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Abstract
We provide micro foundations for the global production function (GPF) based on 
the standard microeconomic model, and we develop a parallel probabilistic model 
with similar properties. The theoretical and probabilistic models of the GPF are 
integrated in the context of a technology choice problem. We construct a primitive, 
named the augmented transformation function, to obtain a GPF and its associated 
joint distribution that includes the output and labor-saving and capital-saving tech-
nological innovations. This type of primitive allows us not only to derive the theo-
retical GPF but also to consistently build a link between the substitutability micro-
parameters (elasticities) and the probabilistic parameters (correlations). We find that 
the shape of the GPF is determined by all the relations among technological innova-
tions and output and the way they are combined.
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Introduction

Endogenous technology choice models obtain the shape of the GPF from two 
primitives: (1) the functional form of the local production function (LPF) and 
(2) the functional form of the technology frontier (TF), which is calculated as 
a level curve of a predefined joint distribution of labor- and capital-augmenting 
ideas (Growiec 2008a, b, 2013, 2018; Jones 2005, 2011). Then, the LPF is maxi-
mized subject to the TF to find the GPF, microfounding the shape of the GPF by 
assuming the probabilistic model that gives rise to the TF. Jones (2005) obtains 
a Cobb‒Douglas GPF from a Leontief LPF and a TF viewed as a level curve 
of a joint distribution with independently Pareto-distributed ideas. He finds that 
the shape of the GPF is determined by the distribution of ideas rather than by 
the shape of the LPF. Growiec (2008a, b) shows that if ideas are independently 
Weibull-distributed (with the same shape parameter) or Pareto-distributed and 
dependent according to the Clayton copula, then the GPF can be of the CES 
class. He shows that the GPF is determined by the distribution of ideas and by 
the shape of the LPF. Growiec (2013) devises a specification of the R&D sec-
tor, microfounding the assumption of Weibull-distributed ideas by using extreme 
value theory. He finds that the Weibull distribution is an accurate approximation 
of the true distribution of ideas needed to obtain GPFs of the CES class. Growiec 
(2018) assumes homothetic primitives and finds that the TF and the GPF are dual 
objects, confirming that the GPF depends on the shapes of both the LPF and the 
TF unless one of them has the Cobb‒Douglas form. He proves that if the idea 
distribution is homothetic and the copula is additively separable, then the TF is of 
the CES or Cobb‒Douglas form, which translates into a requirement of Pareto or 
Weibull marginal idea distributions.

In general, the previous literature develops a new method to obtain the GPF 
and provides relevant insights into the determinants of its shape. However, the 
functional forms of the primitives impose implicit restrictions on the relations 
among output and factor-saving ideas and the way they are combined, which have 
a strong influence on the final GPF. In fact, such assumptions lead us to disregard 
some of the interdependencies among output and factor-augmenting ideas (Das 
2021), to impose the mathematical structure of very specific extreme probability 
distributions on the TF and the GPF and to envisage the probabilistic model only 
as a primitive needed to obtain the GPF shape. We hold that these limitations 
can be avoided by microfounding the shape of the GPF based on the properties 
of the firm’s production set, which is considered a primitive datum of the theory 
(Debreu 1959; Diewert 1973; Mas-Colel, 1995).

Thus, in this paper, we take a new look at the link between the theoretical and 
probabilistic models of the GPF in the context of the technology choice prob-
lem with given input levels. As opposed to the previous literature, we propose 
to obtain a microfounded theoretical GPF and link it with a probabilistic model 
by using a unique primitive: a neoclassical augmented transformation function 
(ATF), which is an equivalent way of describing the properties of the set of 
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feasible production plans augmented by labor- and capital-saving technological 
innovations (ideas) (Debreu 1959; Diewert 1973; Acemoglu 2003). First, we use 
the ATF to calculate economically meaningful functional forms for the local pro-
duction function (LPF) and the technology frontier (TF). Second, we maximize 
the LPF subject to the TF to obtain the GPF, microfounding the shape of the 
GPF by using an ATF whose shape is consistent with the assumptions (restric-
tions) imposed on the original augmented production set (Diewert 1973). In this 
context, we show that the resulting GPF can also be used to determine the cor-
responding set of production plans, and thus, we obtain a duality between our 
ATF, the set of feasible production plans, and the GPF (Diewert 1973). Finally, 
to integrate the theoretical model with the probabilistic model of the GPF, we 
propose to construct the proper joint probability distribution associated with our 
microfounded ATF by using Sklar’s theorem.

By obtaining the theoretical and probabilistic models of the GPF from a unique 
ATF (convex, quasiconcave, continuous from above, nonincreasing in output, and 
nondecreasing in the levels of technological innovations and knowledge) that reflects 
the structure of the augmented production set (Diewert 1993), we add the following 
findings to the literature: (1) We calculate a general GPF with the following prop-
erties: continuous, quasiconcave, and nondecreasing in inputs and in the level of 
knowledge. More importantly, we show that the shape of the GPF and the elasticity 
of substitution are determined by all the relations among the technological innova-
tions and output and the way they are combined, described by the firm’s augmented 
production set rather than by specific functional forms of the LPF and the TF. (2) 
By mapping the theoretical ATF to a copula, the resulting probabilistic model also 
reflects the structure of the production set and the ATF (Diewert 1993). Thus, we 
can consistently relate the substitutability parameter set to the copula’s depend-
ence parameter set through statistical correlation measures such as Kendall’s tau or 
Spearman’s rho. Specifically, we link the microeconomic parameters (elasticities) to 
the probabilistic parameters (correlations) without imposing further restrictions on 
them, and (3) we illustrate our setup by assuming a primitive (ATF) with the CES 
property that allows us to find closed forms of all the well-known global production 
functions (linear, Leontief, Cobb‒Douglas, and CES) and build a link between the 
substitutability microparameters and the statistical parameters (correlations).

This paper is organized as follows. “The Setup” establishes our approach to 
deliver global production functions based on a transformation function augmented 
by labor- and capital-saving technological innovations. We also show that the aug-
mented production set, the ATF, and the GPF are dual objects. In addition, we show 
how our transformation function can be the basis of constructing a joint distribution 
that makes our setup empirically relevant. In “Illustration of How to Derive a Nested 
CES GPF and its Distribution Function Based on an Augmented Transformation 
Function”, we apply our setup to obtain a novel nested CES GPF with two depend-
ence parameters. “Conclusion” concludes and suggests potential directions of future 
research.
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The Setup

Here, we construct our basic object, an augmented transformation function (ATF), 
which reflects the microeconomic structure of the set of feasible production plans 
available for firms in a competitive economy. This function is augmented because 
there are two types of technological innovations available for given levels of labor L 
and capital K in the domain of each production plan. The ATF reflects the relation-
ship among the outputs and the factor-saving innovations, the availability of such 
innovations, and the substitutability or complementarity between them. We need 
to introduce this function because it is a primitive that allows us to theoretically 
derive the local production function (LPF) of a firm and its technology frontier (TF), 
from which we can derive all the textbook GPFs,1and it is naturally associated with 
a trivariate joint distribution function by using Sklar’s theorem, which describes all 
the probabilistic relations among the technological innovations and output.

