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Abstract
This study aims to show how supporting new business formation could promote the 
emergence of new ties in the knowledge network. Stimulating start-ups is conducive 
to the innovation system and economic development, however, we show how it has 
additional beneficial effects by the increasing the density of the innovation network. 
An innovation network is a complex socioeconomic phenomenon, which emerges 
from the decisions of many heterogeneous agents, that justifies the use of an agent-
based model (ABM). We introduce an application of an ABM that is appropriate for 
simulating network formation among organizations. Agents are placed in the two-
dimensional abstract social space where they are moving toward each other to find 
cooperation partners, following the gravity principle. The attraction is determined 
by the mass and the distance of agents. These parameters are specified by regression 
analysis, the result of which shows that the geographical, social, and technological 
distance has a negative impact on innovation-related cooperation. For the empiri-
cal underpinning of the model, we used survey data on the Hungarian high-growth 
firms’ (known as gazelles) egocentric network that contains information about inno-
vation-purpose cooperation.
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1  Introduction

Multiple studies have shown an empirical relationship between geographical 
proximity and cooperation, hence the knowledge transfer among economic actors. 
Marshall (1890) was the first to highlight the positive external effects of the spa-
tial concentration of economic activity, but the role of geographical proximity is 
still a widely researched topic (Inoue et  al. 2019; Abramo et al. 2020). Follow-
ing Marshall, Arrow (1962), and Romer (1986) (together, they form the MAR 
framework) deals with this positive effect among enterprises in the same indus-
try. Porter (1990) also supported the idea that geographical specialization facili-
tates growth, but unlike MAR, he argued for the importance of local competi-
tion. In contrast to Porter and the MAR argument, Jacobs (1969) shed light on 
the relevance of knowledge transfer between different industries, which is also 
supported by Glaeser et  al. (1992), who found a positive relationship between 
knowledge spillover across industries and economic growth. As we can see, the 
role of geographical proximity is a rich research topic, however, other types of 
proximity could also enhance cooperation and knowledge flow between organi-
zations. According to Boschma (2005), spatial proximity is neither a necessary 
nor a sufficient condition for inter-organizational learning, and other forms of 
proximity may function as substitutes or as complements to the geographical one. 
During the last decades, it has been demonstrated in many empirical studies that 
other types of proximities are conducive to successful partnerships and knowl-
edge flows (Autant-Bernard et  al. 2007; Cantner and Meder 2007; Broekel and 
Boschma 2012; D’Este et al. 2013; Marrocu et al. 2013; Cassi and Plunket 2015; 
Caragliu and Nijkamp 2016; Hansen 2015; Usai et al. 2017; Capone and Lazzer-
etti 2018; Gui et al. 2018; Bagley 2019; Ghinoi et al. 2021). Most of the studies 
in the proximity literature use econometric analysis for investigating the effects 
of different proximity dimensions on specific economic or innovation indicators, 
e.g., innovation collaborations. Balland et al. (2014) emphasize that the relation-
ship between proximity and knowledge network formation should be analyzed 
dynamically. Accordingly, not only does proximity affects inter-organizational 
relationships, but also these networks re-affect the proximity dimensions. This 
feedback mechanism cannot be captured solely by an econometric estimation, but 
an agent-based simulation is appropriate to model this phenomenon.

This study investigates the network of Hungarian high-growth enterprises that 
arises from their innovation-related collaborations among each other and with 
further organizations from the country. We apply a network approach by focusing 
not on the entities but on their relationships and the characteristic of the network 
that arises. In the frame of social network analysis, different units can be nodes, 
such as firms or individuals, and different types of relations can be considered, 
e.g., similarities, social relations, or interactions (Borgatti and Ofem 2010). In 
this case, nodes represent organizations (firms or universities), and edges are pro-
fessional relations. Since we do not know the whole population, an ego network 
approach is adapted; accordingly, a selected subset of firms and their partners are 
investigated. During a snowball sampling method, a predefined set of Hungarian 
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high-tech gazelles were asked to provide the names and characteristics of the 
organizations with whom they collaborated during their innovation activities. 
This sampling was repeated by asking the partners of the gazelles to identify their 
collaborators. Partnership in this context means that the respondent stated that 
her organization collaborated with the given organization during its innovation 
activities. These relationships may manifest in the form of information exchange, 
R&D cooperation, tender cooperation, education for innovation, or other kinds 
of joint innovation-related activities. We assume that, if two organizations col-
laborate at a given point in time, there is a relationship between them that results 
in an undirected and unweighted ego network. We will simulate how this network 
possibly evolves in time within two different scenarios.

While explaining the emergence of ties, we do not concentrate only on geograph-
ical, but also on technological, social, and institutional proximity. Technological or 
cognitive proximity may facilitate the establishment of relationships as a certain set 
of common knowledge is required for collaboration (Cohen and Levinthal 1990). 
However, this set must be different enough to gain some novelty from cooperation 
(Boschma and Frenken 2010). The significance of social proximity lies within the 
fact that personal relationships assist the emergence of trust and reduce the risk of 
opportunistic behavior (Boschma 2005). Institutional proximity means similar rules 
and norms, that promote cooperation, hence the flow of knowledge (Ponds et  al. 
2007; Usai et al. 2017).

Although there is a rich body of literature on proximity dimensions and their 
effect on knowledge networks, most of the papers deal with only a few specific types 
of formal cooperation. Since EU Framework Programs and co-patents are well-doc-
umented forms of knowledge relationships, they can be used effectively in quanti-
tative analysis (Scherngell and Barber 2009; Varga and Sebestyén 2017). In con-
trast, observing informal cooperation is more difficult and it requires primary data 
collection (Capone and Lazzeretti 2018). Despite the argument for the necessity of 
dynamic analysis of proximity and knowledge networks (Balland et  al. 2014), the 
static approach is still dominant. In the last decade, however, there are examples of 
dynamic analysis as well (Balland 2012; Gui et al. 2018) and some of them use sim-
ulation methods for modeling network formation (Sebestyén and Varga 2019). Our 
paper is rooted in the work of Sebestyén and Varga (2019) who originally developed 
their model for the European NUTS 2 regions’ Framework Program collaboration 
network. We borrow the mechanism from this model, but it is applied in a different 
setup: We use this approach in an inter-organizational context, and we initialize and 
calibrate it with survey data that allows us to investigate a wide range of formal and 
informal cooperation.

