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Abstract
I numerically compute Borda-optimal, i.e., optimal based on the Borda count as the 
normative criterion, labour-income tax schedules for the United States. I do so in the 
context of a Mirrlees-style model with quasilinear preferences and a constant elas-
ticity of labour supply. Because the Borda count is defined for finitely many alterna-
tives, the computations restrict attention to a finite subset of the set of continuous, 
piecewise linear tax schedules with (in the baseline analysis) four or fewer pieces.

JEL Classification  D71 · H21 · H24

1  Introduction

I numerically compute Borda-optimal (BO), i.e., optimal based on the Borda count 
as the normative criterion, labour-income tax schedules for the United States. I do so 
in the context of a Mirrlees-style model with quasilinear preferences and a constant 
elasticity of labour supply. I perform the computations separately for three different 
values of the elasticity of labour supply, �.

A major challenge is that the Borda count is defined for finitely many alterna-
tives whereas there are infinitely many possible tax schedules. To deal with this, I 
identify a subset of the feasible direct mechanisms (DMs) that (a) loosely speaking, 
corresponds to the set of continuous, piecewise linear tax schedules with N or fewer 
pieces and (b) lends itself to transparent, finite discretisations. Using N = 4 and one 
such discretisation in the baseline numerical analysis, I compute, for each value of � , 
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the BO DM within the resulting finite set of DMs as well as the corresponding BO 
tax schedule.

The main findings in terms of the BO tax schedules are that (i) for each value of 
� , all marginal rates are positive, (ii) depending on the value of � , the marginal rate 
at the highest incomes may or may not be strictly higher than the marginal rates at 
all lower incomes, (iii) for each value of � , average rates are nevertheless (possibly, 
weakly) increasing in income (to a close approximation), and (iv) this progressivity 
is attenuated as � increases. These findings hold up well under a number of robust-
ness checks that use alternative values of N and alternative discretisations.

The existing literature on optimal taxation is largely based on utilitarianism 
(Bentham 1789; Mirrlees 1971), Rawls’ maxmin principle (Rawls 1971; Piketty 
1997), or equality of opportunity (Roemer (1998); Fleurbaey (2008)). Although 
these normative approaches have their appeal, they also have two important limita-
tions. First, they seem disconnected from the idea of democracy. This is awkward 
given the broad consensus in many countries that public policy should be deter-
mined through a democratic process.1 Second, excluding some notions of equality 
of opportunity, the implementation of these approaches requires taking a stand on 
nonordinal properties of utility.

My findings (i)–(iv) above are in line with well-known findings in this literature. 
For example, Seade (1982) shows theoretically that, in a Mirrlees-style model with a 
utilitarian criterion, the optimal tax schedule must be strictly increasing (in line with 
finding (i)). Also, using numerical analysis in a Mirrlees-style model with a utilitar-
ian and a Rawlsian criterion, Saez (2001) obtains marginal rates at high incomes 
that are lower than marginal rates at low incomes (in line with finding (ii)).2 What 
is novel in my paper is that findings (i)–(iv) have been derived based on a different 
normative foundation.

An alternative, normatively appealing approach to optimal taxation is to use 
majority rule. Unfortunately, for general sets of tax schedules, a Condorcet winner 
is not guaranteed to exist. However, if we restrict attention to linear tax schedules, 
a Condorcet winner does exist under some assumptions (Roberts (1977)). In these 
settings, three key findings regarding the linear tax schedule selected by majority 
rule are that (a) under plausible assumptions, the marginal rate is positive, (b) the 
intercept can be positive, so that the average rate can be decreasing, and (c) the mar-
ginal rate is increasing in the ratio between mean and median income (at least when 
government consumption is zero).3 The current paper differs from this literature in 
that it uses a different normative criterion and considers more flexible tax schedules.

1  In some voting models, there is a connection between utilitarianism and majority rule. (See Krishna 
and Morgan (2015) and the references therein.) However, in these models, voters choose between only 
two policies. (These two policies may have been endogenously selected from a larger set of policies at a 
pre-voting stage in which candidates strategically decide on which policies to run. However, such a stra-
tegic pre-voting stage is hardly a key component of the normative ideal of democracy.)
2  I believe that Saez’s findings are also in line with findings (iii) and (iv), though it’s hard to be sure 
based on the information provided in his paper.
3  For (a) and (b), see Romer (1975) and Roberts (1977). For (c), see Meltzer and Richard (1981).
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The Borda count has several important advantages as a normative criterion. 
First, it has been characterised in terms of normatively appealing axioms (Young 
(1974), Maskin (2021)).4 Second, preference aggregation seems central to the idea 
of democracy. Third, the Borda count can be implemented without going beyond 
ordinal utility.

Of course, the Borda count also has limitations. First, it is defined for finitely 
many alternatives and the results could be sensitive to the discretisation employed. 
Second, although the Borda count exhibits some sensitivity to the intensity of pref-
erences between any two alternatives by taking into account the number of alter-
natives ranked inbetween by each individual, policy-makers may wish to be more 
sensitive to preference intensities (e.g., based on introspection or individuals’ verbal 
reports).

There is also a literature that studies labour-income taxation in various descrip-
tive (as opposed to normative) political economy models. For example, Röell 
(2012), Brett and Weymark (2017), and  De Donder and Hindriks (2003) study 
labour-income taxation in a two-step model: at the first step, each individual pro-
poses a tax schedule that is selfishly-optimal for her; at the second step, majority 
rule is applied to the proposed tax schedules (on which a Condorcet winner exists 
under some assumptions). Chen (2000), Carbonell-Nicolau and Efe (2007), Roemer 
(2012), and Bierbrauer and Boyer (2016) consider models of political competition 
in which politicians choose tax policies on which to run for office. Bierbrauer et al. 
(2021) characterise when a monotonic labour-income tax reform (i.e., a reform such 
that the change in the tax burden is a monotonic function of income) is politically 
feasible in the sense that it is preferred by a majority over the status quo.5

2 � Preferences and productivities

Individuals have preferences over consumption c ≥ 0 and labour l ≥ 0 represented 
by the utility function c − �

1+�
l
1+�

�  , where 𝜎 > 0 is the (Hicksian and Marshallian) 
elasticity of labour supply. Each individual has a productivity (or type) which is her 
private information. When type w puts in labour l, she earns pre-tax income wl. The 
set of types is [w,w] , where 0 < w < w . Types are distributed according to the prob-
ability density function f which has full support on [w,w].

4  It is well-known that the Borda count violates Arrow’s independence of irrelevant alternatives (IIA) 
(Arrow 1951). However, Maskin (2021) argues that IIA is too stringent and shows that the Borda count 
satisfies a normatively appealing weakening of IIA. Pearce (2021) also argues forcefully against IIA.
5  They also characterise when a small perturbation in the status-quo tax schedule is both politically fea-
sible and welfare-improving under (weighted) utilitarianism. Thus, their paper connects to the normative 
literature based on utilitarianism mentioned above (a key difference being that they consider incremental 
reforms rather than globally optimal tax schedules).
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3 � DMs

3.1 � Feasible DMs

Given the revelation principle, we can restrict attention to DMs. A DM is a tuple 
(Y, C), where Y ∶ [w,w] → [0,∞) and C ∶ [w,w] → [0,∞) . Y(w) and C(w) are the 
income and the consumption, respectively, assigned to an individual reporting to be 
of type w.

A DM is feasible if the following conditions hold. 

(a)	 Incentive compatibility: Y is nondecreasing and, for all w ∈ [w,w] , 

(b)	 Government budget constraint: 

 where R ≥ 0 is the exogenously given government consumption per capita.6

3.2 � A finite subset of the feasible DMs

Because the Borda count is defined for a finite set of alternatives, it is necessary to 
restrict attention to a finite subset of the feasible DMs. To this end, I augment condi-
tions (a) and (b) with two further conditions, the first one being the following. 

(c)	 Y is of the form: 

 where (i) i ∈ {1,… , n} , n ≥ 1 , (ii) w0 = w , wn = w , and wi−1 < wi for all i, (iii) 

t0 = 1 , ti < 1 for all i, and ti−1 ≠ ti for all i, (iv) 
(

1−ti−1

1−ti

) �

1+�
wi−1 ≤ wi for all i 

(1)
C(w) =C(w) −

𝜎

1 + 𝜎

(
Y(w)

w

) 1+𝜎

𝜎

+
𝜎

1 + 𝜎

(
Y(w)

w

) 1+𝜎

𝜎

+ ∫
w

w

(
Y(w̃)

w̃

) 1+𝜎

𝜎 1

w̃
dw̃.

(2)∫
w

w

(Y(w) − C(w))f (w)dw = R,

(3)Y(w) =

⎧⎪⎪⎨⎪⎪⎩

(1 − t1)
𝜎w1+𝜎 if w = w0

(1 − ti)
𝜎w1+𝜎 if wi−1 < w ≤ wi, ti−1 > ti

(1 − ti−1)
𝜎w1+𝜎

i−1
if wi−1 < w ≤ �

1−ti−1

1−ti

� 𝜎

1+𝜎
wi−1, ti−1 < ti

(1 − ti)
𝜎w1+𝜎 if

�
1−ti−1

1−ti

� 𝜎

1+𝜎
wi−1 < w ≤ wi, ti−1 < ti

,

6  By imposing equality in (2), I am not allowing the government to burn money. This may not be incon-
sequential as the Borda rule can be sensitive to the deletion of alternatives. The justification for impos-
ing equality in (2) is twofold. First, this dramatically reduces the number of DMs I’ll need to consider. 
Second, the model already implicitly leaves out many alternatives that are dominated according to any 
reasonable preferences, such as alternatives that entail destroying all bridges. Ruling out the burning of 
money seems to be in the same spirit.
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such that ti−1 < ti , and (v) 
(

1−ti−1

1−ti

) 𝜎

1+𝜎
wi−1 < wi for all i < n such that 

ti−1 < ti < ti+1.
The following proposition shows that a DM satisfying (a) and (c) can be interpreted 
in terms of a corresponding tax schedule.7

Proposition 1  Suppose (Y, C) satisfies (a) and (c). Then, there exists a unique tax 
schedule, T, such that the following hold. 

