction with a buy 



 Z. Shui 

1 3

price and this option may result in a Pareto improvement compared to a standard 
auction.

Our paper is also related to the literature on bid caps (ceiling prices) which is 
basically the same as the rejection prices. Chowdhury (2008) analyzes a simple SPA 
with independent private values where the bidders may potentially collude. An opti-
mal policy which includes both a reserve price and an efficient ceiling price prevents 
collusion. Gavious et  al. (2002) consider bid caps in symmetric all-pay auctions 
and show that the auctioneer might benefit from a bid cap if bidders’ cost functions 
are convex and the number of bidders is sufficiently large. Sahuguet (2006) studies 
asymmetric all-pay auctions with private values and shows that capping the bids is 
profitable for an auctioneer.

Our paper is different in an important way from the literature mentioned above. 
To maximize an auctioneer’s expected utility, the most frequent studies for auctions 
with a buy price or a ceiling price focus on incentivizing bidders with different risk 
attitudes to bid aggressively. On the contrary, we focus our attention on an auction-
eer whose utility is non-monotonic and has a unique maximizer to restrain risk-neu-
tral bidders’ bids to maximize his expected utility. This is because high transaction 
price sometimes imposes a negative externality to the auctioneer’s utility, as we 
mentioned such as aggravating the real estate bubble and declining the fertility rate 
in land auctions.

Muto et  al. (2020) study a “pro-buyer” auction designer who maximizes the 
weighted sum of the bidders’ and auctioneer’s expected payoffs where the weight 
for the auctioneer is lower.5 And they show some optimal auctions have a bid cap, 
i.e., similarly to our paper the auction designer dislikes high bids in those auc-
tions as well. Moreover, the auction designer’s objective function may also be non-
monotonic.6 In our paper, the auctioneer caps bids by employing a rejection price to 
maximize his expected utility, since he has a non-monotonic utility with a unique 
maximizer. And because in some cases all bidders can be better off with the optimal 
rejection price, the auctioneer can be “pro-buyer” as well.

From the bidders’ perspective, an auction with a rejection price is equivalent to 
the auction where all bidders are subject to a commonly known budget constraint 
that equals the rejection price. Hence our paper is also related to the literature on 
budget constraints. But none of them are similar to our paper. Laffont and Robert 
(1996) assume that all bidders have the same common budget constraint and derive 
the revenue maximizing auction.7 Maskin (2000) examines the constrained effi-
ciency in the same environment. Unlike them, the common budget constraint in our 

5 For example, a social planner (auction designer) tends to choose pro-consumer policies for political 
reasons.
6 See Example 3 of Muto et al. (2020).
7 They show the optimal auction takes the form of an all-pay auction. Namely, the auctioneer’s expected 
revenue is maximized in an all-pay auction with a given rejection price. Nevertheless, it is difficult to 
analyze the all-pay auction in our model, since the auctioneer has a general non-monotonic utility func-
tion.
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model, i.e., the rejection price is manipulated by the auctioneer. We find an optimal 
common budget constraint for an auctioneer with non-monotonic utility.

In an environment where budget constraints are private information8 and contin-
uously distributed, Che and Gale (1998) derive the equilibrium for auctions with 
budget constraints and show that revenue equivalence no longer holds. Kotowski 
(2019) studies an FPA in which bidders’ valuations are interdependent and shows 
that in an equilibrium bidders may adopt discontinuous bidding strategies. Che and 
Gale (1998) compare the revenues to be realized by standard common value auc-
tions. And Bobkova (2020) solves an FPA for two bidders with asymmetric budget 
distributions and common valuations. However, our model is not a special case in 
any of them since in our model neither bidders’ valuations are common nor the 
rejection price corresponds to private budget constraints.

The rest of this paper is organized as follows. In Sect. 2, we present the basic set-
ting and assumptions. In Sect. 3, we study an FPA and an SPA with rejection prices. 
In Sect. 4, we compare the two auctions. In Sect. 5, we discuss a more general non-
monotonic utility. Section 6 concludes.

2  Model

There is one indivisible object for sale, and n potential risk-neutral bidders are 
bidding for the object. Bidder i ∈ N = {1, 2, ..., n} assigns a private value of vi to 
the object and vi is independently and identically distributed on some interval 
[v, v̄] ⊂ [0,∞) according to an increasing distribution function F(⋅) . It is assumed 
that F(⋅) admits a continuous density f (⋅) = F�(⋅) > 0 and has full support.

In this paper, we consider that the auctioneer has a non-monotonic utility func-
tion with a unique maximizer. We assume that u(⋅) is strictly increasing on the inter-
val [0, v∗] and is strictly decreasing on the interval (v∗,∞) , where v∗ ∈ (v, v̄) denotes 
the unique maximizer. For tractability, we assume that the utility function u(⋅) is 
continuous on the interval [0,∞) . Note that in the case v∗ ≤ v , the auctioneer is will-
ing to sell the object for v∗ in the auction since his utility is strictly decreasing on 
(v∗,∞) . And in the case v∗ ≥ v̄ , the utility function is just the same as the standard 
assumption. Hence it is not interesting to study these two cases.

We provide an example of non-monotonic utility functions with a unique max-
imizer, using the example of the radio frequency spectrum auction. Let the proba-
bility that the winner declares bankruptcy is 𝛼p∕v̄ where p ∈ [v, v̄] is the winner’s 
payment and � ∈ (0, 1] . Then the auctioneer’s utility is p(1 − 𝛼p∕v̄) which is a 
parabola opening downward. If we additionally assume 𝛼 ∈ (1∕2, v̄∕2v) , we have 
the unique maximizer p∗ = v̄∕2𝛼 ∈ (v, v̄).

8 Burkett (2015) considers a situation in which each firm privately constrains the budget of its manager 
(bidder) to prevent the manager overpaying for auction items, since the manager simply receives some 
private payoff from managing the auction items. In our paper, the auctioneer manipulates the bidders’ 
common budget.
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Before a given kth-price sealed-bid auction starts, for k ∈ {I,II} , the auction-
eer can announce a rejection price Rk ∈ (v, v̄) . That is, the auctioneer rejects bids 
above Rk . At the end of the auction, the bidder who gives the highest bid among 
the bids which are not rejected wins the object and pays the kth-highest one 
among the bids which are not rejected. We assume that if there is a tie the object 
goes to each winning bidder with equal probability, i.e., when l bids tie, each 
winning bidder gets the object with probability 1/l, for any l ∈ N.

In a given kth-price sealed-bid auction with a rejection price Rk , we let bi 
denote bidder i’s bid for every i ∈ N and b = (b1, b2, ..., bn) denote the bid profile. 
Notice that we assume v ≥ 0 , so that no bidder would bid a negative amount. So 
we can let bi1{bi≤Rk}

 denote bidder i’s bid after screening by a rejection price Rk , 
for every i ∈ N and k ∈ {I,II} , where

Then bidder i can win the object only if Rk ≥ bi = max
j
{bj1{bj≤Rk}

} . And we let 
l(bi) = |{bj|bj = bi, j = 1, 2, ..., n}| denote the number of bids which are equal to bi . 
For every i ∈ N and k ∈ {I,II} , we let uk(vi, b) denote the utility of the bidder i with 
the bid profile b. More concretely,

in an FPA with a rejection price RI , and

in an SPA with a rejection price RII.

