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Abstract
This paper examines the dynamic effects of Social Influence on asset prices in the
presence of heterogeneous expectations among investors. In our model, the choices of
investors’ trading strategies are influenced not only by past payoffs but also by their
neighbors’ choices in the social network. To obtain tractable results with generic impli-
cations for social structure, we use a mean-field approximation approach rather than
specifying the exact structure of social network. Analytical conditions for the exis-
tence and local stability of equilibria of price dynamics are established and validated
through numerical simulations. Our analysis shows that social influence increases the
dimension of the dynamical system and that equilibria can only be expressed implic-
itly as solutions of certain equations. We also investigate the long-run behavior of
price and fraction of trading strategies using numerical simulation under a scale-free
network and a power function type social influence factor. Our results suggest that the
system tends to be stable when social influence is small but exhibit complex periodic
orbits and even chaos when social influence is large. These findings yield valuable
insights into the role of social influence in financial markets.
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1 Introduction

In the conventional rational asset pricing models (such as Sharpe 1964 and Ross
2013), the capital market is assumed to be efficient. Asset prices reflect all available
information and fluctuate around a general equilibrium (Fama 1970). Investors are
rational and they incorporate all available information into their investment decisions.
While these conventional models have been proven to be useful in predicting asset
prices in regular time periods, real-world capital markets often exhibit excess volatility
and returns that such models are unable to account for (Shiller 1992). This led to
the development of alternative theories, such as behavioral finance, which attempt
to explain the irrational behavior of investors that can lead to bubbles and crashes in
financialmarkets. Shiller (1984) andWest (1988) have found early empirical evidences
that support the use of behavior model in the financial market as early as the 1980s.

A large number of nonlinear dynamic asset pricing models have been developed
ever since to incorporate behavior elements into the financial market. They emphasize
the role of heterogeneous expectations in leading to the complexity of asset price
dynamics. Some examples include De Long et al. (1990); Day and Huang (1990);
Chiarella (1992); Kirman (1993); Lux (1995); Chiarella and He (2003); Chiarella
et al. (2009), and zhu et al. (2009), among others. The literature that is most relevant
to our work are Brock and Hommes (1997, 1998). They explored the possible routes
that lead to the complex behavior of asset prices analytically and numerically, where
chaotic attractors are found for a wide range of parameters. Nevertheless, thesemodels
focus on whether “irrational” traders could survive in the market but do not provide
a “real” framework to capture how investors switch between expectations. In Brock
and Hommes (1998)’ framework, investors choose from a finite set of heterogeneous
expectations based on a simple discrete choice probability model.1 It assumes that
agents make decisions individually and information is freely accessible to everyone.
This is far from reality where investors are influenced by their peers and information
is not free. In fact, the financial market is well known for its information asymmetry.
Less informed investors may heavily rely on their social network to obtain information
and make decisions.

The way this paper contributes to this body of literature is to bring in ideas from
social network literature and introduce social influence elements into a heterogeneous
agent-based asset pricing model. The heterogenous expectations are defined as in
Brock and Hommes (1998) and Chiarella and He (2003). The way in which inter-
acting investors update their expectations is determined by both the social influence
and the characteristics of investors’ expectation types. In other words, investors are
not only influenced by their beliefs but also by the beliefs of others in their social
network. By incorporating social influence elements into the model, it offers a more
realistic representation of how financial markets operate. It attempts to bridge the gap
between the asset pricing literature and the social network literature, highlighting the
importance of social influence in financial markets.

1 Anderson et al. (1992); Manski and McFadden (1981) provide extensive information on discrete choice
modelling.
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Shiller (1984,1988) can be seen as the earliest literature that challenge the efficient
market hypothesis and bring the concept of social influence into finance research under
the name of fashions, or fads. However, at that time, the model of social influence
was rarely explicit. Many other early studies tend to represent social influence as
the herding behavior of investors. That is, the decision of an investor is influenced
by the fractions of different types of investors in the market. This line of literature
includes Lux (1995, 1998); Diks and van derWeide (2005); Satchell and Yang (2007);
Chang (2007); Alfarano et al. (2008); Lux (2009); Franke and Westerhoff (2012); Di
Guilm et al. (2014), among others. In particular, in Lux (1995) and its followers,
the probabilities that investors change their types from one to another are explicitly
formulated, where the social influence appears as a single variable which affects the
transition probabilities.

Modelling social influence with exact network structures and full information on
local interactions is challenging since the exact social structure makes the model
intractable quickly when the population becomes large. It is difficult to obtain ana-
lytical results unless the communication network exhibits very special characteristics
(e.g. regular networks or stars, as in Panchenko et al. (2013)). For example, Alfarano
and Milakovic (2009) provides a microscopic interpretation of the herding factor in
Lux (1995) transition probability approach using an exact social network structure. It
brings more information to the theory but at the same time, it causes a heavy burden
to analysis and evaluation. Therefore, the authors employ a mean-field approximation
approach in their general analysis and only discuss several typical network structures
as special cases. Yang (2009) incorporates social networks into opinion formation in
the study of price stability. The forecast of the future price of an investor is influ-
enced by the opinion of neighbors in the social network, where the way of influence
is captured by a weight matrix. Since the exact network structure is itself difficult to
work with, these papers only consider a very simple framework, such as a single-asset
market, simple price formation mechanism, and homogeneous investors. Similarily,
Panchenko et al. (2013) analyse local interactions in a two-type heterogeneous expec-
tation model and investigate four commonly considered network topologies: a fully
connected network, a regular lattice, a small world, and a random graph. They find that
these network structures affect the stability of asset price dynamics and the amplitude
of fluctuations and statistical properties.Makarewicz (2017) puts local peer effects into
price expectation and studies the emergence of contrarian strategy with agent-based
simulation using small and large networks.

In those studies, when exact social structure is used, most practical implications
will be restrictive to that particular structure and therefore, very little can say about
generality. To overcome this weakness, in this paper, we employ a mean-field approxi-
mation to embed the social network structure through a function of individual degrees
into the discrete choice model. The degree is the number of neighbors that an individ-
ual has in their social network, which is used to measure to what extent a person can
be influenced by others around her. By focusing on the degree and employing mean-
field approximation, we are able to derive general analytical results with much richer
structural settings compared to exact social structure, but still maintain the tractability
of the model.
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We follow the line of research on the discrete choice of strategies with social inter-
actions started by Blume (1993) and Brock (1993), and followed byBrock andDurlauf
(2001), Brock and Durlauf (2002). In these models, the individual utility of choosing
a strategy is expressed by the sum of the individual’s private utility determined by the
choice of the individual, the social utility determined by the choices of all individuals
in the society, and an idiosyncratic random utility. A basic functional form for social
utility considers that the quantity is proportional to the sum of the expected utilities
of the individual given the choices of others. This formulation leads to a discrete
choice probability. This approach carries the idea that individuals are influenced by
the information aggregated from the whole society. The ability of individuals to reach
information, as well as their intensity of choice, is assumed to be identical among all
individuals. In our model, to utilise mean field approximation, we keep the assump-
tion that each individual has the same ability to gather information but assume that
the intensity of choice may differ with different positions in the social network. The
characteristic of an individuals’ network position is the degree, which is a measure of
sociability partially reflects what extent a person can be influenced by others around
her. The modelling of heterogeneous expectations formation is in line with Chiarella
and He (2003), with two classes of expectations, fundamentalists and trend chasers,
and a market maker.