(i)	T implements (Y, C).
(ii)	T is continuous and piecewise linear with n pieces.
(iii)	For each i ∈ {1,… , n} , ti is the slope of the ith piece of T.8
(iv)	If n ≥ 2, then, for each i ∈ {2,… , n} such that ti−1 > ti , wi−1 is the highest type 

that chooses a point on the (i − 1)st piece of T.
(v)	If n ≥ 2, then, for each i ∈ {2,… , n} such that ti−1 < ti , wi−1 is the lowest type that 

chooses at the kink between the (i − 1)st and ith pieces of T.9

Thus, given (Y,  C) satisfying (a) and (c), ti ( i = 1,… , n ) is the marginal rate 
on the ith piece of the corresponding tax schedule, T, and wi−1 ( i = 2,… , n ) is the 
threshold type where types switch to locating on the ith piece of T.

The next proposition provides a kind of converse of Proposition 1.

Proposition 2  Suppose that (i) (Y, C) is implemented by some continuous, piecewise 
linear tax schedule with N pieces and (ii) if w = w or w is a jump point of Y, Y is 
strictly increasing on (w,w + �) for some 𝛿 > 0. Then (Y, C) satisfies (a) and Y satis-
fies (c) almost everywhere for some n ≤ N.

Condition (ii) seems weak: it applies to at most N, arbitrarily narrow intervals10 
on each of which it, moreover, allows Y to be arbitrarily close to constant. Thus, 
abstracting from what seem like technical details, Propositions 1 and 2 tell us that 
a DM satisfies (a) and (c) for some n ≤ N if and only if it is implemented by a con-
tinuous, piecewise linear tax schedule with N or fewer pieces.

Letting w(p) denote the pth type percentile, the next condition provides a finite, 
numerically tractable discretisation of the set of Y functions satisfying (c). 

7  A tax schedule is a function T ∶ [0,∞) → ℝ . T(y) is the tax owed by an individual earning income y. T 

implements (Y,  C) if, for all w ∈ [w,w] , Y(w) ∈ argmax
y≥0

y − T(y) −
�

1+�

(
y

w

) 1+�

�  and 

C(w) = Y(w) − T(Y(w)).

8  I’m counting the pieces (in the graph) of T from left to right.
9  All proofs are in the appendix.
10  As made clear in the proof, condition (i) ensures that Y has at most N − 1 jump points.
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(d)	 n ≤ 4 . Given n, t
i
∈ {−2. − 1.5,−1,−.8,−.6,−.4,−.2, 0, .1, .2, .3, .4, .5, .6, .7, .8, .9}  

for all  i ∈ {1,… , n} and w
i
∈ {w(10),w(20),w(30),w(40),w(50),w(60),

w(70),w(80), w(90),w(95),w(99),w(99.9)} for all i ∈ {1,… , n − 1}.

Thus, the discretisation in (d) in effect restricts attention to continuous, piecewise 
linear tax schedules with four or fewer pieces such that (i) the marginal rate on 
any of the pieces lies on the given grid for the ti ’s and (ii) threshold types lie on 
the given grid for the wi ’s (e.g., tax schedules such that types just below the 45th 
percentile choose on the second piece and types just above the 45th percentile 
choose on the third piece are ruled out). I have somewhat arbitrarily truncated 
marginal tax rates at −2 from below, noting that even lower marginal tax rates 
could probably only apply to a small fraction of the population if they are to be 
feasible.

From here on, I restrict attention to the set of DMs satisfying (a)–(d). Let D 
denote this set. Because Y pins down C through constraints (1) and (2), D corre-
sponds to the set of Y functions such that (c) holds, (d) holds, and C(w) obtained 
after plugging in for C(w) from (1) into (2) is nonnegative.11

Before proceeding, let us consider the following question: Why look for a 
BO DM in D rather than for a BO continuous, piecewise linear tax schedule 
with four or fewer pieces? There are three disadvantages to the latter approach. 
First, to discretise the set of continuous, piecewise linear tax schedules with 
four or fewer pieces, one would need to choose the grid of income levels at 
which the kinks can be located. However, it is not obvious how to do that. In 
contrast, the grid for the wi ’s in condition (d) seems transparent and natural. 
Second, one would need to solve each type’s labour-supply optimisation prob-
lem given each tax schedule, and this is likely to considerably slow down the 
numerical calculations. Third, there can be multiple continuous, piecewise lin-
ear tax schedules with four or fewer pieces implementing the same DM and 
one would need to eliminate such duplicates before applying the Borda count.12 
However, duplicate tax schedules may be tricky to identify as they may incor-
rectly appear to implement slightly different DMs due to imperfect numerical 
precision.

11  Condition (c) ensures that Y is nondecreasing and Y(w) ≥ 0 for all w ∈ [w,w].
12  Including duplicate tax schedules would not only slow down the numerical calculations, but it could 
also change the BO tax schedule because the Borda winner is not necessarily invariant to the inclusion 
of duplicates. Given that the model already implicitly leaves out many duplicates (e.g., it conflates (i) tax 
schedule T and a blue tax form and (ii) the same tax schedule T and a green tax form), eliminating dupli-
cate tax schedules seems to be in the same spirit.
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4 � The Borda count

Given (Y ,C) ∈ D , let Δ(Y ,C,w) denote the number of DMs in D that are strictly 
worse than (Y,  C) according to type w minus the number of DMs in D that are 
strictly better than (Y, C) according to type w.13 The Borda count of (Y, C) is:14 ,15

(Y ,C) ∈ D is BO if B(Y ,C) ≥ B(Ŷ , Ĉ) for all (Ŷ , Ĉ) ∈ D.
Note that evaluating B(Y, C) requires computing all types’ rankings over D , which 

is numerically infeasible. Therefore, to obtain my numerical results, I approximate 
the integral in (4) based on the rankings of a finite set of “representative” types. The 
main idea is to approximate Δ(Y ,C, ⋅) via a step function by (i) partitioning [w,w] into 
14 subintervals and (ii) replacing Δ(Y ,C, ⋅) over each subinterval with Δ(Y ,C,wm) , 
where wm is the median (i.e., “representative”) type in that subinterval.16 I will refer 
to a DM maximising the approximation of the integral in (4) as “BO” even though, 
strictly speaking, it’s only BO if it maximises the actual integral in (4).

5 � Calculations for the United States

5.1 � Calibration

5.1.1 � Elasticity of labour supply

Given the considerable controversy in the literature on the elasticity of labour sup-
ply,17 I will perform the analysis separately for � ∈ {0.25, 0.5, 1} . In choosing these 
values, I am following Saez and Stantcheva (2018).

5.1.2 � Distribution of types

The main idea for calibrating the distribution of types goes as follows. First, I 
assume that the actual labour-income tax schedule is linear with a 30 percent mar-
ginal tax rate. Given this tax schedule, type w’s optimal pretax labour income is 

(4)B(Y ,C) = ∫
w

w

Δ(Y ,C,w)f (w)dw.

16  The details are in the appendix.
17  Keane (2011) and Saez et al. (2012) provide surveys of this literature.

13  Type w’s ranking over D is based on the indirect utility function �w(Y ,C) = C(w) −
�

1+�

(
Y(w)

w

) 1+�

�  . 

Note that this implicitly assumes that each individual’s preference over DMs is selfish. This assumption 
is discussed further in the appendix.
14  I assume the integral in (4) exists.
15  The Borda count in (4) generalizes the usual Borda count to the case in which individuals can exhibit 
indifference between alternatives (which is the relevant case in the current context). Note that Maskin 
(2021) assumes that individuals’ preferences over alternatives are strict. However, as Ivanov (2022) 
shows, the Borda count in (4) satisfies (extensions to the case of weak preferences of) the axioms in 
Maskin (2021) (as well as an additional normatively appealing axiom).
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y∗(w) = 0.7�w1+� . Second, I back out the distribution of types based on y∗(⋅) and 
data from the World Inequality Database (WID) on the empirical distribution of pre-
tax labour income for individuals over age 20 in the US in 2014.18

5.1.3 � Government consumption per capita

According to WID, US national income per individual over age 20 in 2014 was 
$65,192.19 According to Piketty, Saez and Zucman (2018), total (i.e., federal, state, 
and local) government consumption in the US has been around 18 percent of national 
income since the end of World War II. Thus, I set R = 65, 192 × 0.18 ≈ 11, 735 . 
This calculation assumes that government consumption must be financed entirely 
from labour income taxation, which seems like the natural theoretical benchmark 
based on Atkinson and Stiglitz (1976).20

5.2 � Main results

For each � ∈ {0.25, 0.5, 1} , I compute the (as it turns out, unique) BO DM and the 
corresponding (in the sense of Proposition 1) BO tax schedule.21 The main features 
of the BO tax schedules are presented in Table 1 as well as in Figs. 1 and 2. Table 1 
shows, for each value of � , the BO Universal Basic Income (UBI), i.e., the negative 
of the intercept of the BO tax schedule. Figure 1 (Fig. 2) depicts, for each value of � , 
the BO marginal (average, respectively) tax rate as a function of income.