Our results contribute to the quantitative research on high-growth firms by show-
ing how their innovation network evolves along different proximity dimensions. The 
regression analysis suggests that geographical, social, and technological proximity 
has a positive impact on innovation-related cooperation, while organizational prox-
imity was not significant in our study. The simulation exercise pointed out that a 
successful entrepreneurship policy could significantly increase the number of rela-
tionships between the organizations. However, this effect is limited along social and 
technological proximity.
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The remaining of the study is structured as follows: In Sect.  2, we introduce 
the term gazelles and give a short literature review of their relation to networks. 
In Sect. 3, we describe the empirical data, in Sect. 4, we introduce the agent-based 
model (ABM). In Sect. 5, we estimate a gravity-like regression equation, which pro-
vides parameters for the ABM. In Sect.  6, a calibration procedure is used to pin 
down other parameters of the model. Given the estimated and calibrated model 
parameters, in Sect. 7, we show a simulation exercise with the purpose of illustrating 
the capabilities of the model in analyzing the potential effects of policy interventions 
on network formation. In the end, we draw conclusions and address the limitations 
of the study.

2 � High‑growth firms

Birch and Medoff (1994) pointed out that a few rapidly growing firms created the 
majority of jobs; therefore, they named them gazelles. However, most of the firm 
population is composed of small mice and elephants. The former ones are small 
firms that are unable or not willing to grow, while the latter ones are big companies 
with slower growth. Due to their low number and noteworthy economic significance, 
gazelles shall be taken into consideration and put under scrutiny. Although there is 
no generally accepted definition for gazelles, such separations are carried out based 
on some growth indicators that are related to the number of employees and sales rev-
enues. The factors behind the growth of gazelles have been investigated in multiple 
studies, and some of them included networking as an explanatory variable.

It is generally assumed that being part of a network is beneficial for small- and 
medium-sized firms because they are provided with access to knowledge and other 
resources. This positive relationship can be empirically demonstrated by different 
measurement methods. Schoonjans et  al. (2013) for instance found that participa-
tion in formal business networks has a positive effect on the value-added and assets 
of the firm, however, it triggers no significant increase in employment. Havnes and 
Senneseth (2001) demonstrated only one positive correlation out of three indica-
tors regarding network membership and growth. The volume of sales and number 
of employees was not higher in the case of companies with a higher networking 
index, but their market expansion was higher, contributing to growth in the long 
term. Zeng et al. (2010) carried out an analysis of the impact of networking on inno-
vation in the case of Chinese small- and medium-sized enterprises. They found that 
the greatest positive impact on innovation performance was the cooperation between 
firms, however, collaboration with intermediating and research institutions also has 
a positive effect.

Lechner and Dowling (2003) carried out a qualitative analysis of the egocen-
tric network of fast-growing enterprises. They evaluated the importance of dif-
ferent kinds of networks on the different stages of the firms’ development. They 
found that each firm establishes its own relational mix that facilitates expansion 
the most. According to their results, knowledge, technology, and innovation net-
works are important at all levels of development as opposed to some other types 



357

1 3

Dynamics of collaboration among high‑growth firms: results…

of networks. All in all, network membership does not contribute to every growth 
indicator, but there is no doubt that it plays an important role in the development 
of gazelles.

In the past decade, multiple pieces of research were carried out to unearth the 
characteristics of the Hungarian gazelles (Papanek 2010; Csapó 2011; Némethné 
2010; Békés and Muraközy 2012; Szerb et al. 2017). They support the findings of 
international studies (Coad et  al. 2014) about how difficult is to standardize rap-
idly growing firms and forecast which enterprises may become gazelles based on the 
firms’ reports as they occur in all sectors and regions (Békés and Muraközy 2012). 
Moreover, the Hungarian gazelles often lack positive features such as innovation, 
export-oriented mentality, or better competitiveness that are related to rapid growth, 
in accordance with the international literature (Szerb et al. 2017).

From the literature, we can see those collaborations, especially participation in 
knowledge, technology, and innovation networks, that are conducive to the growth 
of gazelles. However, in this field of research, qualitative studies are dominant, and 
even among quantitative analysis, a dynamic approach is relatively rare. The cur-
rent paper adds new insights into the gazelles’ innovation-related collaborations by 
showing how their innovation network may evolve in time along different proxim-
ity dimensions. With the help of an agent-based simulation method, the emergent 
nature of this network can be demonstrated.

3 � Empirical data

The data were collected in the frame of the “Examination of the Hungarian gazelle’s 
willingness of cooperation” research program. This research was conducted by the 
MTA-PTE Innovation and Economic Development Research Group at the Univer-
sity of Pécs complemented by sociologists from the same university. The aim was to 
shed light on the characteristics of Hungarian high-growth enterprises and to unfold 
the connection between cooperation in innovation activities and innovation perfor-
mance. The data collection was performed in three rounds between 2014 and 2016. 
The Szocio-Gráf Opinion Research Institute carried out the survey in the first round, 
and the researchers themselves collected the data in the second and third rounds. 
During the first round, a representative sample of Hungarian gazelles was identified 
and interviewed, then in the second and third rounds, the aim was to explore the ego 
network of a subset of these gazelles. The second round identified co-operative part-
ners of the Hungarian high-tech gazelles, and then, in the third run, these partners 
were asked to specify their partner organizations. Partnership in this context means 
that the respondent stated that her organization collaborated with the given organiza-
tion during its innovation activities. Information exchange, R&D cooperation, tender 
cooperation, education for innovation, or other kinds of activity could be the content 
of cooperation. The results of the survey were supplemented with other organiza-
tional data, which were collected from firm reports (http://e-​besza​molo.​im.​gov.​hu), 
and the organizations’ websites. A firm is considered a gazelle if it meets the follow-
ing two conditions:

http://e-beszamolo.im.gov.hu
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•	 The average annualized growth rate of net sales revenues exceeds 20 percent per 
annum, over a three-year period

•	 At least five employees in each given year.