3  Analysis

In this section, we study an FPA and an SPA with rejections prices. In each auc-
tion, we study equilibrium bidding strategies and examine what effect such a rejec-
tion price has on the expected utilities of the auctioneer. And we investigate whether 
using the rejection price can also increase bidders’ expected utilities or not.

3.1  Equilibrium bidding strategies

First, we study equilibrium bidding strategies in an SPA with a rejection price 
RII . In this paper, we consider extending a natural equilibrium bidding strategy 

1{b
i
≤R

k
} =

{
1 if b

i
≤ R

k

0 if b
i
> R

k
.

uI
(
vi, b

)
=

{(
vi − bi

)
∕l(bi) ifRI ≥ bi = max

j

{
bj1{bj≤RI}

}

0 otherwise

uII
(

vi, b
)

=

⎧

⎪

⎨

⎪

⎩

(

vi −max
j≠i

{bj1{bj≤RII}}
)

∕l(bi) ifRII ≥ bi = max
j

{

bj1{bj≤RII}

}

0 otherwise
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in a standard SPA to our model. Consider bidder i ∈ N with value vi . Note that 
the truth-telling is a weakly dominate strategy in a standard SPA. Hence when 
vi ≤ RII , the truth-telling is a weakly dominate strategy for him, since he still has 
no incentive to bid higher or lower than his value.

When vi > RII , there is no incentive for him to bid higher than RII , and if he 
bids the rejection price RII his payoff is at least as high as bidding less than the 
rejection price at the end of the auction. Namely, bidding the rejection price is a 
weakly dominate strategy for him when vi > RII . Then the bidding strategy in an 
SPA with a rejection price is that any bidder bids the lower one between his value 
and the rejection price.

Proposition 1 In an SPA with a rejection price RII , �II(vi) = min {vi,RII} is an equi-
librium bidding strategy.

Remark 1 As we mentioned in the introduction, our paper is related to the litera-
ture on buy prices, though none of them study a buy price in an SPA with continu-
ously distributed values. Budish and Takeyama (2001) and Inami (2011) study mod-
els with discretely distributed types. With continuously distributed values, Hidvegi 
et al. (2006) study English auctions, and Mathews (2003) and Mathews and Katz-
man (2006) study temporary buy prices. If we replace the rejection price to a buy 
price in our model, the bidding strategies in Proposition 1 are not equilibria. This 
is because the expected utility of a bidder with value equals the buy price is 0 if he 
bids the buy price, but his expected utility must be positive if he bids slightly lower 
than the buy price. In fact, it is not easy to find and may be impossible to find pure 
equilibrium bidding strategies in an SPA with a buy price, where bidders’ values are 
continuously distributed. Hidvegi et al. (2006) find a unique pure equilibrium bid-
ding strategy in an English auction with a buy price. But in the equilibrium whether 
a bidder bids the buy price or not depends on the current high bid, i.e., it cannot be 
extended in an SPA with a buy price.

Now, we study equilibrium bidding strategies in an FPA with a rejection price 
RI . As we mentioned in the introduction, from the bidders’ perspective a rejection 
price can be regarded as a common budget constraint that is equal to the rejection 
price. In an FPA with private budget constraints which are continuously distrib-
uted, Che and Gale (2000) propose sufficient conditions ensuring increasing and 
continuous equilibrium bidding strategies. Further, Kotowski (2019) shows that 
under some conditions there exist increasing but discontinuous equilibrium bid-
ding strategies in the same environment. He also shows the existence of the dis-
continuous equilibrium bidding strategies with a numerical case in which private 
budget constraints are discretely distributed. Although in our model the rejec-
tion price does not correspond to private budget constraints, we show that, like 
(Kotowski 2019), there exist (weakly) increasing and discontinuous equilibrium 
bidding strategies.
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Let �(v) denote the equilibrium bidding strategy by a bidder with value v ∈ [v, v̄] 
in a standard FPA, i.e.,

Based on Proposition 1, we may conjecture an equilibrium bidding strategy such 
that some types of the bidders bid the rejection price and the other types of the bid-
ders follow �(v) . Therefore, for a given rejection price RI , there exists some value vJ 
that bidders whose values are higher than vJ bid the rejection price and the bidders 
whose value is lower than vJ follow �(v) . And the bidder with value vJ must be indif-
ferent between bidding the rejection price RI and the standard bid �(vJ) . The follow-
ing lemma shows that in such an equilibrium bidding strategy, the value vJ uniquely 
exists if RI ∈ (v, 𝛽(v̄)) and it is strictly increasing in RI.

Lemma 1 For any given RI ∈ (v, 𝛽(v̄)) , there uniquely exists vJ ∈ (v, v̄) which 
satisfies

And dvJ
dRI

> 0 when RI ∈ (v, 𝛽(v̄)).

Proof See Appendix A.1.   ◻

Based on Lemma 1, we can prove the next proposition which states that in some 
cases the conjecture that for a given rejection price RI the bidders whose values are 
higher than vJ bid the rejection price and the others follow �(v) is right.

Proposition 2 In an FPA with a rejection price RI,

(i) if RI < 𝛽(v̄),

is an equilibrium bidding strategy, where vJ is a jump point which satisfies that

(ii) if RI ≥ 𝛽(v̄) , for every vi ∈ [v, v̄]

is an equilibrium bidding strategy.

�(v) =

(
∫

v

v

tdFn−1(t)

)
∕Fn−1(v).

Fn−1
(
vJ
)(
vJ − �(vJ)

)
=

1

n

n∑
i=1

Fn−i(vJ)(vJ − RI).

𝛽I(vi) =

{
𝛽(vi) if vi < vJ
RI if vi ≥ vJ

Fn−1(vJ)
(
vJ − �(vJ)

)
=

1

n

n∑
i=1

Fn−i(vJ)
(
vJ − RI

)
;

�I(vi) = �(vi)
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Proof See Appendix A.2.   ◻

Proposition 2 implies that there exists a jump point in the equilibrium bidding 
strategy if the rejection price works ( RI < 𝛽(v̄) ), i.e., such a rejection price induces 
some bidders to bid higher than they bid in the standard model. One may imag-
ine that the bidders might bid 𝛽I(vi) = min {𝛽(vi),RI} like the bidding strategy 
�II(vi) . Due to Lemma 1 the interim expected utility of a bidder is discontinuous at 
v = �−1(RI) in this case. Hence a bidder whose value is lower than �−1(RI) and suf-
ficiently closes to it can get a gain by bidding the rejection price, since RI < 𝛽−1(RI) . 
Namely he prefers bidding the rejection price to bidding the bid in the standard 
model. Conversely, in the equilibrium, the interim expected utility of a bidder is 
continuous, since the equilibrium bidding strategy �I(vi) is discontinuous at the low-
est value among all values with which a bidder bids the rejection price.

3.2  Optimal rejection prices

In this paper, we only focus on the equilibrium bidding strategies in Propositions 1 
and 2. Now we examine what effect such a rejection price has on the expected utili-
ties of the auctioneer in each auction.