Theoretical Setup: A Transformation Function is Used to Obtain a Deterministic 
Microfounded GPF

We assume that there exists a set of feasible production plans, augmented by capital- 
and labor-saving technological innovations and a level of knowledge, from which an 
augmented transformation function (ATF) is realized. The level of knowledge deter-
mines the possible pairs of labor- and capital-saving technological innovations. We 
treat technological innovations as scarce goods that are substitutable or complemen-
tary like any other good in the economy. The higher the level of knowledge is, the 
more possible combinations of technological innovations. We show that the ATF 
embeds an LPF and a TF that are the basis for deriving a GPF.

Let j ∈ J ⊆ ℝ index a discrete set of homogenous firms in a competitive econ-
omy. Let i ∈ I ⊆ ℝ index a feasible production plan (i.e., a pair of labor-saving and 
capital-saving technological innovations ai and bi , respectively, an exogenous level 
of knowledge Ni , the input levels Li and Ki , and the output level2 Ỹi ), which is avail-
able for the j-th firm at any given point in time t ∈ T = [0, �] . Note that the level of 
knowledge determines the feasible set of possible pairs of labor- and capital-saving 
technological innovations. In addition, a multiplicity of pairs (ai, bi) in this set can 
attain the same level of knowledge Ni.

An augmented production plan (ai, Li, bi,Ki, Ỹi,Ni) is feasible if the combination 
of technological innovations 

(
ai, bi

)
 available for the level of knowledge Ni and the 

levels of inputs Li and Ki can produce the level of output Ỹi.

Assumption 2.1.1 Let (ai, Li, bi,Ki, Ỹi,Ni) represent a single production plan aug-
mented by ai, bi , and Ni , and let Bj ⊆ ℝ

6 represent the set of augmented feasible 
production plans for the j-th firm at time t , where Ỹi is the output and the available 
1 In this paper, we analyze a technology choice problem, which is different from the classic production 
problem of choosing the inputs and the output level by maximizing profits.
2 The level of production Ỹi can be attained by different combinations of innovations for a given level of 
knowledge and inputs.
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technology pair of innovations (ai, bi) is associated with the levels of labor and capi-
tal, Li and Ki , respectively. Let Bj be a nonempty, closed, and convex subset of the 
nonnegative orthant in ℝ6 that satisfies the following properties:

a. I f  (ai, Li, bi,Ki, Ỹi,Ni) ∈ Bj  and (al, Ll, bl,Kl,Nl) ≥ (ai, Li, bi,Ki,Ni), then 
(al, Ll, bl,Kl, Ỹi,Nl) ∈ Bj,3

b. 0 = (0, 0, 0,0, 0,0) ∈ Bj  ,  and if for an augmented production plan 
(ai, Li, bi,Ki, Ỹi,Ni) ∈ Bj , ai = 0 , Li = 0 , bi = 0 , Ki = 0 or Ni = 0 , then Ỹi = 0 
(possibility of inaction and no free lunch),

c. If (ai, Li, bi,Ki, Ỹi,Ni) ∈ Bj and 0 ≤ Ỹ� ≤ Ỹi, then (ai, Li, bi,Ki, Ỹ� ,Ni) ∈ Bj , and

d. For each vector(ai, Li, bi,Ki,Ni) ≥ 0, , the set 
{
Ỹi ∶ (ai, Li, bi,Ki, Ỹi,Ni) ∈ Bj

}
 of 

feasible outputs is bounded from above.

Assumption 2.1.1 not only states the substitutability or complementarity between 
Li and Ki and ai and bi , respectively, but also describes the relationship of such inputs 
and the level of the available factor-saving technological innovations and output. 
Properties (i) and (iii) indicate that if we can produce a certain quantity of output 
with a given amount of inputs and technological innovations, then higher quanti-
ties can produce at least the same level of output. Property (ii) indicates that firms 
can decide not to produce and not incur costs for production and that all inputs and 
technological innovations are necessary for production. Property (iv) indicates that 
with finite levels of inputs and technological innovations, we can produce only finite 
amounts of output.

Note that we might use convex analysis to define and solve the firm’s technology 
choice problem, but it could be unmanageable. To have a functional representation 
of Bj , we define an augmented transformation function that indicates if a feasible 
augmented production plan (ai, Li, bi,Ki, Ỹi,Ni) of a is technologically efficient for a 
profit-maximizing firm.

Definition 2.1.1 Let Bj satisfy Assumption 2.1.1; then, T ∶ ℝ
6
+
→ ℝ defined on the 

vector z
i
= (ai, Li, bi,Ki, Ỹi,Ni) as

T(ai, Li, bi,Ki, Ỹi,Ni) ∶=

⎧
⎪⎨⎪⎩

���
Ỹi

�
Ỹi ∶ z

i
∈ Bj

�
− Ỹi; if zi ∈ Bj

−1 if z
i
∉ Bj

3 We say that vector x = (x1, x2,… , xn) is either greater than or equal to y = (y1, y2,… , yn) if xi≥ yi for 
all i = 1,2,… , n.
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is an augmented transformation function (ATF). Note that (ai, Li, bi,Ki, Ỹi,Ni) ≥ 04 
and T(ai, Li, bi,Ki, Ỹi,Ni) = 0 if and only if ̃Yi = ���

Ỹi

{
Ỹi ∶ (ai, Li, bi,Ki, Ỹi,Ni) ∈ Bj

}
.

Then, an augmented transformation function inherits the mathematical properties 
of the set Bj , such as the shape of its level surfaces and its quasiconcavity and conti-
nuity. To analyze the firm’s technology choice problem, we are interested in choos-
ing the optimal levels of feasible technological innovations ai and bi that allow the 
firm to obtain the maximum amount of production for given input levels.

Proposition 2.1.1 If the transformation function T(ai, Li, bi,Ki, Ỹi,Ni) satisfies Defi-
nition 2.1.1, then it is monotone, concave, quasiconcave, continuous from above, 
nonincreasing in Ỹi , and nondecreasing in ai, Li, bi,Ki , and Ni.

Proof See Appendix A.1.