The remainder paper is organised as follows. An asset pricing model with heteroge-
neous agents and social influence are developed in Sect. 2. The equilibrium solution is
obtained in Sect. 3. Section4 studies the dynamic behavior of the system, and Sect. 5
provides numerical simulations. We conclude the paper in Sect. 6. All the proofs are
collected in Appendix.

2 Themodel

We build our model on a standard heterogeneous agent asset pricing model in discrete
time based on Chiarella and He (2003). There are three classes of participants in the
market: investors with heterogenous expectations, the fundamentalists and the trend
chasers,2 and a market maker. The investors are assumed to be boundedly rational.
Intuitively, the fundamentalists make forecasts on future fundamentals only using
the information that they privately observed, while the trend chasers rely on simple
measures about price changes in the past but not on fundamentals. The market maker
acts as both a liquidity provider and an active investor in a market.3

Additionally, investors are influenced by their social connections in the decision of
switching strategies, i.e., from a fundamentalist to a trend chaser or vice versa. Social
connections are aggregatively characterised by a degree distribution where the degree
of an agent represents the number of agents to whom she is connected. The magnitude
of influence depends on the degree distribution as well as the degree itself. This is a

2 Hong and Stein (1999) consider similar settings on two groups of agents - newswatchers (fundamentalists)
and momentum traders (trend chasers).
3 See Chiarella and He (2003), Farmer and Joshi (2002), also refer to Zhu et al. (2009) for the influence of
market maker to the stability of market.
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mean-field approximation to the model with exact social network structures. 4 In the
following we describe the building blocks of the model in detail.

2.1 Market price under amarket maker scenario

Suppose that there are two assets in the market, one risky asset whose supply is fixed
and one risk-free asset whose supply is perfectly elastic. Let the gross return of risk-
free asset be R = 1 + r > 1 for each period, where r is the risk-free rate. Denote pt
the (ex-dividend) price per share of the risky asset at period t , and {yt } the stochastic
dividend process of the risky asset. LetWt be the wealth of a typical investor at period
t , then

Wt+1 = RWt + (
pt+1 + yt+1 − Rpt

)
zt , (1)

where zt is the number of shares of the risky asset purchased by the investor at period
t .

The information set at t is denoted by Ft = {pt , pt−1, . . . ; yt , yt−1, . . . }. Let Et

and Vt be the conditional expectation and conditional variance functions, respectively,
based on Ft . Let h ∈ {1, 2} denote the type of investors, where h = 1 indicates a
fundamentalist and h = 2 represents a trend chaser.We use Eh,t and Vh,t to express the
beliefs of type h investors at period t about the conditional expectation and conditional
variance, respectively, of a random variable at period t + 1. Denote Rt+1 the excess
return at t + 1, that is

Rt+1 = pt+1 + yt+1 − Rpt . (2)

Then, one has

Eh,t (Wt+1) = RWt + Eh,t (Rt+1)zh,t , (3)

Vh,t (Wt+1) = RWt + Vh,t (Rt+1)zh,t , (4)

where zh,t is the number of shares of the risky asset purchased by type h investors.
Both types of investors are assumed to be expected-utility maximisers, i.e., assets

with high expected return and low expected risk are preferred. However, different
types of investors have different risk attitudes. The risk attitude of type h investor is
characterised by the risk-aversion coefficient ah . Then, the demand of risky asset zh,t

for type h investors is given by

zh,t = Eh,t [Rt+1]
ahVh,t [Rt+1] . (5)

Let nh,t be the fraction of type h investors at period t so that
∑

h nh,t = 1. In the
subsequent subsections we will specify a way of approximating these fractions using

4 See, among other, Jackson andYariv (2005), Jackson (2007), Bramoullé et al. (2012), Huang et al. (2016),
Giovannetti (2021), etc.
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a modification of the discrete choice model with social influence. By assuming a zero
supply of outside shares, the excess demand for the risky asset is given by

ze,t ≡
∑

h

nh,t · zh,t =
∑

h

nh,t · Eh,t [Rt+1]
ahVh,t [Rt+1] . (6)

The market maker takes a long position when the excess demand of the risky asset
is negative (ze,t < 0), and a short position when it is positive (ze,t > 0), in order
to clear the market. Furthermore, at the end of period t , the marker maker sets the
price for the next period that moves in the direction of reducing the excess demand.
By considering a simple linear price adjustment function, the price in period t + 1 is
given by

pt+1 = pt + μze,t = pt + μ
∑

h

nh,t · zh,t , (7)

where μ is the market friction coefficient describing the speed of price adjustment of
the market maker. Whenμ = 0, pt+1 = pt , the market maker does not adjust actively,
while when μ > 0, the market maker adjusts the price in response to excess demand
and clears the market. Here we use the same setting as in Chiarella and He (2003) to
maintain simplicity since our main focus is on social influence.5

2.2 Heterogeneous beliefs

The fundamental solution of price p∗
t under rational expectation satisfies the equation

Rp∗
t = Et [p∗

t+1 + yt+1]. (8)

Let the dividend process {yt } be i.i.d., then Et [yt+1] = ȳ is constant. Under the no-
bubble condition lim

t→∞ Et−1 pt/R = 0, Equation (8) has a unique solution p∗ = ȳ/r .6

The conditional expectations and conditional variances of the two types of investors
are given by

E1,t [pt+1 + yt+1] = Et [p∗
t+1 + yt+1], (9)

E2,t [pt+1 + yt+1] = Et [p∗
t+1 + yt+1] + θ ft , (10)

and

V1,t [pt+1 + yt+1] = V2,t [pt+1 + yt+1] = σ 2, (11)

where θ > 0 and σ 2 are constant. Equation (9) describes that the fundamentalists
believe the prices will move towards their fundamental values, while Equation (10)

5 The micro-foundations of the coefficient μ could be explored in future research.
6 See Hommes (2001) for further discussions about rational expectation fundamental price under various
conditions.
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shows that the trend chasers expect that the prices move away from the fundamen-
tal values by the deviation of weighted moving-average prices ft multiplied by the
extrapolation rate θ . It is usually considered that the risk attitudes of the two types of
investors are different. As pointed out by Campbell and Kyle (1993), fundamentalists
are considered to be more risk-averse than trend chasers. It follows that we set the
risk-aversion coefficient of fundamentalist higher than the one of trend chasers, i.e.,
a1 > a2 > 0.

