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Abstract
The analysis of many phenomena requires partitioning societies into groups and 
studying the extent at which these groups are distributed with different intensities 
across relevant non-ordered categorical outcomes. When the groups are similarly 
distributed, their members have equal chances to achieve any of the attainable out-
comes. Otherwise, a form of dissimilarity between groups distributions prevails. We 
characterize axiomatically the dissimilarity partial order of multi-group distributions 
defined over categorical outcomes. The main result provides an equivalent represen-
tation of this partial order by the ranking of multi-group distributions originating 
from the inclusion of their zonotope representations. The zonotope inclusion crite-
rion refines (that is, is implied by) majorization conditions that are largely adopted 
in mainstream approaches to multi-group segregation or univariate and multivariate 
inequality analysis.
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1  Introduction

The analysis of many phenomena requires partitioning societies into groups and 
studying the extent at which these groups are distributed with different intensities 
across relevant non-ordered categorical outcomes. For instance, residential segrega-
tion occurs in situations in which ethnic groups sort with different intensity across 
neighborhoods of a city. Likewise, school or occupational segregation is concerned 
with the uneven distribution of ethnic groups across schools or jobs.

In other cases, the interest is on the way shares of one or many attributes (such as 
income, wealth or consumption of different goods) are assigned across population 
units (such as countries, households or individuals) and the extent at which these 
distributions differ from the distribution of a normatively relevant benchmark, such 
as the demographic weights of the units. In this case, the focus is on uni- or multi-
dimensional inequality and the often invoked anonymity principle would regard the 
way units are ordered as irrelevant.

All these examples are concerned with the extent of dissimilarity between two 
or more distributions defined over classes of non-ordered realizations. There is 
widespread agreement in the literature about what constitutes lack of segrega-
tion or equality: These are situations in which the groups are similarly distributed 
across the classes of realizations. The relevant notion of similarity we refer to dates 
back to Gini (1914), who argues that two (or more) groups are similarly distributed 
whenever “the populations of the two groups take the same values with the same 
frequency.”1 Although a well-established methodology exists for analyzing dissimi-
larity between two distributions, the literature disagrees about the way such com-
parisons can be extended to the multi-group setting.

This paper develops the axiomatic foundations for the measurement of multi-
group dissimilarity and provides equivalent testable conditions. We embrace a con-
venient (and equivalent) way of representing empirical discrete distributions through 
matrix notation. Each distribution matrix displays (by row) the distributions of indi-
viduals belonging to one of many (at least two) groups across classes of realizations 
(by column). The example below refers to distributions of three groups across a vari-
able number of classes:

Entries of these matrices can be interpreted as frequencies so that, for instance, the 
share of group 2 in class 3 in � is 80%. In the context of school segregation analy-
sis, each of the two matrices above portrays the way students from each of three 
distinct ethnic groups are distributed across schools in a schooling district. Matrix 

(1)� =

⎛⎜⎜⎝

1

4

1

4

1

4

1

4

0 0 0.8 0.2
3

7

2

7
0

2

7

⎞⎟⎟⎠
and � =

⎛⎜⎜⎝

1

2

1

4

1

4

0 0.4 0.6
10

14

3

14

1

14

⎞⎟⎟⎠
.

1  Gini (1914, p. 189), translated from Italian, formalizes similarity as proportionality: “If n is the size of 
group � , m is the size of group � , nx the size of group � assigned to class x and mx the size of group � 
assigned to the same class, then it should hold [under similarity] that, for any value of x, nx
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� depicts a district with four schools whereas matrix � depicts another district with 
three schools.

Many existing criteria can be employed to compare distribution matrices � and 
� by the extent of dissimilarity displayed by their rows, such as dissimilarity indices 
or majorization conditions. The ranking produced by one or few indices, however, 
can be challenged by the use of alternative, yet plausible, measures whereas majori-
zation conditions are robust to this criticism but could be empirically untractable. 
In this paper, we consider all dissimilarity orderings that are consistent with some 
normatively relevant axioms and we focus on the intersection of all such orderings 
as a robust criterion for dissimilarity analysis. It is well known (see Donaldson and 
Weymark 1998) that such criterion leads to a partial order of distribution matri-
ces which induces unanimity in the way matrices are ordered by all underlying dis-
similarity orderings satisfying the desirable axioms. The axioms that we consider 
characterize the ordering � “displays at most as much dissimilarity as” � by the 
possibility of obtaining � from � thorough sequences of elementary operations that 
either preserve dissimilarity between the matrices’ rows (such as permuting the 
labels of groups and classes, adding and deleting classes which are empty, splitting 
proportionally classes) or reduce it (such as merging groups frequencies across two 
classes of the same distribution matrix) and by some consistency properties of the 
dissimilarity orderings (with respect to the possibility of producing convex mixtures 
of classes).

The axioms that we study allow to compare only matrices with the same number 
of groups but extend dissimilarity comparisons to matrices with a different num-
ber of classes. Such extension is relevant for empirical applications. Moreover, the 
possibility of considering comparisons between distribution matrices with a differ-
ent number of classes will make explicit the normative content of this approach by 
highlighting the combination of operations that make possible to rank distribution 
matrices with the same number of classes.

The main result, in Theorem 1, establishes that the partial order of distribution 
matrices consistent with our axiomatic model is equivalent to the partial order of 
distribution matrices induced by the inclusion of their zonotope representations. A 
zonotope is a convex geometric set representation of the data, defined in the space of 
groups frequencies, which is originated by the Minkowski sum (i.e., element by ele-
ment sum of fractions) of all column vectors of a distribution matrix.2 In inequality 
analysis, zonotopes have been used to derive interesting multivariate extensions of 
the Lorenz curve (Koshevoy and Mosler 1996; Mosler 2012). Theorem 1 shows that 
the zonotope inclusion criterion is also relevant for dissimilarity analysis, for at least 
three reasons.

First, we demonstrate that the zonotope inclusion criterion is consistent with the 
implications of operations that unambiguously preserve or reduce dissimilarity. Each 

2  See McMullen (1971) and Ziegler (1995) for a formal analysis of the zonotopes geometric properties. 
Dahl (1999) examines the zonotope inclusion criterion in the context of information analysis, whereas 
a related zonotope inclusion criterion (based on Lorenz zonotopes) provides a non-parametric test for 
robust comparisons of multivariate inequality (Koshevoy 1995; Koshevoy and Mosler 1996; Andreoli 
and Zoli 2020).
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of these operations is found to have clear and intuitive consequences on the shape 
of the zonotope and hence provides a normative justification for using  the zono-
tope inclusion criterion. Second, the zonotope inclusion criterion is a refinement of 
relevant majorization conditions and it is hence implied by them. We demonstrate 
that uniform and matrix majorization criteria, which are widely adopted criteria in 
robust multivariate distributional analysis Marshall et al. (2011), are related to the 
dissimilarity measurement model developed here.3 In the multi-group setting, some 
matrices that cannot be ranked by matrix majorization can still be robustly ranked 
by zonotope inclusion, whereas the two criteria coincide only in the two-groups set-
ting. As a counterexample, we use matrices in (1) to show in Appendix A.15 that 
the zonotope of matrix � is included in the zonotope of matrix � , whereas � is not 
majorized by �. Third, the zonotope inclusion criterion can be empirically tested, 
whereas this is seldom the case for majorization conditions.

Theorem 1 and the corollaries implied by it contribute to the literature along the 
following lines. First, the results identify the differences between the zonotope inclu-
sion criterion and majorization conditions. In particular, � being matrix majorized 
by � postulates the existence of a sequence of dissimilarity reducing or preserving 
transformations mapping the classes of � into those of � . The zonotope inclusion 
condition focuses instead separately on each class of � and requires that any such 
class could be obtained through dissimilarity reducing or preserving transformations 
of the classes of � . There is no guarantee that such operations can be organized into 
a sequence, making the zonotope inclusion criterion a refinement of matrix majori-
zation (as observed in Dahl 1999).

Second, Theorem 1 provides an axiomatic justification for using zonotope inclu-
sion as a multi-group criterion that is more robust than (i.e., implies) alternative 
refinements of matrix majorization based on sequential comparisons of two-groups 
distributions or on specific dissimilarity indices. Although any two-groups projec-
tion of a multi-group zonotope originates a zonotope itself, assessing inclusion 
among all two-groups projections is not sufficient to conclude about inclusion of 
the multi-group zonotopes. This is because the zonotope inclusion criterion fails 
to satisfy a consistency property of partial orders, requiring that if two distribution 
matrices differ only in terms of two groups distributions (i.e., two rows), then the 
two matrix could be ranked by focusing on dissimilarity in the sub-matrices associ-
ated with these groups Moulin (2016). Failing this property is desirable in a multi-
group context, because the dissimilarity ranking of matrices that differ by two or few 
groups distributions should not only depend on dissimilarity between these distribu-
tions, but also on the extent at which these distributions are dissimilar from the rest. 
This feature  makes the dissimilarity criterion robust against potential aggregation 
biases (originating, for instance, the Simpson’s paradox, see Blyth 1972).

3  Relevant application of uniform and matrix majorization criteria are in linear algebra (Dahl 1999; 
Hasani and Radjabalipour 2007), in the comparison of statistical experiments (Blackwell 1953; Torger-
sen 1992), in information theory Grant et al. (1998), in the study of bivariate dependence orderings for 
categorical variables Giovagnoli et al. (2009) as well as in the analysis of inequality (see, for instance, 
Chapter 14 in Marshall et al. 2011; Tsui 1995; Gajdos and Weymark 2005; Weymark 2006) and segrega-
tion (see Frankel and Volij 2011).
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Third, Theorem 1 rationalizes the normative underpinnings of a variety of sparse 
and apparently unrelated results on the measurement of (multi-group) segregation 
and multivariate and univariate inequality, which are shown to be embedded within 
the dissimilarity model.

The paper is organized as follows. Relevant notation and a definition of the zono-
tope inclusion ordering is provided in Section 2. Axioms and the main result are in 
Section 3. Section 4 describes the usefulness of our results for related orders. Sec-
tion 5 concludes. All proofs are collected in a dedicated appendix.

2 � Using zonotopes to test dissimilarity

2.1 � Notation

A distribution matrix of size d × n depicts a set of distributions (indexed by rows) of 
d ≥ 1 groups across n ≥ 2 disjoint non-ordered classes (indexed by columns), repre-
senting categories of realizations. We develop dissimilarity comparisons of distribu-
tion matrices with a fixed number d of groups but variable number of classes. These 
matrices are collected in the set

where aij is interpreted as the proportion of group i observed in class j and the col-
umn vector �j collects the proportions of all groups attaining realization j. Matri-
ces �,� ∈ M3 in (1) offer two examples. The distribution matrices in Md are row 
stochastic, meaning that matrix � ∈ Md represents a collection of d elements of 
the unit simplex ΔnA . We let aj ∶=

∑d

i=1
aij denote the "size" of class j, obtained by 

weighting uniformly the groups occupying it. For instance, the size of class 1 of 
matrix � in (1) is a1 =

19

28
.

We follow the convention of using boldface letters to indicate column vectors, so 
that �j is a column vector corresponding to column j of an identity matrix �n of size 
n × n , wherease �n = (1,… , 1)� and �n ∶= (0,… , 0)� are the column vector with all 
n entries respectively equal to 1 or 0. The superscript always denotes transposition.

Every distribution matrix lies in-between two extreme cases. The first case is that 
of perfect similarity, occurring when the distributions of the groups coincide and 
can be represented by the same row vector �� ∈ Δn . This situation is depicted by 
matrix � , whose d rows are all equal to �′ . A maximal dissimilarity matrix � is a 
disjoint-row-support matrix where each class is occupied at most by one group, but 
one group may occupy different classes.4

If a distribution matrix displays the structure of � , then it is not possible to 
forecast the group belonging from knowledge of the realization. Conversely, if a 

Md ∶=

{
� = (�1, �2,… , �nA ) ∶ �j ∈ [0, 1]d ∀j,

nA∑
j=1

aij = 1 ∀i, for nA ≥ 2

}
,

4  The condition d ≤ n is necessary for � to exist. If � is such that d > n , then it can display some dis-
similarity, but never maximal dissimilarity.
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distribution matrix is as � , then it is always possible to forecast the group from the 
knowledge of the class of the realizations. Any distribution matrix displays a struc-
ture which lies in-between that of � and �.

We also consider transformation matrices that, when multiplied by a distribu-
tion matrix, produce effects on the extent of dissimilarity between the rows of such 
matrix. Denote by Rn,m the set of n × m row stochastic matrices whose rows lie in 
Δm.5 Moreover, denote Rn whenever m = n , while Dn ⊆ Rn is the set of doubly sto-
chastic matrices whose rows and columns lie in Δn . The set collecting all n × n per-
mutation matrices is denoted by Pn.

2.2 � The zonotope set

Geometric representations of the data are useful to derive empirical tests for ranking 
uni- and multivariate distributions. Lorenz curves, for instance, are the workhorse of 
robust income inequality analysis. A Lorenz curve is obtained by arranging income 
observations in increasing order and then plotting the cumulative sum of these 
incomes shares against the cumulative sample frequencies. If the Lorenz curve of 
one income distribution lies above the Lorenz curve of another income distribution, 
then one can robustly rank the former distribution as less unequal than the latter.

Lorenz curves do not provide sufficient structure for ranking multivariate distri-
butions, insofar each Lorenz curve allows to compare only one distribution at a time 
with a normatively relevant one, usually the distribution of population shares. Lor-
enz curves may be useful to compare distributions of two groups across relevant 
units, such as in school segregation analysis. In this case, Lorenz curves (known as 
segregation curves) portray the degree of dissimilarity between the distribution of 
a group’s members across schools and the distribution of another group across the 
same schools. Multi-group extensions are however problematic even in this domain.

In this section, we consider using the zonotope representation of the data to 
implement multi-group comparisons and we investigate the robust and testable 
ordering of distribution matrices generated by the zonotope inclusion criterion.

