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Abstract

Latent class and finite mixture stochastic frontier models have been proposed as a means of allowing either for technological
heterogeneity or more flexible distributions of noise and inefficiency. As in the wider literature on latent class and finite
mixture models, we are interested in class enumeration, particularly testing against homogeneity. We apply a modified
likelihood ratio test for homogeneity in a stochastic frontier setting, based on established results for non-Gaussian latent class
and finite mixture models, and provide evidence from Monte Carlo experiments which suggest the applicability of results
regarding a modified likelihood ratio test to the stochastic frontier setting. We demonstrate an application to testing a model
with a contaminated normal noise term against a model with a normally distributed noise term, finding that the former is

preferred, with significant implications for efficiency prediction.

JEL Codes C12 - C46 - D24
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1 Introduction

In recent years, a number of latent class and finite mixture
(LCFM) stochastic frontier (SF) models have been pro-
posed. Orea and Kumbhakar (2004), Greene (2005), and
Kutlu et al. (2020) propose latent class SF models in which
there are J classes of firms with differing technologies, and
class membership is unobserved. This is one way of
allowing for technological heterogeneity between firms.
The zero inefficiency stochastic frontier (ZISF) model
proposed by Kumbhakar et al. (2013) and Rho and Schmidt
(2015), in which an unknown proportion of firms are fully
efficient, is also an LCFM model. Our illustrative example
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for the present study is a SF model in which the noise
distribution is contaminated normal—i.e. a scale mixture of
normal distributions.

The use of LCFM models raises the issue class enu-
meration, i.e. determining the correct number of classes or
mixture components to include in the model. A natural way
to do this would be to use the likelihood ratio (LR) statistic
to test more complex models against simpler null models
with fewer classes or mixture components. However the
well-known Wilks (1938) result that the asymptotic dis-
tribution of the LR statistic is ;(% under the null hypothesis,
where k is the number of restrictions, does not apply in this
context because of identification issues and boundary issues
under the null hypothesis. For this reason, a number of
alternative approaches to class enumeration—see Nylund
et al. (2007) for discussion and comparison—are common,
such as the use of information criteria, as in Orea and
Kumbhakar (2004), Greene (2005), and Kutlu et al. (2020)
in the SF literature. Many information criteria penalise
model complexity, though some others such as the complete
likelihood classification (CLC) and the integrated classifi-
cation likelihood (ICL) criterion (McLachlan and Peel
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2000) instead penalise poorly separated clusters—see Fon-
seca and Cardoso (2007) for a discussion.

We prefer hypothesis tests over information criteria for
two reasons. First, although Kutlu et al. (2020) show that
ICs can perform well in identifying the number of classes
in an SF setting, Monte Carlo evidence suggests that
likelihood-based tests outperform ICs in terms of select-
ing the number of classes or mixture components
(Nylund et al. 2007). Second, we wish to conduct tests
where the null hypothesis is interesting in economic or
statistical terms. For example, in the LCFM SF model
proposed of Orea and Kumbhakar (2004) and Greene
(2005), testing against the nested standard SF model can
be interpreted as testing the null hypothesis of techno-
logical homogeneity.

In this paper, we discuss the problem of hypothesis
testing in LCFM models in the specific context of SF ana-
lysis. Although the problem in general can be very complex,
we utilise results from the literature on likelihood-based
tests for LCFM models for a class of models, including SF
models, to derive results on the asymptotic distribution of a
modified likelihood ratio (MLR) statistic under the null
hypothesis. It is the non-Gaussian error distribution in the
SF setting that allows us to derive these results, results that
may not hold in a Gaussian setting. These results have
broad applicability to LCFM SF models in general. We
explore the applicability of these results, providing some
evidence from Monte Carlo simulations.

The remainder of this paper is structured as follows: The
section “Latent class and finite mixture stochastic frontier
models” reviews the use of LCFM specifications in SF
modelling, and issues that arise in hypothesis testing. The
section “Hypothesis testing in latent class and finite mixture
stochastic frontier models” discusses hypothesis testing in
LCFM models generally, focussing on results regarding the
asymptotic distribution of the MLR test statistic under
the null hypothesis that are relevant to the SF context. The
section “Applications” presents some Monte Carlo evidence
on the sampling distribution of the MLR statistic and
compares this to the asymptotic results found in the litera-
ture. The section “Empirical application” provides a brief
empirical application of a particular LCFM SF model. The
section “Summary and conclusions” concludes.

2 Latent class and finite mixture stochastic
frontier models

In this section, we describe a LCFM SF model of the form
estimated by Orea and Kumbhakar (2004) and Greene
(2005). In subsequent sections, our discussion of hypothesis
testing will focus on a restricted versions of the model in
which only one parameter varies across classes or mixture
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components; however it is useful at this point to describe
the general model.