The first finding is the following.

Finding 1  For � ∈ {0.25, 0.5, 1}, all BO marginal tax rates are positive.

In particular, there is no equivalent to the the Earned Income Tax Credit at low 
incomes.

The next finding is perhaps at odds with what is often taken for granted in popu-
lar discourse.

Finding 2  For � = 0.25, the BO marginal tax rate at the highest incomes is strictly 
higher than the BO marginal tax rates at all lower incomes. However, this is not true 
for � = 1.22

18  Section 6 discusses some important aspects of the WID data. The details of how I back out the distri-
bution of types are in the appendix.
19  All dollar amounts in the paper are in 2014 dollars.
20  As a robustness check, I redid the calculations with R = 0 . Findings 1, 2, and 4 below continue to 
hold. Finding 3 also continues to hold except that, for � = 1 , the BO average tax rate is strictly, rather 
than weakly, increasing in income.
21  The computations were done in Mathematica 12. The code is provided in separate files (refer https://​
doi.​org/​10.​1007/​s00355-​022-​01411-9).
22  It is also not true for � = 0.5 , but this doesn’t survive all robustness checks in section 5.3 below as 
well as the robustness check mentioned in footnote 20.

https://doi.org/10.1007/s00355-022-01411-9
https://doi.org/10.1007/s00355-022-01411-9
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Nevertheless, because of the UBI and marginal rates that don’t decrease suffi-
ciently with income, the BO tax schedule is (possibly, weakly) progressive in terms 
of average rates.

Finding 3  The BO average tax rate is strictly increasing in income for 
� ∈ {0.25, 0.5} and, to a close approximation, weakly increasing in income for 
� = 1.

Furthermore, the following holds.

Finding 4  For any incomes y1 and y2 such that 0 < y1 < y2 < 925653, the differ-
ence between the BO average tax rate at y2 and at y1 is strictly decreasing in � on 
{0.25, 0.5, 1}.23

Thus, the progressivity of the BO tax schedule is decreasing in � , at least at the 
income levels that are relevant for the vast majority of the population.24 This occurs 
because (i) the BO UBI falls substantially as � increases and (ii) abstracting from 
some minor exceptions at low incomes, at any income level the BO marginal tax 
rate weakly decreases as � increases on {0.25, 0.5, 1} . For � = 1 , the progressivity is 
attenuated to the point that the average tax rate is approximately flat for a wide range 
of incomes (for incomes between $32,878 and $925,653, to be precise).25

5.3 � Robustness checks

I explore the robustness of Findings 1–4 to the discretisation in condition (d) by 
redoing the numerical analysis for each of the following variations of that condition. 

	(d1)	 Same as condition (d) except that n ≤ 3 instead of n ≤ 4.
	(d2)	 n ≤ 4 . Given n, ti ∈ {−.8,−.6,−.4,−.2, 0, .2, .4, .6, .8} for all i ∈ {1,… , n} and 

wi ∈ {w(20),w(40),w(60),w(80),w(95),w(99)} for all i ∈ {1,… , n − 1}.
	(d3)	 n ≤ 5 . Given n, ti ∈ {−.8,−.6,−.4,−.2, 0, .2, .4, .6, .8} for all i ∈ {1,… , n} and 

w
i
∈ {w(10),w(20),w(30),w(40),w(50),w(60),w(70),w(80), w(90),w(95),

w(99),w(99.9)} for all i ∈ {1,… , n − 1}.

	(d4)	 n = 3 . Letting A denote a set of 20 million points drawn from a uniform distri-
bution on {(p1, p2, t1, t2, t3)|10 ≤ p1 < p2 ≤ 99.99,−1 ≤ ti < 1 for 1 ≤ i ≤ 3} , 

23  To establish this, I compute, for each � ∈ {0.25, 0.5, 1} , the derivative of the BO aver-
age tax rate with respect to income. Denoting this derivative at income y by a(y, �) , I obtain that 
a(y, 0.25) > a(y, 0.5) > a(y, 1) for almost all y ∈ (0, 925653) . The finding follows because the BO aver-
age tax rate is an absolutely continuous function of income so that the increase in the average tax rate 
over [y1, y2] equals ∫ y2

y1
a(y, �)dy.

24  For � ∈ {0.25, 0.5, 1} , around 99.9 percent of the population choose an income below $925,653 when 
faced with the BO tax schedule.
25  One may ask: Are the BO tax schedules more or less progressive than utilitarian-optimal ones? In the 
appendix, I address this question (without reaching any firm conclusions).
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(w1,w2, t1, t2, t3) are such that (w1,w2, t1, t2, t3) = (w(p1),w(p2), t1, t2, t3) for 
some (p1, p2, t1, t2, t3) ∈ A.26 ,27

The discretisations in (d1) and (d2) are coarsenings of the discretisation in (d). Rela-
tive to (d), (d3) coarsens the grid for the ti’s, but allows for tax schedules with five 
pieces. The discretisation in (d4) is quite different in that the wi ’s and ti ’s are drawn 
randomly.

Findings 1–4 hold up well under (d1)–(d4).28 In particular, Finding 1 continues to 
hold across the board.

Table 1   BO UBI
� = 0.25 � = 0.5 � = 1

$7,708 $5,620 $3,823

Fig. 1   BO marginal tax rates. Although all lines should technically be perfectly flat, some of them are 
drawn as squiggles to distinguish the marginal tax rates for the different values of � . The marginal rate 
for � = 1 equals 0.7 for incomes up to $3,154 (this is barely visible in the top left corner of the figure) 
and jumps to 0.4 at income $925,653 (this is not shown in the figure)

26  The cases n = 1 and n = 2 are also somewhat covered under (d4) because w1 can be arbitrarily close to 
w2 , t1 can be arbitrarily close to t2 , and t2 can be arbitrarily close to t3.
27  Recall that the Borda count in (4) is approximated based on the rankings of representative types. 
The lowest such type is w(5) and the highest such type is w(99.995). Thus, all representative types have 
aligned incentives to exploit types in [w,w(5)) and (w(99.995),w] by applying a separate marginal rate 
to a narrow interval of types at the bottom and, respectively, top of [w,w] . The requirement in (d4) that 
w1 ≥ w(10) and w2 ≤ w(99.99) constrains such customised targeting of marginal rates at the bottom and 
top of [w,w].
28  The appendix contains the counterparts of Table 1 and Figs. 1 and 2 under (d1)–(d4).
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Finding 2 also continues to hold under (d1), (d2), and (d4). Under (d3), the 
BO marginal tax rate at the highest incomes is not strictly higher than the BO 
marginal tax rates at all lower incomes for � = 0.25 either. However, this is only 
because of high BO marginal rates over the narrow income intervals [0, 4505] and 
[25406, 32510].

Finding 3 continues to hold with the following exceptions. Under (d2), the BO 
average tax rate for � = 1 modestly declines from 0.355 to 0.27 between incomes 
$60,699 and $134,115. Under (d3), the BO average tax rate for � = 1 modestly 
declines from 0.343 to 0.249 between incomes $46,434 and $134,115. Given the 
flatness of the BO average tax rate over these income ranges under (d) and the 
coarseness of the grids for the ti ’s under (d2) and (d3), these exceptions seem minor.

Finally, the results under (d1)–(d4) are roughly in line with Finding 4 and 
Fig. 2 in the sense that, under each of these conditions, the BO average-rate sched-
ule rotates clockwise as � increases. Having said this, there are some instances in 
which the BO average-rate schedule over a particular income range is not flatter for 
a higher value of �.29

Fig. 2   BO average tax rates. The average rates for � = 0.25 and � = 0.5 monotonically increase towards 
0.7 and 0.5, respectively, as income increases beyond the values shown in the figure. The average rate for 
� = 1 monotonically declines from 0.313 to 0.3 between incomes $32,878 and $925,653 and monotoni-
cally increases towards 0.4 at higher incomes

29  In particular, under (d1), the BO average-rate schedules for � = 0.25 and � = 0.5 have virtually identi-
cal slopes between incomes $108,645 and $226,927. Under (d2) and (d3), the BO average-rate schedule 
is in fact (i) steeper for � = 0.5 than for � = 0.25 at incomes above $241,642 and (ii) slightly steeper for 
� = 1 than for � = 0.5 between incomes $134,115 and $241,642.
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6 � Comments on the WID data

A few comments regarding the WID data on pretax labour income are in order. First, 
this data is based on all individuals over age 20 and it counts income from public 
and private pensions as labour income. This is not ideal for the purpose of backing 
out productivities because the relationship between pension income and productiv-
ity is probably different from the relationship between a working-age individual’s 
labour income and productivity.

Second, income is split equally within couples, which forces us to treat spouses 
as having the same productivity. This seems preferable for the purposes of the cur-
rent paper because it ensures that the same preference over tax schedules is imputed 
to both spouses.