The zonotope set Z(�) ⊆ [0, 1]d of a matrix � ∈ Md is a convex polytope lying 
on the hypercube [0, 1]d that is symmetric with respect to the point 1

2
�d (see McMul-

len 1971). It is defined as follows:

Elements in Z(�) are identified by the Minkowski sum of the vectors with coordi-
nates given by � ’s classes. In Fig. 1a we represent the 2-dimensions zonotope of the 
distribution matrix � ∈ M2 , defined as follows:

Z(�) ∶=

{
� ∶= (z1,… , zd)

� ∶ � =

nA∑
j=1

�j�j, �j ∈ [0, 1] ∀j = 1,… , nA

}
.

5  The entries xij of matrix � ∈ Rn,m can be interpreted as the probability that the population in class i in 
the distribution of origin “migrates” to class j in the distribution of destination.
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The dimensionality of the example � helps visualizing the way Z(�) is constructed. 
First, vectors with coordinates corresponding to classes of � are plotted in the unit 
square and connected to the origin with line segments. In the figure, these vec-
tors are marked with different symbols. For instance, the black square represents 
the fourth class of � . Then, the resulting segments are tied together in any possible 
arrangement. In the figure, adding together the vector corresponding to classes one 
and three gives the vector with coordinates (0.7, 0.1), while adding this vector to the 
one representing the fourth class gives (0.9, 0.6). The resulting zonotope of � is the 
grey area in the figure that contains all possible arrangements of these segments, or 
portions of them. Panel b) of Fig. 1 represents instead Z(�) taken from (1), which is 
defined on the three-dimensional space. We report with solid lines only the visible 
edges of Z(�) . The relevant facets of Z(�) originated by the sequential sum of � ’s 
classes, are coloured in light gray.

The example above highlights two situations of interest. The maximum dissimi-
larity zonotope is the d-dimensional hypercube and corresponds to Z(�) . Its diago-
nal is the similarity zonotope, which corresponds to Z(�) . All distribution matrices 
displaying some dissimilarity originate zonotopes that lie in the maximum dissimi-
larity zonotope and that include the similarity zonotope. The shape of Z(�) and of 
Z(�) does not depend on the data in matrices � and � , thus highlighting the irrele-
vance of within-group heterogeneity for dissimilarity evaluations. More broadly, for 
each matrix in Md there exists only one zonotope representation, although the same 
zonotope may correspond to many distribution matrices.

2.3 � The zonotope inclusion criterion

Zonotopes can be used to compare matrices by the extent of dissimilarity they 
exhibit. In this paper, we study the ranking of distribution matrices such as � and � 
that is generated by the inclusion of the zonotope representations of the two matri-
ces, that is Z(�) ⊆ Z(�) . Inclusion can be easily checked when d = 2 from inspec-
tion of the zonotopes graphs. Figure 2 shows an example where Z(�̃) ⊆ Z(�) , for a 
distribution matrix �̃ obtained after performing an element-to-element summation 
of classes 2 and 3 in � , thereby leading to the central class of �̃ that contains 40% of 
the population of both groups. This operation is obviously leveling disparities in the 
distributions of groups 1 and 2, although similarity is not achieved. The inclusion 
criterion is more difficult to visualize when d = 3 . For instance, panel b) of Fig. 1 
reports relevant facets of the zonotope Z(�) obtained at fixed proportions of group 
1 distribution (in light gray). The figure also shows the corresponding facets of the 
zonotope Z(�) (in dark gray). In this specific example, it is sufficient to check inclu-
sion of the facets of Z(�) into the corresponding facets of Z(�) to conclude about 

(2)� =

(
0.4 0.1 0.3 0.2

0.1 0.4 0 0.5

)
.
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Z(�) ⊆ Z(�).6 In more general situations when d > 3 , visualization of zonotope 
inclusion is not possible and the inclusion criterion should be tested algorithmically.

For general distribution matrices A and B,  the zonotope inclusion criterion 
Z(�) ⊆ Z(�) has an intuitive interpretation in terms of disproportionality of groups 
frequencies, which may lead to conclude about the dissimilarity displayed by � and 
� . To see this, define an isopopulation line (when d = 2 ) or (hyper)plane (when 
d ≥ 3 ) as the set of all combinations of proportions of the groups collected in vec-
tors � ∈ Z(�) that add up to p ∈ [0, 1] , such that 1

d
��
d
⋅ � = p . In other words, p is 

the average “size” of � , obtained by weighting equally all groups. Figure 2 depicts 
an example, based on distribution matrices � and, �̃ in which the dashed line seg-
ments p′ , p′′ and p′′′ correspond to isopopulation lines. In general, Z(�) ⊆ Z(�) is 
verified if the set of all proportions of the groups adding up to p in � is included in 
(i.e., is less dispersed than) the corresponding set of all proportions of the groups 
adding up to p in � . The criterion is robust, given that the inclusion should be veri-
fied for all p’s, thus implying that any disproportional allocation of groups attainable 
by merging classes of � can also be obtained by merging the classes of � , but not 
the reverse. Proportionality is always attained in Z(�) , in which case there is only 
one attainable allocations � ∈ Z(�) lying on any isopopulation line p, that is � = �dp . 
Conversely, disproportionality is maximal in Z(�) , in which case every attainable 
allocation lying on the isopopulation line p can be obtained from the original data.

The zonotope inclusion criterion always ranks Z(�) ⊆ Z(�) ⊆ Z(�) for any 
� ∈ Md and for any d. The inclusion criterion, however, entails only a partial order 
of distribution matrices: two matrices cannot be ordered if their respective zonotope 
representations intersect. In the following section, we characterize the normative 
content of the inclusion criterion in terms of unanimous agreement in ranking � as 

(a) (b)

Fig. 1   Zonotopes in d = 2 and d = 3 dimensions

6  See Appendix A.15 for a formal proof.
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displaying less dissimilarity than � by all orderings consistent with some basic dis-
similarity axioms.

3 � Characterizations

3.1 � The dissimilarity partial order

We investigate the possibility of ordering distribution matrices according to the dis-
similarity they display. A dissimilarity ordering is a complete and transitive binary 
relation ≼ on the set Md with symmetric part ∼ , that ranks � ≼ � whenever � is at 
most as dissimilar as �.7 Given � ∈ Md , any dissimilarity ordering should always 
rank � ≼ � ≼ � for any matrix that can be represented as � and � . These matri-
ces are respectively regarded to as equivalent representations of perfect similarity 
or of maximal dissimilarity, the focus being on differences across group distribu-
tions and not on the degree of heterogeneity in the distribution of each group across 
realizations.8

Fig. 2   Zonotope inclusion

7  For any �, �, � ∈ Md the relation ≼ is transitive if � ≼ � and � ≼ � then � ≼ � and complete if 
either � ≼ � or � ≼ � or both, in which case 𝐁 ∼ 𝐀.
8  Rao (1982) distinguishes the notion of dissimilarity from that of diversity. The former reflects differ-
ences or similarities between populations/groups heterogeneity, the latter reflects instead heterogeneity 
within the same population/group (see also Nehring and Puppe 2002). To see this, let �′ be any row of a 
perfect similarity matrix � . Any two perfect similarity matrices � and �̃ such that �′ is a uniform distribu-
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One direct implication of this feature of the dissimilarity orderings is that distri-
bution matrices that differ in their number of classes ( nA ≠ nB ) can be regarded as 
indifferent from the dissimilarity orderings perspective, as long as their group dis-
tributions differ across matrices, but the dissimilarity that they display within each 
matrix coincides across matrices.9 For this reason, we focus on matrices in Md , 
which must have the same number of rows but may differ in the number of classes.

Each dissimilarity ordering induces a complete ranking of distribution matrices. 
In this paper, we are interested in the robust ranking of distribution matrices gener-
ated by the intersection of the dissimilarity orders satisfying some desirable proper-
ties. This is a partial order Donaldson and Weymark (1998), that we characterize 
axiomatically and for which we provide equivalent representations.

3.2 � Axioms and preliminary results

Axioms are based on elementary operations that, when applied to distribution 
matrices, can reduce or preserve dissimilarity among groups. We focus on the dis-
similarity orderings that rank distribution matrices consistently with the effects of 
these operations. In order to ease the understanding of the axioms, we contextualize 
the consequences of such operations in terms of dissimilarity in the distribution of 
groups of students with different ethnic background across the schools in a school-
ing district. This is commonly referred to as a problem of schooling segregation.

The first axiom defines the context, introducing an anonymity property with 
respect to the labels (and hence the arrangement) of the classes of a distribution 
matrix.

Axiom 1  IPC (Independence from Permutations of Classes) For any �, � ∈ Md 
with nA = nB = n , if � = � ⋅�n for a permutation matrix �n ∈ Pn then 𝐁 ∼ 𝐀.

Axiom IPC restricts the focus to evaluations where the classes of a matrix can 
be freely permuted without affecting the extent of dissimilarity it displays. In the 
context of schooling segregation, the axiom posits that the names of the schools 
are irrelevant to conclude about the dissimilarity in the distributions of students 
across these schools. This is arguably the case if the schools cannot or should not 
be ordered according to their performances, their quality or their budget. Another 
implication of axiom IPC is that any distribution matrix that is obtained by permut-
ing the columns of matrix � has to be regarded to as an equivalent representation of 
maximal dissimilarity.

Footnote 8 (continued)
tion across classes (high diversity) whereas �̃′ is a distribution concentrating the mass in few or one reali-
zation (low diversity) are regarded as equivalent by every dissimilarity ordering, i.e. 𝐒 ∼ 𝐒̃.
9  We provide an example along the lines of the previous footnote. There are many matrices of different 
size displaying the same structure as the perfect similarity matrix � , for instance �̃ such that �̃′ is of size 
ñ > n , where n is the size of �′ . Yet, for any of such matrices, 𝐒 ∼ 𝐒̃.
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Next, we consider two transformations that extend comparability to distribution 
matrices that differ in the number of classes. The first transformation has to do with 
the insertion or elimination of empty classes, i.e., classes that are not occupied by 
groups. The operation consists in adding/eliminating column vectors of size d with 
only zero entries to/from the original distribution matrix. In the schooling segrega-
tion example, the operation corresponds to adding/eliminating schools with no stu-
dents to/from the same school district. The presence of these “empty” schools in 
the district is irrelevant for assessing dissimilarity of groups distributions across the 
remaining schools of the district.

Axiom 2  IEC (Independence from Empty Classes) For any �,� ∈ Md , if 
� =

(
�, �d

)
 then 𝐁 ∼ 𝐀.

The IEC axiom emphasizes dissimilarity originated from non-empty columns of 
a distribution matrix. If � and � differ only because of |nA − nB| empty classes in 
one of the two matrices, then the dissimilarity in � should be regarded to as equiva-
lent to that in � . When combined with IPC, the axiom IEC allows to regard as indif-
ferent all matrices obtained by adding or delating an empty class in any position.

The second transformation considered increases the number of classes by  split-
ting proportionally (the groups frequencies in) a class into two new classes. This 
transformation requires to replicate one column of a distribution matrix and then to 
scale the entries of the original and of the replicated columns by the splitting coef-
ficients � ∈ (0, 1) and 1 − � , respectively. This operation guarantees that the result-
ing distribution matrix is row stochastic and that the degree of proportionality of 
the groups frequencies in the new columns coincides with that in the original col-
umn. In the schooling segregation example, splitting a school would require to ran-
domly allocate its students population (i.e., irrespectively of their group assignment) 
into two smaller institutes, so that ethnic proportions in the two new institutes are 
not altered. Frankel and Volij (2011) advocate a similar property (called composi-
tion invariance) in the study of multi-group school segregation (see also James and 
Taeuber 1985). The Independence from Split of Classes (ISC) axiom posits that the 
transformation described above is a source of indifference for every dissimilarity 
ordering.

Axiom 3  ISC (Independence from Split of Classes) For any �,� ∈ Md with 
nB = nA + 1 , if ∃ j such that �j = ��j and �j+1 = (1 − �)�j with � ∈ (0, 1) , while 
�k = �k ∀k < j and �k+1 = �k ∀k > j , then 𝐁 ∼ 𝐀.

A split transformation increases the number of classes and modifies the shape of 
a distribution matrix, but it does not alter the proportionality of the groups. For this 
reason, it is regarded to as dissimilarity preserving.

The merge of classes transformation complements the split operation. A merge of 
classes is implemented by vector summation of two adjacent columns of a distribution 
matrix, irrespectively of the groups composition of each column. The operation has an 
immediate interpretation in the schooling segregation example: it consists in merging 
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all students from two neighboring schools into a single, larger school. Each ethnic 
group in the school of destination is increased by an amount equal to the proportion 
of the corresponding group in the school of departure, which is then emptied. If one or 
both schools are empty, segregation does not increase nor decreases. Consider, instead, 
the case of two ethnic groups that are similarly distributed across almost all schools in 
a district, apart from two schools, such that a group is over-represented compared to the 
other in one school, and under-represented in the other school. Merging each of these 
two schools with other schools in the district would reduce the compositional differ-
ences, without eliminating them. A merge of these two schools would, instead, estab-
lish proportionality in ethnic composition across all schools, leading to perfect similar-
ity. The Dissimilarity Decreasing Merge of Classes (MC) axiom states that every merge 
of classes transformation cannot increase dissimilarity.

Axiom 4  MC (Dissimilarity Decreasing Merge of Classes) For any �, � ∈ Md with 
nA = nB , if �j = �d , �j+1 = �j + �j+1 while �k = �k ∀k ≠ j, j + 1 , then � ≼ �.

Consider obtaining � from � with a merge transformation adding together, 
distribution by distribution, the group proportions observed in two classes �j and 
�j+1 whenever �j+1 = ��j , 𝛽 > 0 , such that �j = (1 + �)�j and �k = �k ∀k < j while 
�k = �k+1 ∀k > j . This operation leaves dissimilarity unaffected. The operation is 
opposite to a split, but supports the same indifference class, gathering all matrices 
�,� ∈ Md such that 𝐁 ∼ 𝐀 for all orderings consistent with axiom ISC, even if not 
consistent with MC.