Definition 2.1.2 Given the augmented transformation function (ATF) 
T(ai, Li, bi,Ki, Ỹi,Ni) , we can define the following set:

Proposition 2.1.2 If T(ai, Li, bi,Ki, Ỹi,Ni) satisfies the conditions given in Proposi-
tion 2.1.1, the set B′

j
, defined in 2.1.2, satisfies the conditions of a proper set of aug-

mented feasible production plans.

Proof The proof follows directly from Definition 2.1.2.

Then, we have proven that there exists a duality between the set of aug-
mented feasible production plans, Bj , and the augmented transformation function, 
T(ai,Li, bi,Ki, Ỹi,Ni) , because we can define each object from the other one, main-
taining their properties.

Now, we suppose that L and K are fixed for a given time t and a representative 
firm. As a result, subscripts are not provided for these variables in the remainder of 
the derivations. Thus, we can write the transformation function as 
T
(
ai, bi, Ỹi,Ni

)
∶= T

(
ai, L, bi,K, Ỹi,Ni

)
 . Figure 1 shows an augmented transforma-

tion function for a given level of knowledge N.
Then, Assumption 2.1.1 and Definition 2.1.1 imply that a representative firm will 

choose to produce at the maximum of 
{
Ỹi ∶ T

(
ai, bi, Ỹi,Ni

)
≥ 0

}
 for each pair 

(ai, bi) ≥ 0 at given levels of L andK . Then, an LPF can be obtained from the trans-
formation function. Note that the level of knowledge N at time t is a given 

B
�

j
∶=

{
z
i
=

(
ai, Li, bi,Ki, Ỹi,Ni

)
∶ T(z

i
) ≥ 0;z

i
≥ 0

}

4 The expression x =
(
x1, x2,… , xn

)
≥
(
y1, y2,… , yn

)
= y means that xi≥ yi for all i = 1,2,… , n.
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exogenous variable because it is unrelated to the level of production in the short run. 
Consequently, the LPF can be considered a function that does not depend on the 
level of knowledgeN . In addition, the maximum of T  always exists due to Weier-
strass’s theorem, as it is a continuous function over the range of Ỹi and the set {
Ỹi ∶ T

(
ai, bi, Ỹi

)
≥ 0

}
 of feasible outputs is a compact set.5

Definition 2.1.3 The LPF gives the maximum amount of output Ỹi that can be pro-
duced in the set Bj for given levels of L and K , i.e.,

Definition 2.1.4 For a certain time t , the level of Ỹi does not influence the exogenous 
level of knowledge; then, we define the technology frontier (TF) as the set of combi-
nations of technology pairs 

(
ai, bi

)
 and the level of knowledge N such that

Definition 2.1.1 and Proposition 2.1.1 imply that for given levels of L and K , the 
ATF has embedded in it the following microeconomic information: (1) the availabil-
ity of labor- and capital-saving technological innovations ai and bi ; (2) the existing 
substitutability or complementarity between the technological innovations and their 
relationships; and (3) the relationship among technological innovations and output 
through the LPF for given inputs in the economy. Thus, we can consistently obtain 
an LPF and a TF from our ATF for the representative firm that chooses an optimal 
technology pair 

(
ai, bi

)
 from Bj . As opposed to the previous literature, we derive the 

LPF and the TF from a unique primitive, the ATF. In contrast, in the literature, it has 
been assumed that the LPF and TF already exist. Our model has a different nature 
because we do not need to use extreme value theory (probability theory) to provide 

Yi ∶= ���
Ỹi∈Bj

{Ỹi ∶ T
(
ai, bi, Ỹi

)
≥ 0} = f

(
ai, L, bi,K

)

HN

(
ai, bi

)
=
{(

ai, bi
)
∶ T

(
ai, bi,N

)
= 0

}
.

Fig. 1  Surface level of the set of 
augmented production plans Bj 
and the augmented transforma-
tion function T

(
ai, bi, Ỹi,N

)
 for 

given levels of L,K, and N

 

( , , ̃ , ) = 0 ( , , ̃ , ) < 0 

( , , ̃  ) ≥ 0 

̃  

 

 

5 $$\left\{{{\widetilde{Y}}_{i}  :  T(a}_{i},  {b}_{i},{\widetilde{Y}}_{i})\ge 0\right\}$$ is a compact 
set, as it is a closed interval and bounded from above and below ($${\widetilde{Y}}_{i}\ge 0$$, and 
(iv) of Assumption 2.1.1).
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a microfounded model. Then, the GPF is obtained by maximizing the former subject 
to the latter.

Now, for a given level of knowledge N and levels of L and K , we can also define 
a global production function (GPF) [see, e.g., (Growiec 2008a; Jones 2005)] for the 
representative firm as the maximum amount of output Y∗

i
 that results from solving 

the problem of maximizing the LPF subject to the TF (as in Fig. 2). That is,
Y∗
i
(L,K,N) ∶= ���

ai,bi

f
(
ai, bi;L,K

)
 subject to HN

(
ai, bi

)
.

Proposition 2.1.3 The GPF Y∗
i
(L,K,N) satisfies the following properties: mono-

tone, nondecreasing in inputs and level of knowledge, quasiconcave, and satisfying 
Y∗
i
(0,0, 0) = 0.

Proof See Appendix A.1.

Definition 2.1.5 Given the GPF, Y∗
i
(L,K,N) , that satisfies the properties of Proposi-

tion 2.1.2, we can define the set B′′

j
 as follows:

Proposition 2.1.4 If Y∗
i
(L,K,N) satisfies the conditions in Proposition 2.1.4, the set 

B
′′

j
 defined in 2.1.5 satisfies the properties of a proper augmented feasible produc-

tion set in Assumption 2.1.1.

Proof See Appendix A.1.

Note that there exists a duality defined among Bj , the ATF and the GPF.

B
��

j
=

{
(ai, L, bi,K, Ỹi,Ni)|Ỹi ≤ Y∗

i
(L,K,N);T

(
ai, L, bi,K, Ỹi,Ni

)
≥ 0

}
.

Fig. 2  Derivation of the LPF, 
TF, and GPF from the aug-
mented transformation function

 

= { ̃ : ( , , ̃ ) ≥ 0}    ̃  

 

 

( , )    

( ℎ  ) 

  

 ℎ   

∗( ) 
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Probabilistic Setup: Linking the Deterministic Microfounded ATF with its 
Corresponding Probability Function

Now, we construct a probabilistic version of our augmented transformation func-
tion, which can be achieved using Sklar’s theorem. Specifically, we construct a joint 
distribution function of ai, bi,Ỹi , and Ni for given levels of L and K by using a mul-
tivariate copula, which allows us to link the availability and substitutability micro-
parameters to their probabilistic counterparts (location and correlation probabilistic 
parameters).