In an SPA with a rejection price RII , the equilibrium bidding strat-
egy �II(vi) = min {vi,RII} is weakly increasing in vi . Let � be the second-
highest value among v1, v2, ..., vn . Then at the end of the auction, the auc-
tioneer’s revenue is the second-highest bid min{�,RII} which is bid by the 
bidder with value � . If � ≤ v∗ , then u(min{�,RII}) ≤ u(�) = u(min{�, v∗}) , otherwise 
u(min{�,RII}) ≤ u(v∗) = u(min{�, v∗}) . Notice that min{�, v∗} is the second-highest 
bid when RII = v∗ , i.e., it is ex-post rational for the auctioneer to use the rejection 
price RII = v∗ . The following proposition also shows the uniqueness of the rejection 
price RII = v∗.

Proposition 3 (Truth-telling for auctioneer) In an SPA with a rejection price RII , the 
unique optimal rejection price is R∗

II
= v∗.

Proof See Appendix A.3.   ◻

Remark 2 Proposition 3 holds even if u(⋅) is discontinuous on the interval [v, v̄] . This 
is because our proof in Proposition 3 does not rely on the continuity of u(⋅).

In an FPA with a rejection price RI , we find that it is not profitable for an auction-
eer to set a rejection price higher than the maximizer, if the maximizer is lower than 
the maximum equilibrium bid in a standard model. Let UI(RI) denote the expected 
utility of the auctioneer in an FPA with a rejection price RI . And let vJ(RI) denote the 
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jump point with a rejection price RI by Lemma 1. For notational simplicity, we drop 
RI in vJ(RI) when there is no ambiguity.

Proposition 4 In an FPA with a rejection price RI , if v∗ < 𝛽(v̄) , the optimal rejection 
price R∗

I
 is unique and is in (v, v∗] . Moreover, if u(⋅) is differentiable at v∗ , then the 

optimal rejection price R∗
I
 is in (v, v∗).

Proof See Appendix A.4.   ◻

Remark 3 If v∗ < 𝛽(v̄) and u(⋅) is linear on the interval [v, v∗] , the optimal rejection 
price in an FPA is R∗

I
= v∗ . The reason is as follows. It suffices to show that R∗

I
≥ v∗ 

by the former statement of Proposition 4. By the definition of vJ(RI) , we have

So by the linearity, the auctioneer’s expected utility with a rejection price RI is

for any RI ∈ [v, v∗] . Therefore for any RI ∈ (v, v∗),

And due to the continuity of UI(RI) , we have UI(v
∗) > UI(RI) for any RI ∈ [v, v∗) . 

Hence R∗
I
≥ v∗.

Proposition 4 implies that the optimal rejection price is not higher than the maxi-
mizer. Before we give an explanation, let FI(v;RI) denote the distribution function of 
the auctioneer’s revenue v in an FPA with a rejection price RI . It is easy to see that if 
RI ∈ [v, 𝛽(v̄)),

and if RI ∈ [𝛽(v̄), v̄],

RI = vJ(RI) −
n
[
1 − F(vJ(RI))

]
Fn−1(vJ(RI))

[
vJ(RI) − �(vJ(RI))

]
1 − Fn(vJ(RI))

.

UI(RI) = u

{[
1 − Fn(vJ(RI))

]
RI + ∫

vJ (RI)

v

�(t)dFn(t)

}

= u

{
[1 − Fn(vJ(RI))]vJ(RI) + ∫

vJ (RI)

v

�(t)dFn(t)

−n[1 − F(vJ(RI))]F
n−1(vJ(RI))[vJ(RI) − �(vJ(RI))]

}

dUI(RI)

dRI

= u�(RI)
[
1 − F(vJ(RI))

][ n∑
i=1

Fn−i(vJ(RI)) − nFn−1(vJ(RI))

]
dvJ(RI)

dRI

> 0.

F
I
(v;R

I
) =

⎧
⎪⎨⎪⎩

F
n(𝛽−1(v)) if 𝛽

�
v
J
(R

I
)
�
> v ≥ v

F
n
�
v
J
(R

I
)
�
if R

I
> v ≥ 𝛽

�
v
J
(R

I
)
�

1 if v = R
I
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for any v ∈ [v, 𝛽(v̄)] . For a rejection price RI > v∗ , notice that FI(v;v
∗) = FI(v;RI) for 

any v ∈ [v, �(vJ(v
∗)) and u(v∗) > u(v) for any v ∈ (v∗, v̄] . Therefore, the auctioneer 

will get a higher expected utility with the rejection price v∗ than with the rejection 
price RI , i.e., the optimal rejection price R∗

I
 cannot be higher than v∗.

For the case where u�(v∗) = 0 , notice that the jump point is increasing in the 
rejection price, so that a rejection price which is lower than v∗ makes bidders more 
likely to bid it, i.e., the auctioneer has a greater probability of receiving the rejection 
price. The increment of the probability brings a positive gain to the expected utility, 
but there is also a loss by receiving the lower rejection price. Because u�(v∗) = 0 , if 
the lower rejection price is sufficiently close to v∗ , then the loss can be negligible and 
there is only a gain to the expected utility. Hence the optimal rejection price is lower 
than the maximizer in this case. By the intuition, if the maximizer is larger than 𝛽(v̄) 
but sufficiently close to it, there also exists an optimal rejection price R∗

I
∈ (v, 𝛽(v̄)).9

3.3  Pareto improvement

Note that no matter an FPA or an SPA becomes inefficient with a rejection price, 
since the object may not end up in the hands of the bidder who values it the most 
ex post if there are more than two bidders whose values are higher than the rejec-
tion price. In fact, the efficiency which is defined in standard auction theory does 
not apply in our model.10 In spite of this inefficiency, in each auction we find that 
all bidders’ interim expected utilities and the auctioneer’s expected utility can be 
improved with a rejection price, compared to its standard model. In this subsection, 
we show a necessary and sufficient condition which guarantees the improvement in 
each auction.

To state our results, we need to introduce some additional notations. We let 
uk(v;Rk) denote the interim expected utility of a bidder with value v ∈ [v, v̄] in kth
-price sealed-bid auction with a rejection price Rk , where k ∈ {I,II} . In an SPA with 
a rejection price RII , with Proposition 1 we can calculate that11

FI(v;RI) = Fn
(
�−1(v)

)

uII(v;RII) =

� ∫ v

v
Fn−1(t)dt ifRII > v ≥ v

∫ RII

v
Fn−1(t)dt +

1

n

∑n

i=1
Fn−i(RII)(v − RII) ifv̄ ≥ v ≥ RII.

9 Here is a simple example. There are 2 bidders whose values are i.i.d. on [0,  1] according to a uni-
form distribution. Let the auctioneer’s utility be u(v) = 1.01v − v

2 , then it is easy to see that 
v
∗ = 0.505 > 0.5 = 𝛽(v̄) and the optimal rejection price is R∗

I
≈ 0.455 < 0.5.

10 In standard auction theory, if the object ends up in the hands of the bidder who values it the most ex 
post, the welfare of a standard auction will be maximized. But in our model, if the auctioneer’s revenue is 
larger than v∗ , the welfare of our model may not be maximized since the auctioneer’s utility is decreasing 
in his revenue in this case.
11 The probability that a bidder with value v ∈ [RII, v̄] wins the object is 1−Fn(RII)

n(1−F(RII))
=

1

n

∑n

i=1
F
n−i(RII).
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It is easy to see that uII(v;v̄) = ∫ v

v
Fn−1(t)dt denotes the interim equilibrium expected 

utility by a bidder with value v in a standard SPA. Let ΔII(v) = uII(v;RII) − uII(v;v̄).