Axioms MC, IEC, ISC and IPC are independent. The transitive closure of all 
dissimilarity orderings satisfying these axioms defines a partial order of distri-
bution matrices (see Donaldson and Weymark 1998), which is represented by the 
matrix majorization criterion. We refer to this partial order as � ≼R � , indicating 
that matrix � is matrix majorized by � whenever there exists � ∈ RnA,nB

 such that 
� = �� (Marshall et al. 2011; Dahl 1999).

Proposition 1  For any �, � ∈ Md the following statements are equivalent: 

	 (i)	 � ≼ � for all orderings ≼ satisfying axioms MC, ISC, IEC and IPC.
	 (ii)	 � ≼R �.

The notion of matrix majorization has been investigated in a variety of contexts 
(see p. 625 in Marshall et al. (2011) and literature therein), the most relevant being 
that of comparisons of informativeness of statistical experiments with a finite num-
ber of outcomes.10 The characterization in Proposition 1, which is alternative to 

10  Blackwell (1953) has formalized a precise condition for “ � is at least as informative as � ” which 
coincides with � ≼R � , insofar the observation of an experiment outcome (a class) in � is more informa-
tive about the underlying signal (the group) than it is in � . If � = � , then the experiment outcome identi-
fies the signal and � would be at least as much informative than any matrix � , whereas if � = � , then it 
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Grant et al. (1998), Frankel and Volij (2011) and Lasso de la Vega and Volij (2014), 
shows that every informativeness comparison of matrices in Md verifies the exist-
ence of dissimilarity preserving and reducing transformations mapping the most 
informative distribution matrix into the least informative one.

While appealing, matrix majorization entails the possibility of ranking distribu-
tion matrices only if there exists a sequence of relevant transformations of the data 
that can be represented by a row stochastic matrix. This requirement is very strin-
gent in some cases. Consider for instance matrices � and � in (1). It is shown in 
Appendix A.15 that every column of � can be obtained by splitting and merging the 
columns of � . Yet, these operations cannot be arranged to form a sequence in this 
specific example. As a consequence, these operations cannot be represented in the 
form of a row stochastic matrix, thereby yielding that � does not matrix majorize � . 
In fact, as shown in the appendix, there is a unique admissible transformation matrix 
with non-negative entries, denoted

yielding � = �� . The transformation matrix � is, clearly, not row stochastic (for a 
related example, see Koshevoy 1995).

We address the concerns raised by the example above by introducing a new class 
of dissimilarity axioms. These axioms relax the possibility of ranking distribution 
matrices exclusively by mean of (sequences of) merge transformations, invoking 
instead a form of consistency of the dissimilarity orderings with respect to con-
vex combinations of (columns of) distribution matrices. The first axiom, denoted 
Strong-MixC, states that if there are matrices �1, .… ,�m that are ranked as not 
more dissimilar than � , then the convex mix of such matrices yields a matrix � that 
cannot display more dissimilarity than � . Before stating the axiom, recall that any 
element of the convex hull (denoted conv) of matrices �j = (�

j

1
,… , �

j
n) ∈ Md is a 

matrix � = (�1,… , �n) ∈ Md such that �k =
∑m

j=1
wj�

j

k
 ∀k , for any set of weights 

wj ∈ [0, 1] satisfying 
∑m

j=1
wj = 1 . The axiom name follows from the fact that every 

mix of matrices can be interpreted as a specific mix of classes that assigns uniform 
weights to the classes of the same matrix.

Axiom 5  Strong-MixC (Dissimilarity Consistency with Uniform Mixing of Classes) 
Consider a d × n matrix � ∈ Md and a sequence j = 1,… ,m , m ≥ 2 of d × n matri-
ces �j ∈ Md such that �j ≼ � ∀j . If � ∈ conv{�1, .… ,�m} , then � ≼ �.

(3)� =

⎛
⎜⎜⎜⎝

1 0.5 0

1 0 0.25

0 0.5 0.75

0 0 0

⎞
⎟⎟⎟⎠
,

is impossible to disentangle the underlying signal from observation of the experiment outcome and � 
would be less informative than any matrix �.

Footnote 10 (continued)
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The axiom Strong-MixC postulates a “betweenness” property (see Dekel 1986) 
for dissimilarity orderings, meaning that all orderings satisfying it regard a new 
distribution � whose classes are obtained as convex combinations of the respective 
classes of �1, .… ,�m as not more dissimilar than � . The fact that such convex com-
bination assigns the same weight wj to each class of a matrix �j , with 

∑
j wj = 1 , 

guarantees that � ∈ Md . Matrix � may be regarded as more dissimilar than some of 
the matrices �j , but it cannot display more dissimilarity than � given that �j ≼ � ∀j.

The normative appeal of axiom Strong-MixC rests in its relation with operations 
of mixing of columns of different matrices. Such operations are regarded to as unam-
biguously dissimilarity not increasing, given their relation with merge of classes 
operations. We contextualize this point in terms of school segregation analysis. The 
axiom Strong-Mix implies that every school or merge of schools from schooling dis-
trict � (i.e., columns of the distribution matrix) can always be obtained through a 
convex combination of schools or merges of schools issued from the schooling dis-
tricts �1, .… ,�m . Formally, let V01

n
 be the set of n × 1 vectors whose elements are 

either 0 or 1. Non-zero entries of vector � ∈ V
01
n

 identify classes (or one class) of a 
distribution matrix, so that �� yields a new school that is obtained by merging some 
of � ’s schools (or by keeping one of its schools). Any mixing operation underlying 
axiom Strong-MixC always grants that:

where conv is the convex hull of such vectors.
Arguably, every merge of schools smooths the extent of ethnic disparities within 

a schooling district and can contribute to reduce segregation. Condition (4) implies 
that there are less opportunities to reduce segregation by merging some of the 
schools in schooling district � compared to the extent of opportunities for reduc-
ing segregation that are available by merging schools in districts �1, .… ,�m . In 
fact, the former district/matrix can always be obtained as a combination of the latter 
matrices, whereas the reverse may not be true. As an example, consider the (rather 
extreme) case in which � is the similarity matrix: in this case there are no opportuni-
ties at all to reduce segregation by merging � ’s classes, being segregation already at 
its minimum.

Condition (4) is always granted by axiom Strong-MixC, which imposes addi-
tional structure.11 We consider a new axiom, denoted MixC, that regards every 
matrix � ∈ Md that satisfies condition (4) as displaying not more dissimilarity than 
�.

Axiom 6  MixC (Dissimilarity Consistency with Mixing of Classes) Consider a d × n 
matrix � ∈ Md and a sequence j = 1,… ,m , m ≥ 2 of d × n matrices �j ∈ Md such 
that �j ≼ � ∀j . If � ∈ Md satisfies condition (4), then � ≼ �.

(4)∀� ∈ V
01
n

∃�j ∈ V
01
n
, j = 1,… ,m ∶ �� ∈ conv{�1

�
1,… ,�m

�
m},

11  If � is obtained as in Strong-MixC, then �� =
∑m

j=1
wj�

j
� , ∀� ∈ V

01

n
 , with 

∑
j wj = 1 , which satisfies 

(4) because in this case �j = � ∀j.
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The axiom MixC values the fact of having less opportunities for reducing seg-
regation in school district � compared to districts �1, .… ,�m , in the sense that if 
the latter districts display less school segregation than � , then � should also dis-
play less segregation than � . Axiom MixC extends the orderings �j ≼ � for every 
j = 1,… ,m to � ≼ � . The axiom may allow to compare cases such as those in the 
example related to the transformation matrix in (3): even if there is no sequence of 
merge of classes operations mapping � into � , it may be sufficient to conclude that 
every class of � is obtained by merging classes of � to verify condition (4) and thus 
rank � ≼ � , as we show in Appendix A.15.

The axiom MixC does not explicitly mention the way � is constructed. One way 
to obtain it (which we rely upon in the proofs) is by considering weights wk

j
∈ [0, 1] , 

with 
∑m

j=1
wk
j
= 1 , that are specific to each class k, such that �k =

∑m

j=1
wk
j
�
j

k
 ∀k . 

These weights are more general than those considered by axiom Strong-MixC. 
When configuration � is obtained in such a way and (4) is satisfied, the axiom MixC 
posits that mixing students across school of districts �1, .… ,�m that are not more 
segregated than � cannot generate a new schooling district � that is more segregated 
than �.

The fact that axiom Strong-MixC is always consistent with condition (4) proves 
the next statement.

Remark 1  If ≼ is consistent with MixC then it is consistent with Strong-MixC.

As a consequence, the MixC axiom implies a ranking of distribution matrices 
that is less partial compared to that characterized by axiom Strong-MixC, in the 
sense that all dissimilarity orderings consistent with Strong-MixC are capable of 
ranking unanimously only a subset of all matrices that can be ordered by the order-
ings consistent with MixC.

We now investigate if the partial orders of distribution matrices supported by 
matrix majorization and by the zonotope inclusion criterion are consistent with 
these new axioms. The next Remark shows that matrix majorization ≼R is consistent 
with Strong-MixC.

Remark 2  For �,�j ∈ Md , j = 1,… ,m , let � ∈ conv{�1,… ,�m} : �j ≼R � ∀j ⇒ 
� ≼R �.

When axiom Strong-MixC is paired with dissimilarity preserving axioms, it 
allows to characterize matrix majorization without resorting on axiom MC, which is 
hence implied by all the axioms considered.

Remark 3  If ≼ satisfies IPC, ISC, IEC and Strong-MixC then it satisfies MC.

Axiom MC becomes redundant when characterizing dissimilarity partial orders 
if the Strong-MixC axiom is combined with all the dissimilarity preserving axioms. 
The axiom Strong-MixC yields a new characterization of ≼R which is alternative to 
the one presented in Proposition 1.
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Proposition 2  For any �,� ∈ Md , the following statements are equivalent: 

	 (i)	 � ≼ � for all orderings ≼ satisfying axioms Strong-MixC, ISC, IEC and IPC.
	 (ii)	 � ≼R �.

Proposition 2 highlights that, even if axiom MC is implied by Strong-MixC, ISC, 
IEC and IPC (see Remark 3), these axioms still lead to the partial order of matrix 
majorization as in Proposition 1 and not to another partial order that is capable of 
ranking more matrices. Weakening the Strong-MixC axiom towards MixC may help 
characterizing such partial order. In the two-groups case ( d = 2 ), Proposition 2 can 
be reformulated by weakening Strong-MixC in favor of axiom MixC, since matrix 
majorization ≼R is consistent with axiom MixC when d = 2.

Remark 4  For �,�j,� ∈ M2 such that � and �j , j = 1,… ,m , satisfy condition (4): 
�j ≼R � ∀j ⇒ � ≼R �.

In the multi-group context ( d ≥ 3 ), however, matrix majorization is not consistent 
with axiom MixC. A counterexample is given in Appendix A.15, where we use the 
matrices in (1) to identify matrices �j ∈ Md , j = 1, 2, 3 such that �j ≼R � and we 
then show that � satisfies condition (4) but cannot be obtained as in axiom Strong-
MixC and hence � ⋠R � . As a consequence, matrix majorization is only sufficient 
but not necessary to conclude about unanimity in the ranking by all dissimilarity 
orderings ≼ consistent with axioms MixC, IPC, IEC and ISC. Conversely, the zono-
tope inclusion criterion is always consistent with axiom MixC.

Remark 5  For �,�j,� ∈ Md such that � and �j , j = 1,… ,m , satisfy condition (4): 
Z(�j) ⊆ Z(�) ∀j ⇒ Z(�) ⊆ Z(�).

The zonotope inclusion criterion is consistent with MixC and, from Remark 1, it is 
also consistent with Strong-MixC. However, the Strong-MixC axiom is not necessary to 
characterize zonotope inclusion: the operations underlying Strong-MixC do not allow, 
alone, to break down the zonotope inclusion ordering of any pair � and � into the exist-
ence of simpler mixing transformation mapping one matrix into the other. The main 
result of the paper shows that the MixC axiom provides the needed structure to estab-
lish a characterization of the zonotope inclusion order. Dissimilarity orderings consist-
ent with Strong-MixC but not with MixC can be represented by matrix majorization 
(Proposition 2), but this guarantees only a sufficient condition for zonotope inclusion.

3.3 � Main result and discussion

Theorem 1  For any �, � ∈ Md , the following statements are equivalent: 

	 (i)	 � ≼ � for all orderings ≼ satisfying axioms MixC, ISC, IEC, IPC.
	 (ii)	 Z(�) ⊆ Z(�).
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The theorem provides a novel complete characterization of the zonotope inclusion 
criterion in terms of dissimilarity. The zonotope inclusion criterion originates a 
partial order of distribution matrices. If the inclusion test fails, then consensus on 
the ranking of distribution matrices by all dissimilarity orderings consistent with 
MixC, IPC, IEC and ISC cannot be reached. Nonetheless, this partial order is 
“less partial” than matrix majorization (that is, zonotope inclusion is a refinement 
of ≼R ) and is thus capable of ordering a larger set of cases compared to it.

Remark 6  Let �,� ∈ Md : � ≼R � ⇒ Z(�) ⊆ Z(�).

The remark shows that there are matrices that cannot be ranked by dissimi-
larity orderings consistent with Strong-MixC or, equivalently and alternatively, 
with axiom MC but that can be ordered only by resorting to axiom MixC, which 
provides the additional structure that is needed to refine ≼R . The rationale for 
this refinement is clarified in the proof of Theorem  1. There, we make use of 
the operations underlying axioms Strong-MixC, IEC, IPC and ISC to character-
ize the distribution matrices that form the basis of the set of all matrices that are 
matrix majorized by any given � . We also show that some of the classes in each 
of the basis matrices identify vertices of Z(�) (and that Z(�) is the convex hull 
of its vertices). While the convex hull of the basis matrices obtained by using 
the weights implied by axiom Strong-MixC is sufficient to characterize the full 
set of matrices � such that � ≼R � , the same operation is not sufficiently flex-
ible to characterize the entire set of matrices � such that Z(�) ⊆ Z(�) . Instead, 
when condition (4) is applied to the permutations of � (all regarded as dissimilar 
as � itself), it identifies the vertices of Z(�) , so that the convex mix of those gives 
Z(�) . Some of the matrices identified in this way cannot be obtained using the 
weights implied by Strong-MixC, which demonstrates Remark 6.