We consider a geometric decay process (GDP) for the extrapolating term ft :

ft = b
L−1∑

i=0

ωi pt−i − p∗
t , (12)

where b measures the decay rate of the memory, with b = 1/
∑L−1

i=0 ωi , ω ∈ [0, 1],
and 00 = 1 for convenience.

2.3 Adaptive belief and social influence

Let xt = pt − p∗
t denotes the deviation of price pt from the fundamental price p∗

t .
Then, the excess return defined in (2) can be rewritten as

Rt+1 = xt+1 − Rxt + δt+1, (13)

where

δt+1 = p∗
t+1 + yt+1 − Et [p∗

t+1 + yt+1]. (14)

{δt+1} is a martingale difference sequence with respect to Ft , i.e., Et [δt+1] = 0 for all
t . One then has

E1,t [Rt+1] = −Rxt , E2,t [Rt+1] = θgt − Rxt , (15)

where

gt = b
L−1∑

i=0

ωi xt−i , b = 1
∑L−1

i=0 ωi
, ω ∈ [0, 1]. (16)

Let πh,t be the realized profits of investor of type h at period t . Therefore,

πh,t = Rt · zh,t−1 = (
xt − Rxt−1 + δt

)
zh,t−1, (17)

with

z1,t = −Rxt
a1σ 2 , z2,t = θgt − Rxt

a2σ 2 . (18)
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In the Brock and Hommes (1997) model, agents switch their types (trading strate-
gies) in each period according to discrete choice probabilities. That is to say, although
the beliefs are adaptive, agents make their decisions independently and are not
influenced by the information from their connections, such as friends, families or col-
leagues. However, both theoretical and empirical studies suggest that communication
connection is a very important piece in investors’ decision-making process (Shiller and
Pound 1989; Arnswald 2001; Özsöylev 2005; Özsöylev andWalden 2011; Steiger and
Pelster 2020). Therefore, we extend the discrete choice probabilities by introducing
social influence into the choice of strategies.Weassume that the investors are connected
so that they form a social network to receive information. In practice, it is intractable
to model the whole exact network when the number of agents is large. Instead, as
proposed by Jackson and Yariv (2005), a mean-field approximation approach can be
used to express the average behavior of investors where only the degree distribution
of the social connections is used. This approximation makes sense if the social net-
work is randomly re-formed in each period rather than fixed over time.7 Indeed, our
social connections are evolving all the time in the sense that new friends are made and
old ones are alienated if not contacted for a long time. Formally, let P(d) denote the
fraction of investors with degree d ∈ {0, 1, 2, . . . }, where the degree of an investor
is the number of neighbors she has in the network. The degree of an investor (and
therefore the degree distribution) is fixed for each period but to whom an investor will
connect can be random. It is known that a random neighbor of some investor (either
randomly chosen or not) has a probability P̃(d) = P(d)d/d to have degree d, where
d = ∑

d P(d)d is the average degree of investors in the network (see Newman, 2010,
Chapter 13 for details). Let ndh,t be the fraction of type h investors within the investors
of degree d at period t , and define

ñh,t =
∑

d

P̃(d) · ndh,t (19)

to be the link-weighted average of the fraction of type h investors. ñh,t is then the
fraction of type h investors that an investor is expected to connect.

Here we assume that ndh,t is updated according to the following discrete choice
probability

ndh,t = exp
[
g(d)ñh,t−1

(
πh,t − Ch

)]

Zd
t

, Zd
t =

∑

h

exp
[
g(d)ñh,t−1

(
πh,t − Ch

)]

(20)

where Ch is the cost of type h investors. It is assumed that the cost of fundamentalists
is higher than the cost of trend chasers due to the need to collect more information.
Furthermore, without loss of generality, we setC1 = C > 0 andC2 = 0. The function

7 In the same spirit, Giovannetti (2021) employsmean-field approximation in a dynamicmodel that explains
the formation of internal capitalmarkets (a type of decentralizedmarket taking placewithin business groups).
They assume that the participating firms match randomly to exchange loans obtained from an institutional
investor. The mean-field approximation is used in the analysis of the distribution of inter-firm loans.

123



Dynamic effects of social influence on asset prices

g(d) measures the intensity of choice for investors with degree d. In Sect. 5 we follow
Jackson and Yariv (2005) to consider a case g(d) = αdβ with α > 0, but now we just
leave it as a general non-negative function of d with g(0) = 0. Remark that the value
of β in g(d) controls the effect of degree on the speed of switching. When β > 0,
investors with higher degrees have a faster speed of switching, and when β < 0,
investors with higher degrees switch slower. A larger value of g(d) indicates a greater
tendency towards switching to the strategy with the highest net profit. The more the
value of g(d) is close to zero, the more the investors choose strategies randomly.

Investors are influenced by each other. If one hasmore connections with a particular
type of investor, she is more incline to take a similar strategy of that type. Hence, the
switching probability is also affected by ñh,t as appeared in the exponential functions
in (20). If an investor is isolated from the others, i.e., d = 0, equation (20) implies
that this investor randomly chooses a strategy. This coincides with our intuition that
the isolated investor is unable to collect information from others and therefore has no
idea about the differences between strategies.

Note that the update of the fractions of types h for degree d investors (ndh,t ) uses
the information of the approximated fractions of types of all investors in the previous
period (ñh,t−1). This is fundamentally different fromChiarella andHe (2003), inwhich
the fractions are only based on the information of the same period. In other words,
even if we let g(d) be constant over degrees, our model will not be simplified to that
of Chiarella and He (2003). Furthermore, we assume that nh,t is approximated by ñh,t

which is based on local information that each agent can obtain.

2.4 The dynamic system of price and fractions of investors

The adaptive belief system under social influence is given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xt+1 = xt + μ
∑

h

ñh,t · zh,t ,

ñh,t =
∑

d

P̃(d) · exp
[
g(d)ñh,t−1

(
πh,t − Ch

)]

Zd
t

,
(21)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Zd
t =

∑

h

exp
[
g(d)ñh,t−1

(
πh,t − Ch

)]
,

πh,t = (
xt − Rxt−1 + δt

)
zh,t−1,

z1,t = (−Rxt )/(a1σ
2),

z2,t = (θgt − Rxt )/(a2σ
2).

