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Abstract
Efficient computability is an important property of solution concepts. We consider 
the computational complexity of finding and verifying various solution concepts in 
trading networks—multi-sided matching markets with bilateral contracts and with-
out transferable utility—under the assumption of full substitutability of agents’ pref-
erences. It is known that outcomes that satisfy trail stability always exist and can 
be found in linear time. However, we show that the existence of stable outcomes—
immune to deviations by arbitrary sets of agents—is an ��-hard problem in trading 
networks. We also show that even verifying whether a given outcome is stable is 
��-hard in trading networks.
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1 Introduction

One of the most important features of the marriage market or the college admissions 
problems is that (pairwise) stable outcomes can always be found efficiently using 
the celebrated Deferred Acceptance algorithm (Gale and Shapley 1962). Efficient 
computability is key for practical applications of the Deferred Acceptance algorithm 
and its variants (Roth 1984; Abdulkadiroğlu and Sönmez 2003; Sönmez and Swit-
zer 2013; Hatfield and Kominers 2014). Moreover, since in standard (one-to-one) 
marriage markets or (many-to-one) college admissions problems (pairwise) stable 
outcomes coincide with the core, there is no obvious need to select among various 
solution concepts.

However, in more complex, many-to-many matching markets there are many dif-
ferent, yet economically natural and interpretable solution concepts (Blair 1988; 
Sotomayor 1999; Echenique and Oviedo 2006; Klaus and Walzl 2009). For example, 
pairwise stable outcomes do not coincide with the core (Blair 1988). What makes a 
good solution concept? At the very least, it should make falsifiable predictions. But 
in economics good solution concepts often derive their appeal for normative rea-
sons: they have sensible properties and make intuitive sense in particular settings. 
Efficient computability can serve as one such desirable property. As Papadimitriou 
(2007, p. 29–30) argues:

The reason is simple: If an equilibrium concept is not efficiently computable, 
much of its credibility as a prediction of the behavior of rational agents is lost 
– after all, there is no clear reason why a group of agents cannot be simulated 
by a machine. Efficient computability is an important modelling prerequisite 
for solution concepts.

If agents cannot efficiently find certain deviations from an outcome in a matching 
market, then a stability concept that is based on these deviations may be too strong. 
On the other hand, if it is computationally hard to verify whether an outcome sat-
isfying a particular solution concept exists, then this limits the applicability of this 
solution concept for matching market design. Finding a solution concept with attrac-
tive computational as well as economic properties would allow trading networks to 
be deployed in a variety of empirical (Fox 2017) and practical applications (Morstyn 
et al. 2018).

Our model and its connections to previous work. In this paper, we consider the 
computational complexity of various solution concepts in trading networks. A trad-
ing network is a matching market in which heterogeneous agents (firms) can sign 
many contracts that specify the terms of the trade, quality of the product, price etc. 
with their suppliers (upstream) and with their buyers (downstream). Following a 
seminal contribution by Ostrovsky (2008), we assume that agents’ preferences are 
fully substitutable, that is, upstream and downstream contracts are complements, but 
contracts on the same side are substitutes. Following Ostrovsky (2008), Westkamp 
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(2010) and Hatfield and Kominers (2012), contracts in our model are discrete and 
utility is not transferable.1 However, the model is general enough to capture not only 
wealth effects, but also distortionary frictions, such as sales taxes or bargaining costs 
(see, for example, Fleiner et al. 2019).

We allow firms to enter into upstream or downstream contracts (or both) with any 
other firm. Hence, we impose no restrictions on the structure of the trading network 
in contrast to models of supply chains (Ostrovsky 2008; Westkamp 2010; Hatfield 
and Kominers 2012) where no firm can be simultaneously upstream and down-
stream from another (that is, where the trading network has an acyclic structure).

However, the generality of such a setting comes at a price: here, stable outcomes, 
i.e., those immune to arbitrary blocks by sets of firms, do not necessarily exist (Hat-
field and Kominers 2012). The non-existence of stable outcomes in a trading net-
work model starkly contrasts models of supply chains where stable outcomes always 
exist  (Hatfield and Kominers 2012), as well as the models with continuous prices 
without frictions where stable outcomes not only exist but also coincide with com-
petitive equilibrium outcomes (Hatfield et al. 2013; Candogan et al. 2016; Fleiner 
et al. 2019).

Our contribution. Following Fleiner et al. (2016), we first point out that outcomes 
satisfying trail stability, an extension of pairwise or chain stability (Ostrovsky 
2008), always exist and can be found in linear time (in the number of contracts) 
by an extension of the Deferred Acceptance algorithm (Theorem  1). Trail-stable 
outcomes are immune to locally blocking trails (sequences of distinct contracts in 
which a buyer of one contract is the seller in the next). In a locally blocking trail, 
agents simultaneously accept pairs of upstream and downstream contracts along the 
trail, but there must also be agents that “kick off” (and “complete”) the blocking trail 
by unilaterally offering (or “accepting”) a single downstream (or a single upstream) 
contract. One can think of an agent in a locally blocking trail as a manager in a firm 
receiving a phone call with offer to buy inputs. The manager keeps the offer on hold 
until she is able to find a new sale contract. If she is successful, the locally blocking 
trail continues and if the trail comes back to the firm, another manager picks up the 
phone. Trail stability is an attractive solution concept in settings where agents are 
myopic or have only partial commitment power.2

Considering stable outcomes, we prove that deciding whether a stable outcome 
exists in a trading network is ��-hard. In fact, we prove a stronger result (Corollary 1) 
by showing that deciding if a stable outcome exists is ��-complete even in a flow 
network (Fleiner 2014), which is a special case of a trading network.