The reverse implication of Remark 6 is not true in general. The matrices � and 
� in (1) provide a counterexample in which Z(�) ⊆ Z(�) but the two matrices can-
not be ranked by matrix majorization. Matrix majorization and zonotope inclusion 
orderings may coincide only under specific circumstances, such as those identified 
in Theorem 2 in Koshevoy (1995) or in cases where dissimilarity comparisons are 
limited to distributions where d = 2 (Dahl 1999; Lasso de la Vega and Volij 2014). 
We provide in the appendix a new geometric proof of the latter statement.

Remark 7  Let �,� ∈ M2 : Z(�) ⊆ Z(�) ⇒ � ≼R � .

The set of matrices that can be ordered in terms of dissimilarity can be further 
extended by considering the transitive closure originated by all binary relations ≼ 
satisfying axioms in Theorem 1 and a new axiom, the Independence of Permuta-
tion of Groups (IPG), which introduces a property of invariance of the dissimilar-
ity orderings with respect to the labeling of the groups.
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Axiom 7  IPG (Independence from Permutations of Groups) For any �, � ∈ Md , if 
� = �d ⋅ � for a permutation matrix �d ∈ Pd then 𝐁 ∼ 𝐀.

In the context of segregation analysis, the axiom provides a natural multi-group 
extension of the symmetry of types property Hutchens (2015). Together with ISC, 
IEC, IPC and MixC, the axiom extends dissimilarity comparisons based on zono-
tope inclusion orderings that are not concerned with the labeling of the groups. A 
proof of the following corollary rests on the properties of the zonotope.

Corollary 1  For any � ∈ Md , � ≼ � for all axioms satisfying MixC, ISC, IEC, IPC 
and IPG if and only if ∃�d ∈ Pd such that Z(�) ⊆ Z(�d�).

3.4 � Dissimilarity indices

The partial order of dissimilarity in Theorem 1 can be represented in terms of agree-
ment of dissimilarity indices satisfying desirable properties. A dissimilarity index 
is a multivariate function D ∶ Md → ℝ+ mapping a distribution matrix into a num-
ber, which can be interpreted as the level of dissimilarity among the d distributions 
represented in that matrix. These indices measure dissimilarity as the average of 
within-class dispersion of group frequencies.

Consider first the dissimilarity orderings consistent with Strong-MixC. In this 
case, dispersion of groups frequencies within each class can be quantified by a func-
tion h in the class H of real valued convex functions defined on Δd . Dispersion in 
class j contributes to the overall dissimilarity proportionally to the size of the class j, 
aj . The dissimilarity index Dh with h ∈ H aggregates these evaluations as follows:12

where aij∕aj is the proportion of group i relative to the size of class j when groups 
are uniformly weighted. Dissimilarity is minimized when aij∕aj = 1∕d for each of 
the d groups in all classes. Hence, by normalizing h so that h

(
1

d
��
d

)
= 0 , the index 

takes value 0 when perfect similarity is reached. Dissimilarity is instead maximal 
when for every j there exists a i such that aij = aj . The following proposition sets out 
a dominance condition in terms of dissimilarity indices.

Proposition 3  For any �,� ∈ Md , � ≼ � for all orderings ≼ satisfying axioms 
Strong-MixC, ISC, IEC, IPC if and only if Dh(�) ≤ Dh(�) for all h ∈ H.

(5)Dh(�) ∶=
1

d

nA∑
j=1

aj ⋅ h
(
a1j∕aj,… , adj∕aj

)
,

12  For notational convenience empty classes receive weight a = 0 and therefore do not contribute to the 
overall dissimilarity.
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Using Proposition 1, we conclude that matrix majorization entails a necessary 
and sufficient condition for assessing agreement in dissimilarity evaluations for all 
indices described in Proposition 3. Matrix majorization is refined by the zonotope 
inclusion criterion. We provide an equivalent representation of the latter criterion in 
terms of dissimilarity measures based on the so-called price dominance criterion 
(Kolm 1977; Koshevoy and Mosler 1996; Andreoli and Zoli 2020).13 Consider a set 
of “prices” (or normative weights) � = (p1,… , pd)

� , which take on real values and 
therefore could also be negative, allowing to draw evaluations of the relative groups 
composition of each class of a distribution matrix by the implied “budget” (or 
weighted average) ���j∕aj . In a case of perfect similarity, �j∕aj =

1

d
�d for all classes 

j. Therefore, perfect equality within each group i for all average realizations aij∕aj 
across all classes j indicates lack of dissimilarity. The same consideration applies if 
all realizations in each class are weighted in ���j∕aj irrespective of the weighting 
vector � . Each class contributes additively to dissimilarity, with evaluations indexed 
by a convex functional � ∶ ℝ → ℝ such that �(���j∕aj) , which is introduced to 
quantify the inequality across the realizations of all classes. If we quantify this 
aggregate inequality by 1

d

∑nA
j=1

aj�(�
� ⋅ �j∕aj) , then its minimum level can be reached 

at m ∶= �(
∑d

i=1
pi∕d) . The minimum bound for the dissimilarity index

is therefore 0.14

Proposition 4  For any �,� ∈ Md , � ≼ � for all orderings ≼ satisfying axioms 
MixC, ISC, IEC, IPC if and only if D�,�(�) ≤ D�,�(�) for all � ∈ ℝ

d and for every 
� convex.

Proposition 4 provides the class of dissimilarity indices that are related to zono-
tope inclusion and defines a dominance condition that is weaker than that implied by 
Proposition 3.

4 � Related orders

This section highlights the relevance of the dissimilarity model for the analysis of 
multi-group segregation and multivariate inequality. First, we argue that the zono-
tope inclusion criterion can be meaningfully used in the analysis of segregation 
with many (more than two) groups. We also demonstrate that widely used multi-
group segregation indices characterized in the literature are consistent with dissimi-
larity preserving or reducing axioms. Second, we analyze the implications of the 

D�,�(�) ∶=
1

d

nA∑
j=1

aj�(�
� ⋅ �j∕aj) − m

14  Notice that the theoretical bound does not depend on the sizes of � but only on its structure: if � = � , 
then D�,�(�) = 0 for any � ∈ ℝ

d and � convex.

13  Lemma 3 in Appendix formalizes this equivalence within the setting of this paper.
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dissimilarity model for multivariate orderings of dispersion, where the focus is on 
dissimilarity between the distributions of certain attributes and a normatively rel-
evant benchmark distribution. In this case, the configuration that displays less dis-
similarity among the underlying distributions and with respect to the benchmark 
distribution, also exhibits less multivariate inequality/dispersion. We prove that the 
zonotope inclusion criterion weakens some of the most widely adopted robust crite-
ria in the multivariate inequality literature. Third, we emphasize the relevance of the 
dissimilarity axioms for the analysis of univariate inequality.

4.1 � Segregation

Segregation arises when individuals with different characteristics (such as their eth-
nic origin or gender) are distributed unevenly across the neighborhoods of a city, or 
across the schools of a schooling district, or across jobs within a firm. In segrega-
tion analysis, the realizations of interest are categorical and not-ordered. Mainstream 
approaches to segregation focus on the two-groups case and postulate consistency 
with the partial order generated by non-intersecting segregation curves Duncan and 
Duncan (1955) as a baseline.

A segregation curve is obtained by ordering the classes of � by increasing mag-
nitude of the ratio a2j∕a1j evaluated for each class j. It gives the proportions of group 
1 and of group 2 that are observed in the classes where group 2 is relatively over-
represented. The graph of the segregation curve coincides with the lower boundary 
of the zonotope representing the cumulative shares of groups 1 and group 2 across 
categories.

The ranking of two-groups distributions generated by non-intersecting segrega-
tion curves can be characterized through elementary segregation-reducing opera-
tions (see  Hutchens 1991) or, alternatively, by matrix majorization (Lasso de  la 
Vega and Volij 2014; Hutchens 2015). When segregation curves cross, distributions 
can be ranked by segregation indices consistent with the segregation curve order-
ing (Reardon and Firebaugh 2002; Reardon 2009). Alternatively, segregation curves 
have been used to assess the dissimilarity between each group distribution and the 
population distribution as in Alonso-Villar and del Rio (2010).

We are not, however, aware of any ordering generated by a multi-group expan-
sions of the segregation curves ordering. Frankel and Volij (2011) have provided 
normative justifications for using matrix majorization as a robust segregation cri-
terion for ranking multi-group distributions (see also Flückinger and Silber 1999; 
Chakravarty and Silber 2007). However, matrix majorization is a demanding condi-
tion that is not testable in the multi-group setting. Results in this paper deliver three 
contributions to this literature.

First, Proposition 1 clarifies that the operations of merge (or, equivalently, Strong-
MixC), split, permutation and insertion/elimination of empty classes characterize 
the ranking produced by non-intersecting segregation curves when d = 2 . The same 
axioms characterize matrix majorization when d ≥ 2 , thus showing that every seg-
regation comparison involves a dissimilarity comparison. The dissimilarity axiom 
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MixC allows to weaken this criterion to a less partial ordering compared to matrix 
majorization, which can also be interpreted in terms of segregation.

Second, we promote the zonotopes inclusion criterion as a relevant multi-group 
extension of the segregation curve dominance criterion. The zonotope inclusion cri-
terion is new in the segregation literature, it is testable and it allows to deal with the 
multi-dimensional nature of the data. In the case d = 2 , segregation curve domi-
nance is always consistent with zonotope inclusion, insofar the segregation curve 
can be understood as the lower boundary of a zonotope.15 Moreover, segregation 
curve dominance is also equivalent to matrix majorization.

In the multi-group setting ( d ≥ 3) , however, a dominance criterion based on com-
parisons of segregation curves across all pairs of groups provides only a necessary 
condition for zonotope inclusion. Furthermore, in this context the zonotope inclu-
sion criterion is weaker than matrix majorization, thus providing a natural refine-
ment to it. Theorem 1 characterizes it in terms of MixC axiom, thus proving the link 
between multi-group segregation and dissimilarity.

Third, Proposition 3 identifies and characterizes the class of multi-group segrega-
tion indices that are coherent with the family Dh . Below are some examples of well-
known segregation indices belonging to this class.

The Duncan and Duncan’s dissimilarity index for a matrix � ∈ M2 is 
D(�) ∶=

1

2

∑nA
j=1

���a1j − a2j
��� . It measures dissimilarity as the average absolute dis-

tance between the elements a1j∕aj and a2j∕aj in each class. By setting

it follows that Dh(�) = D(�).
In the multi-group context ( � ∈ Md ), segregation can be measured by the Atkin-

son-type segregation index, defined  as A�(�) ∶= 1 −
∑nA

j=1

∏d

i=1

�
aij
��i for �i ≥ 0 

such that 
∑d

i=1
�i = 1 . By setting

it follows that Dh(�) = A�(�) . Convexity of h stems from the features of the weight-
ing scheme.

The mutual information index characterized in Frankel and Volij (2011) and 
Moulin (2016) is M(�) ∶= log2(d) −

∑nA
j=1

�
aj

d

�∑d

i=1

aij

aj
⋅ log2

�
aj

aij

�
 with 

aij

aj
⋅ log2

(
aj

aij

)
 set equal to 0 if aij = 0 . By setting

h(a1j∕aj, a2j∕aj) ∶=
|||a1j∕aj − a2j∕aj

|||

h
(
a1j∕aj,… , adj∕aj

)
∶= 1 − d

∏d

i=1

(
aij∕aj

)�i

15  For any �,� ∈ M2 , Z(�) ⊆ Z(�) if and only if the segregation curve of � lies nowhere below the 
segregation curve of �.
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it follows that Dh(�) = M(�) . Convexity of h stems from the log operator.

4.2 � Multivariate majorization and the Lorenz zonotope

In this section, the focus is on the multivariate majorization criteria that are adopted 
in robust inequality analysis. We argue that every inequality comparison involves 
the assessment of the dissimilarity between some relevant distributions and a bench-
mark distribution. A canonical example is that in which the distribution matrices 
�, � ∈ Md represent multivariate distributions of commodities. A matrix repre-
sents the way in which shares of each commodity (by row) are allocated to certain 
classes, which can represent the demographic units (e.g. families or individuals) that 
consume these commodities. Units are not ordered in any meaningful way.

Multidimensional inequality arises from the dissimilarity between the d distribu-
tions under analysis and the distribution of the demographic weight of the n units. It 
is common to assume that every unit receives a uniform weight equal to 1/n. Under 
these circumstances, the next corollary, which follows from Proposition 1, formal-
izes the relation between multivariate inequality analysis and dissimilarity.

Corollary 2  Let �, � ∈ Md . Then

for every dissimilarity ordering ≼ satisfying axioms MC (or Strong-MixC), ISC, IEC 
and IPC if and only if there exists � ∈ RnA,nB

 such that (i) � = �� and (ii) 
nA

nB
��
nB

= ��
nA
�.

When nA = nB = n , matrix � in the corollary is doubly stochastic ( � ∈ Dn ). The 
condition � = � ⋅ � with � ∈ Dn implied by (6), often referred to as uniform major-
ization, is widely adopted in robust univariate and multivariate inequality analysis 
(see p. 613 in Marshall et al. 2011). All social welfare functions that are increasing 
and Schur-concave (i.e. display some degree of inequality aversion) would rank the 
two multivariate distributions accordingly.