(22)
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By defining mt = ñ1,t − ñ2,t , ñ1,t = (1+mt )/2 and ñ2,t = (1−mt )/2, system (21)
can be rewritten as

⎧
⎪⎨

⎪⎩

xt+1 = xt + μ

2

[
(1 + mt )z1,t + (1 − mt )z2,t

]
,

mt =
∑

d

P̃(d) · tanh
[g(d)

4
(At · mt−1 + Bt )

]
,

(23)

where
{

At = (xt − Rxt−1 + δt )(z1,t−1 + z2,t−1) − C,

Bt = (xt − Rxt−1 + δt )(z1,t−1 − z2,t−1) − C .
(24)

System (23) is a two-dimensional nonlinear stochastic system of (x,m) because of
the random term δt . It becomes a deterministic system of order L + 1 when δt = 0 for
all t , which is called the deterministic skeleton of (23). In the next section, we study
the equilibrium solutions of this deterministic skeleton.

3 Equilibrium solutions

In this section, we consider the equilibrium state of the deterministic skeleton of the
system (23). We first obtain a general result about the existence of equilibria and then
discuss some special cases of social influence structures. Define

a = a2
a1

, m# = θ − (1 + a)R

θ − (1 − a)R
, (25)

M =
∑

d

P̃(d) · tanh
[

− g(d)

2
· (θ − R)C

θ − (1 − a)R

]
. (26)

Proposition 3.1 Assume δt = 0 for all t . Let x# be the positive solution (if exists) of

m# =
∑

d

P̃(d) · tanh
[g(d)

4
· (m# + 1) ·

(2aR(R − 1)

a2σ 2 · x2 − C
)]

, (27)

and meq be the unique solution of

meq =
∑

d

P̃(d) · tanh
[

− g(d)C

4
(m + 1)

]
. (28)

Then, the deterministic skeleton of (xt ,mt ) in system (23) always has a fundamental
equilibrium (0,meq) with −1 < meq < 0. Furthermore, when one of the following
conditions holds:

C1. R < θ < (1 + a)R and m# > M,
C2. θ ≥ (1 + a)R,
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system (23) has two other non-fundamental equilibria (±x#,m#).

Proposition 3.1 are consistent with the results of Chiarella and He (2003) but the
two differ in detail. System (23) is a real two-dimensional system of (x,m) whereas
the model in Chiarella and He (2003) is essentially a one-dimensional one in whichm
only depends on the values of x up to the current period but not on the previous values
of its own. In particular, meq defined in (28), see Proposition 3.1, cannot be expressed
explicitly, and the conditions of having non-fundamental equilibria are slightly more
complicated. This difference remains even if when g(d) is constant, i.e., the intensities
of choice of investors are not degree dependent. Nevertheless, it follows the same
intuition as in Chiarella and He (2003) that the fundamental equilibrium is stable when
the extrapolation rate θ is small enough and becomes unstable otherwise. Analysis in
Section 4 provides more results on the local stability of the fundamental equilibrium.

The effect of the network connection on the equilibrium analysis is involved in
both the expression and the condition of equilibria. Compared with Chiarella and He
(2003), one can no longer solve for meq and x# analytically because of the weighted
averaging of nonlinear terms associated with different degrees, while this averaging
was not necessary for Chiarella and He (2003). This could be seen as the price of
enriching the structure of the problem. However, it still can be said that, when the
network has a relatively uniform structure, i.e., that g(d) does not differ so much for
different values of d, it is easier to check the conditions and to find the equilibria. The
following special case gives a clear description of this point.

Regular networks

By letting all agents have the same number of neighbors, we are able to simplify the
expressions of our model to characterise equilibrium solutions. In the social network
literature, this is the case of regular networks, which contains a special case that
everyone is connected to everyone, i.e., a complete network, and simply means that
all agents are identical with respect to social influence. More precisely, let the set of
degrees be {k} where k is a constant such that 0 ≤ k ≤ N − 1, and N denotes the
number of agents. Then, one has P(d) = P̃(d) = 1 for d = k and P(d) = P̃(d) = 0
for d 	= k. Consequently, g(d) = g(k) ≡ D where D is some non-negative constant,
and ñh,t = nkh,t ≡ nh,t . We assume that D = 0 if and only if k = 0. By Proposition
3.1 and with some algebra, one can explicitly express the non-fundamental equilibria
with simplified conditions.

Corollary 3.2 When the social influence structure follows a regular network with k >

0, under the conditions of Proposition 3.1, the deterministic skeleton of (xt ,mt ) in
system (23) always has a fundamental equilibrium (0,meq) such that

meq = tanh
[

− DC

4
(meq + 1)

]
. (29)

This implies −1 < meq < 0. Furthermore, when one of the following conditions
holds,
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C1rn. R < θ < (1 + a)R and ln
(θ − R

aR

)
> − D(θ − R)C

θ − (1 − a)R
,

C2rn. θ ≥ (1 + a)R,

system (23) has two other non-fundamental equilibria (±x#,m#) where

x# =
√
a2σ 2

[
θ − (1 − a)R

]
ln

(
θ−R
aR

) + a2σ 2D(θ − R)C

2D(θ − R)aR(R − 1)
. (30)

It is easy to see that when the uniform degree k of agents increases, D = g(k)
increases. If g(d) is an increasing function ofd,meq decreases (increases inmagnitude)
as well as x#. The value of m# is not affected by k. Intuitively, this means, holding all
the other factors fixed, when individuals have more social connections, they are more
likely to be influenced by trend chasers and therefore to become a trend chaser, which
decreases the value of meq in the fundamental equilibrium. In the non-fundamental
equilibria, only if a small deviated price (a lower x#) can keep the same fractions of
types of investors (a fixed m#).

An extreme case of regular networks is for k = 0. In this case, every individual
is isolated from the rest of society. It leads to D = 0 and n1,t = n2,t = 1/2, i.e.,
individuals choose their types randomly. Obviously, the only equilibrium of (23) in
such a world is (x#,m#) = (0, 0).

Simple core-periphery structure

Now,we consider another special network structure where the set of degrees is {d1, d2}
with 0 < d1 < d2 and P(d1) > P(d2). In other words, there are two groups of
individuals. Group 1 contains the ones who have fewer connections but make up the
majority of society, and group 2 consists of the rest who have more connections. This
is a simple example of the core-periphery structure (Borgatti and Everett 2000) that is
observed in many real-world networks. It describes the phenomenon that a small part
of people (the core) is better connected than the others (the periphery). In this case,
the value of meq in the fundamental equilibrium is bounded in the way stated in the
following corollary, which follows from Proposition 3.1.

Corollary 3.3 When the social influence structure follows a simple core-periphery
network with 0 < d1 < d2 and P(d1) > P(d2), and if g(d) is increasing in d, then
the fundamental equilibrium (0,meq) of (23) satisfies

−1 < meq
2 < meq < meq

1 < 0, (31)

where meq
1 and meq

2 are the values of meq in the fundamental equilibrium in Corollary
3.2 for k = d1 and k = d2, respectively.
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4 Nonlinear dynamic behavior

In this section, we examine the dynamic behavior of our nonlinear asset pricing model
in the presence of social influence. We focus on the local stability of the fundamental
equilibrium and provide two propositions to illustrate the conditions for stability. We
will also investigate the time series properties of the model.