Third, although using cross-sectional data on the distribution of annual income 
to back out productivities is common (e.g., see Saez (2001)), this probably leads us 
to exaggerate the dispersion in lifetime productivities. The latter are probably more 
relevant if we are concerned with the design of a long-term tax system.30

7 � Concluding remarks

This paper is an attempt to apply the idea of democracy, as embodied in the Borda 
count, to the optimal taxation of labour income. Undoubtedly, the analysis has 
important limitations. Notably, it relies on (i) a simple, static model of labour sup-
ply with quasi-linear preferences and a constant elasticity of labour supply, (ii) finite 
discretisations of the set of feasible DMs, and (iii) imperfect data on pretax labour 
income. For these reasons, Findings 1–4 focused on qualitative aspects of the BO 
tax schedules and, even so, I view these findings as no more than indicative. More 
broadly, I hope the current paper will encourage research on BO public policies.

Appendix: Selfish preferences

The analysis has made the implicit assumption that each individual’s preference over 
DMs is selfish, i.e., that it’s determined solely by each DM’s implications for the 
individual’s own consumption-labour bundle. Although this is a nontrivial assump-
tion, I believe it provides a reasonable normative benchmark for two reasons.

First, Hvidberg et al. (2021) find a strong positive relationship between people’s 
tolerance towards inequality and their own position in the income distribution. Thus, 
selfish preferences may be a reasonable approximation.

30  Guvenen et  al. (2021) have recently provided data on the distribution of lifetime labour incomes. 
This data is also not ideal for the purposes of the current paper. Remarkably, in the WID data and the 
Guvenen et al. data, the distribution of income across the population is very similar. I elaborate on these 
points in the appendix.
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Second, even if people do care about others, it’s plausible that they consider the 
Borda count with selfish preferences as inputs to be procedurally fair, so that there 
is no need to bring in additional fairness considerations by feeding other-regarding 
preferences into the Borda count.

Appendix: Approximating B(Y, C)

I approximate B(Y, C) by:

where qk denotes the kth element of (0, 10,… , 90, 95, 99, 99.9, 99.99, 1) . This 
approximation effectively assumes that, for each 1 ≤ k ≤ 14 , the preferences of all 
types between the qkth and qk+1th percentiles coincide with the preferences of the 
median type between these percentiles. To see this, note that B(Y, C) can be written 
as 

∑14

k=1
∫ w(qk+1)

w(qk)
Δ(Y ,C,w)f (w)dw . Replacing Δ(Y ,C,w) in the latter expression by 

Δ(Y ,C,w(0.5qk + 0.5qk+1)) yields (5).

Appendix: Distribution of types

I assume that the actual labour-income tax schedule is a 30 percent flat tax. Given 
this tax schedule, type w’s optimal pretax labour income is y∗(w) = 0.7�w1+�.

I use data from WID on pretax labour income for individuals over the age of 20 
in the US in 2014.31 In particular, I obtain from WID the data presented in Table 2.

I augment this data in two ways.32 First, I assume that the lowest income equals 
$1.33 Second, WID does not report the income of the highest earner. It does report 
that the 99.999th income percentile equals $15,579,290 and the average income in 
the top 0.001 percent equals $32,134,644. I impute an income to the highest earner 
by assuming that this income and the 99.999th income percentile are symmetri-
cally situated around $32,134,644. That is, I assume that the highest earner has an 
income of $48,689,999. I make this assumption on simplicity grounds. Given that 
the top 0.001 of earners earned only 0.7 percent of all income, it is unlikely that this 
assumption is of much consequence.

(5)B̂(Y ,C) =

14∑
k=1

Δ(Y ,C,w(0.5qk + 0.5qk+1))
qk+1 − qk

100
,

31  WID defines pretax labour income as the sum of all pretax personal income flows accruing to the indi-
vidual owners of labor as a production factor, before taking into account the operation of the tax/transfer 
system, but after taking into account the operation of the pension system. The base unit is the individual 
(rather than the household) but resources are split equally within couples.
32  For brevity, in the rest of this section I will write “income” although in fact I mean “pretax labour 
income”
33  WID reports a negative 0th income percentile. (I believe this is largely due to the partial imputation 
of the losses of privately owned businesses to labour income.) However, this is not consistent with the 
assumption w > 0.
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Then, using y∗(⋅) and the augmented WID income data, I back out the various 
type percentiles (i.e., the 0th percentile, the 100th percentile, and all the percentiles 
listed in Table  2). E.g., given that the 5th income percentile equals 1264.5269, I 
infer that the 5th type percentile is w(5) = y∗−1(1264.5269) = 1264.5269

1

1+� ∕0.7
�

1+� , 
where y∗−1(⋅) denotes the inverse of y∗(⋅).

Finally, equipped with the various type percentiles, I specify the cumulative den-
sity function, F, of the distribution of types through linear interpolation. E.g., I 
assume that on [w(10), w(15)], F(w) = 0.1 +

0.15−0.1

w(15)−w(10)
(w − w(10)).

Appendix: BO vs. utilitarian‑optimal tax schedules

Are the BO tax schedules more or less progressive than utilitarian-optimal (UO) tax 
schedules? To address this question, I assume that the utilitarian planner solves

In choosing the objective function for the planner, I am following Saez (2001).34 
Note that, to aid comparability to the BO tax schedules, I require that the planner 
restrict attention to DMs in D.

The UO UBI equals $11,965, $7,305, and $3,975 for � = 0.25 , � = 0.5 , and 
� = 1 , respectively. Comparing these numbers to the ones in Table  1 reveals the 
following.

Finding 5  For � ∈ {0.25, 0.5, 1}, the BO UBI is lower than the UO UBI. The differ-
ence shrinks as � increases on {0.25, 0.5, 1}.

The top/middle/bottom panel in Fig. 3 shows the BO and UO marginal tax rates 
for � = 0.25/� = 0.5/� = 1 . The figure reveals the following.

Finding 6  For � ∈ {0.25, 0.5, 1}, at each level of income the BO marginal tax rate is 
weakly lower than the UO marginal tax rate.

Findings 5 and 6 suggest that low types fare better under the utilitarian criterion 
while high types fare better under the Borda count.

Unfortunately, I have low confidence in Findings 5 and 6 for the following reasons. 
First, in the numerical analysis based on condition (d1) instead of condition (d), the 
BO tax schedule for � = 0.5 has, relative to the UO tax schedule for � = 0.5 , a slightly 
higher UBI and weakly higher marginal tax rates at each level of income. Second, at 

max
(Y ,C)∈D∫

w

w

ln

(
C(w) −

�

1 + �

(
Y(w)

w

) 1+�

�

)
f (w)dw.

34  As is typical in the utilitarian approach, I (and Saez) offer no justification for the choice of a particular 
utility representation of each individual’s preferences.



345

1 3

Borda‑optimal taxation of labour income﻿	

Table 2   Various percentiles of 
pretax labour income

Percentile Pretax labour income

5 1264.5269
10 4906.4861
15 7233.2855
20 9610.6254
25 12139.6792
30 14567.6519
35 17096.7977
40 20030.5452
45 22964.2909
50 26403.9035
55 30652.7167
60 35407.4916
65 40465.6912
70 46434.3576
75 52807.7141
80 60698.4899
85 71017.3259
90 85989.5812
91 90238.4864
92 95195.5111
93 101063.0963
94 108245.7491
95 117350.5085
96 129490.1877
97 148711.4384
98 182095.5655
99 261003.6644
99.1 277189.9954
99.2 295399.505
99.3 315632.3865
99.4 342946.6831
99.5 377342.5145
99.6 426912.9817
99.7 495704.6629
99.8 621148.3276
99.9 925652.6564
99.91 987362.7844
99.92 1062224.324
99.93 1153272.102
99.94 1264552.771
99.95 1416299.129
99.96 1638860.375
99.97 1962585.89
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an earlier stage of the project I was using different finite discretisations of the set of 
feasible DMs.35 Findings 5 and 6 were not robust to these different approaches.

Data on Lifetime Incomes in Guvenen et al. (2021)

Guvenen et al. (2021) have recently provided data on the distribution of pretax life-
time labour incomes. This data is also less than ideal for the purposes of the current 
paper. For example, it does not include the distribution of fringe benefits, income is 
computed at the individual level without any splitting within couples, and no infor-
mation is provided on the distribution of income within the top 1 percent of earners.

Remarkably, the methodological differences in constructing the WID data and the 
Guvenen et al. data seem to largely offset so that the distribution (in terms of income 
shares) of annual pretax labour income in 2014 according to WID is very similar 
to the distribution (in terms of income shares) of lifetime pretax labour income 
(between the ages of 25 and 55) for the cohort that turned 25 in 1983 according 
to Guvenen et al.36 To see this, consider Table 3. It juxtaposes the share of income 
earned by individuals falling between different income percentiles according to data 
from each of these two sources. In particular, the first column refers to the WID data 

Table 2   (continued) Percentile Pretax labour income

99.98 2508872.558
99.99 3864473.291
99.991 4117383.735
99.992 4420876.636
99.993 4805300.271
99.994 5260539.622
99.995 5887757.761
99.996 6717304.348
99.997 7981856.566
99.998 10318750.34
99.999 15579289.96

35  In particular, I was either assuming that Y(w) is continuous and piecewise linear in w or I was assum-
ing that Y(w)/w is continuous and piecewise linear in w. These approaches involved various ad hoc 
assumptions and were sensitive to changes in these assumptions. Thus, I abanodoned them when I came 
up with the finite discretisation of the set of feasible DMs based on conditions (c) and (d).
36  This cohort is the most recent cohort for which data for the whole period between the ages of 25 and 
55 is available.
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Fig. 3   BO and UO marginal tax rates. Although all lines should technically be perfectly flat, the BO mar-
ginal rates are drawn as squiggles to distinguish them from the UO ones. For � = 1 , both the BO and the 
UO marginal rate jumps to 0.4 at income $925,653 (this is not shown in the figure)
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and the second column is computed as an average from the last lines of Tables E.1 
and E.2. in Guvenen et al.37

Appendix: Proofs

A consumption schedule is a function Z ∶ [0,∞) → ℝ . Z(y) is the after-tax income 
of a person earning income y.