Uniform majorization is a demanding criterion, alike matrix majorization, inso-
far it posits that inequality can be reduced only when every row of a distribution 
matrix � is obtained from the corresponding row of another distribution matrix � 
through a common set of transformations implied by the matrix � ∈ Dn . The result-
ing ordering of distribution matrices is therefore partial. Koshevoy (1995) and 
Koshevoy and Mosler (1996) have studied a less partial order of multivariate dis-
tributions that is based on the Lorenz zonotopes inclusion criterion. A Lorenz zono-
tope, denoted LZ(�) with � ∈ Md , is a d + 1 dimensional zonotope of a distribution 
matrix � augmented by the population distribution vector, that is LZ(�) ∶= Z(�̃) 

h
(
a1j∕aj,… , adj∕aj

)
∶=

d∑
i=1

(1∕d)⋅ log2 (d) −
aij

aj
⋅ log2

(
aj

aij

)

(6)�̃ ∶=

(
1

nB
��
nB

�

)
≼ �̃ ∶=

(
1

nA
��
nA

�

)
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with LZ(�) ∈ ℝ
d+1
+

 and �̃ defined as in (6). The Lorenz zonotope inclusion criterion 
induces a partial order of distribution matrices that provides a testable refinement of 
uniform majorization.

The following chain of implications clarifies the relation between multivariate 
inequality and dissimilarity. The proof follows from previous results.

Remark 8  Let �,� ∈ Md such that d ≥ 2 and nA = nB = n . Then:

The first implication, showing that uniform majorization implies matrix majoriza-
tion, has been discussed in the previous section. The Lorenz zonotope inclusion cri-
terion defines an inequality partial order of distribution matrices that is less partial 
than (i.e., is implied by) matrix majorization. It follows that the ranking of distribu-
tion matrices given by LZ(�) ⊆ LZ(�) is always consistent with the implications of 
a merge transformation (or, alternatively, a convex combination underlying Strong-
MixC axiom) on matrices �̃ and �̃ . Any such transformation bears two implications 
for multidimensional inequality.

First, a merge transformation reduces dissimilarity between the distribution of 
each dimension separately and the benchmark distribution, implying a reduction of 
inequality in each dimension. Second, a merge transformation reduces the dissimi-
larity across dimensions, implying an increase in correlation between dimensions. 
This aspect is controversial, since the Lorenz zonotopes inclusion criterion may fail 
to rank distribution matrices that are instead unanimously ordered by social wel-
fare functions satisfying aversion to correlation increasing transfers (Epstein and 
Tanny 1980; Atkinson and Bourguignon 1982; Decancq 2012), a desirable property 
in multidimensional inequality analysis stating that any transformation that rises the 
degree of association in realizations is bound to decrease social welfare Andreoli 
and Zoli (2020). The Extended Lorenz zonotope inclusion criterion proposed in 
Mosler (2012) addresses these concerns.

Although the Lorenz zonotope inclusion criterion may be problematic for multi-
dimensional welfare analysis, it is still a relevant criterion for assessing dissimilarity 
between distributions. The criterion LZ(�) ⊆ LZ(�) can be weakened by looking at 
inclusions of the projections of the Lorenz Zonotope in the space of outcomes, that 
is Z(�) ⊆ Z(�) . The latter is useful to analyze inequalities that arise from differ-
ences between distributions, regardless of the degree of inequality of each of these 
distributions. This feature is relevant, for instance, for constructing robust inequality 
of opportunity comparisons (see, for instance, Roemer and Trannoy 2016; Andreoli 
et al. 2019).16

Corollary 2 provides a characterization result that extends robust inequality 
assessments based on uniform majorization to matrices that possibly differ in size 
( nA ≠ nB ) but with the same number d of dimensions.

� = ��, � ∈ Dn ⇒ � ≼R � ⇒ LZ(�) ⊆ LZ(�) ⇒ Z(�) ⊆ Z(�)

16  There are other robust multivariate inequality criteria that are weaker than uniform majorization (Dahl 
1999; Martínez Pería et al. 2005) and that imply the Lorenz zonotope inclusion criterion. These criteria 
are also nested within the dissimilarity model.
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4.3 � Income inequality

Corollary 2 also holds in the case d = 1 . This case is of particular interest for social 
welfare analysis, as it rationalizes empirical comparisons of income inequality. In 
this section, we argue that every income inequality comparison involves a dissimi-
larity comparison, but not the reverse.

Empirical comparisons of income inequality consist in assessing the way total 
income in a sample of n income recipient units (such as households or individuals) 
is split across these units. We can hence represent a distribution of income shares by 
the n-variate vectors ��, �� ∈ M1 , with �� ⋅ �n = �� ⋅ �n = 1 . Each entry of the vec-
tors corresponds to an income share allocated to a given unit. Anonymity is often 
invoked by the literature addressing income inequality measurement, thereby imply-
ing that any permutation of the units does not affect the extent of inequality dis-
played by �′ of �′.

As per condition (6) in Corollary 2, every empirical income inequality comparison 
involves a dissimilarity comparison between the distribution of income shares owned 
by each of the n units and the units’ weights. Furthermore, the ranking of distribution 
matrices induced by the LZ inclusion is consistent with Lorenz curves partial order. The 
chain of implications in Remark 8 hence runs in both directions when d = 1 : Lorenz 
zonotopes inclusion implies unanimity for all social welfare functions that are increasing 
and concave in income which is equivalent to uniform majorization. All those conditions 
imply that income inequality analysis always subsumes a dissimilarity comparison.

A similar result holds even when the benchmark distribution of population weights 
is not uniform. Ebert and Moyes (2003) analyze the relation between welfare evalua-
tions, Lorenz dominance and equivalence scales for incomes when population weights 
may differ among units and across distribution matrices. In this case, the interest is in 
ranking matrices such as �̃ ∶= (�, �)� , where � = (�1,… ,�n)

� and �j can be under-
stood as individual j’s weight. Using Corollary 2, every welfare-consistent measure 
of inequality can be written as an average of convex transformations of equivalized 
incomes, scaled by their demographic weights. This is formalized by the inequal-
ity index Dh(�̃) =

∑n

j=1
𝜔jh(aj∕𝜔j) with h ∈ H convex and aj∕�j is j’s equivalent 

income.17 From Proposition 3 (in combination with Remark 7), the zonotope inclusion 
criterion Z((�, �)�) ⊆ Z((�, �)�) provides a sufficient test for welfare dominance.

A well known result in inequality measurement is that an income distribution 
�′ displays less inequality than another distribution �′ if it can be obtained from 
the latter through a finite sequence of progressive (Pigou-Dalton, PD) transfers 
of income from rich donors to poor recipients, without switching their relative 
positions in the income ranking (Hardy et al. 1934; Marshall et al. 2011).18 In the 
univariate case ( d = 1 ), Corollary 2 implies that every sequence of PD transfers 

17  The result (see Lemma 1 in the Appendix) follows from the homogeneity and convexity of 
g ∶ ℝ

2
→ ℝ , yielding g(�j, aj) = �jg(1, aj∕�j) = �jh(aj∕�j) with h convex. Here we assume that income 

and population weights have unit size. If this is not the case, then aj∕�j is proportional to j’s equivalent 
income.
18  Consider a distribution �′ . A PD transfer consists in a movement of a mass 𝜖 > 0 from class j to class 
k such that aj > ak , yielding bj = aj − � , bk = ak + � and b� = a� ∀� ≠ j, k such that bj ≥ bk . As a conse-
quence of this transformation, �� = ��� , � ∈ Dn (Lorenz dominance) and 

∑
j aj =

∑
j bj.
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of incomes can be rationalized by a specific sequence of more fundamental dis-
similarity preserving and reducing operations that are concerned with the way 
income shares and weights are shifted across units:

Corollary 3  Every PD transfer operation can be decomposed into a sequence of split 
of classes and merge of classes operations.

Split and merge operations can hence be seen as inequality reducing transfor-
mations that are more elementary than PD transfers. The proof of Corollary 3 
rests on the fact that any T-transform, an equivalent matrix representation of a PD 
transfer (see p. 33 in Marshall et al. 2011), can be exactly decomposed into the 
product of matrices representing split and merge operations. It follows that any 
univariate inequality comparison based on uniform majorization can be seen as 
a dissimilarity comparison but not the reverse, insofar the dissimilarity preserv-
ing and reducing operations of respectively  split and merge characterize matrix 
majorization of which uniform majorization is a particular case.

The interesting and new result provided by Corollary 2 is that there always 
exists a sequence of split and merge operations that supports uniform majoriza-
tion even in the multidimensional case ( d ≥ 2 ), although the same sequence can-
not be generally rearranged to represent PD transfers Kolm (1977).

5 � Concluding remarks

A large and sparse literature on segregation and inequality measurement has pro-
posed criteria for ranking multi-group distributions according to the dissimilarity 
they exhibit. This paper establishes the axiomatic foundations of the dissimilar-
ity criterion. We do so by developing a parsimonious axiomatic model which is 
based on dissimilarity preserving operations and a dissimilarity reducing opera-
tion, the merge, which consists in aggregating, distribution by distribution, the 
proportion of people observed in two separate classes. We study the partial order 
of distribution matrices originated by the transitive closure of all binary dissimi-
larity relations consistent with the operations and with a mixing axiom. This last 
axiom is crucial to justify an equivalent characterization of the “displays at most 
as much dissimilarity as” partial order. Our main theorem identifies a novel non-
parametric criterion, based on inclusion of the zonotope set representations of the 
data, which is equivalent to the dissimilarity partial order thus identified.

The zonotope inclusion criterion is relevant in many contexts. One application 
could be in evaluating the impact of certain educational policies for the patterns 
of dissimilarity between multi-ethnic distributions of students across schools in a 
district. This problem is commonly referred to as schooling segregation. We can 
use zonotopes to conclude about robust changes in segregation when comparing 
the actual situation and a counterfactual distribution that would have emerged in 
the absence of the policy. While the education policy itself may have little to 
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do with splitting, merging or mixing schools, the zonotope inclusion signals that 
one can always move from the counterfactual to the actual allocation of students 
through operations that are unanimously understood as segregation-reducing.

In some cases, zonotopes inclusion is rejected by the data. The dissimilarity indi-
ces analyzed in the paper allow to produce conclusive evaluations about the changes 
in dissimilarity. The implied ranking is always consistent with the implications of 
the “elementary” transformations. Evaluations based on one or few dissimilarity 
indicators, however, are not robust and can always be challenged on the perspective 
offered by alternative measures. The complete characterization of the dissimilarity 
indicators presented here is left for future research.

Appendix A: Proofs

Appendix A.1 Useful additional results

The first result shows that matrix majorization admits an equivalent representation 
in terms of unanimous ranking for a well defined class of convex functions.

Lemma 1  For any �,� ∈ Md , � ≼R � if and only if

for all functions g ∶ ℝ
d
→ ℝ that are convex and homogeneous such that g(��

d
) = 0.

For a formal proof, see Lemma 15.C.11 in Marshall et al. (2011).
The second result shows that the insertion of empty classes, split and merge oper-

ations can be represented through linear transformations involving row stochastic 
matrices. An operation of insertion of empty classes transforms � into � with 
nB > nA by augmenting � of nB − nA columns with zero entries. We denote by 
R

IEC
nA,nB

⊂ RnA,nB
 the set of all matrices reproducing an insertion of empty classes 

when post-multiplied to a distribution matrix � . Hence � ∈ R
IEC
nA,nB

 is an identity 
matrix of size nA augmented by nB − nA columns with zero entries.

Let M0
d
⊂ Md define the set of matrices exhibiting at least one column 

of zeroes. For � ∈ M
0
d
 , let J0

A
 denote the index set of all columns in � with all 

zeroes and JA denote the index set of all the other columns of � . Let j ∈ JA 
such that j + 1 ∈ J

0
A
 . The matrix �[j] incorporates an operation of split of classes 

applied to matrix � ∈ M
0
d
 that leads to matrix � ∈ Md with �j = ��j and 

�j+1 = �j+1 + (1 − �)�j = (1 − �)�j for � ∈ [0, 1] . Let k ≠ j , the set of all transforma-
tion matrices �[j] reproducing a split of classes is denoted by:

nB∑
j=1

g(b1j,… , bdj) ≤

nA∑
j=1

g(a1j,… , adj),

R
ISC
A

∶=

{
�[j] ∈ Rn ∶

zjj ∶= � , zj j+1 ∶= (1 − �), � ∈ [0, 1], j ∈ JA, j + 1 ∈ J
0
A
,

zkk ∶= 1, zih ∶= 0 in all other cases

}
.
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Also the merge of classes operation originates a distribution matrix � = � ⋅�[j] , 
where the matrix �[j] performs a merge of class j towards j + 1 . Such a matrix 
belongs to the set:

The third preliminary result provides an equivalent (algebraic and 
finite) condition for testing zonotope inclusion. Let denote first the sets 
Vn ∶= {� ∶ vj ∈ [0, 1], j = 1,… , n} and V01

n
= {� ∶ vj ∈ {0, 1}, j = 1,… , n}.

Lemma 2  Let �,� ∈ Md of size d × n such that ��
d
� = ��

d
� =

d

n
��
n
 . i) Z(�) ⊆ Z(�) 

if and only if ii) ∀� ∈ V
01
n

 ∃� ∈ Vn : �� = ��.

Proof  Note that Z(�) ⊆ Z(�) if and only if for any � ∈ Z(�) then � ∈ Z(�), 
whereas for Z(�) ⊂ Z(�) we also have that ∃�̃ ∈ Z(�) such that �̃ ∉ Z(�) . Using the 
Minkowski sum properties, this means that ∀� ∈ Vn ∃� ∈ Vn : � ∶=

∑
j �j�j =

∑
j �j�j, 

that is �� = �� for �,� ∈ Vn. Let assume, for ease of notation, that � ∈ Vn is 
ordered so that 0 ≤ �1 ≤ �2 ≤ … ≤ �n ≤ 1 . Denote �1 = �1 and �k = �k − �k−1 for 
k = 2,… , n . Note that �k ∈ [0, 1] ∀k . Recall that �k is the colum vector k of the iden-
tity matrix of size n and denote further �(h,h+1,…,n) ∶=

∑n

k=h
�k for any 1 ≤ h ≤ n so 

that if h = n − 1 then �(n−1,n) = �n−1 + �n and so on. We have that �(h,h+1,…,n) ∈ V
01
n

 ∀h . 
For any � ∈ Vn there always exists a class j such that � =

∑n

h=j
�h�(h,h+1,…,n) , so that 

Z(�) ⊆ Z(�) is equivalent to

for �,� ∈ Vn . We use this equivalence in the proof.
i) ⇒ ii). Immediate, since V01

n
⊆ Vn.

ii) ⇒ i). Assume that ii) holds, which can be equivalently stated as: for any 
1 ≤ h ≤ n there exists �(h,h+1,…,n) ∈ Vn : ��(h,h+1,…,n) = ��(h,h+1,…,n) . Consider substi-
tuting into � ⋅

∑n

h=j
�h ⋅ �(h,h+1,…,n) , yielding for any j:

Since 
∑n

h=j
�h�(h,h+1,…,n) ∈ Vn for any �h ∈ [0, 1] and for any j, the latter equation 

implies (7) and then i). 	�  ◻

The fourth and last preliminary result shows the equivalence between the 
zonotope inclusion criterion and price majorization. Although the proof largely 
draws on Koshevoy (1995), the setting we investigate is logically distinct, insofar 
the price majorization we use invokes d-dimensional prices to evaluate inclusion 

R
MC
n

∶=
{
�[j] ∈ Rn ∶ mj j+1 = mkk = 1 ∀k ≠ j, mih = 0 in all other cases

}
.