This interpretation is based on the Eurostat-OECD Manual on Business Demog-
raphy Statistics (2007) definition of high-growth enterprises with one differ-
ence: The original definition includes 10 or more employees, but according to the 
researchers who designed the survey, the five employees threshold suited better to 
Hungarian conditions (Szerb et al. 2017).

As the goal of the survey was to measure the domestic high-growth enterprises, 
two additional properties were needed to be sampled: Hungarian-based firm with a 
minimum of 75% Hungarian ownership. In the database provided by Opten Infor-
matics Ltd., 4037 firms met this definition. From this population, 404 firms were 
sampled during the layered sampling performed according to agglomeration areas. 
A cluster analysis from the results of this first round can be found in Szerb et  al. 
(2017). In the following steps of the research, the aim was to better know the high-
tech gazelles’ cooperation behavior, so the sample was reduced according to two 
aspects. On the one hand, firms were filtered out that did not report any connec-
tion to external organizations during their innovation activity, and on the other hand, 
those firms that did not belong to a high-tech sector.1 As a result, a sample of 80 
high-tech gazelles was generated. In the second round, 55 of the 80 firms finally 
gave valuable responses. The respondents identified 94 organizations that we call 
the primary partners. In the third round, these partners were questioned, and 53 of 
them gave a valid answer. The respondents reported a total of 183 partners, who 
form the group of secondary partners of the gazelles. Bodor et al. (2019) used these 
data to analyze the role of social capital in the innovation activity of the Hungarian 
high-tech gazelles.

As a result of the survey, we got a graph, where nodes are the agents (firms or 
universities) and the links between them are their innovation-related collaborations. 
Theoretically, we may get a directed graph with the explicit direction of knowledge 
flows, but we treat the network of gazelles as an undirected graph. If one party states 
that there is a relationship between them, then the direction and the strength of the 
relationship are not interpreted, we only record that the tie is established. As a result, 
the gazelles’ network is demonstrated by a binary symmetric matrix, where the ele-
ments represent the existence of the relationships of the organizations.

The set of partners was restricted to Hungarian firms and higher education insti-
tutions since the necessary additional information was not available for all types of 
organizations. In the case of universities, partners were given at different organizational 
levels (institute, department, faculty, university), which we aggregated to the level of 
the university, so the data could become comparable. Thus, in the model, an agent is an 
organization, that can be either a firm or a university. A total of 207 agents remained in 
the examination, of which 102 form a sparsely connected component, while the other 

1  The “high-tech” term refers to firms whose primary activity is one of the high- and medium–high tech-
nology manufacturing or knowledge-intensive service sectors according to Eurostat’s classification.
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organizations are located in smaller separate groups or are isolated, as shown in Fig. 1. 
For technical reasons, we restricted the sample to the connected part of the network, 
so we applied the model to 102 agents. It was necessary because the social distance 
is a basic concept of the model, and we are not able to interpret this distance between 
unconnected agents.

The results of the survey reveal that in most cases, the content of the relationship 
was information exchange, there was a smaller number of cases of R&D cooperation 
or tender cooperation, while only a couple of respondents indicated that innovation-
purpose education was the content of their cooperation.

Fig 1   The innovation network of Hungarian high-tech gazelles. Note: The network was visualized in 
Gephi software with Yifan Hu proportional layout algorithm
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4 � The agent‑based model

Agent-based modeling is one of the potential techniques for modeling network 
formation besides random graph models (Erdős and Rényi 1959; Watts and Stro-
gatz 1998; Barabási and Albert 1999) and strategic models of network formation 
(Jackson 2005). The first one takes a probabilistic view on network formation and 
is able to explain many phenomena observed in network topology. Strategic mod-
els are based on individual incentives for link-formation which interact in shap-
ing the emerging network structures. While taking into account individual choice, 
these models remain stylized. The main advantage of agent-based models over the 
former two types is their ability to be empirically calibrated and validated which 
makes them appropriate for ex-ante policy simulations. The SKIN model (Gilbert 
et  al. 2001; Ahrweiler et  al. 2004; Pyka et  al. 2007) is a well-known agent-based 
model that contains network formation. It was the base of many empirically cali-
brated studies that include the whole innovation system, but the network of actors is 
of secondary interest (Korber and Paier 2013) like in other agent-based innovation 
models (Pyka and Saviotti 2002; Heshmati and Lenz-Cesar 2013; Paier et al. 2017). 
It is argued that ABMs are particularly suitable for modeling complex systems 
where agents are heterogeneous, and their local (peer-to-peer) interactions build up 
emergent phenomena at the system level. Ponsiglione et al. (2018) demonstrate how 
innovation systems can be treated as complex adaptive systems (CAS) and effec-
tively modeled by an ABM. These systems are characterized by several heteroge-
neous interacting agents that follow individual rules and goals, constituting a self-
organizing system where the involved actors adapt their behaviors to the changes in 
the environment. While this complexity can be captured via sets of differential equa-
tions, these remain dominantly unsolvable, providing a comparative advantage for 
ABMs relying on simulation techniques. Also, their relative richness in detail which 
is allowed by this simulation approach renders ABMs more suitable for empirical 
work where models need to closely resemble real-world systems.

The current study builds on the work of Sebestyén and Varga (2019) whose 
original model was developed for the European NUTS 2 regions’ knowledge net-
work. This work, just like the SKIN model, uses an agent-based method to model 
the dynamics of innovation network. While the SKIN model captures the produc-
tion of innovation and the arising network is only one aspect of it, Sebestyén and 
Varga (2019) specifically focuses on link formation.