4.1 Local stability analysis

In the following analysis we set δt = 0. For convenience, we temporarily rewrite
system (23) to make the time indices coincide,

⎧
⎪⎪⎨

⎪⎪⎩

xt+1 = xt + μ

2

[
(1 + mt )z1,t + (1 − mt )z2,t

]
,

mt+1 =
∑

d

P̃(d) · tanh
[g(d)

4
(At+1 · mt + Bt+1)

]
,

(32)

where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

At = (xt − Rxt−1)(z1,t−1 + z2,t−1) − C,

Bt = (xt − Rxt−1)(z1,t−1 − z2,t−1) − C,

z1,t = (−Rxt )/(a1σ 2),

z2,t = (θgt − Rxt )/(a2σ 2).

(33)

Furthermore, we define

γ = μ

4a2σ 2 ,

θ∗ = R
(
1 + a

1 + meq

1 − meq

)
, and

τ =
∑

d

P̃(d)
g(d)C

4

{
1 − tanh2

[
− g(d)C

4
(1 + meq)

]}
. (34)

As stated in Chiarella and He (2003), it is generally difficult to derive sufficient con-
ditions for the local stability of the fundamental equilibrium for general lag length,
however, stability results for lower lag length such as L = 1, 2, 3 can be obtained and
can provide some insights into the stability for the general case. In order to analyse
the local stability of (L+1) dimensional first-order system defined by (32), we follow
the usual procedure consisting in studying the characteristic polynomial of the Jaco-
bian matrix and in analysing its eigenvalues. In particular, the following Proposition
establishes conditions for the modulus of all eigenvalues λi to be lower than one, i.e.,
|λi | < 1.

Proposition 4.1 For L = 1, 2, 3, the fundamental equilibrium (0,meq) of (32) is
locally asymptotically stable if and only if conditions Ca, Cb and CL hold true.
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Ca. τ < 1.
Cb. θ < θ∗.
CL . γ < γ ∗

L for L = 1, 2, 3, where

γ ∗
1 ≡ 1

(1 − meq)(θ∗ − θ)
, (35)

γ ∗
2 ≡ 1

(1 − meq)
(
θ∗ − θ

1 − ω

1 + ω

) , (36)

γ ∗
3 ≡ 1

(1 − meq)
(
θ∗ − θ

1 − ω + ω2

1 + ω + ω2

) . (37)

Period-doubling bifurcations occur at τ = 1 or at γ = γ ∗
L (L = 1, 2, 3), and pitchfork

bifurcations occur at θ = θ∗. Furthermore, one has γ ∗
2 < γ ∗

3 < γ ∗
1 .

It is not surprising that conditionCL in Proposition 4.1 coincideswith the conditions
in Proposition 2 of Chiarella and He (2003). Condition Ca is due to the social influence
in the decision of switching strategies. Apparently, involving the network effect adds
some complexity to the conditions, as it should, but does not change the structure
dramatically. In particular, the geometric decay for the extrapolation of past prices
for trend chasers to the behavior of the system is not directly affected by the network
setting, since the social influence is only embedded into the model through strategy
choices. Therefore, the difference made by different values of lag length L and weight
parameter ω has the same structure as that is discussed in Chiarella and He (2003), so
we will not repeat the analysis again. However, there is an indirect effect throughmeq ,
which depends on social structure g(d) and appears both in conditions Ca and CL .
This dependence leads to different values of γ ∗

L , but does not change the expression
of condition CL . Condition Ca tends to be satisfied when g(d) has small values for
all d, or a large g(d) is associated with a small P̃(d) so that the expected impact is
kept small. This is because the value of the expression inside the curly brackets on
the right-hand side of equation (34) is bounded by 0 and 1. Intuitively, if the social
structure does not result in a big difference among individuals with different degrees,
the system will behave much like that of the system without social influence.

The following result on the local stability of the fundamental equilibrium for general
L > 1 can be derived by applying Rouché’s theorem8. The proof is similar to that of
Proposition 3 of Chiarella and He (2003) and therefore is omitted.

Proposition 4.2 For L > 1, it holds that

(i) The fundamental equilibrium (0,meq) of (32) is locally asymptotically stable if
conditions Ca and Cb hold, and

γ < γ ∗ ≡ 1

(1 − meq)(θ∗ + θ − 2bθ)
. (38)

8 Rouché’s theorem states that, for a simple closed path C on the complex plane, if functions f and g are
analytic inside and on C and if |g(z)| < | f (z)| for all z on C, then f + g and f have the same number of
zeros inside C. See, e.g., Asmar and Grafakos (2018).
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(ii) The fundamental equilibrium (0,meq) of (32) is unstable if conditions Ca and Cb

hold, and γ > γ ∗
1 .

4.2 Time series properties

It is usually difficult to draw general conclusions on the motion of a higher-order non-
linear system. However, for the system considered in this paper, it is possible to obtain
some time series properties. The following proposition states that if two trajectories of
system (32) start at initial states that are symmetric about x0 = 0, then the trajectories
are symmetric about xt = 0 for all t > 0.

Proposition 4.3 Let (x1t ,m
1
t ) and (x2t ,m

2
t ) denote two trajectories of system (32). If

x10 = −x20 , m
1
0 = m2

0, then x1t = −x2t , m
1
t = m2

t for all t > 0.

Corollary 4.4 Thebasins of attractionof the twonon-fundamental equilibria (±x#,m#)

of (32) are symmetric about the line x = 0. More specifically, the point (x,m) is in
the basin of attraction of (x#,m#) if and only if the point (−x,m) is in the basin of
attraction of (−x#,m#).

5 Numerical simulation

In this section, we conduct numerical simulations of the deterministic skeleton of the
system (32) to provide insights on how social influence affects the local stability of
the fundamental equilibrium and the bifurcations of price dynamics. From now on
we consider g(d) = αdβ . The role of social influence is implied by the effect of
parameters α and β. α is considered to be positive and functions as a linear amplifier
of the social influence captured by the degree d. β adjust the effect in a non-linear
way such that, if β > 0, social influence shows a positive effect and people with more
connections have a larger tendency of following crowds; on the contrary if β < 0,
people exhibit negative feedback to social influence and tend to behave oppositely
from the crowds. The underlying social network is assumed to follow a power law
distribution P(d) ∝ d−ζ with d ∈ {1, 2, · · · , 100}. Networks with a power law
degree distribution are also called scale-free networks. Many real-world networks,
including the WWW, the Internet, science collaboration networks, citation networks,
and metabolic networks, are proven to exhibit scale-free property with a value of ζ

roughly between 2 and 3. 9

Table 1 summarises the baseline values of the parameters we used in the simu-
lation.10 Most parameter values are chosen as close as to those used in Brock and
Hommes (1998) and Chiarella and He (2003) for comparison purposes. A few impor-
tant numerical tools are used to describe the long-run behavior of the system such as

9 See Barabási (2016) for a comprehensive introduction.
10 When we discuss a particular parameter (α or β), the other parameters take the baseline values.
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Table 1 The baseline parameter
values used in simulations

Social influence Price dynamics
α β d ζ a θ μ R C L ω

5 0.2 {1, . . . , 100} 2.5 0.4 1.2 1.2 1.1 1 3 0.5

Fig. 1 Bifurcation diagrams about β and the corresponding Lyapunov exponents

the bifurcation diagram, the Lyapunov exponent, time series plot, and phase plot.11 If
not mentioned otherwise, the initial values are set as (x0,m0) = (0.5, 0).