To obtain these hardness results, we use a relaxed stability concept that we 
call path-or-cycle stability and that can be derived from trail stability by relaxing 

1 Several papers have studied trading networks in a perfectly transferable (Hatfield et al. 2013; Candogan 
et al. 2016) and imperfectly transferable utility settings (Fleiner et al. 2019). Hatfield et al. (2021) offer 
the most general model that generalizes settings with and without transfers.
2 In a setting with continuous prices and distortionary frictions, trail-stable outcomes essentially coin-
cide with competitive equilibrium outcomes (Fleiner et al. 2019).
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the requirement of locally blocking trails that agents can only make an upstream 
(downstream) offer following the receipt of a downstream (upstream) offer. Thus we 
allow agents to offer an upstream and a downstream contract simultaneously, form-
ing blocking cycles. In this setting, path-or-cycle-stable outcomes are immune to 
blocking sets in the form of paths (trails in which every agent is distinct) or cycles. 
The key motivation for this concept is that in flow networks path-or-cycle-stable out-
comes coincide with stable outcomes (Theorem 3), because any blocking set in a 
flow network can be decomposed into a set of blocking cycles and blocking paths. 
This idea is analogous to a result by Hatfield et al. (2021) showing that in trading 
networks blocking sets can be decomposed into certain ordered blocking sets (that 
they call chains) under a monotonicity condition.

Path-or-cycle-stable outcomes do not always exist in trading networks. We show 
that the decision problem of whether a path-or-cycle-stable outcome (or, equiv-
alently by Theorem  3, a stable outcome) exists in a flow network is ��-complete 
(Theorem  2). Therefore, the ability to minimally coordinate upstream and down-
stream contract offers renders the computational problem for existence intracta-
ble. The proof gives a reduction to this problem from the problem of partitioning a 
directed graph into two acyclic sets, which is known to be ��-complete (Bokal et al. 
2004). Our result superficially resembles the problems of determining the existence 
of pairwise stable outcomes in two-sided hospital-resident markets with couples 
(McDermid and Manlove 2010), with sizes (Delacrétaz 2019), or with multidimen-
sional knapsack constraints (Delacrétaz et  al. 2019): in these models, as in ours, 
finding stable outcomes is hard due to the presence of various constraints. However, 
as far we know, none of our results has appeared elsewhere in the literature.

Finally, we show that even verifying that a particular outcome is not stable is 
��-complete (Theorem  4). The proof provides a reduction from the set partition 
problem, which is known to be (weakly) ��-complete.

Our hardness results do not extend to more restricted models, such as the case of 
acyclic trading networks, or to alternative models with continuous prices without 
frictions. Determining computability properties of solution concepts in such settings 
is an open question.

Organization. Section 2 introduces the full model of trading networks and the spe-
cial case of flow networks 2.3. In Sect. 3, we introduce trail stability 3.1, path-or-
cycle stability 3.2, and stability 3.3, and state the main results about the computa-
tional complexity of finding outcomes that satisfy these solution concepts.

2  Preliminaries

Our notation follows Fleiner et al. (2016).
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2.1  Our model

In a trading network, there is a finite set of agents (firms or consumers) F and a 
finite set of contracts X. A contract x ∈ X is a bilateral agreement between a buyer 
b(x) ∈ F and a seller s(x) ∈ F . Hence, F(x) ∶= {s(x), b(x)} is the set of firms asso-
ciated with contract x and, more generally, F(Y) is the set of firms associated with 
contract set Y ⊆ X . Given a set Y ⊆ X of contracts, call Yf

B
∶= {x ∈ Y ∣ b(x) = f } and 

Y
f

S
∶= {x ∈ Y ∣ s(x) = f } the sets of f’s upstream and downstream contracts in Y – for 

which f is a buyer and a seller, respectively. Clearly, Yf

B
 and Yf

S
 form a partition over 

the set of contracts Yf ∶= {y ∈ Y ∣ f ∈ F(y)} which involve f, since an agent cannot 
be a buyer and a seller in the same contract. A firm f is a terminal seller if there are 
no upstream contracts in X for f in the network and f is a terminal buyer if the net-
work does not contain any downstream contracts in X for f. An agent who is either 
a terminal buyer or a terminal seller is called a terminal agent. In an acyclic trad-
ing network, no agent can simultaneously buy and sell from another agent, even via 
intermediaries.

Every firm has a choice function Cf  , such that Cf (Yf ) ⊆ Yf  for any Yf ⊆ Xf .3 We 
say that a choice function of f ∈ F satisfies the irrelevance of rejected contracts 
(IRC) condition if for any Y ⊆ X and Cf (Y) ⊆ Z ⊆ Y  we have that Cf (Z) = Cf (Y) 
(Blair 1988; Alkan 2002; Fleiner 2003; Echenique 2007; Aygün and Sönmez 2013).

For any Y ⊆ X and Z ⊆ X , define the chosen set of upstream contracts

which is the set of contracts f chooses as a buyer when f has access to upstream con-
tracts Y and downstream contracts Z. Analogously, define the chosen set of down-
stream contracts

For brevity and by abuse of notation, we will also use Cf (Y|Z) ∶= (C
f

B
(Y|Z)|Cf

S
(Z|Y)) , 

so Cf (Y|Z) = (Y �|Z�) means that if f is offered upstream and downstream contracts Y 
and Z, respectively, then Y ′ and Z′ are those among them that f chooses (with Y ′ ⊆ Y  
and Z′ ⊆ Z ). We also define the rejected sets of contracts Rf

B
(Y|Z) ∶= Yf⧵C

f

B
(Y|Z) 

and Rf

S
(Z|Y) ∶= Zf⧵C

f

S
(Z|Y) . An outcome A ⊆ X is a set of contracts.

An outcome A ⊆ X is individually rational for an agent f ∈ F if Cf (Af ) = Af  . We 
call A acceptable if A is individually rational for all agents f ∈ F . For outcomes 
W,A ⊆ X , we say that A is (W, f)-acceptable if Af ⊆ Cf (Wf ∪ Af ) , i.e., if the agent 
f chooses all contracts from set Af  whenever she is offered A alongside W. An out-
come A is W-acceptable if A is (W, f)-acceptable for all agents f ∈ F . Note that out-
come A is individually rational for agent f if and only if it is (�, f )-acceptable.

C
f

B
(Y|Z) ∶= Cf (Y

f

B
∪ Z

f

S
) ∩ X

f

B

C
f

S
(Z|Y) ∶= Cf (Z

f

S
∪ Y

f

B
) ∩ X

f

S
.

3 Since firms only care about their own contracts, we can write Cf (Y) to mean Cf (Yf ).
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2.2  Assumptions on choice functions

We can now state our key assumption on choice functions introduced by 
Ostrovsky (2008).