The major elements of the model are the social space where agents are located 
and the gravitational force that drives their motion. Moreover, agents have hetero-
geneous attributes that also affect their behavior thereby the emerging network. 
Agents are placed in the social space according to their position in the initial 
innovation network. The distance between them is measured by the length of the 
shortest path which can be regarded as social distance. These multidimensional 
network distances can be represented in two dimensions with the help of an 
appropriate algorithm; therefore, we use multidimensional scaling in order to get 
these 2D positions. From the initial positions, agents start to move toward each 
other according to their pairwise attraction to find cooperation partners.
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Together with the social distance, the mass (size) and the proximity of actors 
are assumed to affect their mutual attractiveness which expresses their willing-
ness to cooperate. The attraction force between two agents i and j in period t 
( Ai,j,t ) is determined by the gravity equation which contains the mass of the agents 
(Mi,tandMj,t) and the pairwise distance between them in geographical (GDi,j,t) , 
technological (TPi,j,t) , social (SDi,j,t) and institutional (IPi,j,t) respects.

 The attraction force is an abstract variable. During the parameter estima-
tion (see Sect.5), it is captured with a dichotomous variable, the existence of 
a relationship between two agents. We interpret mass as the number of edges, 
connected to the node (node degree). The geographical distance is simply the 
Euclidian distance between the two headquarters. Technological proximity is 
captured by four dummy variables based on the economic activities of the agent 
pair. Social distance shows how far agents are in the 2D social space. Institutional 
proximity is measured by a dummy variable, which is equal to one if both organi-
zations are universities or both are firms, and it is zero if they belong to different 
categories. A detailed description of the variables can be found in Sect.  5.

According to the gravity principle, the mass has a positive and the distance has 
a negative impact on the attraction force between two agents. The only endog-
enous variable on the right-hand side is the social distance. During the simula-
tion, the attraction force changes only if the positions of agents in the social space 
change. If the attraction force between two organizations reaches the threshold, 
they will link up and they will remain connected until the attraction is higher than 
this threshold.

When agents choose their target position, they consider only a subset of the 
potential partners because of their cognitive limitations. It is represented by the 
length of the partner list that expresses the number of potential partners that 
agents follow when they choose their target positions. The length of the partner 
list is not firm-specific, but potentially every agent can follow different partners 
which brings heterogeneity into the model. Besides the attraction force, there is a 
counterforce that works exactly in the opposite direction. Preferential attachment 
(Barabási and Albert 1999) suggests that new players tend to connect to other 
players that already have a greater number of relationships. However, the mainte-
nance of a connection has a cost, that makes an additional relationship less desir-
able. The counterforce represents this cost of forming and maintaining a relation-
ship that weakens the original attraction force. Its technical role is to ensure the 
stationarity of the model.

The target position is not achieved automatically but agents start to move 
toward that point with an agent-specific constant speed. In the model, speed 
means the distance traveled by the agent per one timestep in the 2D social space. 
The agent-specific speed could be different according to the size of the agent 
reflecting the idea that finding cooperating partners may be more or less desirable 
for smaller and bigger agents. To describe the speed of agents’ movement, two 
parameters are needed: A basic parameter ( S ) which expresses the average speed 

(1)Ai,j,t = f
(
Mi,t,Mj,t,GDi,j,t, TPi,j,t, SDi,j,t, IPi,j,t

)
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level, and an elasticity parameter (SR), which shows how the speed depends on 
the agent’s size ( Wi ), which is a transformed version of the mass where the value 
of the average mass is equal to one. Based on these, the speed can be given by the 
following formula:

Finally, we assume that agents are exposed to different link formation costs, 
also depending on the size of the agents as described in the following formula:

where ( BF ) expresses the degree of average cost (counterforce) and BR is the elas-
ticity parameter, which shows how the degree of link formation cost (counterforce) 
depends on the size of the agent. The economic meaning of this elasticity parameter 
is that the cost of link formation may be different for smaller and bigger agents.

The parameters of the gravity equation are estimated with a regression intro-
duced in Sect. 5, and the heterogeneity parameters, such as the length of the part-
ner list, and the parameters of speed and counterforce are determined through a 
calibration process that is described in Sect 6.

The mechanisms of the simulation model are shown in Fig. 2. We can sum up 
them as follows:

1.	 Agents’ initial positions in the social space are defined according to their observed 
network distances. These positions determine the social distance in the first 
timestep, but the network distance does not have any effect later.

2.	 The innovative mass, the geographical distance, the technological proximity, and 
the social distance determine the attractiveness values through the gravity equa-
tion. Equal counterforces are calibrated so that agents are static in their initial 
positions.

3.	 If any of these variables change, agents start to move, which feeds back into the 
social distance through changing positions.

(2)Si =
(
S − SR

)
+ SR ⋅Wi

(3)BFPi =

(
BF − BR

)
+ BR ⋅Wi

Fig. 2   How the simulation model works
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4.	 The modified social distances again affect attractiveness, and the system keeps 
moving for a while.

5.	 As agents approach their target positions, the attraction force loses its strength 
and the counterforce starts to dominate, hence the model settles down in a new 
stationary state.