Assumption 2.2.1 There exists a random vector 
(
ga
(
ai
)
, gb

(
bi
)
, g

Ỹ

(
Ỹi

)
, gN

(
Ni

))
 

into a probability space 
(
Ωi,Fi,Pi

)
  (Spanos, 1986) that includes monotone transfor-

mations of both labor- and capital-saving technological innovations 
(
ai, bi

)
 , output 

Ỹi , and the level of knowledge Ni , which are available to the j-th firm at a given point 
in time for given levels of L and K.

Let 
(
ga(a), gb(b), gỸ

(
Ỹ
)
, gN(N)

)
 be a realization of this vector. Then, this 

assumption implies that there exist marginal distribution functions U,V ,W , and X 
that describe its probabilistic behavior. It also implies that there exists a joint distri-
bution of the random vector 

(
ga
(
ai
)
, gb

(
bi
)
, g

Ỹ

(
Ỹi

)
, gN

(
Ni

))
, which is determined 

by a copula C(U,V ,W,X) (Nelsen, 2006) . Notably, our setup is general enough that 
it allows for more than one substitutability parameter that might determine the shape 
of the GPF. First, we define a 4-dimensional copula as follows:

Definition 2.2.1 A 4-dimensional copula of the random vector 
(
ga(a), gb(b), gỸ

(
Ỹ
)
, gN (N)

)
 

is a continuous and nondecreasing real-valued function C , parametrized with the set of 
parameters Θ, from �4 = [0,1] × [0,1] × [0,1] × [0,1] to � = [0,1] that links the mar-
ginal distributions U = U

(
ga(a);Θa

)
,V = V

(
gb(b);Θb

)
, W = W

(
g
Ỹ

(
Ỹ
)
;Θ

Ỹ

)
 , and 

X = X
(
gN(N);ΘN

)
 together by using Sklar’s theorem to obtain the joint distribution.

where Θa,Θb,ΘỸ
 , and ΘN are the margins’ parameter sets and where Θ is the copu-

la’s parameter set that describes the probabilistic relationship, i.e., the probabilistic 
dependence structure, between the involved random variables.

F
(
ga(a), gb(b), gỸ

(
Ỹ
)
, gN(N);Θ

)

= C
(
U
(
ga(a);Θa

)
,V

(
gb(b);Θb

)
,W

(
g
Ỹ

(
Ỹ
)
;Θ

Ỹ

)
,X

(
gN(N);ΘN

)
;Θ
)
;
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Theorem 2.2.1 Using Assumptions 2.1.1  and 2.2.1 and assuming a nonempty set 
Bj ≠ {0}, for a particular realization 

(
ga(a), gb(b), gỸ

(
Ỹ
)
, gN(N)

)
 of the random 

vector(
ga
(
ai
)
, gb

(
bi
)
, g

Ỹ

(
Ỹi

)
, gN

(
Ni

))6 and a given exogenous level of knowledge 

N, we find that the following monotonically increasing transformation of our ATF7

is the deterministic version of the following 4-copula function:

where U
(
ga(a);Θa

)
,V

(
gb(b);Θb

)
, and X

(
gN(N);ΘN

)
 are distributions of the mono-

tonically increasing transformations of a, b, and N, respectively, and  W
(
g
Ỹ

(
Ỹ
)
;Θ

Ỹ

)
 

is the distribution of a monotonically decreasing transformation of Ỹ . In addition, by 
using Sklar’s theorem, there exists a 4-dimensional distribution function with mar-
gins U,V ,W, and X given by

which is a probabilistic version of our deterministic augmented transformation func-
tion TC

(
ga(a), gb(b), gỸ

(
Ỹ
)
, gN(N)

)
 and has the properties defined in Assumption 

2.1.1.

Proof See Appendix A.1.

Thus, as shown in Fig. 1, we have constructed a probabilistic version of our trans-
formation function not only by building a particular copula with margins for 
ga(a), gb(b), gỸ

(
Ỹ
)
, and gN(N) but also by selecting specific values for the copula’s 

parameter set. These parameters must be consistent with the theoretical parameters 
of the transformation function. Once we have a probabilistic version of the 

TC

(
ga(a), gb(b), gỸ

(
Ỹ
)
, gN(N)

)
=

T
(
ga(a), gb(b), gỸ

(
Ỹ
)
, gN(N)

)

maxT
(
ga(a), gb(b), gỸ

(
Ỹ
)
, gN(N)

)

C
(
ga(a), gb(b), gỸ

(
Ỹ
)
, gN(N)

)

= C
(
U
(
ga(a);Θa

)
,V

(
gb(b);Θb

)
,W

(
g
Ỹ

(
Ỹ
)
;Θ

Ỹ

)
,X

(
gN(N);ΘN

)
;Θ
)
,

(1)F
(
ga(a), gb(b), gỸ

(
Ỹ
)
, gN(N);Θ

)
= C

(
ga(a), gb(b), gỸ

(
Ỹ
)
, gN(N)

)

7 The maximum in T
(
ai, bi, Ỹi,N

)
 exists because, as N is a fixed exogenous variable, there is a limit for 

the size of knowledge at time t  . Then, as L and K are fixed, there exists a bounded set of feasible outputs 
that can be attained by this firm.

6 Notice that this is the general case derived from our setup. A particular and relevant case is the one in 
which Y is deterministic, assuming that we have a realization of the random variables ai, bi and Ni , for a 
given L and K . Therefore, in this particular case, a trivariate copula on the transformation of ai , bi and Ni 
can be used. We thank an anonymous referee for useful comments on this issue.
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transformation function, we can derive the LPF and the TF from it by following the 
procedure indicated in the next corollary.

Corollary 2.2.1 The LPF and the TF can be obtained by using Definition 2.2.1 and 
Eq. (1), as follows:

(a) The functional form of a deterministic LPF can be obtained as follows. By mar-
ginalizing C

(
a, b, Ỹ ,N

)
 with respect to the random variable Ni (X = 1)8, using 

the continuous and nondecreasing transformations ha and hb of ai, and bi, respec-
tively, and a decreasing transformation h

Ỹ
 of Ỹi,9 assuming specific values for 

the copula dependence parameter set Θ, f ixing the probability 
FabY

(
ha(a), hb(b), hỸ

(
Ỹ
)
;Θ
)
= C

abỸ

(
a, b, Ỹ

)
 at the level P0 in Eq. (1), and rear-

ranging the resulting equation, the following result is obtained:

where C−1
W

 and W−1
Y

 are inverse transformations of C and W10 with respect to W 
and Y , respectively.