(7)� ⋅

n∑
h=j

�h ⋅ �(h,h+1,…,n) = ��,

n∑
h=j

� ⋅ �h�(h,h+1,…,n) =

n∑
h=j

� ⋅ �h�(h,h+1,…,n)

=� ⋅

n∑
h=j

�h�(h,h+1,…,n).
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of d-dimensional zonotopes, whereas Koshevoy shows the equivalence with d + 1

-dimensional extensions of the zonotope (the Lorenz zonotope). Denote by Cn the 
set of column stochastic matrices, so that � ∈ Cn ⇔ �� ∈ Rn . Define: " � is price 
majorized by � " whenever ∀� ∈ ℝ

d , ∃� ∈ Dn such that ��� = ���� . Given that 
we consider matrices in Md , then condition ����n = ����n is satisfied by con-
struction, therefore it suffices to consider only transformations � ∈ Cn to obtain 
price majorization.

Lemma 3  Let �,� ∈ Md of size d × n such that ��
d
� = ��

d
� =

d

n
��
n
 . i) Z(�) ⊆ Z(�) 

if and only if ii) ∀� ∈ ℝ
d ∃� ∈ Cn such that ��� = ����.

Proof  i) ⇒ ii). Assume that i) holds, then from Lemma (2) we have that 
∀k ∈ {1,… , n} ∃�jk ∈ [0, 1] for j = 1, 2,… , n such that �k =

∑
j �jk�j . In compact 

notation:

Matrix � may not be row stochastic but it is guaranteed that ��n = ��n . 
Using the fact that ��

d
� = ��

d
� we get from (8) that ��

d
�� = ��

d
� , which gives ∑

i aik =
∑

i

∑
j aij�jk =

∑
j �jk

∑
i aij , ∀k . Given that 

∑
i aik =

∑
i aij = d∕n for any 

k ≠ j , by definition of �,� , we get 
∑

j �jk = 1 , which means that � ∈ Cn . Hence i) 
⇒ � = ��, � ∈ Cn ⇒ ��� = ���� for all � ∈ ℝ

d and � ∈ Cn , which is ii).
ii) ⇒ i). Assume that ii) holds, which implies that �′� Lorenz dominantes �′� 

for any � ∈ ℝ
d , that is 

∑k

j=1
���(j) ≥

∑k

j=1
���(j) ∀k = 1,… , n where for each 

� ∈ ℝ
d the classes of � have been ordered by increasing magnitude of ���(j) , so that 

���(j) ≤ ���(j+1) ∀j (and similarly for the classes of � ). This is equivalent (see Mar-
shall et al. 2011) to:

where the max operator selects the k-tuple of columns of � and � that yield the larg-
est value when multiplied by any vector of prices � . An equivalent formulation is:

which implies

The previous condition identifies a situation where � ⋅ (�j1 + ... + �jk ) lies in the con-
vex hull of � ⋅ (�j1 + ... + �jk ) , see Koshevoy (1995). Making use of the definition of 
convex hull inclusion, we can alternatively write:

(8)� =

n∑
j=1

(
�j1�j,… , �jn�j

)
= ��.

max
j1,...,jk

�� ⋅ (�j1 + ... + �jk ) ≤ max
j1,...,jk

�� ⋅ (�j1 + ... + �jk ) ∀k, ∀� ∈ ℝ
d,

max
j1,...,jk

��� ⋅ (�j1 + ... + �jk ) ≤ max
j1,...,jk

��� ⋅ (�j1 + ... + �jk ) ∀k, ∀� ∈ ℝ
d,

��� ⋅ (�j1 + ... + �jk ) ≤ max
j1,...,jk

��� ⋅ (�j1 + ... + �jk ) ∀k,∀j1, ..., jk, ∀� ∈ ℝ
d.
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or equivalently � ⋅ (�j1 + ... + �jk ) = � ⋅
∑

∀j1,...,jk
�j1,...,jk (�j1 + ... + �jk ) , ∀k , 

∀j1, ..., jk . Noticing that 
⋃

k{(�i1 + ... + �ik ) ∶ i1, ..., ik ∈ {1,… , n}} = V
01
n

 and that ⋃
k{
∑

∀i1,...,ik
�j1,...,jk (�i1 + ... + �ik ) ∶ i1, ..., ik ∈ {1,… , n}} = Vn , one has that (9) 

is equivalent to ∀� ∈ V
01
n

 ∃� ∈ Vn : �� = �� . From Lemma 2, the latter condition 
implies i). 	�  ◻

Appendix A.2 Proof of Proposition 1

Proof  i) ⇒ ii). If i) holds, then it follows from Donaldson and Weymark (1998) that 
there exist partial orders that rank � at most as dissimilar as � and that these orders 
are consistent with the operations underlying axioms MC, IPC, IEC and ISC. Matrix 
majorization ≼R is one of such partial orders. In fact, as highlighted in the prelimi-
nary results section, every operation underlying axioms MC, ISC, IEC and IPC can 
be represented by a row stochastic matrix transformation, respectively by � ∈ R

MC
nA

 
for a merge of classes operation, by � ∈ R

ISC
nA

 for a split operation, by � ∈ R
IEC
nA,n

 for 
insertion/elimination of empty classes and by � ∈ PnA

 for permutations of classes. 
A sequence of these operations is for instance � = ���� ∈ RnA,n

 since the set of 
all row stochastic matrices R is closed with respect to the product operation. Any � 
obtained through these operations is row stochastic, thereby implying that ii) holds.

ii) ⇒ i). Assume that ii) holds, hence � = �� with � ∈ RnA,nB
 . In shorthand notation

where �j(k) denotes the generic element �jk of �. Each addendum in (10) can be 
written as:

where each � ∈ [0, 1] . In fact, every sequence of nB random numbers {�(k)}nB
k=1

 with 
support in [0, 1] satisfying 

∑
k �(k) = 1 can be written as:

The constraint 
∑

k �(k) = 1 imposes that there must exist an index k such that �k = 1 . 
If �k = 1 , then the series is completed and �j = 0 = �(j) for any j > k . Note that 
�(k) = 0 also if �k = 0 , thus the sequence of �(k) may also include elements equal to 

(9)

� ⋅ (�j1 + ... + �jk )

=
∑

∀j1,...,jk

�j1,...,jk� ⋅ (�j1 + ... + �jk ), �j1,...,jk ∈ [0, 1],
∑

�j1,...,jk = 1, ∀k, ∀j1, ..., jk,

(10)� =

nA∑
j=1

(
�j(1)�j,… , �j(nB)�j

)

(11)

(
𝜆j1�j, 𝜆j2(1 − 𝜆j1)�j,… , 𝜆j(nB−1)

∏
1≤k<nB−1

(1 − 𝜆jk)�j,
∏

1≤k≤nB−1

(1 − 𝜆jk)�j

)
,

(12)
�(1) = �1 ∈ [0, 1]

�(k) = �k

�
1 −

∑k−1

j=1
�(j)

�
with �j ∈ [0, 1] ∀j = 2,… , nB.
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0 even if it is not yet completed. Solving backward the sequence in (12) leads to (11) 
given that �(k) = �k ⋅

∏k−1

j=1
(1 − �j) with �j ∈ [0, 1] ∀j and �k ∈ [0, 1] ∀k = 2,… , nB.

Consider a sequence of matrices �[k] ∈ R
ISC
A

.19 Matrix �[1] performs the first split 
of vector �j according to proportion �j1 . Matrix �[2] performs a split on the residual 
component (1 − �j1)�j according to the proportion �j2 . The iteration of these argu-
ments leads to matrix �[nB−1]

 , representing the last split of vector �j out of a sequence 
of nB − 2 splits. It follows that (11) can be equivalently written as:

Extending the representation in (13) to all addends in (10) leads to a total of 
nA(nB − 1) = n splits of � ’s classes. The split operation preserves the number of 
classes, therefore it can be operationalized only if there exists a matrix � ∈ R

IEC
nA,n

 
adding a sufficient amount of empty classes to � to perform the n splits. According 
to the summation operator in (10), the order of the classes of � is irrelevant. Thus 
operations of permutations of classes are admitted.20 By combining all the opera-
tions in a single row we obtain � ⋅ �̂ , where the nA × n matrix �̂ rewrites:

where �[k](j) is indexed for j to highlight the relation with the class j in � . Here 
�̃[k](j) ∶= diag

(
�, �[k](j), �

�
)
 and � and �′ are two identity matrices of size (j − 1)nB 

and (nA − j)nB respectively. Line (15) comes from the fact that every block diagonal 
matrix can be represented as the product of the matrices associated with each block, 
obtained substituting the remaining blocks with identity matrices.

To conclude, it is possible to perform permutations of nAnB classes to rearrange 
the entries in � ⋅ �̂ to accommodate the definition of a merge of classes transforma-
tion through a matrix �nAnB

 . A convenient permutation rearranges nB groups of nA

-tuples of classes of � ⋅ �̂ , so that the j-th group consists of the sequence of classes 

(�1j�1,… , �nAj�nA ,…).21 Consider a sequence of merges of classes, so that class 1 in 
the new configuration is merged with class 2, then the resulting class 2 is merged 

(13)

(
𝜆j1�j,… ,

∏
1≤k<nB−1

(1 − 𝜆jk)�j, �d

)
⋅ �[nB−1]

= (�j, �d,… , �d) ⋅
∏

1≤k≤nB−1

�[k].

(14)�̂ ∶=�nA
⋅ � ⋅ diag

(
nB−1∏
k=1

�[k](1),… ,

nB−1∏
k=1

�[k](nA)

)

(15)=�nA
⋅ � ⋅

nA∏
j=1

(
nB−1∏
k=1

�̃[k](j)

)
,

19  See the preliminary results in Appendix A.1.
20  The two operations of permutation and insertion of classes transform � into

� ⋅�nA
⋅ � ∶= (�1, �d ,… , �d

⏟⏞⏞⏟⏞⏞⏟
nB−1 times

,… , �nA , �d ,… , �d
⏟⏞⏞⏟⏞⏞⏟
nB−1 times

).

21  Formally: � ⋅ � ⋅�nAnB
=
(
�11�1,… , �nA1�nA ,… , �1nB�1,… , �nA nB

�nA

)
.
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with class 3 and so on, up to the first nA classes. The sequence of merge transforma-
tions can be modeled by matrices �[1] ∈ R

MC
nAnB

 , �[2] ∈ R
MC
nAnB

 and so on, up to 
�[nA−1]

∈ R
MC
nAnB

 , respectively. Given the order of the classes, the same procedure 
can be extended to all the nB − 1 remaining nA-tuples of classes. This operation 
leaves many empty classes, that can be eliminated using a matrix �′ , incorporating 
the elimination of empty classes operation. As a result:

All the matrices multiplying � are row stochastic, and the resulting matrix is also 
row stochastic. Hence � ∈ RnA,nB

 can be always decomposed in permutation trans-
formations of the product of matrices originated exclusively by split, merge and 
insertion/deletion of empty classes. This is i), which concludes the proof. 	�  ◻

Appendix A.3 Proof of Remark 2

Proof  Assume �j ≼R � , then (by Proposition 1) ∃�j ∈ Rn such that �j = ��j , 
∀j . Recall that axiom Strong-MixC requires that � =

∑m

j=1
wj�

j , hence 
� =

∑m

j=1
wj�

j =
∑m

j=1
wj��

j = �
∑m

j=1
wj�

j ≼R � since 
∑m

j=1
wj�

j ∈ Rn given that ∑m

j=1
wj = 1 . Thus, � ≼R �. 	�  ◻

Appendix A.4 Proof of Remark 3

Proof  A direct verification of the remark can be obtained by consider-
ing matrices �, �̂ ∈ Md such that �̂ is obtained by permuting columns j and 
j + 1 of �. Thus, by IPC we have 𝐀 ∼ 𝐀̂. Setting m = 2, with �1 ∶= � and 
�2 ∶= �̂ in the definition of Strong-MixC and letting w1 = w2 = 1∕2, we 
obtain �0 = 1∕2 ⋅ �1 + 1∕2 ⋅ �2 = 1∕2 ⋅ (� + �̂). That is, �0 coincides with � 
except for columns j and j + 1 whose vectors are identical and coincide with 
1∕2 ⋅ �j + 1∕2 ⋅ �j+1. By Strong-MixC we have that �0 ≼ �. Consider matrix 
� ∈ Md that is identical to �0 except for columns j and j + 1 where �j = �d and 
�j+1 = �j + �j+1. If we drop the empty column j from � and split the class/column 
j + 1 with weights 1/2 and 1/2 into two adjacent classes we obtain matrix �0. Apply-
ing IEC and ISC we have that 𝐁 ∼ 𝐁0. By transitivity of the dissimilarity relation 
𝐁 ∼ 𝐁0 ≼ 𝐀 implies that � ≼ �. Note that by construction matrices � and � are 
those in the definition of axiom MC that turns out to be satisfied. 	�  ◻

� = � ⋅ �� ⋅�nAnB
⋅
∏

1≤k≤nB

( ∏
(k−1)nA<j<knA

�[j]

)
⋅ ��.
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Appendix A.5 Proof of Proposition 2

Proof  i) ⇒ ii). The proof consists in showing that the set of all matrices � such 
that � ≼R � can be characterized using exclusively operations underlying axioms 
Strong-MixC, IEC, ISC and IPC. The result follows from the fact that if i) holds, 
then it follows from Donaldson and Weymark (1998) that there exist partial orders 
that rank � at most as dissimilar as � and that these orders are consistent with the 
operations underlying axioms ISC, IEC, IPC and Strong-MixC, and matrix majori-
zation ≼R is one of such partial orders (by Proposition 1 and Remark 2).