6.	 Social distances in the new stationary state are translated into network connec-
tions.

5 � The gravity equation

Regression analyses were conducted to determine the parameters of the gravity equa-
tion. Newton’s gravitational law originally describes the attraction force between physi-
cal bodies, but the principle of gravitation can also be found in the social and economic 
processes. It became an analytical tool of economics by the explanation of international 
trade, as it is a clear idea that the volume of international trade is positively influenced 
by the economic size of the two countries, while the distance between them has a nega-
tive effect (Brun et al. 2005). This analogy can be useful also in other contexts, such as 
migration (Karemera et al. 2000), tourism (Morley et al. 2014), or research and develop-
ment collaboration (Frenken et al. 2009; Hoekman et al. 2009; Montobbio and Sterzi 
2013). This principle indirectly appears in most of the studies examining the proxim-
ity dimensions, but in some articles, a gravitational equation is explicitly specified. For 
example, Maggioni and Uberti (2009) and Scherngell and Barber (2009) both examined 
the R&D cooperation among European regions with the help of an econometric model 
based on a gravity equation. Gravity models in economics are usually estimated in an 
international context but we reduced our analysis to one country. There are examples of 
national-level distance-based approaches analyzing collaboration in knowledge creation 
(Inoue et al. 2019) and gravity models using national data for collaborative knowledge 
production (Scherngell and Hu 2011). Admittedly, these are done in countries such as 
Japan or China that are much larger than Hungary. However, we argue that the gravity 
principle can be valid also within a smaller country, especially in the case of non-geo-
graphical proximities.

The dependent variable is the innovation-related cooperation (Conn) which has two 
possible values. It is equal to one if there is a reported relationship between the two 
organizations and zero if they are not connected directly.

Mass (M): The gravitational force is higher if the mass of the two bodies is larger. In 
this case, we interpret the number of existing links of a node as a proxy of mass. We sup-
pose that the higher the number of partners, the more attractive will be the agent. It is in 
line with the preferential attachment phenomenon (Barabási and Albert 1999), produc-
ing scale-free networks when new nodes tend to link to the more connected ones.

Geographical distance (GD): Geographical distance is captured by the Euclidean 
distance between the organizations’ headquarters.2 In the case of high-tech gazelles 

2  An alternative measure of geographical distance would be travel time (Ponds et al. 2007). In that case, 
we express distance in terms of the time needed to get from A to B using the public roads. For this 
method, much more information and computation would be needed, and we thought that it would not 
improve our results significantly. Besides, in most of the related studies, geographical distance or prox-
imity is measured in kilometers (e.g., Autant-Bernard et al. 2007; Broekel and Boschma 2012).
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and their primary partners, the address of the headquarters is known from the 
responses. The secondary partners have not been questioned, but either the postal 
address or the website had to be given by the nominator, so their addresses could 
be specified as well. Using a geocoding program, we identified the latitude and 
longitude coordinates, from which we calculated Euclidean distance, and this was 
included in the regression model.

Technological proximity (TP): Technological or cognitive proximity is usually 
measured by the overlap in patent portfolios (Cantner and Meder 2007; Cassi and 
Plunket 2015), or with entropy measures (Frenken et  al. 2007) but in some stud-
ies, this dimension is captured by the similarity of the economic activity of the two 
agents (Usai et al. 2017). Since there were many organizations in the sample that did 
not have a patent, we chose the latter solution. We use the codes of economic activi-
ties, similarly to the entropy measure of related and unrelated variety in a region 
(Frenken et  al. 2007; Boschma and Iammarino 2009). Technological proximity is 
expressed by four dummy variables in our study. The value is 1 if the two organiza-
tions are in the same category according to the 1,2,3 or 4-digits NACE (Nomen-
clature statistique des activités économiques dans la Communauté européenne) 
codes. Accordingly, if all 4 digits in the NACE code of the primary activities of the 
two organizations are the same (TP1 is equal to 1), then the technological proxim-
ity is very strong between them, and it is the weakest if only the first digit is the 
same (TP4 is equal to 1). The reference group is when they are different even on the 
one-digit level. This measurement method provides an opportunity to demonstrate 
the proximity paradox, according to which technological proximity has a positive 
impact on cooperation but only to a certain extent. After that point, it may hinder 
innovation (Broekel and Boschma 2012) so the motivation to cooperate.

Social distance (SD): Social distance is measured in accordance with a position 
in a social network emerging on the basis of earlier innovation cooperation (Autant-
Bernard et al. 2007; Balland 2012; Usai et al. 2017). If a tie is established in 2014 
or before, the two organizations are considered to have a common history. From this 
network, we calculated the geodesic distance per pair, which is the length of the 
shortest path between the two edges. For example, in Fig. 3, between nodes A and E, 
the shortest path which contains the minimum number of edges goes through node 
C. It contains two edges, so the geodesic distance between A and E is equal to two. 
We use multidimensional scaling to convert these geodesic distances to the social 
space.

Institutional proximity (IP): Institutional proximity has a positive impact on inno-
vation cooperation and knowledge flows, since establishing and managing collabo-
ration are easier given the same institutional environment. An interpretation of the 
institutional proximity is that organizations with the same status are closer to one 
another (Ponds et al. 2007; Balland 2012; Cassi and Plunket 2015; Usai et al. 2017). 
In the current study, belonging to the same organization type is considered institu-
tional proximity and it is measured by a dummy variable. We consider two organiza-
tion types: firms and universities. The value of the variable is one if both agents are 
firms or universities and it is zero if they are different.

There are two main approaches in the literature to reveal the relationship between 
different proximity dimensions and innovation-purpose cooperation. If the number 
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of cooperative projects is known, a Poisson or binomial count data model can be 
used (Hoekman et  al. 2009). When, however, the dependent variable cannot be 
counted, but only the existence of the connection or its intensity is known, then dis-
crete choice models are applied (Autant-Bernard et al. 2007; Paier and Scherngell 
2011). In our case, the unit of observation is the organization pair, and the depend-
ent variable is the relationship between the two organizations, so we have a binary 
choice model. The likelihood of the emergence of a relationship is explained by a 
binary logit model:

As a starting point, we included only the mass variable then we introduced the 
different proximity and distance dimensions after one another. Table  1 presents a 
summary of the regression results.