The basic cross-sectional stochastic frontier model, as
proposed by Aigner et al. (1977) and Meeusen and van Den
Broeck (1977) is

/
yi=xp+ei, & =vi—su,

i=1,...,N, (1)

where y; is the dependent variable, x; is a vector of
independent variables including a constant term, and f is a
vector of coefficients. The error term, ¢;, is composed of a
symmetric component v; ~ N(0,02) capturing noise, and
an inefficiency term following some one-sided distribution,
e.g. u; = |uf|, uf ~N(0, 62). For a production frontier,
s = 1, while for a cost frontier s = —1.

SF models are typically estimated via maximum like-
lihood (ML) by making some assumptions about the dis-
tribution of the error components. In the case of more
general models, the likelihood function may lack a closed-
form expression, or may be hard to operationalise. For
example in the generalised true random effects (GTRE)
model, the composed error follows a closed skew normal
distribution (Colombi et al., 2014), the density function of
which is challenging to evaluate. An alternative approach to
incorporating heterogeneity into SF models is to use an
LCFM framework.

Amending (1) to allow for latent class technological
heterogeneity gives

/
Vi = Xp; + €, €5 = vij — suy,

i=1,...,N,j=1,...J, (2)

where J is the number of classes or mixture components.
Note that the f; vector varies between classes. We can
distinguish between latent class models, in which the
functional form is identical between classes, and finite
mixture models more generally, which may involve
mixtures of fundamentally different models. As noted by
Greene (2005), this model is a discrete analogue1 to the
random parameters SF model, which assumes that the
frontier parameters follow a continuous multivariate
distribution. Here, however, derivation of the likelihood
function is straightforward. We can express the model using

I However note that, while the unconditional mixing distributions (or
probabilities of class membership) are discrete, the conditional (on &;)
distributions (probabilities) are not, so that we obtain observation-
specific conditional parameter estimates, as in the random parameters
case. Alternatively, following Greene (2005), we may simply choose
the class with the highest conditional probability.
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Iverson bracket notation, so that

J
yi=lz=jlxp;, +e, e=vi—su,

=
N =1,.. .7, (3)

where z; is an iid random variable drawn from a categorical

(a.k.a. generalised Bernoulli) distribution with probability

mass function
J

f(z) = [z = jlp,

J
2.pi =1, (4)
= =

such that p; can therefore be as a mixing proportion or
unconditional probability of belonging to class j from the
point of view of the outside observer. We can generalise the
model further by also allowing the scaling of the error
components v; and u; to vary across classes or mixture
components, e.g.

J

vi= Sl =il v~ NO DY, (5)
pa .
J au .
U = Zl [z 2]];:/ . uf ~N(0,1)V]. (6)
=

It is straightforward to derive the following joint density:
f;/.u,z ()’z _x;ﬂj — SuUj, Ui, Zi)

M,‘>0
vj

= Ui S Oa
0,

J ;
2y k=i (y,- ﬂ/,ﬂ,-fsu,») . ) 7
; 0,j0yj ¢ Oy ¢ (ﬂ“f (7)

and the marginal density of &; is found by integrating over
all possible values of u; and summing over all possible
values of z;, which gives

J

o) =3 = Wb g | sbi = xb)ou/oy

b
¢ 2 2 2 2 / 2 2
j=1 \/GW- + Oy 0y + Oy 0y + Gy

(3)

where ®(.) is the standard normal cumulative distribution
function. Efficiency prediction is based on the conditional
distribution of ule;

fu\e(“[\&') =

with E(u;le;) Jondrow et al. 1982) or E[exp(—u;)le;] (Battese
and Coelli 1988) commonly used in the literature, and given
in this setting by

o - SEi0uj[ 0y
/o2 + o2
1 SS,'()'W/(T‘,-/- %y

J
E(uile;) = ! il %4)(&) -
1 v -
fuled) = 0‘27 + 03/- 7 \0oy; \ /o-f, + aﬁ, (ﬁ( se104/ 0 )
N
oy

(10)

of - stowloy oy
Voita /%ty
) 2 2 :
exp( — SE0y 1 %%
T o7 )
oytoy  2oytey

(11)

Note that for any distributional assumptions under which
where these expressions have closed forms in the J=1 case
(i.e. under homogeneity), they will also have closed-form
expressions for arbitrary J, since given the sum rule of
integration, the integrals involved are simply weighted sums of
the integrals in the J =1 case.