Proposition 5 Using a rejection price RII makes a Pareto improvement for bidders 
to a standard SPA, i.e., the interim expected utilities of bidders with any values are 
improved and the interim expected utilities of bidders with at least one value are 
strictly improved if and only if uII(v̄;RII) ≥ uII(v̄;v̄) , namely

Proof See Appendix A.5.   ◻

We proved Proposition 5 by considering ΔII(v) which is the difference between the 
interim expected utilities of a bidder with value v in a SPA with a rejection price and 
a standard SPA. When v ∈ [v,RII) , ΔII(v) = 0 , i.e., his interim expected utilities are 
the same in the two auctions. And we proved ΔII(v) is strictly concave on the interval 
[RII, v̄] . Hence for a given rejection price if the interim expected utility of the bidder 
with value v̄ can be improved, all bidders’ interim expected utilities can be improved.

Based on Propositions 3 and 5, we can show that using the optimal rejection price 
can result in a Pareto improvement, compared to a standard SPA. We omit the proof, 
since it is easy to see.

Proposition 6 Using the optimal rejection price R∗
II
= v∗ makes a Pareto improve-

ment to a standard SPA, i.e., it makes a Pareto improvement for bidders and the 
expected utility of the auctioneer is improved if and only if

Corollary 1 Using the optimal rejection price R∗
II
= v∗ makes a Pareto improvement 

to a standard SPA if for any v ∈ [v∗, v̄]

Proof See Appendix A.6.   ◻

Corollary 1 implies that using the optimal rejection price v∗ makes a Pareto improve-
ment to a standard SPA if the distribution function F(⋅) first-order stochastic dominates 

�
v̄

RII

(
1

n

n∑
i=1

Fn−i(RII) − Fn−1(t)

)
dt ≥ 0.

�
v̄

v∗

(
1

n

n∑
i=1

Fn−i(v∗) − Fn−1(t)

)
dt ≥ 0.

F(v) ≤ (1 − F(v∗))
v − v∗

v̄ − v∗
+ F(v∗).
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a distribution function which is the same as F(⋅) on the interval [v, v∗] and is uniform on 
the interval [v∗, v̄].

In an FPA with a rejection price, we also find results which are similar to the SPA 
with a rejection price. With Proposition 2, we can calculate that if RI < 𝛽(v̄),

It is easy to see that uI(v;v̄) = ∫ v

v
Fn−1(t)dt denotes the interim expected utility by a 

bidder with value v in a standard FPA. Let ΔI(v) = uI(v;RI) − uI(v;v̄).

Proposition 7 Using a rejection price RI < 𝛽(v̄) makes a Pareto improvement for 
bidders to a standard FPA if and only if uI(v̄;RI) ≥ uI(v̄;v̄) , namely

Proof See Appendix A.7.   ◻

Similarly to Proposition 5, we proved Proposition 7 by showing that ΔI(v) = 0 on 
the interval v ∈ [v, vJ) and ΔI(v) is strictly concave on the interval [vJ , v̄] , where ΔI(v) 
is the difference between the interim expected utilities of a bidder with value v in an 
FPA with a rejection price and a standard FPA.

Based on Propositions 4 and 7, we can also show that using the optimal rejection 
price can make a Pareto improvement to a standard FPA by the following proposi-
tion. We omit the proof, since it is easy to see.

Proposition 8 If v∗ < 𝛽(v̄) , using the optimal rejection price makes a Pareto 
improvement to a standard FPA if and only if

where v∗
J
= vJ(R

∗
I
).

Corollary 2 If v∗ < 𝛽(v̄) , using the optimal rejection price makes a Pareto improve-
ment to a standard FPA if for any v ∈ [v∗

J
, v̄]

where v∗
J
= vJ(R

∗
I
).

Proof See Appendix A.8.   ◻

uI(v;RI) =

� ∫ v

v
Fn−1(t)dt ifvJ > v ≥ v

1

n

∑n

i=1
Fn−i(vJ)(v − RI) ifv̄ ≥ v ≥ vJ .

�
v̄

vJ

(
1

n

n∑
i=1

Fn−i(vJ) − Fn−1(t)

)
dt ≥ 0.

�
v̄

v∗
J

(
1

n

n∑
i=1

Fn−i(v∗
J
) − Fn−1(t)

)
dt ≥ 0,

F(v) ≤ (
1 − F

(
v∗
J

))v − v∗
J

v̄ − v∗
J

+ F
(
v∗
J

)
,
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Corollary 2 implies that using the optimal rejection price v∗
J
 makes a Pareto 

improvement to a standard FPA if the distribution function F(⋅) first-order stochastic 
dominates a distribution function which is the same as F(⋅) on the interval [v, v∗

J
] and 

is uniform on the interval [v∗
J
, v̄].

4  Comparison

In this section, we investigate the preferences of an auctioneer with non-monotonic 
utility over the two auctions. We show not only the cases where with the optimal 
rejection price the auctioneer prefers an FPA to an SPA, but also the cases where 
with the optimal rejection price the auctioneer prefers an SPA to an FPA.

We first show the former cases. In standard auction theory, Matthews (1979) and 
Waehrer et al. (1998) show that a risk-averse auctioneer strictly prefers an FPA to 
an SPA under the standard equilibria. In our model, we draw a similar conclusion to 
theirs. Before we state that conclusion, we show their result by the following lemma.

Lemma 2 An auctioneer with a utility function w(⋅) which is concave on the interval 
[v, v̄] prefers a standard FPA to a standard SPA, that is,

Moreover, the inequality becomes strict if w(⋅) is not linear.

Proof See Appendix A.9.   ◻

This lemma is intuitive. Consider the event that a bidder with value v ∈ [v, v̄] 
wins the object in a standard kth-price sealed-bid auction, where k ∈ {I, II} . The 
bidder’s payment is �(v) in a standard FPA and due to the payment rule his payment 
is deterministic. His expected payment is also �(v) in a standard SPA, however it is 
the expectation of the second-highest bid that is random. So a risk-averse auctioneer 
will get a higher expected utility from this event in a standard FPA. And notice that 
this event happens with the same probability in both auctions, therefore the auction-
eer prefers a standard FPA to a standard SPA. We apply the same intuition to our 
model. Let UII(RII) denote the expected utility of the auctioneer in an SPA with a 
rejection price RII , and

Proposition 9 For a given rejection price R ≤ v∗ , if u(⋅) is concave on the interval 
[v,R] , then an auctioneer strictly prefers an FPA to an SPA, that is, UI(R) > UII(R).

n�
v̄

v

(1 − F(t))w(t)dFn−1(t) ≤ �
v̄

v

w(𝛽(t))dFn(t).

w(v;R) =
{

u(v) if R ≥ v ≥ v
u(R) if v̄ ≥ v > R.
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Proof See Appendix A.10.   ◻

In an FPA with a rejection price R ∈ [v, v̄] , if bidders bid following the strategy 
𝛽I(v) = min{𝛽(v),R} , then the auctioneer’s expected utility is equal to 
∫ v̄

v
w(𝛽(t);R)dFn(t) . By applying Lemma 2 to two standard auctions with a concave 

but non-linear utility function w(v; R), we see that the expected utility is greater than 
the auctioneer’s equilibrium expected utility under the standard SPA, which is equal 
to UII(R) in our setting. In fact, in an FPA, some bidders bid higher than they bid fol-
lowing 𝛽I(v) = min{𝛽(v),R} . Since R ≤ v∗ and u(⋅) is strictly increasing on the inter-
val [v, v∗] , the auctioneer will get a higher expected utility than that case. Hence the 
auctioneer prefers an FPA. Notice that in Proposition 9, R could be equal to v∗ which 
is the optimal rejection price in an SPA, then the following proposition is 
straightforward.