The values of the coefficients were determined by a maximum likelihood esti-
mate and below them, in brackets, the standard errors are shown. The absolute value 
of the coefficients is not informative in the logit model, but its sign and significance 
can be interpreted similarly to the estimated results of the ordinary least squares 
method. We have chosen model (4) for further investigation. It has the highest 
R-square (0.32) which is considered moderate explanatory power. The results show 

(4)

Conni,j =Pi =
1

1 + e−zi,j
zi,j = �0 + �1 ⋅

(

Mi +Mj
)

+ �2 ⋅ GDi,j + �3 ⋅ TP1i,j + �4 ⋅ TP2i,j + �5
⋅ TP3i,j + �6 ⋅ TP4i,j + �7 ⋅ SDi,j + �8 ⋅ IPi,j

Fig. 3    An example of geodesic distance
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that geographical, social, and technological distance/proximity has an impact on 
innovation-related cooperation. As expected, we found that the closer they are in the 
sense of different dimensions, the higher the chance for cooperation between them. 
Even it is possible that too strong technological proximity hinders innovation, as a 
result, it reduces the likelihood of cooperation, we found no support for this kind 
of relationship. The negative value of the coefficient of TP1, which stands for the 
strongest proximity, may indicate this relation, but it was not significant. Only two 
of the technological proximity measures were significant, and both have a positive 
sign meaning that if two organizations are more similar in their economic activity 
(they are closer in a technological sense), they will cooperate with higher probabil-
ity. So technological proximity fosters innovation cooperation. Organizational prox-
imity was the only investigated dimension that was not significant in our analysis. 
The mass variable, measured by the degree of the node, was positive and significant 
which supports the preferential attachment principle (Barabási and Albert 1999). It 

Table 1   Regression results from estimating the gravity model. Dependent variable: innovation-related 
cooperation between agent-pairs. *** significant at the 0.001 significance level, ** significant at the 0.01 
level, * significant at the 0.05 level

(1) (2) (3) (4) (5)

Number of observations 10,404 10,404 10,404 10,404 10,404
constant −5.4136*** −4.94132*** −5.23328*** −2.47979*** −2.50442***

(0.135484) (0.153972) (0.167774) (0.210755) (0.284908)
Mi 0.262912*** 0.25913*** 0.263822*** 0.231947*** 0.232636***

(0.0180924) (0.0182462) (0.0186455) (0.0204122) (0.0211122)
Mj 0.262912*** 0.25913*** 0.263822*** 0.231947*** 0.232636***

(0.0180924) (0.0182462) (0.0186455) (0.0204122) (0.0211122)
GDij −0.40340*** −0.3685*** −0.42813*** −0.42820***

(0.0778016) (0.0782538) (0.078039) (0.0780462)
TP1ij 1.54396*** −0.0546157 −0.0608071

(0.23086) (0.261105) (0.265484)
TP2ij 1.95864*** 1.88331*** 1.8787***

(0.450445) (0.497809) (0.499292)
TP3ij −0.315881 −1.12480 −1.11038

(0.73058) (0.753739) (0.762052)
TP4ij 0.594376*** 0.588778*** 0.585361***

(0.205043) (0.216449) (0.218058)
SDij −1.16957*** −1.16983***

(0.088498) (0.0885152)
IPij 0.026437

(0.205724)
Adjusted McFadden R2 0.151275 0.164662 0.184875 0.321731 0.320787
Log-likelihood −888.7306 −873.6646 −703.6292 −703.6375 −703.6292
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leads to the situation when a small number of nodes have a high number of links, 
and a high number of nodes have a small number of edges.

The constant term is negative and significant. It depicts the mean response value 
when all predictors are equal to zero, but as in many cases in regression analysis, it 
has no economic meaning. Theoretically, it is the response value if two organiza-
tions do not have any collaboration partners, located exactly in the same place, their 
economic activity is totally different, and they are located in the same place even in 
the two-dimensional social space.

It should be noted that the regression was conducted on a selective sample; thus, 
our econometric results may be biased, therefore, results could not be generalized. 
Nonetheless, it helps us to determine the parameters of the agent-based model. Mul-
ticollinearity could be another limitation of the regression results since it influences 
the statistical significance of the independent variables. In the case of multicollin-
earity, the coefficient values could be too sensitive for changes in the model, but 
except for the technological proximity, there are no big differences in the coefficients 
across the model specifications.

6 � Model calibration

The model contains a series of parameters that need to be numerically calibrated in 
order to execute empirically valid simulations. These parameters are found partly 
in the key gravity equation of the model (Eqs. 1 and 4) describing the static attrac-
tion between agents, and in Eqs. (2) and (3) further specifying their motion. As 
shown in the previous section, the gravity equation and its parameters have a solid 
empirical ground as they are set as a result of the regression estimations summa-
rized in Table 1. However, the parameters describing the motion of agents are not 
that straightforward to estimate, so we employed a standard calibration procedure in 
order to ensure that the model is empirically valid.

These “heterogeneity parameters” are listed in Table  2 and are responsible for 
agent-specific dynamics in the model and are set in a way that a no-intervention 
simulation with the model replicates observed (past) dynamics as close as possi-
ble. In this study, we apply the simulated minimal distance approach (Grazzini and 
Richiardi 2015), which is one of the most popular calibration methods (Fagiolo et al. 
2019). This method sets up an objective function, measuring the distance between 

Table 2   The values of the calibrated parameters

Description Parameter Range Optimal value

Common speed parameter S [0;0.1] 0.076802

Common counterforce parameter BF [0;1] 0.64178

Length of partner list AP [0;101] 5
Speed elasticity parameter SR [−1;1] 0.010456
Counterforce elasticity parameter BR [−1;1] −0.084521
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the simulated and observed values of a set of target variables. Then, an optimiza-
tion process is run in order to find that parameter combination that minimizes the 
distance, so that the chosen set of (endogenous) model variables are most closely 
resembled by the simulations (Platt 2020).

This process was started by constructing an initial position for agents: This was 
done by mapping those relationships that already existed in 2010 (before the sur-
vey was conducted), into the two-dimensional social space. Then, the model was 
simulated a multitude of times with different parameter combinations in order to 
find that combination which brings the resulting steady state network as close to the 
observed one as possible. The latter was the network mapped through the survey, 
and the parameters listed in Table 2 are simultaneously modified to reach the opti-
mal parametrization, while the parameters of the gravity equations are kept fixed at 
their estimated values.