1 < 2p; &

E(e™e;) = > ! :
(el Jele) = ,/02,+52-¢(\/ 6% + o2
v T 0y v j

2.1 Identification and boundary problems

Turning to the issue of class enumeration, a natural
approach would be to test down from more general models
with more classes for mixture components to more restric-
ted models using the LR statistic, defined as:

LR = —-2(InLy — InLy,), (12)

where Inl, is the estimated log-likelihood under the null
hypothesis, and InL, is the estimated log-likelihood under the
alternative hypothesis. However, as alluded to previously, the
standard Wilks (1938) result, that this statistic follows a ;(%
distribution under the null hypothesis, with k being the
number of restrictions, does not apply in this case, since the
standard regularity conditions are violated. Specifically, the
model is not identified under the null hypothesis, and the
requirement that the true parameter values must be interior to
the parameter space is not met. For simplicity of exposition,
we will focus on the case where we are testing from a LCFM
SF model as in (3) where J=2 down to the standard SF
model shown in (1). The LCEM SF model has the parameter
vectors 8 = (B, 6w 06w ), 0h=(p, o 06un), and
p. There are then three different null hypotheses under which
we can recover the standard SF model:

1. H()Z 91 = 92.
2. H()Z pP= 0.
3. H()Z pP= 1.

In each case, there is an identification problem. Under (1), p
is not identified. Under (2), 6; is not identified, and likewise
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under (3), 6, is not identified. In the last two cases, an addi-
tional problem is that p is at a boundary of the parameter
space. Finally, there is an additional identification issue with
the model in general, in that the classes or mixture components
are interchangeable—that is, for any given 6; and 6,, these
vectors would be swapped and 1—p substituted for p, yet the
model would remain fundamentally the same. We will now
discuss specific applications of LCFM modelling in the SF
literature, in which this problem arises.

Previously proposed LCFM SF models can be obtained as
special cases of the general specification described in (3). The
ZISF model of Kumbhakar et al. (2013) and Rho and Schmidt
(2015) is obtained under the restrictions that J =2, f| = f,,
0,1 =02, 0,;=0. A further example, and the motivation for
the present study, is obtained when we impose the restrictions
that ;= p, 6,; = 0,V, allowing only the noise variance to vary
between classes or mixture components. On way of con-
ceptualising this is as a standard SF model in which the
probability density function for the noise term is given by

J

J
LO) =26 (2). peby, Yp=1. (13
j=1

j=1

In the J=2 case, this distribution is known as the scale-
contaminated normal distribution, so called because a pro-
portion of observations are drawn from a ‘contaminating’
distribution with higher variance. This distribution has heavier
tails than the normal distribution—although at the extremes,
the tails become roughly Gaussian—and has therefore been
used as an alternative to the normal distribution allowing for
thicker tails—see Gleason (1993). Indeed, this was the original
motivation for proposing this model, as an alternative to our
Student’s t-half normal SF model (Wheat et al. 2019).

In each of the examples given, the null hypothesis of
homogeneity (i.e. that J=1) is of particular interest. In the
Orea and Kumbhakar (2004) model, this is effectively a test for
technological homogeneity. In the contaminated normal SF
model, it implies the noise distribution is normal rather than a
scale mixture of normals, and may be interpreted as a test for a
heavier tailed noise distribution. In the ZISF model, the
interpretation depends upon the null model we are testing
against: if we test against a model with the restriction
Var(u;) = 0, the null hypothesis is that all firms are fully effi-
cient, whereas if we test against a null model in which
Var(u;) >0, the null hypothesis is that none of the firms are
fully efficient.

2.2 Hypothesis testing in latent class and finite
mixture stochastic frontier models

In the section “Identification and boundary problems”, we

explained that the two fundamental problems of testing in
LCFM models are
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1. Unidentified parameters under the null hypotheses
2. Parameters of interest being at a boundary of the
parameter space under the null hypothesis

The latter problem is in fact a familiar one in the SF
literature. It arises in the standard model given in (1)
when testing the null hypothesis of no efficiency, i.e.
Var(u;) =0, and in the Wheat et al. (2019) model when
testing against the standard model, in which the shape
parameter in the noise distribution approaches infinity. In
both cases, the relevant result is that the LR statistic
follows a 50:50 mixture of a y3 and yi distributions,
denoted y3,, under the null hypothesis. We take this
result from Lee (1993) and Case 5 in Self and Liang
(1987). The discussion in Kumbhakar et al. (2013) and
Rho and Schmidt (2015) leaves us in some doubt as to
whether the result may be applied to the problem of
testing the null hypothesis that all firms belong to the
fully efficient class in the ZISF model since, as Rho and
Schmidt (2015) point out, there is also an unidentified
parameter under the null hypothesis.

In fact, the same result arises in the literature on testing
for homogeneity in non-Gaussian LCFM models where a
parameter of interest differs between classes or mixture
components, following the addition of parameter constraints
and a penalty function which have the effect of removing
identification problems from the model. The following
discussion indicates that the result seems to have broad
applicability to the problem of testing against homogeneity
in LCFM SF models, and suggests an alternative approach
to model specification and testing in this setting.

2.3 Hypothesis testing in latent class and finite
mixture models

Given the wide application of LCFM modelling approaches,
much attention has been paid to the problem of class enu-
meration, typically in terms of either deriving the asymp-
totic distribution for the LR statistic under alternative
regularity conditions, or by proposing some alternative
approach to estimation and testing.