Proposition 10 If u(⋅) is concave on the interval [v, v∗] , then with the optimal rejec-
tion price12 an auctioneer strictly prefers an FPA to an SPA, that is, 
max
R∈[v,v̄]

UI(R) > UII(v
∗).

Proof By Proposition 9, max
R∈[v,v̄]

UI(R) ≥ UI(v
∗) > UII(v

∗) .   ◻

We reach the above conclusions based on the auctioneer’s risk-attitude. Next, we 
analyze the preferences of the auctioneer over the two auctions in a different way. 
From the auctioneer’s point of view, a kth-price sealed-bid auction with a rejection 
price can be regarded as a lottery since the revenue is random, where k ∈ {I, II} . 
Recall that we let FI(v;RI) denote the distribution function of the auctioneer’s rev-
enue v in an FPA with a rejection price RI.

Now we let FII(v;RII) denote the distribution function of the auctioneer’s revenue 
v in an SPA with a rejection price RII . Then it is easy to see that for any rejection 
price RII ∈ [v, v̄],

The following proposition shows that for a given rejection price R ≤ v∗ , if FI(v;R) 
is first-order stochastic dominant over FII(v;R) on the range where the auctioneer’s 
revenue is lower than �(vJ(R)) , the auctioneer prefers an FPA to an SPA.

Proposition 11 For a given rejection price R < 𝛽(v̄) , if R ≤ v∗ and for any 
v ∈ [v, �(vJ(R))]

13

FII(v;RII) =

{
nF

n−1(v) − (n − 1)Fn(v) if RII > v ≥ v

1 if v = RII.

12 In an FPA, if v∗ ≥ 𝛽(v̄) the auctioneer’s expected utility may be maximized on the interval [𝛽(v̄), v̄] , 
i.e., it may not be optimal for the auctioneer to use a rejection price. In this case, we regard any 
R ∈ [𝛽(v̄), v̄] as his optimal rejection price.
13 These conditions can be satisfied if n = 2 and F(⋅) is a uniform distribution function on [0,  1] and 
R ≤ 4∕9.
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i.e., FI(v;R) is first-order stochastic dominant over FII(v;R) , then an auctioneer 
strictly prefers an FPA to an SPA, that is, UI(R) > UII(R).

Proof See Appendix A.11.   ◻

By Propositions 3 and 4, we have R∗
I
≤ v∗ = R∗

II
 if v∗ < 𝛽(v̄) . Then, the following 

proposition can be shown immediately.

Proposition 12 If v∗ < 𝛽(v̄) and for any v ∈ [v, �(vJ(v
∗))]

i.e., FI(v;v
∗) is first-order stochastic dominant over FII(v;v

∗) , then with the opti-
mal rejection price an auctioneer strictly prefers an FPA to an SPA, that is, 
UI(R

∗
I
) ≥ UII(v

∗).

Proof By Proposition 11, UI(R
∗
I
) ≥ UI(v

∗) > UII(v
∗) .   ◻

The intuition of the conditions of Propositions 11 and 12 is that the auctioneer 
will be more likely to acquire a low revenue in an SPA than in an FPA. This is 
because even if the winner’s private value is high, the auctioneer may acquire a low 
revenue in an SPA.

The above four propositions show that the auctioneer strictly prefers an FPA. 
Nonetheless, we have a numerical example in which the auctioneer strictly prefers 
an SPA. Here is a numerical example in which v∗ < 𝛽(v̄) . There are 2 bidders whose 
values are i.i.d. on [0, 1] according to a uniform distribution. Let the auctioneer’s 
utility be

Then it is easy to see that v∗ = 0.48 < 0.5 = 𝛽(v̄) and UII(R∗
II) = UII(v∗) >

(1 − v∗)2u(v∗) = 1.749488 . Now consider the auctioneer’s expected utility in an 
FPA with the optimal rejection price. By Lemma 1, vJ(RI) =

RI

1−RI

 for any 
RI ∈ [0, 0.48] . Then for any RI ∈ [0, 0.47] , UI(RI) < u(RI) ≤ u(0.47) =
UI(RI) < u(RI) ≤ u(0.47) = 0.47 < 0.95 < [1 − (vJ(v

∗))2]u(v∗) < UI(v
∗) . Hence 

R∗
I
∈ (0.47, 0.48] by Proposition 4. And because 𝛽(vJ(v∗)) =

v∗

2(1−v∗)
=

6

13
< 0.47 < v∗ , 

so

nFn−1(v) − (n − 1)Fn(v) ≥ Fn
(
�−1(v)

)
,

nFn−1(v) − (n − 1)Fn(v) ≥ Fn
(
�−1(v)

)
,

u(v) =

⎧
⎪⎨⎪⎩

v if v ∈ [0, 0.47]

600v − 281.53 if v ∈ (0.47, 0.48]

6.95 − v if v ∈ (0.48, 1].
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Therefore, UI(R
∗
I
) < UII(R

∗
II
).

5  Discussion

So far, we have assumed that the auctioneer’s utility function is strictly increasing 
below the unique maximizer and strictly decreasing above the unique maximizer. 
In this section, we consider a more general non-monotonic utility function that 
u(v∗) > u(v) for any v ∈ [0, v∗) ∪ (v∗,∞) , where v∗ ∈ (v, v̄) . For tractability, we also 
assume that u(⋅) is continuous on the interval [0,∞).

Notice that the equilibrium bidding strategies �I(⋅) and �II(⋅) are independent of 
the utility function u(⋅) , therefore, in this section, we focus on the optimal rejection 
prices in FPAs and SPAs. Before starting our discussion, we additionally assume 
that maxv∈[0,v] u(v) < minv∈(v,v∗] u(v) in order to exclude the case where the optimal 
rejection price is R∗

k
∈ [0, v] , with k ∈ {I,II}.

At first, we consider an SPA with a rejection price. Recall that the func-
tion FII(v;RII) denotes the distribution function of the auctioneer’s revenue v 
in an SPA with a rejection price RII . For a rejection price RII > v∗ , notice that 
FII(v;v

∗) = FII(v;RII) for any v ∈ [v, v∗) and u(v∗) > u(v) for any v ∈ [0,∞) . There-
fore, the auctioneer will get a higher expected utility with the rejection price v∗ than 
with the rejection price RII , i.e., the optimal rejection price R∗

II
 cannot be higher than 

v∗ . For a rejection price RII < v∗ , notice that FII(v;v
∗) is first-order stochastic domi-

nant over FII(v;RII) . So if u(⋅) is weakly increasing on the interval [v, v∗] , then the 
auctioneer strictly prefers the rejection price v∗ . This is because u(⋅) is not constant on 
the interval [v, v∗] by the assumption that u(v∗) > u(v) for any v ∈ [0, v∗) ∪ (v∗,∞).

For an FPA with a rejection price, notice that the proof of Proposition 4 can be 
supported by the assumption that u(v∗) > u(v) for any v ∈ [0, v∗) ∪ (v∗,∞) , i.e., we 
can prove the same results as Proposition 4. We omit the proof of the results, since it 
is easy to see.