Social influence parameter β (Degree-dependent)
Figure1 depicts bifurcation diagrams of variables x andm with respect to the social

influence parameter β and the corresponding values of the Lyapunov exponents. β

adjusts the social influence in a nonlinear way that depends on the degree of the social
network. x is the price deviation from the fundamental price. m is the difference
between the fractions of heterogeneous expectations. The results suggest the increase
of β leads to periodic and quasi-periodic dynamics. The dynamics are examined by
using two sets of initial values respectively with (x0,m0) = (0.5, 0) and (x0,m0) =
11 A brief description of numerical simulation techniques of nonlinear dynamics can be found in Brock
and Hommes (1998).
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Fig. 2 Time series plots and limiting orbits for β ∈ {0.6, 1.1, 1.78}

(−0.5, 0), and is computed for 10000 periods with the value of β ranging from −0.5
to 3.5.

It can be observed that the orbits of x for the two sets of initial values are symmetric
about x = 0, but the orbits of m coincide (thus shown as black points). This has
also been proven in Proposition 4.3. A hopf bifurcation occurs at β = 0.72. The
system loses stability and exhibits periodic and quasi-periodic dynamics from there,
which can be observed from the Lyapunov exponent plot as well. As β increases,
the dynamical instability of the system varies, with the most complexity arising when
β ∈ [1.05, 1.23]. However, the system converges to a stable regime after a supercritical
hopf bifurcation appears at β = 3.24. The system is stabilised when the strength of
social influence is large enough. This can also be seen in Fig. 2 which illustrates
the time series and limiting orbits for selected values of β. For β = 0.6, the system
converges to a fixed steady state. The time series and limiting orbit change dramatically
at β = 1.1, where both the trajectory and the frequency of oscillation show a great
level of complexity. At β = 1.78, the trajectory simplifies to a loop, but the frequency
is not clear.

These results suggest that social influence contributes to complex and unstable
nonlinear dynamics in financial markets. As investors become more inclined to imi-
tate each other, the percentage of trend chasers increases. This, in turn, amplifies
price deviations from the fundamental level, which can lead to complex price dynam-
ics. However, this analysis also highlights that cyclical behavior is only observed in
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Fig. 3 Bifurcation diagrams on the value of α and the corresponding Lyapunov exponents

situations where the degree-dependent social influence parameter β is positive and
moderate. If β is large, it stabilises the system, but also results in a limiting price that
is farther away from the fundamental level.

Social influence parameter α (Linear amplifier)
The bifurcation diagrams and the Lyapunov exponents on the value of α are illus-

trated in Fig. 3, with α varying within the interval [4, 12]. β is fixed at 0.2 in the
simulation. α has a linear effect on all agents across social network so it is not influ-
enced by degrees. The bifurcation diagrams show the behavior of the system as the
parameter α is varied. The diagrams indicates that there is a primary period-doubling
bifurcation, which is followed by several bifurcations before the system exhibits chaos.
Specifically, a pitchfork bifurcation occurs at α = 6.47, and two hopf bifurcations
appear at α = 6.66 and α = 7.25, with one being supercritical and the other subcriti-
cal. With a larger social influence parameter α, the system exhibits chaos at α = 8.88,
which is consistent with the corresponding Lyapunov exponents and the time series
and phase plot in Fig. 4.

The social influence parameter α has a linear effect on all agents across social
network and is not influenced by degrees. When the value of α is large, the power of
social influence increases across the entire society. This can result in a highly unstable
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Fig. 4 Time series plots and limiting orbits for α = 11

situation, as indicated by the chaotic region in the graph. Note that this is observed
with a low level of β, which means degree dependent influence is ignorable.

Summary
We conducted numerical simulations to analyse the impact of social influence

parameters β and α on the long-run local instability of the system. The results suggest
that the model can exhibit complex dynamics, including periodic, quasi-periodic, and
chaotic behavior, depending on the values of β and α. When social influence is small,
the system tends to bemore stable and converges to the fundamental equilibrium.How-
ever, with an increase in social influence parameters, both β and α, the system can
becomemore complex and unstable. The economic rationale behind these bifurcations
is as follows. When social influence is low, investors make decisions independently,
which can lead to a more stable market. They have less connections and they are less
likely to be influenced by their neighbors in the social network. However, when more
investors have access to larger number of connections, they are more likely to be influ-
enced by their peers, which can lead to increased complexity and instability. In times
of crisis, social influence can amplify small market fluctuations, leading to larger mar-
ket fluctuations and even market crashes. The study by Brunetti et al. (2019) provides
evidence for the impact of social connectedness on market dynamics during the 2008
global financial crisis. Increased connectedness among banks led to greater correlation
in bank stock returns and amplified the impact of small fluctuations, contributing to
the larger market fluctuations seen during the crisis.
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6 Concluding remarks

In this paper we provide a way to incorporate social influence and heterogenous expec-
tations into asset pricingmodels, allowing for amore nuanced understanding ofmarket
dynamics. We focus on the dynamic effects of social influence on asset prices. We
examined the existence and local stability of equilibria of the dynamics both analyti-
cally and numerically under a range of parameters. To incorporate social influence and
obtain analytical results with generic implications for social structure, a mean-field
approximation is employed to keep the model tractable. This approach allows for the
analysis of large populations, which is a major advantage when studying the impact
of social influence in the real world.

We observed that the embedment of social influence in the model fundamentally
increased the dimensionality of the system, and thus imposing more restrictions on the
existence and stability of equilibria. It implies that the presence of social influence can
lead to greater instability in asset price dynamics compared to benchmark models that
do not include social influence, as in Brock and Hommes (1998) and Chiarella and He
(2003). High levels of social influence creates complexity and chaos universally and
degree-dependently.12 These findings have important implications for understanding
the role of social influence in financial markets and the potential for market instability.

The results also yield important insights into policies for monitoring the instability
of financial markets. As suggested by the results, high levels of social influence can
increase the complexity of the system and potentially lead to market instability and
crashes. Policymakers should closely monitor the level of social influence in finan-
cial market and take action to prevent the system from reaching dangerous levels of
instability. By understanding the role of social influence in financial markets, policy
makers can take proactive steps to promote market stability and prevent catastrophic
events.