Naturally, much of this literature focuses on the specific
case of Gaussian mixture models. This is despite the fact that
Gaussian mixture models have particularly unattractive prop-
erties that complicate the analysis considerably”: Hartigan
(1985) showed that the likelihood function is unbounded. In
addition, there is a loss of strong identifiability as defined by

Chen (1995), since o ¢ (*3%) = 235 ¢ (*54).

2 As Chen and Li (2009) point out, this is counterintuitive given the
well-known attractive properties of the normal distribution in most
other contexts.



Journal of Productivity Analysis

Fortunately, these latter issues with Gaussian mixture
models do not apply to the mixture SF model except as
o, — 0. We therefore do not dwell on the various results
concerning Gaussian mixtures, except to note that the LRT
when testing for homogeneity is generally complex, invol-
ving the squares of the suprema of Gaussian processes—see
e.g. Chen and Chen (2001a, 2001b, 2003)—with the precise
result apparently depending on which parameters are
assumed to be known and unknown, and which parameters
do and do not vary by class or mixture component.
Nevertheless, the literature on Gaussian mixtures has yiel-
ded useful techniques for regularising the problem which
carry over to the general case.

As discussed in the section “Identification and bound-
ary problems”, a well-known issue arises in LCFM mod-
els, including the LCFM SF model as formulated in the
section “Latent class and finite mixture stochastic frontier
models”, due to the fact that the parameter vectors 6, and
6, and the mixing proportions or unconditional prob-
abilities p and 1—p are interchangeable. This inter-
changeability is not a fundamental problem—clearly, it
does not affect the value of the log-likelihood and there-
fore the LR—but it is easily dealt with, and it is con-
venient to do so. A common solution iS to impose
parameter constraints such that this identification problem
is resolved. For example, Chen and Chen (2001a) note that
—where only one parameter J; varies between two classes
or mixture components—we can impose the restriction
p 20.5 or the restriction d; >3, or similar, and adopt the
former restriction. Analogous restrictions are imposed by
Chen et al. (2001), Zhu and Zhang (2004). In a more
general setting where J>2, a similar labelling restriction
is used by O’Donnell and Griffiths (2006) in the context of
estimating state-contingent production frontiers in which
only the frontier intercepts vary. In their case, the
restriction is ;< 8, Vj, where §; is the intercept for the
jth mixture component, so that the classes or mixture
components are in descending order of productivity. In
cases where more than one parameter may vary between
classes or mixture components, we may again impose a
restriction such as §;< 8, Vj, where 8, is any arbitrarily
chosen member of the set of parameters that vary across
classes or mixture components. However, since such the
ordering of classes or mixture components under such a
restriction may lack an appealing interpretation, it may be
more intuitive to place a labelling restriction such as p; > p;
11 Vj, so that we order by mixing proportion (or uncon-
ditional probability of class membership).

Simple parameter restrictions are therefore used to
remove the identification problem associated with the
symmetry of classes or mixture components, but the more
fundamental identification issue—that there are unidentified
parameters under each of the three different null hypotheses

described in the section “Identification and boundary pro-
blems”—remains, and requires a different approach.

One such approach is the use of modified likelihood ratio
(MLR) test proposed by Chen and Kalbfleisch (1996), Chen
(1998), and Chen et al. (2001), under which a modified
likelihood function is used, such that

ML=InL+clnP, (14)

where ¢ is a positive constant and In P is some penalty
term which forces the estimates of certain parameters
away from the boundary of the parameter space and
ensures that the model is identified under the null
hypothesis. The use of a penalty term in estimating
LCFM models was discussed by Leroux (1992), who
suggested penalising the number of parameters. Chen and
Kalbfleisch (1996) suggested adding a penalty term to a
minimum distance estimator. Rather than penalising the
number of parameters, however, the authors proposed
penalising small values of the mixing parameters, and
showed that their estimator was consistent for the mixing
distribution and the number of components. The inclu-
sion of such a penalty term for the purpose of performing
a MLR test was first proposed by Chen (1998), who
consider comparing a two-component mixture of bino-
mial distributions—differing in terms of their success
probability parameters—against a single binomial dis-
tribution, and derive a simple asymptotic y? distribution
for the MLR statistic under the null hypothesis in
this case.