Proposition 13 In an SPA with a rejection price RII , the optimal rejection price is 
R∗
II
∈ (v, v∗] . Moreover, if u(⋅) is weakly increasing on the interval [v, v∗] , then the 

optimal rejection price is R∗
II
= v∗ . In an FPA with a rejection price RI , if v∗ < 𝛽(v̄) , 

the optimal rejection price is R∗
I
∈ (v, v∗] . Moreover, if u(⋅) is differentiable at v∗ , 

then the optimal rejection price is R∗
I
∈ (v, v∗).

UI(R
∗
I
) ≤

[
1 −

(
R∗
I

1 − R∗
I

)2
]
u(v∗) +

(
R∗
I

1 − R∗
I

)2

u
(
𝛽
(
vJ(v

∗)
))

<

[
1 − (

0.47

1 − 0.47
)2
]
u(v∗) +

(
0.47

1 − 0.47

)2

u
(
𝛽
(
vJ(v

∗)
))

< 1.745.
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We have shown that the auctioneer can be better off by rejecting bids which are 
higher than the unique maximizer. It seems that the auctioneer benefits from limiting 
the number of bidders, since it reduces the probability of getting high bids. However 
the auctioneer prefers using the optimal rejection price to limiting the number of 
bidders in a kth-price sealed-bid auction, where k ∈ {I,II} . This is because in a kth
-price sealed-bid auction, the auctioneer can be better off by using the optimal rejec-
tion price, i.e., with the same number of bidders the auctioneer prefers using the 
optimal rejection price to not using it. Moreover, with the optimal rejection price the 
auctioneer’s expected utility is increasing in the number of bidders, since increasing 
the number of bidders increases the probability of getting high bids which are not 
larger than the unique maximizer.

Intuitively, it is also rational for the auctioneer to use a posted price as well. This is 
because using a posted price can also “reject” high bids. However there are many cases 
where the auctioneer prefers selling an object in a kth-price sealed-bid auction with the 
optimal rejection price to selling it with any posted prices, where k ∈ {I,II}.14 Here is a 
numerical example. There are 3 bidders whose values are i.i.d. on [0, 1] according to a 
uniform distribution. Let the auctioneer’s utility be

By Proposition 10, we have max
R∈[v,v̄]

UI(R) > UII(v
∗) = UII(0.8) = 0.616 . Now con-

sider the auctioneer uses a posted price q ∈ [0, 1] . It is easy to see that the optimal 
posted price q∗ ∈ [0, 0.8] , so his expected utility is at most 
1.25q∗(1 − q∗3) < 0.6 < 0.616.

6  Conclusion

We have studied an auctioneer whose utility is non-monotonic and has a unique 
maximizer. This kind of auctioneer is not uncommon in the real world, such as the 
local government in China. When such an auctioneer sells objects in an auction, he 
is willing to use a rejection price to maximize his utility.

First, we analyzed the equilibrium bidding strategy in an FPA and an SPA with 
rejection prices. In an SPA with a rejection price, the equilibrium bidding strategy 
is that any bidder bids the lower one between his value and the rejection price. In an 
FPA with a rejection price, we found that the rejection price works only if it is lower 
than the maximum equilibrium bid in a standard FPA. We focus attention on the 
case where it works and have shown that there exists a jump point in the equilibrium 
bidding strategy. In this case, the bid of a bidder whose value is lower than the jump 

u(v) =

{
1.25v if v ∈ [0, 0.8]

−5v + 5 if v ∈ (0.8, 1].

14 If we introduce a reserve price in our model, the auctioneer prefers our model to using a posted price. 
This is because selling an object in our model by setting the rejection price equals the reserve price is 
equivalent to selling it with a posted price.
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point, is the same as the standard model, and the bidder whose value is higher than it 
bids the rejection price.

Then we analyzed the optimal rejection prices for the auctioneer in both auctions. 
In an SPA with a rejection price, the optimal rejection price equals the unique maxi-
mizer. In an FPA with a rejection price, the optimal rejection price is not higher 
than the maximizer if the maximizer is lower than the maximum equilibrium bid in 
a standard model. Moreover, if his utility function is smooth at the maximizer the 
optimal rejection price will be lower than the maximizer.

With a rejection price no matter an FPA or an SPA becomes inefficient. Perhaps 
more surprisingly, in both auctions we found that if the interim expected utility of 
the bidder with the maximum value can be improved by the rejection price, then all 
bidders’ interim expected utilities can be improved. Further, using the optimal rejec-
tion price makes a Pareto improvement to the standard model, if all bidders’ interim 
expected utilities can be improved.

Finally, we analyzed the auctioneer’s preferences over the two auctions. We found 
that the auctioneer strictly prefers an FPA to an SPA if the increasing part of his util-
ity function is concave. The same conclusion can be reached if the distribution of 
revenues in an FPA is first-order stochastic dominant over it in an SPA. And we also 
found some cases where the auctioneer strictly prefers an SPA to an FPA.

The natural extension of this work is to consider a more realistic rejecting strat-
egy where the auctioneer randomly rejects bids. One strategy that can be taken into 
account is that the auctioneer accepts the bids which are lower than some threshold 
and rejects the bids which are higher than the threshold with a positive probability, 
i.e. the auctioneer can use a mixed strategy. This may be relevant when the auction-
eer cannot directly announce a rejection price, about which the bidders only have 
stochastic estimations. Note that, in this paper, we assume that bidders are able to 
bid higher than the rejection price, though get nothing. The rejection price becomes 
a pure rejecting strategy in a general framework. Another more realistic rejecting 
strategy is that the higher bid is more likely to be rejected, i.e. the rejecting probabil-
ity is increasing in the bid. We leave the challenging work for future research.

Appendix

A.1 Proof of Lemma 1

For a given RI ∈ (v, 𝛽(v̄)) , let

where v ∈ (v, v̄) . We show that H(v) has only one zero point. We take the derivative 
with respect to v,

H(v) =
1

n

n∑
i=1

Fn−i(v)(v − RI) − Fn−1(v)(v − �(v)),
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Notice that 1

n

∑n

i=1
Fn−i(v) > Fn−1(v) for any v ∈ (v, v̄) , so H�(v) > 0 for any 

v ∈ [RI, v̄) , i.e., H(v) is strictly increasing on the interval [RI, v̄) . Further, since 
𝛽(v) < v for any v ∈ (v, v̄) and �(v) is strictly increasing in v,15 we can get

and

So there uniquely exists v ∈ (RI, v̄) such that H(v) = 0 . Notice that 𝛽(v) < v for any 
v ∈ (v, v̄) , then H(v) < 0 for any v ∈ (v,RI] . Therefore, H(v) has only one zero point, 
i.e., vJ ∈ (v, v̄) uniquely exists.

Now, we show that dvJ
dRI

> 0 . Since

take the derivative of both sides with respect to RI , we can get

Due to vJ > RI and 1
n

∑n

i=1
Fn−i(v) > Fn−1(v) , we can get dvJ

dRI

> 0.

A.2 Proof of Proposition 2

Obviously, if RI ≥ 𝛽(v̄) , the rejection price can not work and bidders bid follow-
ing the standard model, i.e., �I(vi) = �(vi) . Thus, we only need to prove the case 
RI < 𝛽(v̄).