Type w’s problem given a consumption schedule Z is:

Z implements a DM (Y,  C) if, for all w ∈ [w,w] , Y(w) solves problem (6) and 
C(w) = Z(Y(w)).

For future use, let Y(w) denote the set of solutions to problem (6). Note that, 
by the maximum theorem, Y ∶ [w,w] ⇉ [0,∞) is an upper hemicontinuous corre-
spondence with nonempty and compact values if Z is continuous and piecewise lin-
ear with finitely many pieces.38

Because it is more convenient to work with consumption schedules than with tax 
schedules, I will prove, instead of Proposition 1, the following claim which restates 
Proposition 1 in terms of a consumption schedule.

(6)max
y≥0 Z(y) −

�

1 + �

( y

w

) 1+�

�

.

Table 3   Shares of pretax labour 
income for different percentile 
ranges

Percentile range WID Guvenen et al.

0–20 0.021 0.026
20–40 0.068 0.065
40–60 0.125 0.125
60–80 0.217 0.220
80–90 0.166 0.173
90–95 0.115 0.122
95–97 0.061 0.065
97–99 0.088 0.091
99–100 0.140 0.116

37  If I understand correctly, these two tables display the same information based on different samples 
from the same data. Also, these tables (like most of the analysis in that paper) restrict attention to indi-
viduals who have had sufficient attachment to the labour market and have been employed in certain sec-
tors. However, comparing data on the distribution of income for this narrower subset of the population 
(see the last six lines in Table C.12 in Guvenen et al.) and for the whole population (see Table F.2 in 
Guvenen et al.) reveals that the distribution of earnings in the narrower subset and in the whole popula-
tion are quite similar.
38  To apply the maximum theorem, we need the constraint set in problem (6) to be compact. Let y 
denote an income level such that (i) it is strictly higher than the income level where the last kink in Z 
occurs and (ii) type w ’s indifference curves in income-consumption space at income y are steeper than 
the last piece of Z. Because no type would choose an income level above y , the constraint y ≥ 0 in prob-
lem (6) can be replaced by the constraint 0 ≤ y ≤ y.
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Claim 1  Suppose (Y, C) satisfies (a) and (c). Then, there exists a unique consump-
tion schedule, Z, such that the following hold. 

(i)	Z implements (Y, C).
(ii)	Z is continuous and piecewise linear with n pieces.
(iii)	For each i ∈ {1,… , n} , 1 − ti is the slope of the ith piece of Z.
(iv)	If n ≥ 2, then, for each i ∈ {2,… , n} such that ti−1 > ti , wi−1 is the highest type 

that chooses a point on the (i − 1)st piece of Z.
(v)	If n ≥ 2, then, for each i ∈ {2,… , n} such that ti−1 < ti , wi−1 is the lowest type 

that chooses at the kink between the (i − 1)st and ith pieces of Z.39

Proof of Claim 1

Suppose (Y, C) satisfies conditions (a) and (c). Observe the following. To show that 
a consumption schedule, Z, implements (Y,  C), it suffices to show that (i) for all 
w ∈ [w,w] , Y(w) solves problem (6) and (ii) Z(Y(w)) = C(w).40

Next, I prove by induction the existence of a consumption schedule satisfying (i)-
(v) in Claim 1. After that, I will turn to proving uniqueness.

Case n = 1 ∶

Define Z by

It is straightforward to show that, for all w ∈ [w,w] , Y(w) = (1 − t1)
�w1+� satisfies 

the first-order condition for problem (6).41 Also, Z(Y(w)) = C(w) holds.
Case n = k − 1 (where k ≥ 2):
Assume that Claim 1 holds for this case.
Case n = k (where k ≥ 2):
Define Y−1 by

Z(y) = C(w) − (1 − t1)Y(w) + (1 − t1)y.

39  I haven’t required that Z(y) ≥ 0 for all y ≥ 0 . Indeed, the unique Z in the claim may be such that 
Z(y) < 0 for some 0 ≤ y < Y(w) . (Analogously, I haven’t required that T(y) ≤ y for all y ≥ 0 , and the 
unique T in Proposition 1 may be such that T(y) > y for some 0 ≤ y < Y(w) .) This isn’t a problem in 
practice given that, in the calibrated distribution of types, w is very close to zero so that, even for very 
low values of t1 , Y(w) is very close to zero.
40  The fact that types’ optimal consumption-income choices under Z must be incentive compatible 
(because each type could have mimicked any other type’s consumption-income choice), (i), and (ii) 
imply that, for all w ∈ [w,w],

Z(Y(w)) =

Z(Y(w)) −
𝜎

1 + 𝜎

(
Y(w)

w

) 1+𝜎

𝜎

+
𝜎

1 + 𝜎

(
Y(w)

w

) 1+𝜎

𝜎

+ ∫
w

w

(
Y(w̃)

w̃

) 1+𝜎

𝜎 1

w̃
dw̃ =

C(w) −
𝜎

1 + 𝜎

(
Y(w)

w

) 1+𝜎

𝜎

+
𝜎

1 + 𝜎

(
Y(w)

w

) 1+𝜎

𝜎

+ ∫
w

w

(
Y(w̃)

w̃

) 1+𝜎

𝜎 1

w̃
dw̃ =

C(w).
41  Given the concavity in y of the maximand in problem (6), the first-order condition is sufficient.
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where (i) i ∈ {1,… , k − 1} and (ii) w̃0 = w , w̃i = wi for all i ≤ k − 2 and w̃k−1 = w . 
Observe that Y−1 is of the form (c) with n = k − 1.42 Also, observe that Y−1 coincides 
with Y on [w,wk−1] and Y−1(w) = (1 − tk−1)

�w1+� on (wk−1,w].43

Also, let C−1 ∶ [w,w] → [0,∞) be such that C−1(w) = C(w) and (Y−1,C−1) satis-
fies incentive compatibility as in (1).

By the assumption in the “ n = k − 1 ” case, there exists a consumption schedule, 
Z−1 , such that the following hold. 

(i)	 Z−1 implements (Y−1,C−1).
(ii)	 Z−1 is continuous and piecewise linear with k − 1 pieces.
(iii)	 For each i ∈ {1,… , k − 1} , 1 − ti is the slope of the ith piece of Z−1.
(iv)	 If k − 1 ≥ 2 , then, for each i ∈ {2,… , k − 1} such that ti−1 > ti , wi−1 is the highest 

type that chooses a point on the (i − 1)st piece of Z−1.
(v)	 If k − 1 ≥ 2 , then, for each i ∈ {2,… , k − 1} such that ti−1 < ti , wi−1 is the lowest 

type that chooses at the kink between the (i − 1)st and ith pieces of Z−1.

Define Z by

The value of K will depend on whether tk−1 > tk or tk−1 < tk . Given that in either 
case K ≥ Y(w) will hold, we will have Z(Y(w)) = Z−1(Y(w)) = C−1(w) = C(w).

Subcase tk−1 > tk ∶

Y−1(w) =

⎧
⎪⎪⎨⎪⎪⎩

(1 − t1)
𝜎w1+𝜎 if w = w̃0

(1 − ti)
𝜎w1+𝜎 if w̃i−1 < w ≤ w̃i, ti−1 > ti

(1 − ti−1)
𝜎w̃1+𝜎

i−1
if w̃i−1 < w ≤ �

1−ti−1

1−ti

� 𝜎

1+𝜎
w̃i−1, ti−1 < ti

(1 − ti)
𝜎w1+𝜎 if

�
1−ti−1

1−ti

� 𝜎

1+𝜎
w̃i−1 < w ≤ w̃i, ti−1 < ti

,

Z(y) =

{
Z−1(y) if 0 ≤ y ≤ K

Z−1(K) + (1 − tk)(y − K) if y > K
.

42  For all i ∈ {1,… , k − 1} , “ 
(

1−ti−1

1−ti

) �

1+�
wi−1 ≤ wi whenever ti−1 < ti ” implies “ 

(
1−ti−1

1−ti

) 𝜎

1+𝜎
w̃i−1 ≤ w̃i 

whenever ti−1 < ti ”. For all i ∈ {1,… , k − 2} , “ 
(

1−ti−1

1−ti

) 𝜎

1+𝜎
wi−1 < wi whenever ti−1 < ti < ti+1 ” implies 

“ 
(

1−ti−1

1−ti

) 𝜎

1+𝜎
w̃i−1 < w̃i whenever ti−1 < ti < ti+1”.