The result holds for any matrix in Md . Let �,� ∈ Md with nA not necessarily 
equal to nB. First, consider matrices �̃, �̃ ∈ Md of size d × n obtained from �,� 
through split and permutation of classes and deletion of empty classes such that 
��
d
�̃ = ��

d
�̃ =

d

n
��
n
 . Every ordering ≼ satisfying axioms IEC, ISC and IPC ranks 

𝐀̃ ∼ 𝐀 and 𝐁̃ ∼ 𝐁.
We now investigate the implications for the transitive closure of the orderings ≼ 

(satisfying axioms IPC, IEC, ESC) deriving from the fact that it satisfies Strong-
MixC. We do so by looking at all permutations of a matrix �̃,  that turn out to be 
indifferent to it in terms of dissimilarity for all orderings satisfying IPC22, and apply-
ing to them the mixing operations considered in Strong-MixC, thereby obtaining the 
set of matrices that are matrix majorized by �̃ . The result holds for any initial matrix 
� ∈ Md . Denote by Jk , k = 2,… , n a partition of the classes {1,… , n} with cardi-

nality |Jk| = k . For instance, J2 = {1, 4} when n ≥ 4 . There are mk =

(
n

k

)
 parti-

tions for any k, with m =
∑

k mk , that are collected in the set Jk , so that Jk ∈ Jk and 
Jk ⊆ {1,… , n} . For any such partition Jk , define PJk

n
 the set of n × n permutation 

matrices corresponding to all permutations of indices in Jk (there are k! of them). 
The matrix �̃� , for � ∈ P

Jk
n

 ∀k is obtained by permuting k columns indexed as in 
Jk . Given that ≼ satisfies IPC, then 𝐀̃𝚷 ∼ 𝐀̃ . Consider a mix operation as defined in 
Strong-MixC axiom, that gives equal weight wh =

1

k!
 to each permutation 

h = 1,… , k! of indices in Jk , yielding 
∑k!

h=1
wh�̃� =

∑
�∈P

Jk
n

1

k!
�̃� = �̃ ⋅

∑
�∈P

Jk
n

1

k!
� . 

There are m of such matrices 
∑

�∈P
Jk
n

1

k!
� ∈ Rn , that can be denoted by �j , for 

j = 1,… ,m . Note that matrices �j form the basis of the set Rn (see Proposition 3.1 
in Dahl 1999).23 We hence have that �̃�j ≼ �̃ ∀j for all orderings ≼ satisfying 
Strong-MixC and IPC, moreover we have that �̃�j ≼R �̃ given that all �j are in Rn. 
Consider now obtaining �̃ by mixing (using the weights in axiom Strong-MixC) 
matrices �̃�j ∀j , such as: �̃ =

∑m

j=1
wj�̃�

j = �̃
∑m

j=1
wj�

j . Since 
∑

j wj = 1 , the 
summation term identifies the convex hull of all row-stochastic matrices that form 
the basis for the set Rn . From Corollary 3.2 in Dahl (1999), the set of matrices 
�̃ = �̃

∑m

j=1
wj�

j obtained for all wj ∈ [0, 1] and 
∑

j wj = 1 identifies the whole set of 
matrices that are matrix majorized by �̃ (which is called a Markotope), thus 

22  Note that all orderings ≼ satisfying IEC, ISC and IPC rank at unanimity 𝐁̃ ∼ 𝐀̃ if and only if �̃ = �̃� 
and � ∈ Pn . In fact, any other admissible matrix � ∈ R

IEC
n

∪R
ISC would not guarantee comparability of 

�̃ and �̃� , that is ��
d
�̃ =

d

n
��
n
 whereas �′

d
�̃� ≠

d

n
�′
n
.

23  Note further that matrix �̃ has uniform margins, implying that �j must be row and column stochastic.
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guaranteeing that �̃ ≼R �̃ . Recall now (see the second set of preliminary results) 
that because of the transformations of split and permutation of classes and deletion 
of empty classes that have generated matrices �̃, �̃ ∈ Md such that 𝐀̃ ∼ 𝐀 and 
𝐁̃ ∼ 𝐁 we have that it is possible to obtain �̃ from � through a row stochastic trans-
formation and also the other way round making use of another row stochastic trans-
formation, and similarly for �̃ and �, thus � ≼R �̃ and �̃ ≼R � that combined with 
�̃ ≼R �̃ by transitivity gives condition ii).

ii) ⇒ i). Assume ii), which is equivalent to � ≼ � by all dissimilarity orders satis-
fying MC, IPC, IEC, ISC from Proposition 1 and implies i) by Remark 3. 	�  ◻

Appendix A.6 Proof of Remark 4

Proof  The proof relies heavily on Remark 5 and Remark 7, which are demonstrated 
later. From Remark 7, � ≼R � is equivalently represented by Z(�) ⊆ Z(�) when 
d = 2 . By Remark 5, zonotope inclusion is consistent with the mixing operations 
underlying axiom MixC. 	�  ◻

Appendix A.7 Proof of Remark 5

Proof  Consider a d × n matrix � ∈ Md and a sequence of d × n matrices �j ∈ Md 
for j = 1,… ,m such that ��

d
� = ��

d
�j =

d

n
��
n
 ∀j . Note that for any sequence 

�̃, �̃j ∈ Md one can find such matrices �,�j defined as above such that Z(�) = Z(�̃) 
and Z(�j) = Z(�̃j) , ∀j . Assume that Z(�j) ⊆ Z(�),∀j . By Lemma 2, ∀�j ∈ V

01
n

 
∃�j ∈ Vn such that �j

�
j = ��j , ∀j . Obtain � ∈ Md as per (4), then ∀� ∈ V

01
n

 
∃�j ∈ V

01
n

 such that �� ∈ conv{�1
�
1,… ,�m

�
m} . There hence exist weights denoted 

��

j
 that are specific to the choice of the mixing � , satisfying ��

j
∈ [0, 1] and ∑m

j=1
��

j
= 1 such that �� =

∑
j �

�

j
�j
�
j =

∑
j �

�

j
��j = �

∑
j �

�

j
�
j = �� with �j ∈ Vn 

∀j . Since Vn is closed to convex combinations, then � ∈ Vn , which by Lemma 2 is a 
sufficient condition for Z(�) ⊆ Z(�) . 	�  ◻

Appendix A.8 Proof of Theorem 1

Proof  i) ⇒ ii). The proof consists in showing that the set of all matrices � such that 
Z(�) ⊆ Z(�) can be characterized using exclusively operations underlying axioms 
MixC, IEC, ISC and IPC. The result follows from the fact that if i) holds then it fol-
lows from Donaldson and Weymark (1998) that there exist partial orders that rank � 
at most as dissimilar as � and that these orders are consistent with the operations 
underlying axioms ISC, IEC, IPC and MixC. The zonotope inclusion criterion 
entails one of such partial orders (by Remark 5). The result must hold for any matrix 
� . Using the same procedure and notation as in the part i) ⇒ ii) of the proof of 
Proposition 2, we can construct matrices �j , for j = 1,… ,m such that �̃�j ≼ �̃ ∀j 
for all orderings ≼ consistent with axioms MixC, IPC, IEC, ISC (note that the set of 
orderings consistent with axioms MixC is a subset of those consistent with 
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Strong-MixC by Remark 1). Moreover, note that for such matrices it is also verified 
that for any � ∈ Vn there exists a � ∈ Vn such that �̃�j

� = �̃� which yields 
�̃(�j

� − �) = �d ∀j . Using the fact that �j ∈ Rn ∀j then �j
� ∈ Vn , so that it is suffi-

cient to set � = �j
� for every � ∈ Vn to guarantee that � ∈ Vn. As argued in the proof 

of Lemma 2 the previous condition implies that Z(�̃�j) ⊆ Z(�̃) ∀j . Note that only 
some classes (i.e., columns) of �̃�j identify vertices of Z(�̃) . To see this, note that 
for any matrix �j =

∑
�∈P

Jk
n

1

k!
� the class h of �̃�j has coordinates 

� ∶=
∑

�∈Jk

(k−1)!

k!
�̃� for any h ∈ Jk , whereas class h′ of �̃�j is equal to �̃h′ for all 

h� ∉ Jk . This holds ∀j, k . Any vector � is a vertex of the zonotope Z(�̃) , since 
k� = �̃� with � ∈ V

01
n

 such that �j = 1 whenever j ∈ Jk whereas �j = 0 for any j ∉ Jk . 
From Proposition 3.1 in Dahl (1999), the zonotope set Z(�̃) is the convex hull of 
these vertices. To complete the proof, consider now a matrix �̃ ∈ Md satisfying 
condition (4), where �j = �̃�j , j = 1,… ,m . Such a matrix is ranked �̃ ≼ �̃ by all 
dissimilarity ordering satisfying axioms MixC, IEC, IPC and ISC. For any such 
matrix, we have that ∀� ∈ V

01
n

 ∃�j ∈ V
01
n

 , j = 1,… ,m : 
�̃� ∈ conv{�̃�1

�
1,… , �̃�m

�
m} . Any element of the conv set writes: ∑m

j=1
𝜔j�̃�

j
�
j = �̃

∑m

j=1
𝜔j�

j
�
j = �̃

∑m

j=1
𝜔j�

j = �̃� with �j ∈ Vn since �j ∈ Rn ∀j 
and also � ∈ Vn given that �j ∈ [0, 1] , 

∑
j �j = 1 . It follows that ∀� ∈ V

01
n

 ∃� ∈ Vn : 
�̃� = �̃� , which is equivalent to Z(�̃) ⊆ Z(�̃) from Lemma 2. The fact that 
Z(�̃) = Z(�) and Z(�̃) = Z(�) gives ii).

In order to highlight the differences with the analogous steps in the proof of Prop-
osition 2, note that, as shown there, each matrix �j is a basis for Rn : every row-
stochastic matrix is obtained as a convex combination (with weights as in axiom 
Strong-MixC) of matrices �j for j = 1,… ,m. However, the weighting schemes 
underlying axiom Strong-MixC are only a subset of the admissible weights accord-
ing to axioms MixC. In particular, these weights are not capable of generating the 
convex hull of all vertices of Z(�̃) and, as a consequence, they are not sufficient 
to characterize the full set of matrices �̃ such that Z(�̃) ⊆ Z(�̃) , as opposed to the 
weights considered in MixC. Nonetheless, the weights underlying axiom Strong-
MixC provide sufficient structure to characterize the set of matrices �̃ such that 
�̃ ≼R �̃ , as illustrated in Proposition 2.

ii) ⇒ i). We show that the zonotope inclusion condition can always be rational-
ized by the existence of matrices that are ranked consistently by all dissimilarity 
orderings in i). Assume that ii) holds, and note that Z(�) ⊆ Z(�) ⇔ Z(�̃) ⊆ Z(�̃) 
where �̃, �̃ ∈ Md are d × n matrices obtained though split and permutation 
of classes and deletion of empty classes from � and � respectively, such that 
��
d
�̃ = ��

d
�̃ =

d

n
��
n
 , as done in the first part of the proof of Proposition 2. Consider 

further matrices �̃j ∈ Md , for j = 1,… ,m with m = n , of size d × n defined as: 
�̃j ∶= (�̃j,

1

n−1
�j,… ,

1

n−1
�j) ⋅�1,j with �i,j ∈ Pn being a permutation matrix permut-

ing classes 1 and j. Denote vector �j ∶= �d − �̃j the “residual”, where we recall that 
�̃j denotes column j of matrix �̃ . By construction, Z(�̃j) ⊆ Z(�̃) ∀j . Considering that 
because of the definition of zonotope inclusion we have that �̃j = �̃� , for � ∈ Vn 
then �j = �̃(�n − �) . Notice that the vector � is specific to a matrix �̃j . It follows 
that:
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with �j ∈ Rn for every j = 1,… ,m . We conclude that condition ii) always implies 
that �̃j ≼R �̃ ∀j for the n matrices �̃j obtained as above. Now consider the set of 
weights wk

j
 with the following features: wj

j
= 1 and wj

k
= 0 for any j = 1,… , n and 

k = 1,… , n such that k ≥ j . By construction: 𝐛̃k =
∑

j w
k
j
𝐛̃
j

k
 for all k = 1,… , n . From 

Proposition 1, �̃j ≼ �̃ ∀j for all orderings satisfying MC, ISC, IEC, IPC. These are 
also the orderings satisfying ISC, IEC, IPC and Strong-MixC from Proposition 2. 
By Remark 1, this set of orderings includes those that are in i) because those consid-
ered in the set satisfy the stronger version of the MixC axiom. To conclude, we 
should verify that matrix �̃ is obtained through a weighting scheme that is consistent 
with condition (4). This is immediate, since for � = (�1,… , �n)

� ∈ V
01
n

 we have that 
�̃� = (�̃1,… , �̃n)� = (

∑
j
w
1

j
�̃
j

1
,… ,

∑
j
w
n

j
�̃
j

n)� = (�̃1
1
,… , �̃n

n
)� = (�̃1�1,… , �̃n�n)� = (�̃1�1𝛾1,… , �̃n�n𝛾n) 

where we recall that �k is the k-th column of a n × n identity matrix and that the sec-
ond equality follows from the choice of the weighting scheme. It is sufficient to set 
�
j ∶= �j�j ∈ V

01
n

 to conclude that the condition ∀� ∈ V
01
n

 ∃�j ∈ V
01
n

 such that 
�̃� = (�̃1

�
1,… , �̃n�n�

n) satisfies condition (4).
As a result for the obtained matrix �̃ we have that �̃ ≼ �̃ for all orderings satisfy-

ing ISC, IEC, IPC and MixC. The same orderings rank 𝐀̃ ∼ 𝐀 and 𝐁̃ ∼ 𝐁 , which 
implies i). 	�  ◻

Appendix A.9 Proof of Remark 6

Proof  Recall the definition of the zonotope set inclusion, for any �,� ∈ Md , that is 
Z(�) ⊆ Z(�) if and only if ∀� ∈ VnB

 ∃� ∈ VnA
 such that �� = ��.