Definition 1 The choice function of f ∈ F is fully substitutable if for all Y ′ ⊆ Y ⊆ X 
and Z′ ⊆ Z ⊆ X it is: 
1 Same-side substitutable (SSS): 

(a) R
f

B
(Y �|Z) ⊆ R

f

B
(Y|Z)

(b) R
f

S
(Z�|Y) ⊆ R

f

S
(Z|Y)

2 Cross-side complementary (CSC): 
(a) R

f

B
(Y|Z) ⊆ R

f

B
(Y|Z�)

(b) R
f

S
(Z|Y) ⊆ R

f

S
(Z|Y �)

Contracts are substitutable if every firm regards any of its upstream or any of 
its downstream contracts as substitutes, but its upstream and downstream contracts 
as complements. Hence, rejected downstream (upstream) contracts continue to be 
rejected whenever the set of offered downstream (upstream) contracts expands or 
whenever the set of offered upstream (downstream) contracts shrinks.

Hatfield et al. (2012) showed that testing substitutability can be performed in polyno-
mial time if there is a preference relation over the contracts, but may require an exponen-
tial number of queries if we have access only to the choice functions of the agents.

2.3  Special case: flow networks and flow‑based choice functions

We first define flow-based choice functions. Flow-based choice functions work dif-
ferently for terminal and non-terminal agents. A terminal agent has a flow-based 
choice function if it always accepts all offered contracts. However, a non-terminal 
agent has a flow-based choice function if it accepts as many upstream and down-
stream contracts as it can (using a linear preference ordering) subject to the con-
straint that the number of accepted upstream and downstream contracts is the same.

Definition 2 Cf  is flow-based if
• whenever f ∈ F is a terminal agent, Cf (Yf ) = Yf  for any Y ⊆ X;
• whenever f ∈ F is not a terminal agent

– f has linear-order preferences ≻f

B
 over Xf

B
 and linear-order preferences ≻f

S
 over 

X
f

S
 , and

– Given access to upstream contracts Y ⊆ X
f

B
 and downstream contracts Z ⊆ X

f

S
 , 

a firm f with flow-based choice function will choose its k most preferred 
upstream contracts from Y according to ≻f

B
 and k most preferred downstream 

contracts from Z according to ≻f

S
 where k ∶= min{|Y|, |Z|}.
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Since non-terminal agents with flow-based choice functions always pick the same 
number of upstream and downstream contracts, their preferences satisfy the so-
called Kirchhoff equality.4 It is immediate that flow-based choice functions defined 
in this way are fully substitutable and satisfy the IRC condition.

A flow network is a trading network in which there are exactly two terminal agents 
(and the remaining agents are non-terminal) and all choice functions are flow-based 
(Fleiner 2014).5

2.4  Computational complexity

We now provide a brief overview of the key concepts in computational complex-
ity to ensure that our paper is self-contained.6 Computational complexity theory 
deals with assessing the intrinsic hardness of computational problems. Most often 
we deal with a decision problem Q where for each input instance  I, expressed as 
a string, there is a correct answer: yes or no; consequently we talk about yes– and 
no–instances of Q. To measure how hard or easy a certain computational problem 
is, we consider the resources, in terms of time and space, necessary for an algo-
rithm that answers the problem correctly. The running time of a given algorithm is 
described by a function T(n), denoting the maximum number of basic computational 
steps that the algorithm may perform on any input instance of length n.

We consider an algorithm efficient, if its running time can be upper-bounded by 
a polynomial of constant degree. Decision problems that can be solved by such an 
algorithm are said to be in � , the class of polynomial-time solvable problems. The 
class �� contains decision problem for which the answer yes can be efficiently veri-
fied given some short proof. More precisely, a decision problem Q belongs to the 
class �� , if for each yes–instance I of the problem, there exists a proof (or witness) 
w whose length is polynomial in |I| and that can be used to verify in polynomial time 
that I is indeed a yes–instance. As an example, consider the problem of deciding if a 
Stable Roommates with Ties instance admits a stable matching (the SRT problem): 
in case of a yes–instance and a witness for this in the form of a stable matching, we 
can easily verify its correctness by checking all possible blocking pairs.

Although for numerous problems in �� , such as the SRT problem above, no 
polynomial-time algorithm is known to exist, we currently have no definitive proof 
showing that some problem Q ∈ �� is not in � . Nevertheless, we can infer the hard-
ness of Q by using polynomial-time reductions: a problem Q′ can be polynomially 
reduced to Q, if for each instance I′ of Q′ we can compute in polynomial time an 
instance I of Q such that I is a yes–instance of Q if and only if I′ is a yes–instance 
of Q′ . A problem Q is ��-hard, if any problem in �� can be reduced to Q; and we 
say that Q is ��-complete, if it is ��-hard and contained in �� . The first problem 

4 Flow-based choice functions are a special case of “separable” choice functions (Fleiner et al. 2016).
5 In fact, what follows is a simplification of Fleiner’s flow network model where all capacities have 
value 1 and flow values must be integral.
6 For a more detailed introduction into the area of computational complexity, we refer the reader to the 
monograph by Garey and Johnson (1979), the book by Cormen et al. (2009) or Sects. 1 and 2 of the sur-
vey by Roughgarden (2010) that focuses specifically on economic applications.
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ever shown to be ��-hard (by Cook 1971) was the problem of checking whether a 
formula in propositional logic is satisfiable (the SAT problem). Exploiting the tran-
sitivity of polynomial-time reductions, we can prove that a problem Q is ��-hard by 
giving a reduction from SAT or any other problem already known to be ��-hard.

3  Solution concepts and their computational complexity

3.1  Trail stability

In order to explain our first solution concept, we first define a trail.

Definition 3 A sequence (x1,… , xM) of M distinct contracts for some M ∈ ℕ
+ is a 

trail if b(xm) = s(xm+1) holds for all m ∈ {1,… ,M − 1}.

Note that a firm may appear several times along the trail (as opposed to contracts, 
which may appear at most once). Further note that a trail T is a sequence of con-
tracts; however, since all contracts of a trail are distinct, we may sometimes use T to 
refer to the set of contracts contained in T, whenever this does not cause any confu-
sion. The following solution concept was introduced by Fleiner et al. (2016).