The work in this paper could be extended in several ways. One possible extension
is to calibrate the model to real-world data and test the robustness of the findings.
The model could also be modified to study the impact of different types of social
influence on asset price dynamics, such as the influence of social media or news
media. Additionally, more realistic assumptions could be considered by usingmachine
learning algorithms.
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A Appendix

A.1 Proof of Proposition 3.1

Denote (x∗,m∗) the equilibrium state of (23) when δt = 0. At equilibrium it holds
that

x∗ = x∗ + μ

2

[
(z∗1 + z∗2) + m∗(z∗1 − z∗2)

]
, (39)

m∗ =
∑

d

P̃(d) · tanh
[g(d)

4
(A∗m∗ + B∗)

]
, (40)

where

A∗ = (1 − R)x∗(z∗1 + z∗2) − C, B∗ = (1 − R)x∗(z∗1 − z∗2) − C, (41)

z∗1 + z∗2 = θ − (1 + a)R

a2σ 2 x∗, z∗1 − z∗2 = −θ − (1 − a)R

a2σ 2 x∗. (42)

x∗ = 0 is a solution of Equation (39). When x∗ = 0, m∗ is the unique solution,
denoted meq , of the following equation (i added * in the equation)

m∗ =
∑

d

P̃(d) · tanh
[

− g(d)C

4
(m∗ + 1)

]
. (43)

Considering the shape and range of hyperbolic tangent function, g(d)C > 0, and the
fact that P̃(d) is a probability distribution over the domain of d, one hasmeq ∈ (−1, 0).

When x∗ 	= 0, (39) implies

m∗ = z∗1 + z∗2
z∗2 − z∗1

= θ − (1 + a)R

θ − (1 − a)R
= m#, (44)
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provided θ 	= (1 − a)R. By substituting m∗ = m# in to (40), one has

m# =
∑

d

P̃(d) · tanh
[g(d)

4
· (m# + 1) ·

(2aR(R − 1)

a2σ 2 (x∗)2 − C
)]

. (45)

In order to have m# ∈ [−1, 1] one needs θ ≥ R, otherwise there is no meaningful
solution. When θ = R one has m# = −1. The R.H.S. of (45) is always 0, so there
is no solution. When R < θ < (1 + a)R, one has −1 < m# < 0 and the range of
the graph of the R.H.S. of (45) is [M, 1). Since M < 0, the number of solutions is
determined by the values of m# and M , that is

the number of solutions =

⎧
⎪⎨

⎪⎩

2 if m# > M,

1 if m# = M (in this case the solution is x∗ = 0),

0 if m# < M .

(46)

When θ = (1 + a)R, m# = 0, and the R.H.S. of (45) equals 0 if and only if

2aR(R − 1)

a2σ 2 (x∗)2 − C = 0, (47)

implying that x∗ = ±
√

Ca2σ 2

2aR(R−1) . When θ > (1+a)R, one hasm# > 1 and the range
of the R.H.S. of (45) is [M, 1) with M < 0, therefore there are always two solutions.

A.2 Proof of Proposition 4.1

Equation (32) is a two-dimensional Lth-order system with L + 1 variables. In the
following analysis we let

xt−L+1 ≡ ξ1, t ,

xt−L+2 = ξ1, t+1 ≡ ξ2, t ,

xt−L+3 = ξ1, t+2 = ξ2, t+1 ≡ ξ3, t ,

...

xt−2 = ξ1, t+L−3 = ξ2, t+L−4 = · · · = ξL−3, t+1 ≡ ξL−2, t ,

xt−1 = ξ1, t+L−2 = ξ2, t+L−3 = · · · = ξL−3, t+2 = ξL−2,t+1 ≡ ξL−1, t ,

xt ≡ ξL, t ,

mt ≡ ξL+1, t .
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Then Equation (32) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1, t+1 = ξ2, t

ξ2, t+1 = ξ3, t
...

ξL−3, t+1 = ξL−2, t

ξL−2, t+1 = ξL−1, t

ξL−1, t+1 = ξL, t

ξL, t+1 = f (ξ1, t , ξ2, t , . . . , ξL, t , ξL+1, t )

ξL+1, t+1 = h(ξ1, t , ξ2, t , . . . , ξL, t , ξL+1, t )

(48)

where

f (ξ1, ξ2, . . . , ξL , ξL+1) = ξL + μ

2

[
(1 + ξL+1)

−RξL

a1σ 2 + (1 − ξL+1)
θG − RξL

a2σ 2

]
,

(49)

G =
L∑

i=1

bi ξi , bi = ωL−i

∑L−1
j=0 ω j

for i = 1, 2, . . . , L,

(50)

and

h(ξ1, ξ2, . . . , ξL , ξL+1) =
∑

d

P̃(d) · tanh
[ g(d)

4

(
A · ξL+1 + B

)]
, (51)

A =
(
f (ξ1, ξ2, . . . , ξL , ξL+1) − RξL

)(−RξL

a1σ 2 + θG − RξL

a2σ 2

)
− C,

(52)

B =
(
f (ξ1, ξ2, . . . , ξL , ξL+1) − RξL

)(−RξL

a1σ 2 − θG − RξL

a2σ 2

)
− C .

(53)

System (48) becomes an (L + 1)-dimensional first-order system, who has a funda-
mental equilibrium (0, 0, . . . , 0,meq). The Jacobian matrix of system (48) evaluated
at this fundamental equilibrium is then

J =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 1 0
JL,1 JL,2 JL,3 · · · JL,L−1 JL,L 0
0 0 0 · · · 0 0 JL+1,L+1

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

, (54)
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where

JL,i = μ

2
· θbi
a2σ 2 (1 − meq)

= 2γ (1 − meq)θbi , i = 1, . . . , L − 1, (55)

JL,L = 1 + μ

2

[
(1 + meq)

−R

a1σ 2 + (1 − meq)
θbL − R

a2σ 2

]

= 1 + μ

2a2σ 2 (1 − meq)
[
θbL − R

(
1 + a

1 + meq

1 − meq

)]

= 1 + 2γ (1 − meq)
[
θbL − θ∗], (56)

and

JL+1,L+1 =
∑

d

P̃(d)
g(d)C

4

{
tanh2

[
− g(d)C

4
(1 + meq)

]
− 1

}
. (57)

Let Q = J − λI , and denote Q(i, j) the submatrix of Q obtained by deleting the i th
row and j th column. The corresponding characteristic polynomial can be expressed
as

det(J − λI ) = (−1)L+1 JL,1 det(Q(L,1)) + (−1)L+2 JL,2 det(Q(L,2)) + · · ·
+ (−1)2L−1 JL,L−1 det(Q(L,L−1))+(−1)2L(JL,L−λ) det(Q(L,L)),