The penalty term proposed by Chen (1998) was c¢ In
(1—p), where p is the mixing proportion or probability
corresponding to the first component. Note that this forces p
away from 1, since

lin}cln(l —p) = —00,

) Znd

but does not force p away from 0. Hence, the identification
issue is not entirely solved, since under the null hypothesis
the true density can still be represented by two different
cases: p=0, 6,=6,y, or 8, =0, =06, Chen et al. (2001)
proposed a penalty term ¢ In [4p(1—p)], which solves this
problem by forcing p away from both 0 and 1—since

1in(1)c1n[4p(l -p)= lin} clnf4p(1 — p)] = —o0,
p— =
This penalty function can be generalised to

cIn(J’ HJLI p;) for a J class model®. The authors show that,
under a two-component mixture of one-parameter densities

3 Chen et al. (2001) state that the penalty function becomes
ZjJ:] In(2p;), but this seems to be an error, since for J > 2, this would
result in a negative MLR when the null model is recovered.
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satisfying a general set of regularity conditions—including
the strong identifiability condition proposed by Chen
(1995)* —the asymptotic distribution of the MLR statistic
under the null hypothesis of homogeneity is a 50:50 mixture
of 3 and y? distributions—the former being a degenerate
distribution at zero—which is denoted y3,.The intuition
behind the preceding result is that, when the penalty term ¢
In [4p(1—p)] is included, under the null hypothesis the
likelihood is maximised where p =0.5 and 6, =6, =6,. A
boundary problem remains, since the identification restric-
tion p < 0.5 means that this parameter is at a boundary of the
parameter space under the null.

The Chen et al. (2001) result is of immediate interest in our
context, since it applies to a very general class of LCFM
models. However, it is unclear whether or not this result holds
if we generalise the model to include one or more ‘structural’
parameters—that is, parameters that are unknown and com-
mon across components—as in the SF context. This is a
concern, since in the context of Gaussian mixtures, the
inclusion of structural parameters has been shown to lead to
different asymptotic distributions for the LR and MLR statis-
tics when testing for homogeneity (Chen and Chen 2003; Qin
and Smith 2004; Chen and Kalbfleisch 2005). A related issue
is that the inclusion of covariates in the model, which may
affect the asymptotic distributions of test statistics under the
null hypothesis in the Gaussian mixture case (Kasahara and
Shimotsu 2015), is not considered.

However, the results of Zhu and Zhang (2004) are
encouraging in these regards. The authors consider testing
for homogeneity in the context of non-Gaussian LCFM
models, allowing for the presence of both covariates and
structural parameters, though under stronger assumptions
than those of Chen (1995). The mixture density, in general
terms, is given by

8(»,9,61,6,,p) = pf(v,x;9,01) + (1 = p)f (y,x;9,6,),
(15)

where y is the dependent variable, and x is the vector of
covariates, d is a vector of parameters common to each
component—which may include coefficients on covariates
—and 6; and 6, are vectors of component-specific
parameters. Zhu and Zhang (2004) derive the asymptotic
distribution of the MLR statistic—using the penalty term
proposed by Chen et al. (2001)—under the null hypothesis
of homogeneity. This is complicated in the general case, but
when 6, and 6, are scalars, is the y3, distribution. As the
authors note, this is identical to the result derived by Chen
et al. (2001) in the absence of covariates and structural

* Note therefore that this result cannot be applied in the case of
Gaussian mixture models.
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parameters. Zhu and Zhang (2004) present the results of a
simulation study comparing rejection rates of the MLRT
and LRT statistics under the null hypothesis, and conclude
that they prefer the MLRT.

So far we have restricted the discussion, for simplicity’s
sake, to testing down from a J =2 component model to a
J =1 component model. In principle however, we are also
interested in the general problem of testing down from any J
component model to any simpler model. We note two
particularly relevant results.

First, Chen et al. (2001) considered the extension of their
results to the case where we have a J component model and
we wish to test for homogeneity. The authors find that the
same result applies, i.e. the MLR statistic is asymptotically
distributed ;(%:1. This is somewhat counterintuitive, given the
increased difference in dimensionality. The authors note that
the power of the test is lower the greater is J, since the penalty
becomes larger the greater the number of components. Second,
Chen et al. (2003) extends the Chen et al. (2001) approach to
consider testing down to a two-component model from a J
component model, and testing via find that the asymptotic
distribution of the MLR statistic under the null hypothesis is a
mixture of y3, ¥{, and y3 distributions. Whether or not these
results hold in our context is unclear, since Zhu and Zhang
(2004) only considered testing for homogeneity in the context
of a two-component model.

In summary, while the problem of testing down from
models with more to fewer classes or mixture components
is in general a complex one, the literature suggests that the
problem may be simplified in the case of non-Gaussian
LCFM models. Furthermore, proposed MLR tests in which
the log-likelihoods are modified to include a term penalising
extreme values of the class probabilities or mixing pro-
portions appear to regularise the problem by ensuring that
the model parameters are identified under the null
hypothesis.

2.4 Choice of value of the tuning parameter ¢

One issue that arises when using the MLRT approach is
how to choose the value of the tuning parameter, c. The
higher the value chosen, the more heavily extreme values of
the probabilities or mixing proportions are penalised. Chen
et al. (2001) state that their simulation exercises suggested
that the results were not sensitive to the value of ¢ chosen,
but suggest that ¢ = In m, where there is some restriction on
the parameter of interest such that its magnitude cannot
exceed m as one possible choice, based on the rate of
divergence of the LRT that applies for certain kernel
functions. In our Monte Carlo experiments, we try two
different values, c=1 and ¢=5 in order to determine
whether or not this choice has a material effect on the
results.
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2.5 Model estimation

Given the above discussion and the use of the MRLT, the
model is estimated by maximising the modified likelihood
function whilst imposing the parameter constraints neces-
sary for identification of the model. Discussing the esti-
mation of LCFM models, Zhu and Zhang (2004) suggest
either EM or a simple Newton-Raphson algorithm. We find
that the latter performs well.