Definition 4 An outcome A ⊆ X is trail-stable if 
1. A is acceptable.
2. There is no trail T = (x1, x2,… , xM) such that T ∈ (X⧵A)M and 

a {x1} is (A, f1)-acceptable for f1 = s(x1) , and
b {xm−1, xm} is (A, fm)-acceptable for fm = b(xm−1) = s(xm) whenever 1 < m ≤ M 

and
c {xM} is (A, fM+1)-acceptable for fM+1 = b(xM).

Such a trail T is called a locally blocking trail to A.

Trail stability is a natural solution concept when firms interact mainly with their 
buyers and suppliers and deviations by arbitrary sets of firms are difficult to arrange. 
In a trail-stable outcome, no agent wants to drop his contracts and there exists no 
sequence of consecutive bilateral contracts comprising a trail such that any interme-
diate agent who is offered a downstream (upstream) contract along the trail wants 
to choose it alongside the subsequent upstream (downstream) contract in the trail. 
Importantly, we require that the first (final) agent wants to unilaterally offer (accept) 
the first (final) contract in the trail.7 For trail stability, we do not require that inter-
mediate agents simultaneously accept all the contracts along the locally blocking 

7 The trail and the order of conditional acceptances can, of course, be reversed with fM+1 offering the 
first upstream contract to seller fM and so on.
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trail. Instead they are simply required to myopically accept pairs of upstream and 
downstream contracts, one pair at a time, as they appear along the trail.8

Fleiner et al. (2016) proved that under full substitutability trail-stable outcomes 
always exist in trading networks and, under certain conditions, have a familiar lat-
tice structure. Trail-stable outcomes may not be Pareto-efficient. In a variant of our 
model with continuous prices, Fleiner et  al. (2019) showed that in the economy, 
trail-stable outcomes essentially coincide with competitive equilibrium outcomes 
even if distortionary frictions, such as sales taxes are present.9 Here we focus on the 
computability of trail-stable outcomes.

Theorem 1 (Fleiner et al. 2016). Suppose that in a trading network choice functions 
are fully substitutable and satisfy the IRC condition. Then a trail-stable outcome 
exists and can be found in time linear in the number of contracts.

The proof of Theorem 1 follows immediately from the proof of existence of trail-
stable outcomes provided by Fleiner et  al. (2016) and Adachi (2017). Trail-stable 
outcomes are found by a generalized Gale-Shapley algorithm defined in Fleiner 
et  al. (2016). In the generalized Gale-Shapley algorithm, at least one contract is 
rejected at each step and since the number of contracts is finite, the number of steps 
required to find a trail-stable outcome is bounded by the number of contracts.

We remark that the running time of the algorithm in Theorem 1 is optimal in the 
sense that the number of steps necessary for simply reading all contracts is linear 
in the number of contracts.10 Whether or not our linear-time algorithm is practical 
depends on the total number of contracts. In some cases the number of contracts can 
be rather large because, for example, the same trade at two different discrete prices 
creates two different contracts.

3.2  Path‑or‑cycle stability

The definition of trail stability requires that there be initial and final agents that 
would unconditionally offer or accept an upstream or a downstream contract while 
all the intermediaries only make a downstream (upstream) offer after receiving an 
upstream (downstream) offer. Let us now relax this condition and allow agents to 
form blocking cycles: now every agent can offer an upstream and a downstream 
contract simultaneously without having to accept them individually. This is a mild 
strengthening of trail stability (whenever there is at most one contract between 
agents) that treats all blocking agents as intermediate agents in the blocking trail, 

8 If agents were required to accept to all the contracts along the locally blocking trail, this would lead to 
a strictly weaker solution concept (under full substitutability) called “weak trail stability” (Fleiner et al. 
2016).
9 The First Fundamental Welfare Theorem can, of course, fail in the presence of distortionary frictions.
10 This optimality holds if the contracts are spelled out one by one in the problem description, and if 
the inputs have to be read completely. We leave open the question of whether it is possible to find a trail-
stable outcome without spelling out all contracts (cf., Gonczarowski et al. 2019).
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and thus allows for a small amount of additional coordination among blocking 
agents.

For the sake of further simplicity, let us only focus on paths, i.e., trails in 
which all agents are distinct.

Definition 5 A sequence (x1,… , xM) of M contracts for some M ∈ ℕ
+ is a path if

• b(xm) = s(xm+1) holds for all m ∈ {1,… ,M − 1} , and
• all firms s(x1), s(x2),… , s(xM) , and b(xM) are distinct.

Now, a trail that returns to its origin agent and goes through each of its agents 
only once is a cycle. More precisely:

Definition 6 A sequence (x1,… , xM) of M contracts is a cycle if
• b(xm) = s(xm+1) holds for all m ∈ {1,… ,M − 1},
• b(xM) = s(x1) , and
• all firms s(x1), s(x2),… , s(xM) are distinct.

Definition 7 An outcome A ⊆ X is path-or-cycle-stable if 
1. A is acceptable.
2. There is no path or cycle B such that B ∈ (X⧵A)M and B is (A, f)-acceptable for 

each f ∈ F(B) . Such paths or cycles are called blocking paths and blocking cycles.

An interesting property of flow-based choice functions is that given an out-
come A ⊆ X , any cycle C disjoint from A is a blocking cycle, as any firm which is 
offered a pair of additional upstream and downstream contracts will accept them. 
We will use this property to prove our second key result.

Theorem  2 It is ��-complete to decide if a flow network admits a path-or-cycle-
stable outcome.

Proof The problem is in �� , since given an outcome A, we can check in linear 
time (with respect to the number of contracts) whether it admits a blocking path 
or a cycle: we only have to check that the contracts X⧵A do not contain a cycle or a 
path starting with an ( A, ⋅)-acceptable contract and ending with an ( A, ⋅)-acceptable 

tusu

au

b′ubu

a′u

tvsv

av

b′vbv

a′v

1

1 1

1
1

2

1

2

2

1

2

1

Fig. 1  Illustration of two node gadgets, Du and Dv , and the two contracts in Z connecting them; the figure 
assumes uv ∈ E . The number on some contract x written next to some firm indicates the rank of the con-
tract x in the preference ordering of the given firm
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contract; both these tasks can be decided using, e.g., some variant of the depth-first 
search (DFS) algorithm on the directed graph representing X⧵A (see the book by 
Cormen et al. 2009 for more details on the DFS algorithm).