43  It should be clear that Y−1 coincides with Y on [w,wk−2] . To see that the rest of the statement is true, 
note that, for w ∈ (wk−2,w] , we have

Y−1(w) =

⎧⎪⎪⎨⎪⎪⎩

(1 − tk−1)
𝜎w1+𝜎 if wk−2 < w ≤ wk, tk−2 > tk−1

(1 − tk−2)
𝜎w1+𝜎

k−2
if wk−2 < w ≤ �

1−tk−2

1−tk−1

� 𝜎

1+𝜎
wk−2, tk−2 < tk−1

(1 − tk−1)
𝜎w1+𝜎 if

�
1−tk−2

1−tk−1

� 𝜎

1+𝜎
wk−2 < w ≤ wk−1, tk−2 < tk−1

(1 − tk−1)
𝜎w1+𝜎 if wk−1 < w ≤ wk, tk−2 < tk−1

.
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Define K as follows. Referring to Fig. 4, consider the (k − 1)st piece of Z−1 . Note 
that income level Y(wk−1) lies below (the graph of) this piece.44 Take the indiffer-
ence curve of type wk−1 through the point (Y(wk−1), Z−1(Y(wk−1))).45 Compute K as 
the income level at which the (k − 1)st piece of Z−1 intersects a straight line that has 
slope 1 − tk and is tangent to the indifference curve.46 Let ŷ denote the income level 
where the line with slope 1 − tk is tangent to the indifference curve.

Because income Y(wk−1) is optimal for type wk−1 given Z−1 , it is obvious from the way 
Z was constructed that incomes Y(wk−1) and ŷ are optimal for type wk−1 given Z. Thus, 
when faced with Z, all types below wk−1 find it optimal to choose incomes weakly below 
Y(wk−1) and all types above wk−1 find it optimal to choose incomes weakly above ŷ.47 
Because (i) Y(w) ≤ Y(wk−1) is optimal for all w ∈ [w,wk−1] given Z−1 and (ii) Z and Z−1 
coincide over [0, Y(wk−1)] , it must be that Y(w) is optimal for all w ∈ [w,wk−1] given Z. 
For w ∈ (wk−1,w] , it is straightforward to show that the optimal income above ŷ given Z 
is Y(w) = (1 − tk)

�w1+� . Thus, Z implements (Y, C). Moreover, it should be clear that Z is 
continuous and piecewise linear with k pieces and satisfies (i)–(v) in Claim 1 with n = k.

Subcase tk−1 < tk ∶

Set K = Y(wk−1) . Note that K is the location of the kink between the (k − 1)st 
and kth pieces of Z. This is clear when k = 2 . Now assume k ≥ 3 . Given that 
wk−1 > wk−2 , Y is nondecreasing, and Y is strictly increasing on (wk−1 − �,wk−1] for 
some 𝛿 > 0,48 it must be that Y(wk−1) is strictly higher than the income level at which 
the kink between the (k − 2)nd and (k − 1)st pieces of Z−1 occurs.

Given that income Y(wk−1) is optimal for type wk−1 given Z−1 , it must be optimal 
given Z.49 Thus, when faced with Z, all types below wk−1 find it optimal to choose 
incomes weakly below Y(wk−1) and all types above wk−1 find it optimal to choose 
incomes weakly above Y(wk−1).50 Because (i) Y(w) ≤ Y(wk−1) is optimal for all 
w ∈ [w,wk−1] given Z−1 and (ii) Z and Z−1 coincide over [0, Y(wk−1)] , it must be that 
Y(w) is optimal for all w ∈ [w,wk−1] given Z.51 For w ∈ (wk−1,w] , it is straightfor-
ward to show that the optimal income above K given Z is

44  This is clear when k = 2 . Now assume k ≥ 3 . Given that wk−1 > wk−2 and Y is nondecreasing, it must 
be that Y(wk−1) is weakly higher than the income level at which the kink between the (k − 2)nd and 
(k − 1)st pieces of Z−1 occurs. (Figure 4 is drawn assuming Y(wk−1) is strictly to the right of that kink, but 
nothing in the logic of what follows relies on that.)
45  It is straightforward to verify that this indifference curve has slope 1 − tk−1 at that point.
46  Straightforward computations yield K =

(1−tk )
1+�−(1−tk−1)

1+�

(1+�)(tk−1−tk )
w1+�
k−1

.

47  This follows because y − �

1+�

(
y

w

) 1+�

�  satisfies the single-crossing property.

48  The only way for Y to be flat immediately to the left of wk−1 is if 
(

1−tk−2

1−tk−1

) �

1+�
wk−2 = wk−1 and 

tk−2 < tk−1 . However, tk−2 < tk−1 < tk implies 
(

1−tk−2

1−tk−1

) 𝜎

1+𝜎
wk−2 < wk−1.

49  This follows because (Y(wk−1),Z(Y(wk−1))) is available both given Z and given Z−1 while the budget 
set defined by Z in income-consumption space is a subset of the one defined by Z−1.

50  This follows because y − �

1+�

(
y

w

) 1+�

�  satisfies the single-crossing property.
51  Note that, because Y is strictly increasing on (wk−1 − �,wk−1] for some 𝛿 > 0 , wk−1 is the lowest type to 
choose at the kink in Z at income K = Y(wk−1).
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Thus, Z implements (Y, C). Moreover, it should be clear that Z is continuous and 
piecewise linear with k pieces and satisfies (i)-(v) in Claim 1 with n = k.

It remains to show uniqueness. Suppose Z′ and Z′′ are consumption schedules 
such that (i)–(v) in Claim 1 hold (when applied to Z′ and Z′′ , respectively).

Let us make the following observations. First, for each i ∈ {1,… , n} , the ith piece 
of Z′ has the same slope as the ith piece of Z′′ (by (iii) in Claim 1). Second, we must 
have Z�(Y(w)) = Z��(Y(w)) = C(w) (by (i) in Claim 1). Thus, if n = 1 , we must have 
Z� = Z��.

From here on, suppose n ≥ 2 . Assume Z′ ≠ Z′′ . The two observations in the pre-
vious paragraph and Z′ ≠ Z′′ imply that, for some i ∈ {2,… , n} , the kink between 
the (i − 1)st and ith pieces of Z′ occurs at a different income level than the kink 
between the (i − 1)st and ith pieces of Z′′ . Let k be the lowest i for which this occurs. 
We need to consider two cases, tk−1 > tk and tk−1 < tk.

First, suppose tk−1 > tk . Then, wk−1 must be the highest type that chooses 
a point on the (k − 1)st piece of both Z′ and Z′′ (by (iv) in Claim 1). Moreo-
ver, each type w ∈ (wk−1,wk] chooses on the kth piece of Z′ and Z′′.52 By the fact 
that Y is upper hemicontinuous with nonempty and compact values, we have 
limw̃↓wk−1

Y(w̃) ∈ Y(wk−1) . Thus, it must also be optimal for type wk−1 to choose on 
the kth piece of Z′ and Z′′ . That is, type wk−1 is indifferent between choosing on the 
(k − 1)st and on the kth piece of Z′ and is also indifferent between choosing on the 
(k − 1)st and on the kth piece of Z′′ . But then, for Z′ and Z′′ , the kink between the 
(k − 1)st and kth pieces must occur at the same income level. We have reached a 
contradiction.

Next suppose, tk−1 < tk . Then, wk−1 chooses at the kink between the (k − 1)st and 
kth pieces of both Z′ and Z′′ (by (v) in Claim 1). Hence, for both Z′ and Z′′ , this kink 
must occur at the same income level, namely Y(wk−1) . We have again reached a con-
tradiction. 	�  ◻

Proof of Proposition 2

Suppose that (i) (Y, C) is implemented by some continuous, piecewise linear con-
sumption schedule, Z, with N pieces and (ii) if w = w or w is a jump point of Y, Y is 
strictly increasing on (w,w + �) for some 𝛿 > 0.53 Note that types’ optimal consump-
tion-income choices under Z must be incentive compatible (because each type could 
have mimicked any other type’s consumption-income choice), so that (Y, C) must 

Y(w) =

⎧
⎪⎨⎪⎩

(1 − tk−1)
𝜎w1+𝜎

k−1
if wk−1 < w ≤ �

1−tk−1

1−tk

� 𝜎

1+𝜎
wk−1

(1 − tk)
𝜎w1+𝜎 if

�
1−tk−1

1−tk

� 𝜎

1+𝜎
wk−1 < w ≤ wk

.

52  This follows because Y is nondecreasing (so that Y(wk−1) ≤ Y(w) ≤ Y(wk) for all w ∈ (wk−1,wk] ) and 
wk chooses on the kth piece of Z′ and Z′′ (by (iv) and (v) in Claim 1 applied to i = k + 1 if k < n and by 
the fact that Y is nondecreasing if k = n).
53  Clearly, (i) is equivalent to the assumption that (Y, C) is implemented by some continuous, piecewise 
linear tax schedule with N pieces.
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satisfy (a). It remains to show that Y satisfies (c) almost everywhere. Let us begin 
with a few lemmas.

Lemma 1  If Y equals some constant y on (w�,w��), then Z has a kink at y.

Proof  Assume Z has no kink at y and take wa and wb such that w′
< wa < wb < w′′ . 

Given that Z must be linear in some neighbourhood of y, it must be that, for each 
type wa and wb , its indifference curve in income-consumption space is tangent to Z 
at income level y.54 This is impossible because two types’ indifference curves cannot 
have the same slope at the same income level. 	�  ◻

Lemma 2  If w is a jump point of Y, then Z has a kink on (limw̃↑wY(w̃), limw̃↓wY(w̃)).55

Proof  Assume that Z exhibits no kinks on (limw̃↑wY(w̃), limw̃↓wY(w̃)) . Then, given 
the strict convexity of type w’s indifference curves in income-consumption space, 
it is impossible for both income limw̃↑wY(w̃) and income limw̃↓wY(w̃) to be optimal 
for type w. On the other hand, by the fact that Y is upper hemicontinuous with non-
empty and compact values, limw̃↑wY(w̃) ∈ Y(w) and limw̃↓wY(w̃) ∈ Y(w) . We have 
reached a contradiction. 	�  ◻

Lemma 3  Suppose Y is continuous and strictly increasing on (w�,w��). Then, Z is lin-
ear with strictly positive slope on (limw̃↓w� Y(w̃), limw̃↑w�� Y(w̃)). Moreover, denoting 
this slope by 1 − t, we have Y(w) = (1 − t)�w1+� on (w�,w��).