From parts (a) and (c) of Theorem 2 of Zhu and Zhang
(2004), which concern convergence rates of estimates when
maximising the modified likelihood ratio, 9 has the usual
N2 convergence rate, and 91 and 92 have a convergence
rate of N~ ", while p = Op(1) and a convergence rate of N
~ in can be reached in estimating the mixing distribution
using the parameter estimates. Convergence rates are
therefore comparable to those under standard maximum
likelihood estimation, though—intuitively—lower for the
parameter of interest.

3 Applications

In order to ascertain the applicability of the aforementioned
results from the literature on testing for homogeneity for
non-Gaussian latent class and finite mixture models using
the MLR test, we carry out a series of Monte Carlo
experiments allowing us to estimate the sampling distribu-
tion of the MLR statistic and compare it to the 2, dis-
tribution. If the sampling distribution corresponds closely to
the y5., distribution, this suggests that the y7, result is
applicable in the LCFM SF setting.

In keeping with the focus of the preceding discussion,
we restrict ourselves to problems in which one parameter
varies between two classes or mixture components. The
specification we use is a contaminated normal stochastic
frontier model, in which the scaling of the noise distribu-
tion is allowed to vary between classes or mixture com-
ponents. We consider two different specifications—the first
with J =2, the second with J=3. Note that, in the latter
case, we are being more speculative—although Zhu and
Zhang (2004) derived the )((2):1 result for the J=2 case
including covariates, and Chen et al. (2001) derived the
result for the case where there is arbitrary J, to our
knowledge there has been no study of the case where we
have both arbitrary J and structural parameters and cov-
ariates. However, we conjecture that, having removed the
identification problems from the model, Case 5 in Self and
Liang (1987) may be applied.

We assume that the true data generating process—under
the null hypothesis—is

vi=l4+xi+vi+u (16)

where x; is an observed covariate drawn from a standard
normal distribution, v ~ N(0,1) is a symmetric noise term, and
u; = [wil, wi ~ N(0,62) is the inefficiency term. Unlike the
more general LCFM SF models introduced by Orea and
Kumbhakar (2004) and Greene (2005), which allow all
parameters to vary, we restrict all parameters except the
variance of the noise distribution to be the same across classes
or mixture components—the focus of this model is on
allowing for greater flexibility of the noise distribution, rather
than technological heterogeneity. We then estimate a standard
normal-half normal SF model and penalised two-component
and three-component contaminated SF models, in order to
obtain the log-likelihood under the null hypothesis and the
modified log-likelihoods under the alternative hypotheses,
respectively. To be specific, the contaminated normal SF
model is specified as follows:

J
Vi =X+, & = vi — su;, vi = |z = J]vy,
i:lj ,..’ijzl, ...,J,
where
uj ~ ‘N(O,ai)’, (18)
Vij ~ N(O7 afj). (19)

The model is estimated by maximising the log modified
likelihood function

J
1nMLJ_1nL+c1n<Jpr,->, (20)
=1

j=

with the constraint, imposed in order to remove the
identification problem associated with the symmetry of
classes or mixture components, that

UijUVjJrlvvj:lv N (21)

Note that the penalty term in (20) effectively penalises
more complex models with more classes or mixture com-
ponents, and encourages sparsity. In this respect, the sta-
tistic behaves similarly to many information criteria, but
contrasts with others such as the CLC or ICL which instead
penalise poorly separated clusters.

We repeat this experiment 5000 times for ¢, = 0.5, 6, =1,
and o, =5 to check that our findings are not dependent upon
particular specifications or choices of parameter values. Fol-
lowing the previous discussion of the appropriate choice of c,
it may be expected that our results will be somewhat sensitive
to the chosen value of this parameter. Given that the model
nests a Gaussian mixture as 6, — 0, and that the y3, result
cannot be applied to the case of Gaussian mixture models, it
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may also be that the sampling distribution of the MLR statistic
also depends on the signal-to-noise ratio, 6,/6,.