To prove ��-hardness, we present a polynomial reduction from the following 
problem: given a directed graph D, decide whether it is possible to partition the ver-
tices of D into two acyclic sets V1 and V2 . Here, a set U of vertices is acyclic, if there 
is no directed cycle in D[U]. This problem was proved to be ��-complete by Bokal 
et al. (2004).

Given our input D = (V ,E) , we construct a set X of contracts and a set F of firms 
with flow-based choice functions (see Fig. 1 for an illustration). There will be at most 
one upstream contract and at most one downstream contract between any two firms, 
so we will denote a contract x with s(x) = f1 and b(x) = f2 as f1f2 . First, we introduce 
a node gadget Dv for each v ∈ V  ; the set of firms in Dv is {sv, av, a�v, bv, b

�
v
, tv} and 

the set of contracts in DV is {svav, svbv, ava�v, bvb
�
v
, a�

v
tv, b

�
v
tv} . Next, we add terminal 

firms s and t, together with the contracts ssv and tvt for each v ∈ V  . Finally, we add 
the contract set Z = {a�

u
av, b

�
u
bv ∣ uv ∈ E} where recall that E is the set of edges of 

the input graph D.
Instead of describing the full preferences of each firm over its upstream and 

downstream contracts, we only define a partial ordering (and assume that the prefer-
ences of each firm respect this partial order). Namely, for each v ∈ V  , we let sv pre-
fer svav to svbv , and we let tv prefer b′

v
tv to a′

v
tv . In Fig. 1, we indicate the rankings of 

the contracts with numbers 1 (highest rank), 2 (second highest) etc. Additionally, we 
let any firm in {av, a�v, bv, b

�
v
} prefer all contracts not in Z to contracts in Z.

We claim that there exists an outcome in X admitting neither blocking paths nor 
blocking cycles if and only if the vertices of D can be partitioned into two acyclic 
sets.

“⇒ ”: Let us suppose that there exists an outcome A ⊆ X that does not admit any 
blocking paths or cycles.

We show that Z ∩ A = � . To see this, first consider a contract a�
u
av ∈ Z , and sup-

pose for contradiction that a�
u
av ∈ A . Since av has only one downstream contract 

ava
′
v
 , this means that the contract svav cannot be contained in A (because of the 

Kirchhoff equality for av ). Note also that svav is (A, av)-acceptable, because it is a 
contract preferred by av to a′

u
av . Consider the path P from s through sv to av . Clearly, 

if neither contract on P is in A, then it is a blocking path, otherwise the contract 
svav is (A, sv)-acceptable and hence a blocking path itself, a contradiction. So sup-
pose now b�

u
bv ∈ A . Arguing analogously as before, we can prove that either the path 

from b′
u
 through tu to t, or simply the contract b′

u
tu is blocking. Thus we obtain that A 

cannot contain any contracts from Z, and only contains contracts within node gadg-
ets and contracts where the seller or the buyer is the terminal agent s or the terminal 
agent t, respectively.

Therefore, we know that for each v ∈ V  , at most one of the contracts ava′v and bvb′v 
can be contained in A (since sv can choose at most one of its downstream contracts 
by the Kirchhoff equality). Let Q = {v ∈ V ∣ ava

�
v
∉ A} , and let R = V⧵Q ; clearly 

bvb
�
v
∉ A for any v ∈ R . It is not hard to see that both Q and R are acyclic. Indeed, 

any cycle within vertices of Q in D corresponds to a cycle using only contracts of 
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Z and the contracts ava′v , v ∈ Q , and such a cycle cannot exists as it would block A. 
The same argument works to show the acyclicity of R, proving the first direction of 
our reduction.

“⇐ ”: Assume now that Q and R are two acyclic subsets of V forming a partition. 
We define an outcome A ⊆ X that contains the contracts ssv , svbv , bvb′v , b

′
v
tv , and 

tvt for each v ∈ Q , and similarly, the contracts ssv , svav , ava′v , a
′
v
tv , and tvt for each 

v ∈ R . We claim that there is no blocking path or cycle for A.
To see this, observe that by the Kirchhoff equality a contract that is (A, ⋅)-accept-

able in itself for some firm (but is not contained in A) must be either suau for some 
u ∈ Q or b′

v
tv for some v ∈ R . Since there is no path starting with a contract suau and 

ending with a contract b′
v
tv , we know that no path can block A.

To show that A admits no blocking cycles, we simply use that blocking cycles 
must be disjoint from A. Note that any cycle has to use at least one contract of Z, as 
node gadgets are acyclic. We partition the contracts in Z into four sets as follows; 
recall that A ∩ Z = � . Let ZQ,R denote those contracts in Z that leave a node gadget 
Du with u ∈ Q and arrive at a node gadget Dv with v ∈ R ; we define ZR,Q , ZQ,Q , and 
ZR,R analogously. To see that no contract xy ∈ ZQ,R ∪ ZR,Q can be part of a block-
ing cycle for A, note that A contains either the unique upstream contract of x or the 
unique downstream contract of y, by the definition of A. In either case, any cycle 
that contains the contract xy must also contain a contract in A, and hence cannot be 
a blocking cycle.