Suppose that all but bidder i follow the strategy given in the statement and 
let ui(vi, (bi, (�I)−i)) denote bidder i’s interim expected utility when his bid is bi . 
Since 1

n

∑n

i=1
Fn−i(v) > Fn−1(v) for any v ∈ (v, v̄) and the definition of vJ , we have 

𝛽(vJ) < RI , i.e., vJ is a jump point. Then the interim expected utility of bidder i 
can be computed:

H�(v) =

[
f (v)(v − RI)

1 − F(v)
+ 1

][
1

n

n∑
i=1

Fn−i(v) − Fn−1(v)

]
.

H
(
𝛽−1(RI)

)
=

[
1

n

n∑
i=1

Fn−i
(
𝛽−1(RI)

)
− Fn−1

(
𝛽−1(RI)

)](
𝛽−1(RI) − RI

)
> 0

H(RI) = −Fn−1(RI)
(
RI − 𝛽(RI)

)
< 0.

Fn−1(vJ)
(
vJ − �(vJ)

)
=

1

n

n∑
i=1

Fn−i(vJ)(vJ − RI),

n∑
i=1

Fn−i(vJ) =

[
n−1∑
i=1

(n − i)Fn−i−1(vJ)f (vJ)(vJ − RI)

+

n∑
i=1

Fn−i(vJ) − nFn−1(vJ)

]
dvJ

dRI

.

15 See (Krishna 2010).



1 3

Rejection prices and an auctioneer with non-monotonic utility  

Clearly, it is not optimal for bidder i to bid higher than RI or lower than v . On the 
one hand, if bidder i’s value is vi < vJ , note that the utility with bi ≤ �(vJ) is the 
same as the standard model, so we have ui

(
vi, (�(vi), (�I)−i)

) ≥ ui
(
vi, (bi, (�I)−i)

)
 for 

any bi ≤ �(vJ) . We also have, for any RI > bi > 𝛽(vJ),

and

Hence it is optimal for bidder i with value vi < vJ to bid �(vi).
On the other hand, if bidder i’s value is vi ≥ vJ , for any RI > bi > 𝛽(vJ)

and for any bi ≤ �(vJ)

Hence it is optimal for bidder i with value vi ≥ vJ to bid RI.

u
i

�
v
i
, (b

i
, (𝛽I)−i)

�
=

⎧
⎪⎪⎨⎪⎪⎩

0 if b
i
< v

F
n−1

�
𝛽−1(b

i
)
��
v
i
− b

i

�
if 𝛽(v

J
) ≥ b

i
≥ v

F
n−1(v

J
)
�
v
i
− b

i

�
if RI > b

i
> 𝛽(v

J
)

1

n

∑n

i=1
F
n−i(v

J
)
�
v
i
− RI

�
if b

i
= RI

0 if b
i
> RI.

ui(vi, (𝛽(vi), (𝛽I)−i)) ≥ Fn−1(vJ)(vi − 𝛽(vJ)) > Fn−1(vJ)(vi − bi)

ui
(
vi, (𝛽(vi), (𝛽I)−i)

) ≥ Fn−1(vJ)
(
vi − 𝛽(vJ)

)

> Fn−1(vJ)
(
vJ − 𝛽(vJ)

)
+

1

n

n∑
i=1

Fn−i(vJ)
(
vi − vJ

)

=
1

n

n∑
i=1

Fn−i(vJ)
(
vi − RI

)
.

ui
(
vi, (RI, (𝛽I)−i)

)
=

1

n

n∑
i=1

Fn−i(vJ)(vJ − RI) +
1

n

n∑
i=1

Fn−i(vJ)(vi − vJ)

= Fn−1(vJ)(vJ − 𝛽(vJ)) +
1

n

n∑
i=1

Fn−i(vJ)(vi − vJ)

≥ Fn−1(vJ)(vJ − 𝛽(vJ)) + Fn−1(vJ)(vi − vJ)

> Fn−1(vJ)(vi − bi)

ui
(
vi, (RI, (�I)−i)

) ≥ Fn−1(vJ)(vi − �(vJ))

= Fn−1(vJ)(vJ − �(vJ)) + Fn−1(vJ)(vi − vJ)

≥ Fn−1(�−1(bi))(vJ − bi) + Fn−1(vJ)(vi − vJ)

≥ Fn−1(�−1(bi))(vi − bi).
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A.3 Proof of Proposition 3

Let � be the second-highest value among v1, v2, ..., vn . Then the auctioneer’s revenue, 
i.e., the second-highest bid among �II(v1), �II(v2), ..., �II(vn) is equal to min{�,RII} . 
By setting the rejection price RII = v∗ , the auctioneer’s utility is u(�) if 𝜈 < v∗ and 
u(v∗) if � ≥ v∗.

Suppose, however, that the auctioneer sets the rejection price RII < v∗ . If � ≤ RII , 
then his utility is still u(�) . However, if 𝜈 > RII his utility is u(RII) < u(min{𝜈, v∗}) , 
since u(⋅) is strictly increasing on the interval [0, v∗] . Due to RII < v∗ < v̄ , the prob-
ability that 𝜈 > RII is positive. Therefore, setting the rejection price less than v∗ 
decreases his expected utility.

Suppose, on the contrary, he sets the rejection price RII > v∗ . If � ≤ v∗ , 
then his utility is still u(�) . However, if 𝜈 > v∗ then his utility is at most 
max{u(𝜈), u(RII)} < u(v∗) , since v∗ is the unique maximizer. Due to v∗ < v̄ , the prob-
ability that 𝜈 > v∗ is positive. Therefore, setting the rejection price larger than v∗ 
decreases his expected utility. Thus the unique optimal rejection price is R∗

II
= v∗.

A.4 Proof of Proposition 4

First, we show the former statement. The auctioneer’s expected utility with a rejec-
tion price RI can be calculated as follows:

Due to Lemma 1, we have vJ(RI) > vJ(v
∗) , for any RI ∈ (v∗, 𝛽(v̄)] . Note that 

u(v∗) > u(v) for any v ∈ (v∗, v̄] , so for any RI ∈ (v∗, 𝛽(v̄)]

For any RI ∈ (𝛽(v̄), v̄] , it is easy to know that UI(RI) = UI(𝛽(v̄)) < UI(v
∗) . And since 

u(⋅) is strictly increasing on the interval [v, v∗] , then U(v∗) > u(v) = U(v) . Since 

UI(RI) =

{
[1 − Fn(vJ(RI))]u(RI) + ∫ vJ (RI)

v
u(𝛽(t))dFn(t) ifRI < 𝛽(v̄)

∫ v̄

v
u(𝛽(t))dFn(t) ifRI ≥ 𝛽(v̄).

UI(v
∗) − UI(RI) =

[
1 − Fn(vJ(v

∗))
]
u(v∗) −

[
1 − Fn(vJ(RI))

]
u(RI)

− ∫
vJ (RI)

vJ (v
∗)

u(𝛽(t))dFn(t)

>
[
Fn(vJ(RI)) − Fn(vJ(v

∗))
]
u(v∗) − ∫

vJ (RI)

vJ (v
∗)

u(𝛽(t))dFn(t)

= ∫
vJ (RI)

vJ (v
∗)

[
u(v∗) − u(𝛽(t))

]
dFn(t)

> 0.
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UI(RI) is continuous on the interval [v, 𝛽(v̄)] , therefore, there exists R∗
I
∈ (v, v∗] such 

that UI(R
∗
I
) = max

RI∈[v,v̄]
UI(RI).