(58)

which is obtained by applying the Laplace expansion along the Lth row. After eval-
uating the terms det(QL, j ) for j = 1, . . . , L of the characteristic polynomial, one
has

det(J − λI ) = (−1)L−1(JL+1,L+1 − λ)
( L∑

i=1

JL,iλ
i−1 − λL

)
. (59)

The characteristic equation det(J − λI ) = 0 leads to

λ1 = JL+1,L+1, (60)

and λi (i = 2, . . . , L + 1) being the solutions of

λL − JL,LλL−1 − JL,L−1λ
L−2 · · · − JL,2λ − JL,1 = 0. (61)

The fundamental equilibrium is locally asymptotically stable if and only if |λi | < 1
for i = 1, . . . , L + 1. Since −1 < tanh

[ − g(d)C
4 (1+meq)

]
< 0, one has |λ1| < 1 if

and only if

∑

d

P̃(d)
g(d)C

4

{
1 − tanh2

[
− g(d)C

4
(1 + meq)

]}
= τ < 1. (62)
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Obviously, −1 < λ1 < 0 under this condition. Furthermore, λ1 = −1 at τ = 1.
For L = 1. In this case, b1 = 1, and

λ2 = 1 + 2γ (1 − meq)
[
θ − θ∗]. (63)

Given γ > 0, θ > 0, and −1 < meq < 0 ⇔ 1 < 1 − meq < 2, one has |λ2| < 1 if
and only if

θ < θ∗ and γ <
1

(1 − meq)(θ∗ − θ)
= γ ∗

1 . (64)

Furthermore, λ2 = 1 at θ = θ∗ and λ2 = −1 at γ = γ ∗
1 .

For L = 2. In this case, b1 = ω/(1+ω) and b2 = 1/(1+ω). λ2 and λ3 are solutions
of the quadratic equation

λ2 − J2,2λ − J2,1 = 0. (65)

Using Jury’s stability criterion (Jury, 1971; Jury, 1982, p.35), |λi | < 1 (i = 2, 3) if
and only if

1 − J2,2 − J2,1 > 0, 1 + J2,2 − J2,1 > 0, and |J2,1| < 1 (66)

where

J2,1 = 2γ (1 − meq)θ
ω

1 + ω
, J2,2 = 1 + 2γ (1 − meq)

[
θ

1

1 + ω
− θ∗]. (67)

It can be verified that these conditions are equivalent to

θ < θ∗ and γ <
1

(1 − meq)
(
θ∗ − θ

1 − ω

1 + ω

) = γ ∗
2 . (68)

Furthermore, one of λ2 and λ3 equals 1 at θ = θ∗, and one of λ2 and λ3 equals −1 at
γ = γ ∗

2 . The discriminant of (65) is J 22,2 + 4J2,1 > 0, indicating that both λ2 and λ3
are real numbers.
For L = 3. In this case, b1 = ω2/(1 + ω + ω2), b2 = ω/(1 + ω + ω2), and
b3 = 1/(1 + ω + ω2). λ2, λ3 and λ4 are solutions of the cubic equation

λ3 − J3,3λ
2 − J3,2λ − J3,1 = 0. (69)

Jury’s stability criterion implies that |λi | < 1 (i = 2, 3, 4) if and only if

D1 = 1 − J3,3 − J3,2 − J3,1 > 0, (70)

D2 = 1 + J3,3 − J3,2 + J3,1 > 0, (71)

D3 = 1 + J3,3 J3,1 + J3,2 − J 23,1 > 0, (72)
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D4 = 1 − J3,3 J3,1 − J3,2 − J 23,1 > 0, (73)

where

J3,1 = 2γ (1 − meq)θ
ω2

1 + ω + ω2 , (74)

J3,2 = 2γ (1 − meq)θ
ω

1 + ω + ω2 , (75)

J3,3 = 1 + 2γ (1 − meq)
[
θ

1

1 + ω + ω2 − θ∗]. (76)

It is not hard to verify that D1 > 0 is equivalent to θ < θ∗, D2 > 0 is equivalent to

γ <
1

(1 − meq)
(
θ∗ − θ

1 − ω + ω2

1 + ω + ω2

) = γ ∗
3 , (77)

and D1 > 0, D2 > 0 together imply D3 > 0 and D4 > 0. Furthermore, one of λ2, λ3
and λ4 equals 1 at θ = θ∗, and one of λ2, λ3 and λ4 equals −1 at γ = γ ∗

3 . In addition,
since

1 − ω

1 + ω
<

1 − ω + ω2

1 + ω + ω2 < 1, (78)

it holds that

γ ∗
2 < γ ∗

3 < γ ∗
1 . (79)

A.3 Proof of Proposition 4.3

Let x10 = −x20 and m1
0 = m2

0. We prove the proposition by induction.
For t = 1. From (32) we have

x11 =
[
1 − μ(1 + m1

0)R

2a1σ 2 + μ(1 − m1
0)(θ − R)

2a2σ 2

]
x10 , (80)

x21 =
[
1 − μ(1 + m2

0)R

2a1σ 2 + μ(1 − m2
0)(θ − R)

2a2σ 2

]
x20 , (81)

and

m1
1 =

∑
P̃(d) · tanh

[g(d)

4
(A1

1m
1
0 + B1

1 )
]
, (82)

m2
1 =

∑
P̃(d) · tanh

[g(d)

4
(A2

1m
1
0 + B2

1 )
]

(83)
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where

A1
1 = (x11 − Rx10)

[
− Rx10

a1σ 2 + (θ − R)x10
a2σ 2

]
− C, (84)

A2
1 = (x21 − Rx20 )

[
− Rx20

a1σ 2 + (θ − R)x20
a2σ 2

]
− C, (85)

B1
1 = (x11 − Rx10)

[
− Rx10

a1σ 2 − (θ − R)x10
a2σ 2

]
− C, (86)

B2
1 = (x21 − Rx20 )

[
− Rx20

a1σ 2 − (θ − R)x20
a2σ 2

]
− C . (87)

Then it holds that x11 = −x21 , A
1
1 = A2

1, B
1
1 = B2

1 , and thus m1
1 = m2

1.
For t > 1. Suppose that x1k = −x2k , m

1
k = m2

k for all 1 ≤ k ≤ t . Then x1t+1 can
be written as a linear function of x1k for max(t − L + 1, 1) ≤ k ≤ t , and similarly
for x2t+1. Then we have x1t+1 = −x2t+1. The expressions of m1

t+1 and m2
t+1 contain

A1
t+1, A

2
t+1, B

1
t+1, and B2

t+1. These terms can be also written in a similar manner as in
the case of t = 1, where the two factors of the product term in each expression only
contains linear functions of x1k ’s and x2k ’s for max(t − L + 1, 1) ≤ k ≤ t , implying
A1
t+1 = A2

t+1, and B1
t+1 = B2

t+1. Therefore we have m
1
t+1 = m2

t+1.
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