By the same reasoning, no contract b′
u
bv for some u, v ∈ Q can be contained in a 

blocking cycle, since both the unique upstream contract of b′
u
 and the unique down-

stream contract of bv are contained in A. Therefore, any contract of ZQ,Q used by a 
blocking cycle must be of the form a′

u
av for some u, v ∈ Q . Similarly, any contract of 

ZR,R used by a blocking cycle must be of the form b′
u
bv for some u, v ∈ R . By the struc-

ture of the network, this implies that no cycle can use contracts both from ZQ,Q and 
from ZR,R . However, any blocking cycle that uses only contracts in ZQ,Q and contracts 
of the form aua′u with u ∈ Q directly corresponds to a cycle within D[Q]. Similarly, 
any blocking cycle using only contracts in ZR,R and contracts of the form bub′u with 
u ∈ R yields a cycle within D[R]. Therefore, the acyclicity of Q and R ensures that A 
admits no blocking cycle, proving the correctness of our reduction.   ◻

If we translate Theorem  2 into the language of stable flows introduced 
by Fleiner (2014), we obtain that it is ��-complete to decide whether a completely 
stable flow exists in a given network with preferences, where a flow is completely 
stable if it admits neither blocking paths nor blocking cycles. In fact, our state-
ment holds not only in the discrete case (as implied directly by Theorem 2), but 
also in the continuous case where the flow can take real values as well; adjusting 
the proof of Theorem 2 to this case is straightforward. Hence we settle a conjec-
ture posed by Fleiner (2014).
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3.3  Stability

We now relax the assumption that blocking sets must be paths or cycles and con-
sider general set blocks in trading networks (Hatfield et al. 2021) and flow networks 
(Fleiner 2014).

Definition 8 An outcome A ⊆ X is stable if: 
1. A is acceptable.
2. There exists no non-empty set of contracts Z ⊆ X , such that Z ∩ A = � and Z is 

(A, f)-acceptable for all f ∈ F(Z) ; such sets are called blocking.

Stable outcomes are immune to deviations by arbitrary groups of firms, which 
can re-contract freely among themselves while keeping any of their existing con-
tracts. Stable outcomes always exist in acyclic networks if choice functions are fully 
substitutable. However, Fleiner (2014) and Hatfield and Kominers (2012) showed 
that stable outcomes may not exist in general trading networks.

3.3.1  Stability in flow networks

We next prove that in flow networks path-or-cycle-stable outcomes coincide with 
stable outcomes.

Theorem 3 In a flow network an outcome is path-or-cycle-stable if and only if it is 
stable.

Proof Let X be a set of firms in a flow network. Using the definitions, it is immedi-
ate that a stable outcome A is also path-or-cycle-stable, as a blocking path or cycle is 
naturally a blocking set as well.

For the opposite direction, assume that A is a path-or-cycle-stable outcome. 
Towards contradiction, let us also assume that B ⊆ X is a blocking set for A. Suppose 
first that B contains a cycle BC . Then BC is disjoint from A because BC ⊆ B ⊆ X⧵A . 
Moreover, BC is (A, f)-acceptable for any firm f: if f is a terminal then it accepts all 
contracts offered, and if f is non-terminal then, by the Kirchhoff equality, it accepts 
BC alongside with A since Bf

C
 is either empty or it contains an upstream and a down-

stream contract for f. Hence, BC is a blocking cycle for A. This proves that B cannot 
contain any cycles. Let us now consider a path P = (x1,… , xp) in B that is maxi-
mal (in the sense that no contracts can be added to P to obtain a longer path). By 
the acyclicity of B, s ∶= s(x1) must be a firm with no upstream contracts in B, and 
t ∶= b(xp) must be a firm with no downstream contracts in B.

Since B is blocking for A, we know that B is (A, s)-acceptable. Recall that s has a 
flow-based choice function. Therefore either s is a terminal firm (always accepting 
every offered contract), or s must obey the Kirchhoff inequality, and therefore can 
accept the downstream contract x1 ∈ Xs

S
∩ B only if there is a less preferred down-

stream contract in A. Note that this means that the contract x1 is (A, s(x1))-acceptable. 
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Using the fact that B is (A, t)-acceptable, we can argue analogously to show that the 
contract xp is (A, b(xp))-acceptable. Finally, consider any intermediary firm f lying on 
path P; assume that f = b(xi) = s(xi+1) for some i ∈ {1,… , p − 1} . Again, either f is 
terminal (and thus accepts all offers) or it is non-terminal and obeys the Kirchhoff 
equality. In the latter case, the path P is (A, f)-acceptable because it contains exactly 
one upstream contract and one downstream contract for f, namely xi and xi+1 . Hence 
we get that P is a blocking path for A, a contradiction.   ◻

Theorems 2 and 3 imply that deciding whether a stable outcome exists in a flow 
network is ��-complete.

Corollary 1 It is ��-complete to decide if a flow network admits a stable outcome.

3.3.2  Stability in trading networks

We finally turn to the existence of stable outcomes in trading networks. Hatfield 
et al. (2021) showed that stability is closely related to a solution concept similar to 
trail stability. They define a chain as a set of contracts that can be ordered in a way 
that it forms a trail. Chain-stable outcomes are immune to blocks that form a chain 
in which every firm can simultaneously offer and accept all its contracts in the chain. 
Hatfield et al. (2021) show that, under additional conditions, stability is equivalent 
to chain stability. Chain stability contrasts to our definition of trail stability, which 
requires that firms only need to accept pairs of contracts along the trail, one pair at 
a time. Since a set of contracts that forms a path or a cycle is a chain, path-or-cycle 
stability is weaker than chain stability. Indeed, it is easy to see that in general trading 
networks path-or-cycle stability does not imply stability. But since flow networks 
are a special case of the trading networks (because flow-based choice functions are 
fully substitutable and satisfy the IRC condition), Corollary 1 implies that deciding 
whether a stable outcome exists is ��-hard in our trading networks model.

Corollary 2 It is ��-hard to decide if a trading network admits a stable outcome, 
even if choice functions satisfy full substitutability and IRC conditions.

In fact, dealing with stable outcomes is even trickier in trading networks. Our last 
result demonstrates that even verifying whether an outcome is stable is computation-
ally intractable in general trading networks.11

Let INSTABILITY be the following decision problem. An instance of 
INSTABILITY is a trading network with a set X of contracts and a set F of agents 
with choice functions that satisfy the conditions of full substitutability and IRC, 
and an outcome A ⊆ X . The answer for an instance of INSTABILITY is YES if the 

11 The proof of Theorem 2 shows that in flow networks verifying whether an outcome is stable can be 
done in time linear in the number of contracts.
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particular outcome A is not stable (that is, if there is a set Z of contracts that blocks 
A), otherwise the answer is NO.