(b) The deterministic TF can be obtained by marginalizing C
(
a, b, Ỹ ,N

)
 with respect 

to the random variable Ỹi (W = 1),11 assuming continuous and decreasing trans-
formations qa and qb and an increasing transformation qN12 of the variables ai , 
bi, and Ni, respectively, taking specific values for the copula parameter set Θ, 
fixing the probability FabN

(
qa(a), qb(b), qN(N);�

)
= CabN(a, b,N) at a constant 

level P1, and rearranging the related equation in terms of a and b as follows:

where C−1
X

 and X−1
N

 are inverse transformations of C and X13 with respect to X 
and AN, respectively, and AN is a constant because N is fixed.

Proof See Appendix A.1.

A relevant case is one in which we assume that joint distribution is given by a 
generalized Archimedean copula family, with a probabilistic dependence parameter 
set Θ , as shown below.

Y = W−1
Y

(
C−1
W

(
U
(
a;L,Θa

)
,V

(
b;K,Θb

)
;Θ
)
,P0

)
;

H(a, b) = X−1
N

(
C−1
X

(
U
(
qa(a);Θa

)
,V

(
qb(b);Θb

))
,P1

)
= AN ,

8 We then obtain the marginalized copula CabỸ

(
a, b, Ỹ

)
= C

(
a, b, Ỹ , 1

)
 (Nelsen 2006).

9 In the LPF, ga(a), gb(b), and gỸ
(
Ỹ
)
 are denoted as ha(a) , hb(b) , and hỸ

(
Ỹ
)
 , respectively.

10 These inverse transformations exist if CW and WY are strictly monotone.
11 Then, we obtain the marginalized copula CabN (a, b,N) = C(a, b, 1,N).
12 In the TF, ga(a), gb(b), and gỸ

(
Ỹ
)
 are denoted as qa(a) , qb(b) , and qN (N) , respectively.

13 These inverse transformations exist if CX and XN are strictly monotone.
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Proposition 2.2.1 Based on Theorem  2.1.1 and Corollary 2.1.1, the shape of the 
LPF and its elasticity of substitution � are determined not only by the substitutabil-
ity parameter set Θ, i.e., the copula’s dependence parameter set in the probabilistic 
space but also by the parameters that reflect the  availability of technological inno-
vations in the economy Θa and Θb, i.e., the margins’ parameters in the probabilistic 
space. In addition, if the marginalized copula CabN that represents the TF belongs 
to the family of generalized Archimedean copulas, the substitutability parameter set 
Θ can be mapped to the dependence parameter set through a statistical correlation 
measure � = �(Θ) such as either Kendall’s tau or Spearman’s rho.

Proof See Appendix A.1.

Corollary 2.2.2 Based on Proposition 2.2.1, let C be the copula that rep-
resents our transformation function. If the marginalized copula function 
Cab

(
U,V;ΘabN

)
= CabN

(
U,V , 1;ΘabN

)
, which determines the joint distribution of a 

and b, belongs to a generalized Archimedean family (with generator �); then, we 
can write the transformation function as

Additionally, if the derivatives of the functions U and V  are separable as

then the elasticity of substitution � depends only on Θ through a dependence meas-
ure � ; i.e., � = r(�(Θ)), where r is a real function.

Additionally, if the marginalized copula Cab

(
U,V;ΘabN

)
 is described by a sin-

gle dependence parameter � 
(
ΘabN = {�}

)
, then � comes out as the substitutability 

parameter of the derived LPF and constitutes the unique link between the elastic-
ity of substitution � = �(�) and the probabilistic correlation measure � = �(�), as 
follows:

(a) � = �
(
m−1(�)

)
, where � = m(�);

(b) � = �
(
n−1(�)

)
, where � = n(�).

Proof See Appendix A.1.

The construction of the transformation function in Corollary 2.2.1 is a relevant 
case in production theory.

Next, as we have deterministic versions of the LPF and the TF, we can obtain 
the GPF from the firm’s technology choice problem (Jones and Manuelli, 1990):

TC

(
a, b, Ỹ ,N

)
= C

(
Cab

(
U,V;ΘabN

)
,W

(
gỸ

(
Ỹ;Θ

Ỹ

))
,X

(
gN (N);ΘN

)
;Θ

)

= C
(
�
[
�−1

(
U
(
a, L;Θa

))
+ �−1

(
V
(
b,K;Θb

))]
,W

(
gỸ

(
Ỹ;Θ

Ỹ

))
,X

(
gN (N);ΘN

)
;Θ

)
.

U
�(
a, L;Θa

)
= U1

(
a;Θa

)
U2(L;Θ) and V

�(
b,K;Θb

)
= V1

(
b;Θb

)
V2(K;Θ),
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such that H(a, b) = X−1
N

(
C−1
X

(
U
(
qa(a);Θa

)
,V

(
qb(b);Θb

))
,P1

)
= AN , where N rep-

resents the given level of knowledge at time t.
The solution to (2) yields different closed functional forms of the textbook 

GPFs, depending on the following values contained in our suitable monotonic 
transformations of the margins U,V ,W, and X : the substitutability parameters, the 
associated copula parameter set Θ ; the availability parameters Θa,Θb , and ΘN ; the 
output parameters Θ

Ỹ
 ; and the associated tail-thickness parameters.

Proposition 2.2.2 Given Assumption 2.1.1 and the resulting microfounded LPF 
and TF, the firm’s technology choice problem (2) has a unique solution if and 
only if the LPF and the TF are tangential at the point [a∗

(
L,K;Θa,Θb,ΘỸ

,ΘN ,Θ
)

, b∗(L,K;Θa,Θb,ΘỸ
,ΘN ,Θ)], which can occur only if the LPF is convex and the TF 

is concave or if both are convex but the LPF is more sharply curved than the TF in 
the feasible augmented technology set for a given L and K. We obtain the following 
general GPF Y∗ = Y∗

(
L,K,N;Θa,Θb,ΘỸ

,ΘN ,Θ
)
 by substituting the optimal values 

of a∗ and b∗ into the LPF.

Proof See Appendix A.1.

Note that as the GPF inherits the parameters of the LPF and the TF, the elasticity 
of substitution �GPF in the GPF is determined by the substitutability parameter set 
Θ , i.e., the copula’s dependence parameter set in the probabilistic space and by the 
availability parameter set Θa , Θb , ΘỸ

 , and ΘN , i.e., the margins’ parameters set in the 
probabilistic space. In other words,

This setup is microfounded because if we wish to obtain a GPF, we assume a 
general ATF by describing the substitutability or complementarity between the tech-
nological innovations and their relationship with the output level. Next, we can asso-
ciate this microeconomic structure with a particular probability distribution (i.e., a 
copula) with its margins and connect it to the data with observables (i.e., patents 
and output), without having data on L and K, to validate the empirical predictions 
of the model. Specifically, from Corollary 2.2.2, we can derive formulas that relate 
the substitutability between the innovations and the relationship between the factors 
and output to a particular probabilistic dependence measure, such as Kendall’s tau 
correlation coefficient, and the availability parameters to tail-thickness parameters.