The objective function of the calibration process measures the distance of the 
simulated network from the observed one. This function consists of two parts in the 
present calibration procedure. On the one hand, we require the links in the observed 
and simulated network to match as closely as possible. This is measured by the fol-
lowing expression, reflecting the sum of differences between the observed and simu-
lated adjacency matrices:

where cij is an element of the observed relationship matrix and aij is an element of 
the simulated matrix. Given that in a relatively sparse network with many zeros in 
the adjacency matrix, a relatively good fit can be achieved by simulating an empty 
network, we also require that the number of simulated links gets as close as possible 
to the number of observed links. Formally:

These two indicators Flink and Fsum are considered with equal weight during the 
optimization process, so the final objective function was simply

Minimizing F , we obtain the parameter combination at which the network struc-
ture simulated in the steady state of the model best fits the observed one. Table 2 
shows the range at which the optimization took place for each parameter and the 
optimal values.

The calibration results show that agents take into consideration only the five 
most attractive potential partners when they choose their target position in the 
social space. The speed elasticity parameter is positive, which means that bigger 
agents move faster. The size of agents is based on the node degree, so this result 
implies that organizations that have already more connections can more easily reach 
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their target, therefore, connect to the most attractive partners. In contrast, agents’ 
size influences negatively the counterforce, which indicates that link formation is 
more costly for smaller agents, who have fewer links. Both elasticity parameters 
strengthen the effect of preferential attachment since those who already have more 
partners can get new ones relatively easily.

7 � The simulation exercise

The aim of this simulation exercise is to illustrate through a simple example how the 
proposed agent-based model can reflect the potential network effects of an innova-
tion policy that supports new business formation. Stimulating start-ups is conducive 
for the innovation system and economic development (Gilbert et  al. 2004; Fritsch 
and Mueller 2007). However, we would like to investigate whether it has additional 
beneficial effects through increasing the density of the innovation network. A denser 
innovation network allows more opportunity for knowledge spillover, and firms that 
participate in collaborations can gain advantages in many ways.

The simulation starts from the observed position in 2016, and it predicts the num-
ber of ties in the future in a new steady state. As the point of intervention, we chose 
the capital region of Hungary, Budapest, and Pest County, because here we can find 
both university and firm agents with diverse economic activities and distinct degrees 
of connectedness. We ran two scenarios: one baseline scenario, where only the 102 
observed organizations are included, and one policy scenario, where we simulate 
the effects of a successful entrepreneurship policy which results in three new firms 
entering the architectural and engineering activities sector. These new firms are 
assumed to be located in Budapest, and each of them has one partner from the same 
sector and the same region. Thus, they can be interpreted as spin-offs of the latter 

Fig. 4   The number of ties in the network of the Hungarian high-tech gazelles
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firms. We have chosen architectural and engineering activities as a priority area 
because this is a well-embedded sector in the region. The NACE code of the pri-
mary activity of the spin-offs is 7112 Engineering activities, technical consultancy. 
There are several firms in our sample with this activity, and other technologically 
proximate firms are present. From Fig.  4, we can see that the entry of three new 
firms increases the number of connections in the long run. There is no exact equi-
librium point, but a fluctuation is observable near the new stationary position. This 
phenomenon is a standard characteristic of CASs that often operate out of equilib-
rium position.

Since new entrants also affect the number of potential connections, an increase in 
the number of connections cannot be automatically considered as an increase in net-
work density. The network density (D) can be defined as the quotient of the number 
of actual edges (E) and the number of total possible edges (Emax):

where the number of theoretically possible edges is given by the number of nodes 
(N) as follows:

Table 3 summarizes the numeric results of the two simulation scenarios. There 
is network dynamics observed already in the baseline scenario. The effects of the 
policy scenario can thus be interpreted relative to this baseline scenario. The results 
show that the density already increases quite considerably (by 49%, from 0.02097 
to 0.03126 already in the baseline scenario.) This is due to the “built-in” dynam-
ics of the model, coming from the fact that its calibration was done in a way that it 
captures observed dynamics over a given time period. In contrast, the policy sce-
nario shows a 54% increase in network density which is clearly larger than that in 

(8)D =
E

Emax

(9)Emax =
(N ⋅ (N − 1))

2

Table 3   The characteristics of the innovation network in the baseline and the policy scenario. Note: N is 
the number of nodes, E is the number of edges between them, Emax is the number of possible edges, D is 
the density of the network. In brackets, the percentage changes are shown between the beginning and the 
end of the simulation. The end of the simulation data are the mean values after the 35th period

At the beginning of the simulation At the end of the simulation

Baseline scenario N = 102 N = 102
E = 108 E = 161 (+ 49%)
Emax = 5151 Emax = 5151
D = 0.02097 D = 0.03126 (+ 49%)

Policy scenario N = 105 N = 105
E = 111 E = 171 (+ 55%)
Emax = 5460 Emax = 5460
D = 0.02033 D = 0.03132 (+ 54%)
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the baseline scenario. Although there is a base effect resulting from the naturally 
smaller density in the beginning (three nodes are added to the network but only three 
more edges are added parallel to that, which lowers density by definition), still the 
density at the end of the simulation is slightly higher in the policy scenario than in 
the baseline scenario.