Having obtained estimated MLR statistics for each
replication, we then compare the sampling distributions to
the theoretical quantiles of the 7, distribution by means of
quantile-quantile (Q-Q) plots, i.e. plots of the quantiles of
the sampling distributions and the corresponding quantiles
of the y3, distribution against those of the y? distribution.
The quantiles of the y? distribution are on the horizontal
axis. If the MLR followed a )(% distribution, we would
therefore expect the quantiles of the sampling distribution to
lie on the 45 degree line, shown by a black line on each plot.
A red line then shows the quantiles of the y3., distribution as
a function of the corresponding quantiles of the y—there is
a simple closed-form relationship between the two. The
quantile function for the ;(%:1 distribution, F(;ll, may be
expressed in terms of the y? quantile function, Fy!:

0, p>0.5
Fol(1—p) = = 201, 22
01 (1 —=p) {Fll(IZp),pSO.S 20:1 (22)
where
pzl—F1<Zl>.

Plugging this into (22), we have an expression for the
quantiles of the x3, distribution in terms of the corre-
sponding quantiles of the y? distribution for the same p:

- { 0,_] 1 Fl (Z1)>0.5 . (24)
FI'2Fi(z1) = 1], 1 = F1(z1) < 0.5

Given that we believe the MLR statistic is asymptotically
distributed y3,, we therefore expect the quantiles of the
sampling distribution of the MLR statistic, plotted against the
theoretical quantiles of the y7 distribution, to closely follow
Z0-1- That is, we expect a close correspondence between the
estimated quantiles of the sampling distribution and the red
line representing the quantiles of the 2, distribution.

3.1 Quantile-quantile plots—contaminated normal
SF model

The figures below show the Q-Q plots comparing the
sampling distribution of the MLR statistic for various DGPs
for the cases where J=2 and J=3. Bearing in mind that
the 95" percentile of the y3, distribution is 2.706, we can
see that the correspondence between the quantiles of the
distributions is very close across the range of interest. This
is less true of the extreme tails of the distribution, where the
quantiles of the sampling distribution tend to be greater than

@ Springer

those of the yZ ;. The difference between the two seems to
be greater the higher the value of ¢,. It appears, however,
that this is sensitive to the chosen value of the tuning
parameter ¢, since when the higher value of 5 is used, the
correspondence at the right tail of the distribution is closer.

In addition to the Q-Q plots in Fig. 1, Table 1 shows the
median absolute deviation of the empirical quantiles of the
MLR statistic from the theoretical quantiles of the 7, and
x7 distributions under each DGP. The median absolute
deviations from the y3, quantiles are in each case zero,
compared to around 0.45 from the y? distribution.

It is of particular interest that the results do not appear
to substantially change when the alternative model has
J =3, which lends support to our conjecture that the y3,
result for the asymptotic distribution of the MLRT under
the null hypothesis may be applied rather broadly to
testing against homogeneity in LCFM SF models
including J classes or mixture components, structural
parameters, and covariates.

4 Empirical application

In this section, we apply the contaminated normal-half normal
SF model outlined in the section “Applications” to the Chris-
tensen and Greene (1976) dataset on US electricity generation
costs, consisting of cost, output, and input price data for
electricity generating firms in 1970. Following the frontier
specification in Greene (1990), the model we estimate is

(%) = o+ BiIng + Bon® gi+ pyIn (%) + By n(2) + v+ s

J
vi= Yl =g, vy~ N(0.63 ), s ~ [N (0,02) .
j=1

(25)

where c is total cost, g is millions of kilowatt-hours generated
(normalised by the sample mean), and w, r, and e are labour,
capital, and energy prices, respectively. The subscripts i and j
respectively denote the firm number and class or mixture
component. We estimate the model for /=1 and J=2,
respectively. Parameter estimates are shown in Table 2.
Estimated frontier parameters are, as expected, similar in
the /=1 and J=2 cases. Of greater interest here are the
estimated scale parameters o,|, 0,,, and o,, and the prob-
ability or mixing proportion p;. The J=2 model yields
distinct estimates of 6,; and 6,,, between which the estimate
of 6,; from the /=1 model is intermediate. Under a latent
class interpretation, the J =2 model has a low-noise class
and a high-noise class, and the estimated unconditional
probability of an observation belonging to the former is
estimated to be 0.798. Under a mixture interpretation, the
noise term in the J =2 model is a 0.798:0.202 mixture of
N(0,0.067) and N(0,0.174%) distributions. The estimate of
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Table 1 Median absolute deviations of empirical quantiles from
theoretical quantiles

c=1 c=5
J=2 J=3 J=2 J=3
por 6,=0.5 0.000 0.000 0.000 0.000
o.=1 0.000 0.000 0.000 0.000
6,=5 0.000 0.000 0.000 0.000
Vi 6,=0.5 0.455 0.454 0.454 0.455
6y = 0.450 0.450 0.453 0.453
6,=5 0.427 0.412 0.455 0.455
Table 2 Model estimates
J=1 J=2
S (In g) 0.966™ (0.013) 0.960" (0.011)
B, (0% ¢) 0.030™ (0.003) 0.027" (0.002)
B (In wy) 0.261" (0.066) 0.326™ (0.056)
B (In wy) 0.055 (0.062) 0.027 (0.051)
S0 (constant) 3.735" (0.035) 3.748"" (0.038)
Gl 0.109 (0.023) 0.067 (0.023)
o - 0.174 (0.067)
ou 0.149 (0.049) 0.131 (0.051)
o1 1.000 — 0.798 (0.110)
In ML 66.865 70.809
Standard errors in parentheses. *p <0.10, **p <0.05, ***p <0.01

o, from the J =2 model is slightly lower than the estimate
from the J =1 model.