(2)max
a,b

Y = W−1
Y

(
C−1
W

(
U
(
a;L,Θa

)
,V

(
b;K,Θb

)
;Θ
)
,P0

)
,

�GPF = �GPF
(
U(a∗, L),V(b∗,K);Θa,Θb,ΘỸ

,ΘN ,Θ
)
.
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Illustration of How to Derive a Nested CES GPF and its Distribution 
Function Based on an Augmented Transformation Function

Next, we use our setup to derive a novel nested CES GPF that inherits its proper-
ties from a well-behaved ATF, augmented by labor- and capital-saving technologi-
cal innovations. The derived nested CES GPF is determined both theoretically and 
probabilistically by the parameters � and � , which are defined in the parameter space 
Θ . Here, � describes the substitutability (dependence) between the two types of tech-
nological innovations, whereas � characterizes the combined effect of the pair of 
technological innovations on the output. This GPF is general enough to derive text-
book GPFs (Leontief, Cobb–Douglas, CES, and linear). We build the probabilistic 
version of the transformation function (ATF), T  , which is useful to link the micropa-
rameters of our nested CES GPF with its probabilistic counterparts and approximate 
its empirical shape. Finally, such a link allows us to describe a method to compute 
the microparameters of the GPF by simply estimating two Kendall’s tau correlation 
coefficients: (1) between the two types of technological innovations and (2) between 
the combined pair of technological innovations and output.

Assumption 3.1 There exists an augmented transformation function

that satisfies Definition 2.1.1 and Proposition 2.1.1, where 
(
a, L, b,K, �Y ,N

)
≫ 0 , 

which is described by the substitutability parameters � and � and the availability 
parameters � and � for output Ỹ  and fixed levels of L, K, and N. In addition, based 
on Theorem  2.2.1, we can construct a probabilistic version of this transformation 
function T (which is the basis to build a nested CES function) by using the following 
nested 4-variate copula14:

This copula describes the joint behavior of the random variables ai, bi, Ỹi, and Ni 
through the dependence parameters � and � , whose domains are defined on [−1,∞] . 
If we marginalize with respect to Ni (X = 1) in Eq. (3), we obtain the trivariate cop-
ula that describes the joint behavior of the random variables ai , bi , and Ỹi . Similarly, 

T = A0

(
A − B

[(
a�L

)−��
L−� +

(
b�K

)−��
K−�

] �

�
N−��

) 1

��

− Ỹ

(3)

C(U,V ,W,X) = max

⎧⎪⎨⎪⎩

�
W−� +

�
max

��
U−�+V−� − 1

�− 1

� , 0

�
X

�−�
− 1

�−
1

�

, 0

⎫⎪⎬⎪⎭

14 In the technology choice literature, no attempt has been made to derive a setup that leads to an esti-
mable empirical model by constructing a link between the microeconomic parameters and the statistical 
parameters, as we propose here. This is a straightforward method to estimate the GPF for any sector of 
the economy by using data on the output and technological innovations (i.e., patents) at the firm level.
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if we marginalize with respect to Yi(W = 1) in Eq.  (3), we obtain the following 
trivariate copula that describes the joint behavior of the random variables ai , bi , and 
Ni.

Next, let us assume that the labor- and capital-saving technological innovations, 
knowledge level, and output are random draws from the marginal Pareto distribu-
tions (Growiec 2008a; Jones 2005); then, the functional form is given by

Using Corollary 2.2.1 and Assumption 3.1 and assuming consistent transforma-
tions ha

(
ai
)
, hb(bi) , and h

Ỹ

(
Yi
)
 of the random variables ai, bi, and Yi, respectively, 

and replacing Ỹi with Yi , we obtain a trivariate probabilistic version of the LPF

Corollary 2.2.1 guarantees that by using transformations qa
(
ai
)
, qb(bi) , and 

qN
(
Ni

)
 of the random variables ai, bi, and Ni, respectively, we can obtain a probabil-

istic version of the TF as

Note that random variables ai and bi are strongly correlated through the copula 
parameter � in the innovative process. Then, they are mutually correlated with Yi 
when we consider the full production process through the parameter � and are inde-
pendent of N . These relations are statistically and microeconomically meaningful.

Lemma 3.1 Deterministic versions of the LPF and TF can be derived by using 
Assumption 3.1 and Corollary 2.2.1 for given levels of L and K. First, by fixing prob-
ability level P0 in Eq. (4), defining �−��

a
≡ �−��

L

(
1 + L−�

)
and�

−��

b
≡ �

−��

K

(
1 + K−�

)
 

and choosing 
(
a�L

)−��+(b�K
)−��

= 1,15 we obtain the following CES LPF:

Furthermore, by fixing the probability level P1 in Eq. (5), we obtain the TF

F
(
Z;𝛾Z , 𝜁

)
= P(Z ≤ z) = 1 −

(
z

𝛾Z

)−𝜁

, where 0 < 𝛾Z ≤ zand 𝜁 > 0.

(4)

P
(
Yi > Y , ai >

1

a
, bi >

1

b

)
=

[(
Y

𝛾Y

)𝛿𝜂

+

[(
𝛾aa

)−𝛼𝜃
+
(
𝛾bb

)−𝛽𝜃
− 1

] δ

𝜃
− 1

]−
1

𝛿

.

(5)P
(
ai > a, bi > b,Ni ≤ N

)
=

[(
a

𝛾a

)𝛼𝜃

+

(
b

𝛾b

)𝛽𝜃

− 1

]−1∕𝜃(
𝛾NN

)𝜀
.

(6)Y = �Y

(
A −

[(
a�L

)−��
L−� +

(
b�K

)−��
K−�

] �

�

) 1

��

.

15 Expressions 𝜑 =
(
a𝛾L

)−𝛼𝜃
> 0 and 1 − 𝜑 =

(
b𝛾K

)−𝛽𝜃
> 0 , which are known as the technological 

change indices of a CES function, are shaped by the availability parameters (tail indices α, β) and the 
substitutability parameters (copula´s dependence parameters θ and δ). In addition, Eq.  (6) describes a 
general nested CES production function, as it might consider nonlinear and linear relationships between 
technological innovations and the factors of production L and K.
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where A = 1 + P−𝛿
0

> 1, AN = 1 + P−�
1

(
�NN

)��, and −1 ≤ �, � ≤ ∞.

Proof See Appendix A.2.2.