Theorem  4 The INSTABILITY problem is ��-complete12 even in the special case 
where the input consists of a trading network N and an outcome A in N such that 
either A is the only stable outcome in N, or there exists no stable outcome in N. 
Moreover, if choice functions are represented by oracles, then finding the right 
answer for an instance of INSTABILITY requires an exponential number of oracle 
calls in the worst case.

Proof of Theorem 4 We present separate proofs for the theorem’s two statements.

Proving the first statement. The INSTABILITY problem clearly belongs to the com-
plexity class �� , as we can verify in polynomial time that a given set Z of contracts 
is a blocking set for an outcome A.

To show that INSTABILITY is ��-hard we reduce the ��-complete Partition prob-
lem to INSTABILITY . An instance of the Partition problem is given by a k-tuple 
Π = (a1, a2,… , ak) of positive integers such that a1 ≤ a2 ≤ … ≤ ak holds. The 
answer to this problem is YES if and only if there is a subset I of {1, 2,… , k} such 
that 

∑
i∈I ai = s where 2s =

∑k

i=1
ai .   ◻

Intuition. In what follows, we will define a trading network with five agents, where 
certain contracts between two agents, f and g (see Fig. 2 for an illustration), will cor-
respond to the integers in Π in a bijective manner. The main idea is that f and g can 
simultaneously engage in trade only if they are able to select, from all contracts corre-
sponding to Π , a subset of contracts whose corresponding integers sum up to s, yield-
ing a solution to Π . Hence, the ability of f and g to trade with each other depends on 
the solvability of our Partition instance Π . To obtain a reduction to Instability, we 
define an outcome in which only the remaining three vertices of the trading network 

x1

x2
...
xk

y

z

v1

v3

v2
h1

h2

h3

f
g

Fig. 2  Illustration of the trading network constructed in the proof of Theorem 4

12 Equivalently, the problem of verifying the stability of a given outcome is co-��-complete.
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participate and in which f and g do not trade; such an outcome is stable exactly if the 
Partition instance Π is not solvable, meaning that f and g are not able to trade.

Reduction. Given our instance Π of Partition, we define an instance of Instability 
as follows. First, we construct a trading network N which is based on an example by 
Fleiner (2014). The trading network N has agent set {f , g, h1, h2, h3} and contract set 
{x1, x2,… , xk, y, z, v1, v2, v3} . The sellers and buyers of these contracts are as shown 
in Figure 2. Let h1 , h2 , and h3 have flow-based choice functions as defined for non-
terminal agents, with h1 preferring z to v3 . Next, we define the choice function Cf

Π
 for 

f with the help of s = 1

2

∑k

i=1
ai by

for any X ⊆ {x1,… , xk} and Y ⊆ {y}.
One can readily check that Cf

Π
 satisfies the IRC condition. To see that it is also 

fully substitutable, first notice that f never rejects any upstream contracts, so it sat-
isfies the conditions of both SSS and CSC with f as a buyer (that is, conditions 
1(a) and 2(a) in Definition 1). To check the requirements for same-side substitut-
ability with f taking the role of a seller (that is, condition 1(b) in Definition 1), let 
us fix a set Y of upstream contracts. If Y = � , then f rejects all downstream con-
tracts. Otherwise (that is, if Y = {y} ), suppose that f rejects some xj from a set X of 
offered downstream contracts. This means that there exists an index t < j such that ∑
{ai ∶ xi ∈ X, i ≤ t} ≤ s <

∑
{ai ∶ xi ∈ X, i < t + 1} . But then, for any superset 

X′ ⊇ X of downstream contracts offered to f, the same condition will hold for some 
t′ ≤ t < j , and thus xj will again be rejected. This proves same-side substitutability 
with f being a seller. To verify that Cf

Π
 also satisfies cross-side complementarity with 

f as a seller (that is, condition 2(b) in Definition 1), it suffices to observe that any 
downstream contract rejected while Y = {y} is offered to f will get rejected again 
when Y � = � is offered to f. Hence, we get that Cf

Π
 is fully substitutable.

Next, define Cg

Π
 by

for any X ⊆ {x1,… , xk} and W ⊆ {y, z}.
It is straightforward to check that Cg

Π
 satisfies the condition of IRC, so let us check 

whether it is fully substitutable as well. First, since g always accepts all upstream con-
tracts, both SSS and CSC clearly hold for g as a buyer. To check SSS as a seller for g, 
let us consider a fixed set X of upstream contracts offered for g. Then g either accepts 
all downstream contracts (in case X is such that 

∑
{ai ∶ xi ∈ X} ≥ s ) or it rejects every 

downstream contract (otherwise); in either case, the set of contracts rejected by g as a 
seller satisfies the conditions of SSS. To check cross-side complementarity as a seller 
for g, note that if g rejects a set W ⊆ {y, z} of contracts, then it must be the case that 

C
f

Π
(Y�X) =

⎧
⎪⎨⎪⎩

(���) if Y = �,

(Y�X) if Y = {y} and
∑
{ai ∶ xi ∈ X} ≤ s,

(Y�X ∩ {x1, x2,… , xt}) if Y = {y} and t is such that∑
{ai ∶ xi ∈ X, i ≤ t} ≤ s <

∑
{ai ∶ xi ∈ X, i ≤ t + 1}

C
g

Π
(X�W) =

�
(X�W) if

∑
{ai ∶ xi ∈ X} ≥ s,

(X��) if
∑
{ai ∶ xi ∈ X} < s
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∑
{ai ∶ xi ∈ X} < s for the offered set X of upstream contracts. But then g will reject 

W for any subset X′ ⊆ X too, so CSC holds as well. Hence, Cg

Π
 is fully substitutable.

Note that for any set of downstream contracts accepted by f, the corresponding set of 
integers in Π sum up to at most s; by contrast, agent g accepts a nonempty set of down-
stream contracts only if it receives a set of upstream contracts for which the corresponding 
set of integers in Π sum up to at least s. This will result in the key property of this trading 
network to “recognize” whether there is a set of elements in Π summing up to exactly s. 
Such recognition will be manifested here by the stability or instability of a certain outcome.