Now, we show the latter statement. Since u(⋅) is differentiable at v∗ and v∗ is the 
maximizer, so we have u�(v∗) = 0 and UI(⋅) is also differentiable at v∗ . Lemma 1 
implies 𝛽(vJ(v∗)) < v∗ < vJ(v

∗) and dvJ (v
∗)

dRI

> 0.16 Then

This implies that there exists RI ∈ (v, v∗) such that UI(RI) > UI(v
∗) . Further, by the 

former statement, there exists R∗
I
∈ (v, v∗) such that UI(R

∗
I
) = max

RI∈[v,v̄]
UI(RI).

A.5 Proof of Proposition 5

It suffices to show that ΔII(v) ≥ 0 for any v ∈ [RII, v̄] and ΔII(v) > 0 for some 
v ∈ [RII, v̄] if and only if uII(v̄;RII) ≥ uII(v̄;v̄) . It is easy to see that

We take the derivative with respect to v, then for any v ∈ [RII, v̄]

and

i.e., ΔII(v) is strictly concave on the interval [RII, v̄] . Thus 
ΔII(v) > min {ΔII(RII),ΔII(v̄)} for any v ∈ (RII, v̄) . Notice that ΔII(RII) = 0 , thus 
ΔII(v) > 0 for any v ∈ (RII, v̄) if and only if

dUI(v
∗)

dRI

= nFn−1
(
vJ(v

∗)
)
f
(
vJ(v

∗)
)[
u(𝛽(vJ(v

∗))) − u(v∗)
]dvJ(v∗)

dRI

+
[
1 − Fn(vJ(v

∗))
]
u�(v∗)

= nFn−1
(
vJ(v

∗)
)
f
(
vJ(v

∗)
)[
u(𝛽(vJ(v

∗))) − u(v∗)
]dvJ(v∗)

dRI

< 0.

ΔII(v) =

�
0 ifRII > v ≥ v

∫ v

RII

�
1

n

∑n

i=1
Fn−i(RII) − Fn−1(t)

�
dt ifsv̄ ≥ v ≥ RII.

Δ�
II
(v) =

1

n

n∑
i=1

Fn−i(RII) − Fn−1(v)

Δ��
II
(v) = −(n − 1)Fn−2(v)f (v) < 0,

ΔII(v̄) = uII(v̄;RII) − uII(v̄;v̄) = �
v̄

RII

(
1

n

n∑
i=1

Fn−i(RII) − Fn−1(t)

)
dt ≥ 0.

16 See the proof of Lemma 1.
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A.6 Proof of Corollary 1

By Proposition 6, it suffices to show that uII(v̄;v∗) ≥ uII(v̄;v̄) . Notice that uII(v;RII) can 
be written as

for any v ∈ [RII, v̄] . Then by the condition,

A.7 Proof of Proposition 7

It is easy to see

Then the proof is completed by replacing RII by vJ in the proof of Proposition 5.

A.8 Proof of Corollary 2

Notice that if RI < 𝛽(v̄) , similarly to uII(v̄;RII) , uI(v̄;RI) can be written as

for any v ∈ [vJ(RI), v̄] . Then the proof is completed by replacing v∗ by v∗
J
 in the proof 

of Corollary 1.

A.9 Proof of Lemma 2

Let Δ(v) = n ∫ v

v
(F(v) − F(t))w(t)dFn−1(t) − ∫ v

v
w(�(t))dFn(t) . Then taking the 

derivative with respect to v, we have

uII
(
v̄;RII

)
= ∫

RII

v

Fn−1(t)dt + ∫
v̄

RII

(
(1 − F(RII)

) t − RII

v̄ − RII

+ F(RII))
n−1dt

uII(v̄;v
∗) − uII(v̄;v̄) = �

v̄

v∗

[
((1 − F(v∗))

t − v∗

v̄ − v∗
+ F(v∗))n−1 − Fn−1(t)

]
dt ≥ 0.

ΔI(v) =

�
0 ifvJ > v ≥ v

∫ v

vJ
(
1

n

∑n

i=1
Fn−i(vJ) − Fn−1(t))dt ifv̄ ≥ v ≥ vJ .

uI(v̄;RI) =
1

n

n∑
i=1

Fn−i(vJ(RI))(vJ(RI) − RI) +
1

n

n∑
i=1

Fn−i(vJ(RI))(v̄ − vJ(RI))

= ∫
vJ (RI)

v

Fn−1(t)dt + ∫
v̄

vJ (RI)

[
(1 − F(vJ(RI)))

t − vJ(RI)

v̄ − vJ(RI)
+ F(vJ(RI))

]n−1
dt

Δ�(v) = nf (v)

[
∫

v

v

w(t)dFn−1(t) − Fn−1(v)w(�(v))

]
.
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Since w(⋅) is concave on the interval [v, v̄] , by Jensen’s inequality, for any v ∈ [v, v̄]

This implies that Δ�(v) ≤ 0 for any v ∈ [v, v̄] . Hence Δ(v̄) ≤ Δ(v) = 0 , i.e.,

Moreover, if w(⋅) is not linear, then

for some v� ∈ (v, v̄) . This implies that Δ�(v�) < 0 for some v� ∈ (v, v̄) . Hence 
Δ(v̄) < Δ(v) = 0 , i.e.,

A.10 Proof of Proposition 9

Obviously, w(v;  R) is concave but not linear on the interval [v, v̄] since u(⋅) is 
strictly increasing on the interval [v,R] . Then we have

and if R ∈ [𝛽(v̄), v̄]

Notice that u(⋅) is strictly increasing on the interval [v,R] and R > 𝛽(vJ(R)) . Thus if 
R ∈ [v, 𝛽(v̄))

Therefore, by Lemma 2, we have for any R ≤ v∗,

�
v

v

w(t)dFn−1(t)

Fn−1(v)
≤ w

(
�

v

v

tdFn−1(t)

Fn−1(v)

)
= w(�(v)).

n�
v̄

v

(1 − F(t))w(t)dFn−1(t) ≤ �
v̄

v

w(𝛽(t))dFn(t).

∫
v�

v

w(t)dFn−1(t)

Fn−1(v�)
< w

(
∫

v�

v

tdFn−1(t)

Fn−1(v�)

)
= w(𝛽(v�))

n∫
v̄

v

(1 − F(t))w(t)dFn−1(t) < ∫
v̄

v

w(𝛽(t))dFn(t).

UII(R) = n∫
v̄

v

(1 − F(t))w(t;R)dFn−1(t)

UI(R) = ∫
v̄

v

w(𝛽(t);R)dFn(t).

UI(R) >
[
1 − Fn(𝛽−1(R))

]
u(R) + ∫

𝛽−1(R)

v

u(𝛽(t))dFn(t)

= ∫
v̄

v

w(𝛽(t);R)dFn(t).
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A.11 Proof of Proposition 11

Since R < 𝛽(v̄) and for any v ∈ [v, �(vJ(R))]

then we have

for any v ∈ [v, �(vJ(R))] and

for any v ∈ (�(vJ(R)),R) . Since u(⋅) is strictly increasing on the interval [v,R] , then
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