Next, the firm’s technology choice problem consists of maximizing (6) given (7); 
then, its solution is given in the next lemma.

Lemma 3.2 Based on Proposition 2.2.1 and Eqs.  (6) and (7), the producer’s opti-
mization problem has a unique solution (a∗, b∗) that is substituted into the LPF to 
obtain the following optimal CES GPF:

Proof See Appendix A.2.2.

Relationships Between the Microeconomic and Probabilistic Models

Note that the copula dependence parameters � and � come out directly as the micro-
economic parameters that determine the shape of the nested CES GPF in Eq.  (7). 
These two parameters also describe the dependence between the output and the 
combined pair of innovations � and between the innovations themselves � . Thus, 
the set of microparameters (�,�) constitutes a link between their corresponding 
copulas, which are defined on the probability space (Ω,F,P) , and the determinis-
tic TF and the LPF, which are defined on the augmented feasible plans set Bj . To 
obtain a simpler interpretation of the LPF and TF, from a probabilistic point of view, 
the dependence parameters � and � can be mapped to the interval [−1,1] by using 
two dependence measures: the dependence between ai and bI and the dependence 
between 

(
ai, bi

)
 and Yi.

As we use a nested Clayton copula with generator �(t) for the production model, 
we represent the copula as C(U,V ,W) = �−1

2
[�2(W) + �2(�

−1
1

[
�1(U) + �1(V)

]
)] , 

with correlation parameters � and � . Then, the dependence measure Kendall’s tau 
can be obtained by using the following formula

Lemma 3.1.1 Based on Assumption 3.1, Lemma 3.1, and Eqs. (4), (5), and (6), we 
can link the parameter �Yab, which describes the relationship between the output (Y) 

and the effect of both technological innovations (
[
U−�+V−� − 1

]− 1

�), with the 

(7)H(a, b) =

(
a

�a

)��

+

(
b

�b

)��

= AN

(8)Y∗(L,K,N) = �Y

�
A − AN

−
�

�

�
�−��
L

√
1 + L�L−� + �

−��

K

√
1 + K�K−�

� 2�

�

� 1

��

(9)�c = 1 + 4
∫

1

0

�(t)

� �(t)
dt
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parameter � through Kendall’s tau correlation coefficient -1 ≤ �wuv ≤ 1, and the 
elasticity of substitution �ab between ai and bI in the LPF with the substitutability 
parameter � through Kendall’s tau correlation coefficient −1 ≤ �uv ≤ 1. Thus, we 
can obtain empirical estimates of the correlations �uv and �wuv by using data on 
labor- and capital-saving technological innovations (i.e., patents) and output data 
to compute the numerical values of the parameters � and � and the elasticities 
�ab =

1

1+�
 and �Yab =

1

1−��
. Conversely, if we assume values of �ab and �Yab, we can 

obtain estimates of the correlation between the two types of innovations �uv and 
between output and innovations �wuv.

Then, we have the following relationships:

(a) Elasticity of substitution �ab =
1−�uv

1+�uv
, where � =

2�uv

1−�uv
.

(b) Dependence measure (Kendall’s tau) �uv =
1−�ab

1+�ab
, where �KL =

1

1+�
.

(c) Elasticity of substitution �Yab =
1−�wuv

1−(1+2�)�wuv
, where � =

2�wuv

1−�wuv
.

(d) Dependence measure between output and innovations (Kendall’s tau)�wuv =
�

2+�
.

Proof See Appendix A.2.2.

Note that as we know the joint distribution of ai, bi and Yi defined in Eq. (4), we 
can also recover the values of �uv , �wuv , �ab , and �Yab by using the formulas in (a), 
(b), (c), and (d). The link between �ab and �uv , i.e., between the probabilistic space 
( Ω,F,P ) and the set of augmented production plans Bj , is the substitutability param-
eter � , with [−1,∞] as its range of values. Thus, we can vary the values of the param-
eter � to obtain all the nested classic textbook production functions. In addition, the 
shape of the GPF and its elasticity of substitution depend not only on the substitut-
ability parameters, i.e., the copula’s dependence parameters and statistically approxi-
mated by Kendall’s tau correlation coefficient but also on the availability parameters, 
i.e., functional forms of the margins and the values of their location parameters.

Note that the link between �KL and �c is the substitutability parameter �. The range 
of values of the substitutability parameter in our transformation function is [−1,∞]

; thus, we can vary the values of the parameter � to obtain all the classic produc-
tion functions. We confirm that the shape of the GPF and its elasticity of substitution 
depend not only on the substitutability parameter, which is reflected by the copula 
dependence parameter but also on the availability parameters, i.e., the functional 
forms of the margins and the values of their parameters. Table 1 shows a summary 
of the derived GPFs when the LPF and the TF share the same set of parameter values 
−1 ≤ � ≤ ∞ . Note that specific values of � are associated with different values of the 
dependence measure �c , the elasticity of substitution �KL , and the shape of the GPF.16

16 The cases presented in this table are the ones in which the LPF and GPF have the same shape. How-
ever, there are cases where the LPF and GPFs are not of the same class, which includes the cases devel-
oped by (Acemoglu 2003; Growiec 2008a; Jones 2005).
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Conclusion

The shape of the GPF is obtained from a unique ATF that reflects the structure of the 
set of production plans augmented by labor- and capital-saving technological inno-
vations, which is the primitive datum in the theory. We show that the shape of the 
GPF is determined by all the relations among technological innovations and output 
and the way they are combined, rather than by the shape of two primitives, the LPF 
and the TF. By mapping the ATF to its corresponding copula, using Sklar’s theo-
rem, we ensure that the probabilistic model of the GPF has the same structure as the 
production set and, consequently, we can consistently link the elasticities and the 
correlations. Thus, we provide micro foundations for the GPF exclusively based on 
the microeconomic model, and we develop a parallel probabilistic model with simi-
lar properties. This approach allows us to relax the restrictive assumptions on the 
functional forms of the primitives, including the probability models often used to 
determine the shape of the TF, which impose strong restrictions on the shape of the 
calculated GPFs. We could also propose an ATF and its corresponding production 
set that gives rise to GPFs with different substitutability properties (i.e., an ATF with 
Leontief or Cobb‒Douglas properties).