Fig. 4   Determination of K, the income level at which the kink between the (k − 1)st and kth pieces of Z 
occurs for the case t

k−1 > t
k

54  Because Y is strictly increasing near w , we must have y > 0 . Thus, Y(wa) and Y(wb) aren’t corner solu-
tions of problem (6) and the tangency condition must hold.
55  The limits exist because Y is nondecreasing.
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Proof  Suppose Z has a kink at y ∈ (limw̃↓w� Y(w̃), limw̃↑w�� Y(w̃)) . Let w ∈ (w�,w��) be 
such that Y(w) = y . Let z− and z+ denote the slopes of Z just to the left and just to the 
right, respectively, of y.

First suppose z− > z+ . In that case, there must exist 𝛿 > 0 such that, for all 
0 < 𝜖 < 𝛿 , type (w − �) ’s indifference curve has slope z− at income Y(w − �) and 
type (w + �) ’s indifference curve has slope z+ at income Y(w − �),56 i.e., 
Y(w−𝜖)1∕𝜎

(w−𝜖)1+1∕𝜎
= z− < z+ =

Y(w+𝜖)1∕𝜎

(w+𝜖)1+1∕𝜎
 . However, taking the limit of the left-most and right-

most terms in the last expression as � ↓ 0 yields Y(w)1∕𝜎

w1+1∕𝜎
= z− < z+ =

Y(w)1∕𝜎

w1+1∕𝜎
 , a 

contradiction.
Next, suppose z− < z+ . Then, given the smoothness of indifference curves in 

income-consumption space, either the piece of Z just to the left of y or the piece of 
Z just to the right of y would cut into the upper-contour set of type w’s indifference 
curve passing through (y, Z(y)). This contradicts Y(w) = y being optimal for type w.

Now suppose 1 − t ≤ 0 . Then, for types in (w�,w��) earning more does not increase 
consumption, so that Y(w) must be flat on (w�,w��) , a contradiction.

Finally, Y(w) = (1 − t)�w1+� on (w�,w��) follows immediately from the require-
ment that the indifference curve of type w ∈ (w�,w��) in income-consumption space 
be tangent to the piece of Z over (limw̃↓w� Y(w̃), limw̃↑w�� Y(w̃)) . 	�  ◻

The plan for the rest of the proof is to define w0,w1,… ,wn , define t0, t1,… , tn , 
show that these wi ’s and ti ’s satisfy the requirements in condition (c), and show that 
Y must be of the form in expression (3) on each (wi−1,wi).

Let us start by defining w0,w1,… ,wn recursively as follows. Let w0 = w and,  
given wi−1 < w (where i ≥ 1 ), define wi as follows. Let w

i,1 = min{w ∈ [w,w]|w > w
i−1 and

Y(w − 𝜖) < Y(w + 𝜖) for all 𝜖 > 0 and Y is constant on (w,w + 𝛿) for some 𝛿 > 0} 
and wi,2 = min{w ∈ [w,w]|w > wi−1 and w is a jump point of Y} , where I adopt the 
convention that the minimum of the empty set equals ∞.57 Let wi = min{wi,1,wi,2,w} . 
That is, wi is the lowest value of w ∈ [w,w] strictly to the right of wi−1 where either a 
flat segment of Y begins or Y jumps. If no such value exists, wi = w.

The wi ’s thus constructed satisfy the following requirements.

Lemma 4  w0 = w , wn = w for some n ≤ N, and wi−1 < wi for all i ∈ {1,… , n}.

Proof  The only nonobvious statement is that wn = w for some n ≤ N . Let us prove 
that.

Suppose N = 1 so that Z has a single piece. Then, Y cannot have flat segments or 
jumps (by Lemmas 1 and 2) so that w1,1 = w1,2 = ∞ and w1 = w.

56  Because Y is strictly increasing near w , Y(w − �) and Y(w + �) aren’t corner solutions of problem (6) 
and the tangency condition must hold.
57  Given Lemma 1, the fact that Y is nondecreasing, and the fact that Z has at most N − 1 kinks, there 
must be at most finitely many intervals on which Y is constant. Thus, the first minimum exists. Given 
Lemma 2, the fact that Y is nondecreasing, and the fact that Z has at most N − 1 kinks, it must be that Y 
has finitely many (in fact, at most N − 1 ) jump points. Thus, the second minimum also exists.
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58  By requirement (ii) in Proposition 2, if wi is where a flat segment of Y begins, wi cannot be a jump 
point. Hence, limw̃↓wi

Y(w̃) = Y(wi) , but we don’t need to make use of this in the proof of Lemma 4.
59  That is, on (wi−1,wi) , once Y starts increasing, it cannot stop.

Next, suppose N ≥ 2 and consider some i such that 1 ≤ i < N . If wi = w , then 
n = i < N and we are done. Assume wi < w . If wi is a jump point of Y, Z has a 
kink in (limw̃↑wi

Y(w̃), limw̃↓wi
Y(w̃)) (by Lemma 2). If wi is where a flat segment of Y 

begins, Z has a kink at limw̃↓wi
Y(w̃) (by Lemma 1).58 Thus, wi “eats up” at least one 

kink of Z. Moreover, this has to be a new kink, one not “eaten up” by wj for some 
1 ≤ j < i . To see this last point, suppose j is such that 1 ≤ j < i , and consider the fol-
lowing exhaustive cases. 

1.	 If wi is a jump point (i.e.,  wi = wi,2 ),  Z  must have a kink in 
(limw̃↑wi

Y(w̃), limw̃↓wi
Y(w̃)) as well as in (limw̃↑wj

Y(w̃), limw̃↓wj
Y(w̃))∪{lim

w̃↓w
j
Y(w̃)} . 

Given that wj < wi and Y is nondecreasing, these sets are disjoint so the two kinks 
must be distinct.

2.	 The case in which wj is a jump point is analogous to the previous case.
3.	 If both wj and wi are where a flat segment of Y begins (i.e., wj = wj,1 and wi = wi,1 ), 

Z must have a kink at limw̃↓wj
Y(w̃) as well as at limw̃↓wi

Y(w̃) . Given that wj < wi 
and Y is nondecreasing, the flat segment of Y starting at wi must lie higher than 
the flat segment of Y starting at wj . Thus, we have limw̃↓wj

Y(w̃) < limw̃↓wi
Y(w̃) so 

that the two kinks must be distinct.

Thus, for some n ≤ N , w1,… ,wn−1 must definitely have “eaten up” all N − 1 kinks 
of Z. Then, by Lemmas 1 and 2, we must have wn,1 = wn,2 = ∞ and, hence, wn = w . 	
� ◻

Before we can define the ti’s, we need the following lemma.

Lemma 5  For all i ∈ {1,… , n}, the following hold. 

(1)	 Y is continuous on (wi−1,wi).
(2)	 For all w�,w��,w��� ∈ (wi−1,wi) such that w′

< w′′
< w′′′ , Y(w�) < Y(w��) implies 

Y(w��) < Y(w���).59

(3)	 Y is nonconstant in any neighbourhood of wi−1.

Proof  The lemma follows directly from the definition of w0,w1,… ,wn and the 
requirement in Proposition 2 that Y be strictly increasing near w . 	�  ◻

Let us proceed by defining t0, t1,… , tn as follows. Let t0 = 1 . For i ∈ {1,… , n} , 
consider the following exhaustive cases: (i) Y is nonconstant on (wi−1,wi) and (ii) 
Y(w) = ŷ for all w ∈ (wi−1,wi).60 In case (i), we know from Lemma 3 and part 2) of 
Lemma 5 that Z is linear with strictly positive slope on (limw̃↓ŵ Y(w̃), limw̃↑wi

Y(w̃)) 

60  ŷ > 0 given that Y is strictly increasing near w.
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for some ŵ such that wi−1 ≤ ŵ < wi . Set ti to be such that 1 − ti equals this slope. In 
case (ii), define ti by the equation (1 − ti)

𝜎w1+𝜎
i

= ŷ.
The next lemma, taken in conjunction with Lemma 4, demonstrates that the wi ’s 

and ti ’s fulfil the requirements in condition (c).

Lemma 6 

(1)	 For all i ∈ {1,… , n} , ti < 1.
(2)	 For all i ∈ {1,… , n} , ti−1 ≠ ti.

(3)	 For all i ∈ {1,… , n} such that ti−1 < ti, we have 
(

1−ti−1

1−ti

) �

1+�
wi−1 ≤ wi.

(4)	 For all i ∈ {1,… , n − 1} such that ti−1 < ti < ti+1, we have 
(

1−ti−1

1−ti

) 𝜎

1+𝜎
wi−1 < wi.

Proof  Statement 1) is obvious. Statements 2)-4) are obvious for i = 1 . Let us take an 
arbitrary i ∈ {2,… , n} and let us consider the following exhaustive cases. 