Let � ≼R � . By Proposition 1, � = �� with � ∈ RnB,nA
 , which after substitut-

ing in �� = �� yields �(�� − �) = �d . Given that � ∈ RnB,nA
, this implies that 

�� ∈ VnA
 for any � ∈ VnB

 , it is therefore sufficient to set � = �� for � ∈ VnB
 to guar-

antee that � ∈ VnA
 , which thus implies Z(�) ⊆ Z(�) . 	�  ◻

Appendix A.10 Proof of Remark 7

Proof  Let �̃, �̃ ∈ M2 denote two distribution matrices obtained respectively from 
�,� ∈ M2 using split and permutation of classes and deletion of empty classes, such 
that Z(�) = Z(�̃) , Z(�) = Z(�̃) , with nÃ = nB̃ = ñ , 

∑
j �j =

∑
j �̃j =

∑
j �̃j =

∑
j �j 

and 
∑

i ãij =
∑

i b̃ij =
1

ñ
 ∀j = 1,… , ñ . Assume that Z(�̃) ⊆ Z(�̃) which, from Lemma 

2, implies that ∀� ∈ V
01
ñ
, ∃� ∈ Vñ ∶ �̃� = �̃� . The vector � selects column vectors 

(16)

�̃j ∶=(�̃�,
1

n − 1
�̃(�n − �),… ,

1

n − 1
�̃(�n − �))�1,j

=�̃(�,
1

n − 1
(�n − �),… ,

1

n − 1
(�n − �))�1,j

=�̃�j
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from �̃ and aggregates these vectors with elementwise summations. For every 
i = 1, 2 we can equivalently write the condition as:

with �jk ∈ [0, 1] ∀j, k . It is necessary and sufficient that (17) holds for an arbitrary 
group i = 1 to guarantee that (17) also holds for i = 2 , given that by construction 
ã2j =

2

ñ
− ã1j and b̃2j =

2

ñ
− b̃1j ∀j = 1,… , ñ . After rearranging the terms in (17) 

in increasing order, so that b̃1(k) ≤ b̃1(k+1) and ã1(k) ≤ ã1(k+1) , for k = 1,… , ñ − 1 , 
and using the fact that �jk ∈ [0, 1] it follows that 

∑h

k=1
b̃1(k) ≥

∑h

j=1
ã1(j) , for any 

h = 1,… , ñ . From Marshall et  al. (2011), if d = 2, this condition is equivalent to 
uniform majorization, i.e. ∃� ∈ Dñ ∶ (b̃11,… b̃1ñ) = (ã11,… ã1ñ)� . Hence �̃ = �̃� , 
since the same matrix � guarantees that (b̃21,… b̃2ñ) = (ã21,… ã2ñ)� . Furthermore, 
notice that the indifference class of ≼R is also characterized by the existence of row 
stochastic matrices: for any �,� ∈ Md , 𝐁 ∼ 𝐀 for all orderings ≼ satisfying axi-
oms MC, ISC, IEC and IPC if and only if ∃� ∈ RnA,nB

 and ∃�� ∈ RnB,nA
 such that 

� = � ⋅ � and � = � ⋅ �� . We can hence write �̃ = �� with � ∈ RnA,ñ
 and � = �̃� 

with � ∈ Rñ,nB
 . Thus � = �̃� = �̃�� = ���� = �� with � ∈ RnA,nB

 since 
Dñ ⊆ Rñ and the set Rn is closed with respect to matrix product. This concludes the 
proof for d = 2 . When d > 2 , there is no guarantee that the row stochastic matrix � 
satisfying (17) for group i also verifies �̃ = �̃� . 	�  ◻

Appendix A.11 Proof of Proposition 3

Proof  From Proposition 1, i) is equivalent to � ≼R � . From Lemma 1 in Appendix 
A.1, we have that � ≼R � if and only if

for g ∶ ℝ
d
→ ℝ convex and homogeneous with g(��

d
) = 0 . Note that � ≼R � is 

equivalent to (��,�)
�

≼R (��, �)� , where �
�
= ��

d
⋅ � and �� = ��

d
⋅ �, that is if both 

matrices �,� ∈ Md are "expanded" by adding one more row whose elements are 
given by the sum of the elements of the associated column in the original matrix. 
Condition (18) hence rewrites 

∑
j g(�

�
j
, bj) ≤

∑
j g(�

�
j
, aj) with g defined on ℝd+1 . 

Given that g is convex and homogeneous, then g(��
j
, aj) = ajg(�

�
j
∕aj, 1) = ajh(�

�
j
∕aj) 

where h ∈ H , while for convenience empty classes receive weight a = 0 . Moreover, 
adding |nA − nB| empty classes preserves the relation in (18). We have therefore 
obtained the index Dh . Thus, Dh(�) ≤ Dh(�) ∀h ∈ H is equivalent to (18) and to 
condition ii). 	�  ◻

(17)
h∑

k=1

b̃ik =

h∑
j=1

ãij𝜃jk, ∀h = 1,… , ñ,

(18)
nB∑
j=1

g(b1j,… , bdj) ≤

nA∑
j=1

g(a1j,… , adj),
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Appendix A.12 Proof of Proposition 4

Proof  Recall that from Theorem 1 for �,� ∈ Md we have that � ≼ � for all order-
ings ≼ satisfying axioms MixC, ISC, IEC, IPC if and only if Z(�) ⊆ Z(�).

Consider matrices �̃, �̃ of dimension d × n obtained from �,� through split 
and permutation of classes and deletion of empty classes, so that 
��
d
�̃ = ��

d
�̃ =

d

n
��
n
 . Then, by construction, Z(�) ⊆ Z(�) ⇔ Z(�̃) ⊆ Z(�̃) . 

According to Lemma 3 the latter zonotope inclusion condition is equivalent to 
n���̃ = n���̃� , for � ∈ Cn and for any p ∈ ℝ

d . From Hardy et  al. (1934), this 
condition is equivalent to 

∑
j
1

n
𝜙(n��̃j) ≤

∑
j
1

n
𝜙(n��̃j) for all convex functions 

� ∶ ℝ → ℝ . Consider a set of indices Kj such that the classes of �̃ are obtained 
from those of � by split transformations. Thus for any class j in � there is a non-
empty set Kj of associated classes in �̃. Let k ∈ Kj denote a generic element of 
the set Kj associated with the class k in � and consider a related "splitting" weight 
�k such that 

∑
k∈Kj

�k = 1 for any j = 1, ..., nB, we can then write �̃k = 𝛼k�j , with 
by construction n =

1

b̃k

=
1

𝛼kbj
 where bj ∶= ��

d
�j and similarly for b̃k. It follows that 

the argument of the evaluation function � defined for matrix �̃, becomes 
1

n
𝜙(n��̃k) = b̃k𝜙(��̃k∕b̃k) = 𝛼kbj𝜙(𝛼k��j∕(𝛼kbj)) = 𝛼kbj𝜙(��j∕bj) . It follows that 

∑
j
1

n
𝜙(n��̃k) =

∑
j

∑
k∈Kj

𝛼kbj𝜙(��j∕bj) =
∑

j bj𝜙(��j∕bj) . An analogous sequence 
of transformations applies to 

∑
j
1

n
𝜙(n��̃j) that leads to 

∑
j aj�(��j∕aj) , thereby 

yielding D�,�(�) ≤ D�,�(�) for all � ∈ ℝ
d and for every � convex that is equiva-

lent to Z(�̃) ⊆ Z(�̃) that in turns is equivalent to Z(�) ⊆ Z(�) that is equivalent 
to unanimity for all orderings satisfying MixC, ISC, IEC, IPC. 	�  ◻

Appendix A.13 Proofs of Corollary 2

Proof  By Theorem 1, (6) is equivalent to �̃ = �̃� for � ∈ RnA,nB
 , which gives con-

dition (i). Each entry in the first row of �̃ is a constant equal to 1∕nA , so it can be 
transformed by � into the corresponding element in �̃ , equal to 1∕nB , only by multi-
plying each single entry by nA∕nB , thus (ii) should also hold. 	�  ◻

Appendix A.14 Proofs of Corollary 3

Proof  A formal proof draws on the fact that any (inequality reducing) PD trans-
fer of an income share � among classes j and k can be formalized through a lin-
ear transformation of vector �′ towards �′ involving a T-transform matrix �(�, k, j) , 
such that �� = �� ⋅ �(�, k, j) , with �(�, k, j) ∶= ��n + (1 − �)�j,k , where �n is the 
identity matrix, � ∈ [0, 0.5] and �j,k ∈ Pn is a permutation matrix obtained from 
�n by permuting columns j and k. Given a matrix � ∈ Md with n columns, let 
�(�, k, j) ∈ RnA,nB

 be a row stochastic matrix that splits column k of � and merges a 
share (1 − �) of k with column j. This row stochastic matrix writes:
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where � ∈ [0, 0.5] and �n+1,k ∈ Pn+1 is a n + 1 dimensional permutation 
matrix obtained from �n+1 by permuting columns n + 1 and k. Any T-transform 
involves a proportional movement of population masses from two classes, which 
amounts to repeating twice a sequence of splits and merges �(�, k, j) , so that 
�(�, k, j) ∶= �(��, k, j) ⋅ �(���, j, k) , where the splitting parameters must satisfy 
��� = 1 − � and �� = 1−2�

1−�
 . 	� ◻

Appendix A.15 Proof that Z(�) ⊆ Z(�) from example (1)

We first show that Z(�) ⊆ Z(�) for distribution matrices �,� in example (1). Note 
that after splitting equally column 1 of matrix � into two columns, one obtains 
matrix �̃ = (

1

2
�1,

1

2
�1, �2, �3) so that both matrices �̃ , � share the same distribu-

tion for one of the groups (the first row), which is uniform. The zonotopes of these 
matrices are three-dimensional objects, but the inclusion Z(�) = Z(�̃) ⊆ Z(�) can 
be verified by fixing the dimension related to group 1 and then focusing on inclu-
sion in terms of facets of the zonotope obtained by the intersection of each zonotope 
with the hyperplanes identified by levels of pupulation of group 1 and parallel to the 
orthants of groups 2 and 3. Among these factes, only three are relevant: those cor-
responding to proportions of group 1 equal to 1

4
 , 2
4
 and 3

4
 . If inclusion of the facets of 

Z(�) into those of Z(�) is verified for each relevant share of group 1, then it is veri-
fied for any share of group 1.24

The facets of Z(�) (dark gray) and �(�) (light gray) at given proportions of group 
1 are represented in Fig. 3. They are taken from figure 1(b), representing the three-
dimensional zonotope of �. The scaling of the axis eases the visual representation of 
the projections coordinates. Zonotope inclusion is granted for each projection (mov-
ing north-east implies larger shares of group 1 population), implying Z(�) ⊆ Z(�).

Next, we show that every class of � can be obtained through merge and split 
operations from the classes of � and yet � ⋠R � . Consider the following row-sto-
chastic matrices:

 Matrix �1 is such that column �1
1
 displays a merge of classes 1 and 2 of matrix � 

yielding �1 , whereas the remaining classes are merged and split uniformly into two 
classes. Every column �j

j
 is the result of split and merge operations that determine 

�(�, k, j) ∶=
[
�
(
�n, �n

)
+ (1 − �)

(
�n, �n

)
�n+1,k

]
⋅

(
�n
�j

)
,

�1 =

⎛⎜⎜⎜⎝

1 0 0

1 0 0

0 0.5 0.5

0 0.5 0.5

⎞⎟⎟⎟⎠
; �2 =

⎛⎜⎜⎜⎝

0.25 0.5 0.25

0.5 0 0.5

0.25 0.5 0.25

0.5 0 0.5

⎞⎟⎟⎟⎠
; �3 =

⎛⎜⎜⎜⎝

0.5 0.5 0

0.375 0.375 0.25

0.125 0.125 0.75

0.5 0.5 0

⎞⎟⎟⎟⎠
.

24  In fact, zonotopes are convex hulls of the underlying vertices, being defined by the sequential cumula-
tion of the classes of the distribution matrices (see also Koshevoy 1995).
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class �j of the distribution matrix � , whereas the remaining classes are merged and 
then split uniformly. The products ��j give the following matrices �j:

 It is clear that �j ≼R � which implies Z(�j) ⊆ Z(�) (from Remark 6) for any 
j = 1, 2, 3 . Now consider obtaining classes of matrix � as a weighted average of 
classes of �j using the weights wk

j
 , j = 1, 2, 3 and k = 1, 2, 3 such that wj

j
= 1 ∀j and 

wk
j
= 0 when k ≠ j . These weights are consistent with condition (4) (and hence with 

axiom MixC, see the second part of the proof of Theorem 1), but not with those 
implied by axiom Strong-MixC (they are not constant for given j). Matrix � can be 
obtained from �j using �k =

∑
j w

k
j
�
j

k
= �k

k
 for any k = 1, 2, 3 ∀k . This implies 

Z(�) ⊆ Z(�) (from Lemma 5). Yet, using the weighting scheme we obtain � = �� 
with �k =

∑
j w

k
j
�
j

k
= �k

k
 ∀k , but � ∉ R4,3 since there is a unique � with non-nega-

tive entries that transforms � into � as in (3) that is not row-stochastic, thus � ⋠R � . 
This counterexample shows that matrix majorization is not consistent with the 
axiom MixC.
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Fig. 3   Geometric proof that Z(�) ⊆ Z(�)
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