The entry of new agents, representing spin-off firms, directly affects the agents 
to whom these entrants are connected but it also has an indirect effect through the 
possibly changing positions of any other agents. The result suggests that during the 
policy scenario, agents started to move in the social space in a way that brought 
them closer to each other on average, resulting in shorter social distances. Since the 
other variables that determine attraction force are constant during the simulation, it 
results in stronger attraction forces thereby more connections compared to the base-
line scenario. The actual number of ties increased more than proportionately than 

Fig. 5   The position of agents in the social space. The top row of the figure represents the initial and final 
positions of the baseline, the bottom row represents the initial and final positions of the policy scenario. 
The size of the dots is proportional to the square root of the number of relationships (degree) of agents. 
Black dots represent the new entrants in the policy scenario, while the orange dots represent the agents 
that have more relationships in the final position of the policy scenario compared to the baseline
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the possible number of ties. Thus, network density increased more in the policy sce-
nario than in the baseline. This illustrative simulation exercise thus shows that sup-
porting business formation in a well-established sector in the region increases the 
density of the innovation network, which leads to more opportunities for knowledge 
spillovers in the sector and in the wider innovation ecosystem.

Figure 5 shows the positions of agents are the social space at the initial and final 
periods of the baseline and policy scenarios. It stems from the two-dimensional 
mapping algorithm that agents with more connections at the beginning have more 
central locations. One can notice a trend that agents get closer to each other and to 
the center of the social space in both the baseline and policy scenarios. This reflects 
stronger attraction, thus more connections between them over time. The black dots 
in the policy scenario (bottom panels) represent the new entrants. Although all three 
new firms have only one partner (connection) according to the initialization, their 
distance from the center of the social space is different, as they are connected to 
different other agents. For instance, Entrant 3 has a very central partner with eight 
connections at the beginning, while the partners of Entrants 1 and 2 have much less 
connections initially. The orange circles in the final positions represent those agents 
that have more relationships in the new steady state (final positions) of the policy 
scenario than in the baseline, so they are the organizations that benefited from the 
policy measure. Most of these organizations have a central position in the network 
and already have many ties in the baseline scenario. They are located close to the 
new entrants which shows that the effect of the policy has a limitation in the social 
space.

Comparing the degree (number of connections) of individual agents in the two 
new steady states (final positions), one can see that out of the 105 agents, 21 had 
more ties in the policy scenario than in the baseline, and only two of them lost any. 
One agent gained a maximum of four additional relationships from the intervention. 
Although the majority of the agents are not affected by the policy measure, far more 
organizations won with it than lost (Table 4).

Comparing the new steady states in the baseline and the policy scenarios, it is 
visible that the number of ties is 10% higher in the case of the policy measure than 
without the intervention. Looking at the breakdown of this change, we see that the 
difference is more pronounced for firms (11%) than for universities (4%). In the sec-
tor (according to the 2-digit NACE codes), which is directly affected by the policy 

Table 4   The absolute difference 
in the number of ties between 
the baseline and the policy 
scenarios

Absolute change in the number of ties Number 
of agents

−1 2
0 82
1 14
2 2
3 4
4 1
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measure, the effect is 23% which is much larger than the overall increase in ties. If 
we only consider the subset of firms whose primary activity is the same-according 
to 4-digit NACE codes-as that of the new entrants, the response to the intervention 
is even stronger (29%). It shows that the technological proximity promotes partner-
ships in the model. Part of the difference naturally stems from the connections of 
the new entrants, but the gap is still visible if the ties of these spin-off companies 
are not counted (second row of Table 5). These results reflect the mechanisms that 
the model intended to grab: The intervention that supports the creation of spin-offs 
in a certain sector has the largest effect on the given industry, but it has a spillo-
ver effect on other sectors as well. It creates more opportunities for knowledge 
exchange not only within the sector of intervention but between sectors as well. 
Although this latter effect is less pronounced, it is present and can serve as the basis 
of cross-fertilization.

8 � Conclusions and the limitations of the study

In the current study, we introduced an application of an agent-based model that is 
appropriate for modeling the dynamics of network formation based on different 
proximity dimensions. With the help of unique survey data about the Hungarian 
gazelles, we have conducted our analysis on a broad range of formal and informal 
cooperation, which allows a more in-depth understanding of collaboration in inno-
vation. Our results contribute to the studies of gazelles, by showing how the innova-
tion network of gazelles evolves in time. Part of the agent-based simulation param-
eters has been determined by regression analysis, the result of which shows that the 
geographical, social, and technological distance has an impact on innovation-related 
cooperation. As expected, we found that the closer they are in the sense of differ-
ent dimensions, the higher the chance for cooperation between them. Organizational 
proximity was the only investigated proximity dimension that was not significant in 
our analysis. The main added value of the paper compered to earlier empirical stud-
ies on proximity dimensions is that we treat the relationship between social proxim-
ity and network formation in a dynamic way. As the network evolves in time, agents 
get in touch with new partners and earlier relationships may dissolve. It feeds back 

Table 5   The percentage 
difference of the number of ties 
between the baseline and the 
policy scenario

General Universities Firms Firms in 
NACE 71

Firms in 
NACE 
7112

Baseline-
policy 
differ-
ence

10% 4% 11% 23% 29%

Difference 
without 
the 
entrants

9% 4% 10% 15% 17%
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on social proximity that re-affects the formation of ties in the network. With the 
help of this model, we demonstrated how policy simulation can be used in the con-
text of network formation. It pointed out that a successful entrepreneurship policy, 
that induces spin-offs in a given sector, could significantly increase the number of 
relationships between the organizations. Our findings show that spin-off formation 
is conducive not only for the sector concerned but it has a spillover effect on other 
industries. It results in more opportunities for knowledge exchange not only within 
the sector but between sectors, serving as a basis of cross-fertilization between dif-
ferent technologies. The simulation results also show that the effect of this kind of 
policy is limited along social and technological proximities of the agents. On the 
one hand, only those organizations gained additional partners in the policy scenario 
that were close enough to the new entrants in the social space. On the other hand, 
the positive effect was stronger for agents that were technologically more proximate 
to the new entrants.

The limitation of the study is that only cross-sectional data were available there-
fore we had to construct a hypothetical starting position for the calibration. Besides, 
we conducted the regression analysis on a selective sample thus, our econometric 
results are probably biased. With representative sample and panel data, we could 
gain generalizable results and more relevant policy simulations.
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