Predicted efficiency scores—following the formula in
(11)—differ considerably between the two models. As
shown in Fig. 2, the efficiency predictions from the J=2
model have not only a smaller range than the predictions
from the J=1 model, but also differing behaviour for
extreme values of &; predicted efficiency from the J=1
model decreases monotonically as &; increases due to the
log-concavity of the normal distribution (Ondrich and
Ruggiero, 2001), while the efficiency predictions from the
J=2 model are non-monotonic owing to the log-convex
regions of the contaminated noise density—similar beha-
viour has been noted in the case of SF models with
Student’s t noise (Wheat et al., 2019), and models with
heavy-tailed noise distributions generally appear to handle
outlying observations differently’, which could have
important consequences for regulatory benchmarking in
terms of the robustness of efficiency estimates and the

5 Note, however, that the further we venture into the tails of the scale-
contaminated normal distribution, the more Gaussian (and log-con-
cave) they become, so ‘heavy-shouldered’ may be a more accurate
description than ‘heavy-tailed’.
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incentives firms face with respect to the benchmarking
process.

For the purposes of efficiency prediction, the choice
between the two models is therefore clearly an important
one. The MLR statistic is 7.887 and, given the y3, dis-
tribution of the statistic under the null hypothesis, the
associated p-value is 0.0025. We therefore strongly reject
the null hypothesis of homogeneity, and favour the J =2
model. This suggests a sub-Gaussian noise distribution,
which as discussed has a substantial impact on efficiency
predictions—cf. Wheat et al. (2019) who, using a dataset on
English local authority road maintenance costs, similarly
find that a Student’s t distribution is preferred to a normal
distribution for the noise component.

5 Summary and conclusions

In this paper, we have discussed hypothesis testing on class
enumeration, and particularly on testing against homo-
geneity, in the context of latent class and finite mixture
stochastic frontier models. Given identification problems
and boundary issues under the null hypothesis, the standard
Wilks (1938) result that the likelihood ratio statistic follows
an asymptotic y* distribution under the null hypothesis
cannot be applied. However, the literature on testing against
homogeneity in non-Gaussian latent class and finite mixture
models offers some alternative results and ways of reg-
ularising the problem.

Introducing restrictions on parameter values across
classes or mixture components can help resolve some of the
issues with parameter identification, as can adding a penalty
term to the log-likelihood function in order to force the
estimated class probabilities or mixing proportions away
from O and 1, so that homogeneity can only be recovered
under a single combination of parameter values. However
the issue then remains that the parameter of interest lies at a
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boundary of the parameter space under the null hypothesis.
This is a familiar problem in the stochastic frontier litera-
ture, and in cases in which one parameter varies between
classes or mixture components, findings from Chen et al.
(2001) and Zhu and Zhang (2004) suggest a similarly
familiar result that the asymptotic distribution of the mod-
ified likelihood ratio under the null hypothesis is a 50:50
mixture of y3 and y? distributions, denoted y3,,, under the
null hypothesis. This result matches that for the similar
problem of testing the null hypothesis of no inefficiency in
the standard stochastic frontier model.

We present evidence from Monte Carlo experiments
on the sampling distribution of the modified log-
likelihood ratio which suggests that this result does
indeed seem to be applicable to the stochastic frontier
setting, with the quantiles of the sampling distribution
corresponding closely to those of the y3, distribution
within the range of interest. These experiments consider
two different latent class or finite mixture stochastic
frontier specifications in which a single parameter differs
between classes or mixture components, and a range of
combinations of parameter values in both cases. Overall it
therefore appears that the existing literature on testing for
homogeneity in non-Gaussian latent class and finite
mixture models yields a set of techniques and results
applicable in the stochastic frontier context, enabling us
to test important hypotheses regarding technological
heterogeneity and the distributions of the error terms.

We also provide an empirical application in which we
test down from a stochastic cost frontier model in which the
noise term follows a scale-contaminated normal distribution
—i.e. a scale mixture of normal distributions—to one in
which the noise term is assumed to be normally distributed.
The choice between the mixture model and the single class
case is shown to have a significant impact on efficiency
predictions. Applying the modified likelihood ratio test, we
strongly reject the null hypothesis of homogeneity.

In this paper, we restricted the scope of our discussion
and Monte Carlo experiments to the problem of testing for
homogeneity from a model with two classes or mixture
components. While the results discussed here do seem
applicable to testing for homogeneity from any J class
model, this still leaves the more general question of class
enumeration open, and this would be a natural line of
enquiry for future research.
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