1.	 Y is strictly increasing on (wi−1,wi).
	   In this case, wi−1 must be a jump point of Y (because it cannot be a point where 

a flat segment of Y starts). Also, by the way ti was defined and Lemma 3, we have 
Y(w) = (1 − ti)

�w1+� on (wi−1,wi) . If Y(w) = ŷ on (wi−2,wi−1) , the following must 
hold: for some 𝜖 > 0,61 ŷ + 𝜖 = (1 − ti−1)

𝜎w1+𝜎
i−1

+ 𝜖 < (1 − ti)
𝜎w1+𝜎 for w arbitrar-

ily close to wi−1 . If Y is nonconstant on (wi−2,wi−1) , the following must hold: for 
some 𝜖 > 0,62 (1 − ti−1)

𝜎w1+𝜎
a

+ 𝜖 < (1 − ti)
𝜎w1+𝜎

b
 for wa and wb arbitrarily close 

to wi−1 . Thus, both when Y is constant on (wi−2,wi−1) and when Y is nonconstant 
on (wi−2,wi−1) , we must have ti−1 > ti.

2.	 Y(w) = ŷ on (wi−1,wi).
	   In this case, wi−1 cannot be a jump point of Y (by condition (ii) in Proposition 2). 

Hence, wi−1 must be where a flat segment of Y begins so that Y must be strictly increas-
ing just to the left of wi−1 . Thus, we must have (1 − ti−1)

𝜎w1+𝜎
i−1

= ŷ.63 Also, from the 

definition of ti , (1 − ti)
𝜎w1+𝜎

i
= ŷ . Thus, ti−1 < ti and 

(
1−ti−1

1−ti

) �

1+�
wi−1 = wi.

	   Moreover, if i ≤ n − 1 , we must have ti > ti+1 . To see this, note that wi must be a 
jump point of Y and, hence, Y must be strictly increasing just to the right of wi (by 
condition (ii) in Proposition 2). Hence, Y(w) = (1 − ti+1)

�w1+� on (wi,wi+1) and the 
following must hold: for some 𝜖 > 0,64 ŷ + 𝜖 = (1 − ti)

𝜎w1+𝜎
i

+ 𝜖 < (1 − ti+1)
𝜎w1+𝜎 

for w arbitrarily close to wi . Thus, we must have ti > ti+1.
3.	 For some ŵ such that wi−1 < ŵ < wi , Y(w) = ŷ on (wi−1, ŵ] and Y is strictly 

increasing on (ŵ,wi).

61  We need � to be smaller than the size of the jump in Y at wi−1.
62  We need � to be smaller than the size of the jump in Y at wi−1.
63  By the definition of ti−1 and Lemma 3, the left-hand side is the expression for Y just to the left of wi−1 . 
The equality holds because Y is continuous at wi−1.
64  We need � to be smaller than the size of the jump in Y at wi.
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	   In this case, wi−1 cannot be a jump point of Y (by condition (ii) in Proposition 
2). Hence, wi−1 must be wherea flat segment of Y begins so that Y must be strictly 
increasing just to the left of wi−1 . Thus, we must have (1 − ti−1)

𝜎w1+𝜎
i−1

= ŷ.
	   Further, by the definition of ti and Lemma 3, Y(w) = (1 − ti)

𝜎w1+𝜎
> ŷ for all 

w ∈ (ŵ,wi) . Thus, 
(

1−ti−1

1−ti

) 𝜎

1+𝜎
wi−1 < wi . Also, by the continuity of Y on (wi−1,wi),65  

we must  have (1 − ti−1)
𝜎w1+𝜎

i−1
= (1 − ti)

𝜎ŵ1+𝜎  so  that  ti−1 < ti  and 

ŵ =
(

1−ti−1

1−ti

) 𝜎

1+𝜎
wi−1.

	�  ◻

Let us now turn to the functional form of Y on (wi−1,wi) for each i ∈ {1,… , n} . 
First, consider i = 1 . Y must be strictly increasing on (w,w1) so that, by the definition 
of t1 and Lemma 3, Y(w) = (1 − t1)

�w1+� . Also, t0 > t1 . Thus, Y has the functional 
form (3) on (w,w1).

Next consider i ∈ {2,… , n} . In the proof of Lemma 6, we have that

–	 case 1 implies ti−1 > ti,

–	 case 2 implies ti−1 < ti and 
(

1−ti−1

1−ti

) �

1+�
wi−1 = wi , and

–	 case 3 implies ti−1 < ti and 
(

1−ti−1

1−ti

) 𝜎

1+𝜎
wi−1 < wi.

Thus, if ti−1 > ti , case 1 in that proof applies and we must have Y(w) = (1 − ti)
�w1+� 

on (wi−1,wi) . If ti−1 < ti and 
(

1−ti−1

1−ti

) �

1+�
wi−1 = wi , case 2 in that proof applies and 

Y(w) = (1 − ti−1)
�w1+�

i−1
 on (wi−1,wi) . If ti−1 < ti and 

(
1−ti−1

1−ti

) 𝜎

1+𝜎
wi−1 < wi , case 3 in 

that proof applies and

on (wi−1,wi).
The bottom line is that, for i ∈ {1,… , n} , the functional form of Y on (wi−1,wi) 

can be written as:

Y(w) =

⎧⎪⎨⎪⎩

(1 − ti−1)
𝜎w1+𝜎

i−1
if wi−1 < w ≤ �

1−ti−1

1−ti

� 𝜎

1+𝜎
wi−1

(1 − ti)
𝜎w1+𝜎 if

�
1−ti−1

1−ti

� 𝜎

1+𝜎
wi−1 < w ≤ wi

65  See part 1) of Lemma 5.
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The penultimate equality holds because the expression after that equality just adds a 
redundant case. The last equality holds because the expression after that equality 
just combines the middle two cases as well as the last two cases from the previous 

expression. Finally, note that, given part 3) in Lemma 6, 
(

1−ti−1

1−ti

) �

1+�
wi−1 ≤ wi is 

guaranteed to hold if ti−1 < ti and can hence be dropped from the last expression 
above. 	�  ◻

Appendix: Results based on Conditions (d1)–(d4)

See Table 4 and Figs. 5, 6, 7, 8, 9, 10, 11, 12.

Y(w) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1 − t1)
𝜎w1+𝜎 if w = w0

(1 − ti)
𝜎w1+𝜎 if wi−1 < w ≤ wi, ti−1 > ti

(1 − ti−1)
𝜎w1+𝜎

i−1
if wi−1 < w ≤ �

1−ti−1

1−ti

� 𝜎

1+𝜎
wi−1, ti−1 < ti,

�
1−ti−1

1−ti

� 𝜎

1+𝜎
wi−1 = wi

(1 − ti−1)
𝜎w1+𝜎

i−1
if wi−1 < w ≤ �

1−ti−1

1−ti

� 𝜎

1+𝜎
wi−1, ti−1 < ti,

�
1−ti−1

1−ti

� 𝜎

1+𝜎
wi−1 < wi

(1 − ti)
𝜎w1+𝜎 if

�
1−ti−1

1−ti

� 𝜎

1+𝜎
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.

Table 4   BO UBI under 
conditions (d) and (d1)–(d4)

� = 0.25 � = 0.5 � = 1

Condition (d) $7,708 $5,620 $3,823
Condition (d1) $8,696 $6,494 $3,748
Condition (d2) $6,933 $4,379 $4,082
Condition (d3) $7,776 $5,139 $3,365
Condition (d4) $7,245 $5,950 $3,093
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Fig. 5   BO marginal tax rates under condition (d1). Although all lines should technically be perfectly flat, 
some of them are drawn as squiggles to distinguish the marginal tax rates for the different values of �

Fig. 6   BO average tax rates under condition (d1). The average rates for � = 0.25 and � = 0.5 monotoni-
cally increase towards 0.7 and 0.5, respectively, as income increases beyond the values shown in the 
figure. The average rate for � = 1 monotonically declines from 0.329 at income $43,117 to 0.3 at infinite 
income
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Fig. 7   BO marginal tax rates under condition (d2). Although all lines should technically be perfectly flat, 
some of them are drawn as squiggles to distinguish the marginal tax rates for the different values of �

Fig. 8   BO average tax rates under condition (d2). The average rates for � = 0.25 and � = 0.5 monotoni-
cally increase towards 0.6 as income increases beyond the values shown in the figure. The average rate 
for � = 1 monotonically declines from 0.355 to 0.27 between incomes $60,699 and $134,115 and mono-
tonically increases towards 0.4 at higher incomes
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Fig. 9   BO marginal tax rates under condition (d3). Although all lines should technically be perfectly flat, 
some of them are drawn as squiggles to distinguish the marginal tax rates for the different values of �

Fig. 10   BO average tax rates under condition (d3). The average rates for � = 0.25 and � = 0.5 mono-
tonically increase towards 0.6 as income increases beyond the values shown in the figure. The average 
rate for � = 1 monotonically declines from 0.343 to 0.249 between incomes $46,434 and $134,115 and 
monotonically increases towards 0.4 at higher incomes
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Fig. 11   BO marginal tax rates under condition (d4). Although all lines should technically be perfectly 
flat, some of them are drawn as squiggles to distinguish the marginal tax rates for the different values of �

Fig. 12   BO average tax rates under condition (d4). The average rates for � = 0.25 and � = 0.5 monotoni-
cally increase towards 0.676 and 0.506, respectively, as income increases beyond the values shown in the 
figure. The average rate for � = 1 monotonically declines from 0.317 to 0.299 between incomes $34,747 
and $139,078 and monotonically increases towards 0.4 at higher incomes
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