So far, based on our instance Π of Partition, we have determined a trading 
network N. To finish the construction of our INSTABILITY instance, we set an out-
come A = {v1, v2, v3}.

Correctness of the reduction. We have to show that the answer to our instance 
of the Partition problem is YES if and only if A is not stable, and furthermore, 
that N and A satisfy the conditions claimed in the theorem. To this end, we first 
prove the following claim.

Claim 1 If Z ⊆ {x1, x2 … , xk, y, z} is a set of contracts acceptable for f and g, then 
either Z = � or 

∑
{ai ∶ xi ∈ Z} = s.

Proof of Claim  1 Define I = {i ∶ xi ∈ Z} and XI ∶= {xi ∶ xi ∈ Z} . Since Z is acceptable  
for f and g, we have C

f

Π
(Z ∩ {y}|XI) = (Z ∩ {y}|XI) and C

g

Π
(XI|Z ∩ {y, z}) = 

(XI|Z ∩ {y, z}) . If Z ∩ {y, z} = � , then (Z ∩ {y}|XI) = C
f

Π
(Z ∩ {y}|XI) = C

f

Π
(�|XI) =

(�, �) implies XI = � , which yields Z = � . If Z ∩ {y, z} ≠ � , then (XI|Z ∩ {y, z}) = C
g

Π
(XI|

Z ∩ {y, z}) ≠ (XI|�) which implies 
∑

i∈I ai ≥ s . As a consequence, XI ≠ ∅ . Using this, 
we get Cf

Π
(Z ∩ {y}|XI) = (Z ∩ {y}|XI) ≠ (�|�) which implies 

∑
i∈I ai ≤ s . Conse- 

quently 
∑

i∈I ai = s .   ◻

Assume now that the answer to our instance Π of Partition is YES, that is, ∑
i∈I ai = s for some I ⊆ {1, 2,… , k} . Define XI ∶= {xi ∶ i ∈ I} and W = {y, z} . By 

definition, Cf

Π
({y}|XI) = ({y}|XI) , C

g

Π
(XI|W) = (XI|W) , and since h1 prefers z to v3 , 

h1 chooses {z, v1} from A ∪W  . Hence XI ∪W  blocks A, so A is not stable.
For the other direction, assume now that A is not stable. This means that 

there is a blocking set Z for A. Clearly, Z must be acceptable for f and g (because 
Af = Ag = � ). Moreover, since A ∩ Z = � , we know that Z ⊆ {x1, x2,… , xk, y, z} . 
Hence, Claim  1 implies that 

∑
{ai ∶ xi ∈ Z} = s , and the answer to the Parti-

tion problem is YES.
It remains to show that either there exists no stable outcome in N, or A 

is the unique stable outcome in N. Let S be any stable outcome in N. Now, if 
S ∩ {x1, x2,… , xk, y, z} = � , then since each agent in {h1, h2, h3} must choose the 
same number of upstream and downstream contracts, we know that either S = � , 
or S = A . It is easy to see that A blocks the empty outcome, so only S = A is possi-
ble in this case. Suppose now zS ∶= S ∩ {x1, x2,… , xk, y, z} ≠ � . Using again that 
agents h1 , h2 and h3 have flow-based choice functions as defined for non-terminal 
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vertices, we get that z ∉ S . On the one hand, if A ⊆ S , then {z} blocks S: h1 prefers 
z to v3 ∈ A , and by applying Claim  1 to ZS we know 

∑
{ai ∶ xi ∈ S} = s which 

implies z ∈ C
g

Π
(S ∪ {z}) . On the other hand, if A ⊈ S , then S must be disjoint from 

A by the flow-based choice functions of agents h1 , h2 and h3 . But then A blocks S, 
proving that A is indeed the only outcome that can be stable.

Proving the second statement. To prove the second part of the theorem, define a trad-
ing network with agents f and g and with contracts y and xi such that f = b(y) = s(xi) 
and g = s(y) = b(xi) for 1 ≤ i ≤ 2n . Define the following choice function for f:

As Cf = C
f

Π
 for Π = (1, 1,… , 1) , Cf  satisfies the conditions of full substitutability 

and IRC.
Next, define the following choice function 

For any I ⊆ {1, 2,… , 2n} with |I| = n , define XI ∶= {xi ∶ i ∈ I} and let

It is straightforward to check that choice functions Cg

0
 and Cg

I
 above are also fully 

substitutable and satisfy the condition of IRC.
Now assume that an instance of INSTABILITY is given by the above network and an 

outcome A = � . Assume that the choice functions are not given explicitly, but by ora-
cles. Moreover, we know exactly that the choice function of f is the one defined in (1) 
and we know that the choice function of g is either Cg

0
 or Cg

I
 for some I. It is easy to check 

that A is not stable if and only if Cg = C
g

I
 for some I, and in this case the only blocking 

set is Z = XI ∪ {y} . So if one has to decide stability of A, then one must determine the 
Cg(Z) values for all such possible Z, and this means 

(
2n

n

)
 oracle calls.   ◻

Let us stress that in the Instability problem we assume that every choice function 
is fully substitutable. This assumption allows us to concentrate on the computational 
intractability of the Instability problem itself since we do not have to take into account 
the time necessary to recognize whether agents have fully substitutable choice func-
tions. Therefore, the second statement of Theorem 4 is unrelated to an important result 
by Hatfield et al. (2012) which shows that any algorithm that can decide if some agent 
f has a substitutable choice function Cf  must perform an expected number of oracle 
calls accessing Cf  that is exponential in the number of contracts. Analogously, the 
statement of Corollary 2 is also unrelated to testing substitutability of choice functions.

(1)

Cf (Y�X) =
⎧
⎪⎨⎪⎩

(���) if Y = �,

(Y�X) if Y = {y} and �X� ≤ n,

(Y�X ∩ {x1, x2,… , xt}) if Y = {y} and �{xi ∈ X ∶ i ≤ t}� = n.

C
g

0
(X|Y) =

{
(X|Y) if |X| ≥ n + 1,

(X|�) if |X| ≤ n.

C
f

I
(X|Y) =

{
(X|Y) if |X| ≥ n + 1 or if X = XI ,

(X|�) if |X| ≤ n and X ≠ XI .
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