Appendix A.1: Proofs of the General Setup

Proof of Proposition 2.1.1 First, monotonicity holds because T is nondecreasing in 
ai, bi, and Ni and nonincreasing in Ỹi . Next, to prove concavity with respect to ai , bi , 
and Ni , we let z0 =

(
ai0, Li0, bi0,Ki0, Ỹi,Ni0

)
 and z1 =

(
ai1, Li1, bi1,Ki1, Ỹi,Ni1

)
 be 

two augmented production plans in Bj . By Assumption 1, �z0 + (1 − �)z1 is also in 
Bj for all λ ∈ [0,1], given that Bj is a convex set. Thus,

T
(
�z0 + (1 − �)z1

)
− �T

(
z0

)
+ (1 − �)T

(
z1

)

= ���
�Ỹ��+(1−�)Ỹi1

{
�Ỹio + (1 − �)Ỹi1 ∶ �z0 + (1 − �)z1 ∈ Bj

}

− �

[
���
Ỹ��

{
Ỹio ∶ z0 ∈ Bj

}]
− (1 − �)

[
���
Ỹi1

{
Ỹi1|z1 ∈ Bj

}]
≥ 0.

Table 1  GPFs derived from a transformation function (−1 ≤ � ≤ ∞ ); Source: Author calculations

Substitutability parameter � Kendall’s Tau Elasticity of substitu-
tion (LPF)

Global production 
function (GPF)

−1 < � < ∞, � ≠ 0 −1 < 𝜏 < 1, � ≠ 0 0 < 𝜎 < ∞, � ≠ 1 CES-type function
� = 0 � = 0 � = 1 Cobb‒douglas
� → ∞ � = 1 � = 0 Leontief
� = −1 � = −1 � → ∞ Perfect substitutes
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Because we have more options for 
Ỹio

 and 
Ỹi1

 to optimize, then

and the transformation function is concave.
To prove continuity from above, let us fix Ỹi and a given decreasing sequence 

{(al, Ll, bl,Kl,Nl)}l∈ℕ that goes to 
(
ai, Li, bi,KiNi

)
 such that (

al, Ll, bl,KlNl

)
≥
(
ai, Li, bi,KiNi

)
 for all l ∈ ℕ. From (i) in Assumption 2.1.1, let 

zi =
(
ai, Li, bi,Ki, Ỹi,Ni

)
 such that Ỹi = ���

Ỹi

{
Ỹi ∶ (ai, Li, bi,Ki, Ỹi,Ni) ∈ Bj

}
. Then, 

(
al, Ll, bl,Kl,Nl

)
≥
(
ai, Li, bi,KiNi

)
 and zl =

(
al, Ll, bl,Kl, Ỹi,Nl

)
∈ Bj, which 

implies that T
(
zl
)
≥ T

(
zi
)
= 0. Since T  is a monotone function, 

{T
(
al, Ll, bl,Kl, Ỹi,Nl

)
}l∈ℕ converges to T

(
(ai, Li, bi,Ki, Ỹi,Ni

)
.

Finally, let z0 =
(
ai, Li, bi,Ki, Ỹi0,Ni

)
 and z1 =

(
ai, Li, bi,Ki, Ỹi1,Ni

)
 be two aug-

mented production plans in Bj . By Assumption 2.1.1, �z0 + (1 − �)z1 is also in Bj 
for all � ∈ [0,1] . Then,

which implies that T  is quasiconcave in Ỹi. If Ỹi0 ≤ Ỹi , then from (iii) in Assumption 
2.1.1, T

(
ai, Li, bi,Ki, Ỹi0,Ni

)
≥ T

(
ai, Li, bi,Ki, Ỹi1,Ni

)
, which implies that T  is non-

increasing in Ỹi .   ◻.

Proof of Proposition 2.1.3 First, the monotonicity and nondecreasing character-
istics in inputs and the level of knowledge properties are inherited by the ATF 
T(ai, Li, bi,Ki, Ỹi,Ni) . Then,

because by definition of the ATF, f
(

ai, 0, bi, 0
)

= ���
Ỹi∈Bj

{Ỹi:T
(

ai, 0, bi, 0, Ỹi
)

≥ 0}

= 0
 (property (ii) in Assumption 2.1.1). Finally, to prove cuasiconcavity, let 

z0 =
(
ai, Li0, bi,Ki0,Ni0

)
 and z1 =

(
ai, Li1, bi,Ki1,Ni1

)
 , such that 

z0Ỹ =

(
ai, Li0, bi,Ki0, Ỹi,Ni0

)
 and z1Ỹ =

(
ai, Li1, bi,Ki1, Ỹi,Ni1

)
 are in Bj for 

all� ∈ [0,1] . Then, �z0Ỹ + (1 − �)z1Ỹ is also in Bj for all� ∈ [0,1] . Then, by quasi-
concavity of f

(
ai, bi;0,0

)
 , we have that

T
(
λz0 + (1 − λ)z1

)
≥ �T

(
z0

)
+ (1 − λ)T

(
z1

)
,

T
(
�z0 + (1 − �)z1

)
= T

(
ai, Li, bi,Ki,�Ỹi0 + (1 − �)Ỹi1,Ni

)
≤ max

{
T
(
z0
)
, T

(
z1
)}

Y∗(0,0, 0) =

[
���
ai,bi

f
(
ai, bi;0,0

)
subject to H0

(
ai, bi

)]
= 0
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  ◻

Proof of Proposition 2.1.4 (i) As 0 ∈ B
��

j
 , B��

j
≠ ∅ , and is closed by definition (due to (

ai, L, bi,K, Ỹi,Ni

)
≥ 0 , 

(
ai, L, bi,K, Ỹi,Ni

)
≥ 0, and T

(
ai, L, bi,K, Ỹi,Ni

)
≥ 0 ). (ii) 

Convexity fits because T  and Yi are concave. (iii) Fits because T  is monotone. Prop-
erty (iv) holds because 0 ≤ Ỹ

′

i
≤ Ỹi implies 0 ≤ Ỹ

�

i
≤ Ỹi ≤ Y∗(L,K,N) , and by mono-

tonicity of T  . (v) Given ai, Li, bi,Ki, and Ni , the set {Ỹi|(ai, Li, bi,Ki, Ỹi,Ni) ∈ B
��

j
} is 

bounded above by Y∗
i
(L,K,N) .   ◻

Proof of Theorem 2.2.1 TC
(
a, b, Ỹ ,N

)
 is a well-defined function since Bj has at least an 

interior point z. Then, T(z) > 0 , which implies that 𝑚𝑎𝑥 T
(
ai, bi,

�Yi,N
)
> 0 . In addition, 

by definition, 0 ≤ TC

(
a, b, Ỹ ,N

)
≤ 1 , which is the range of a proper copula function. 

Next, we show that TC
(
a, b, Ỹ ,N

)
 satisfies the conditions to be represented as a copula 

function (see Nelsen (2006)). From (ii) in Assumption 1, 
TC

(
0, b, Ỹ ,N

)
= TC

(
a, 0, Ỹ ,N

)
= 0 , TC

(
a, b,��� Ỹ ,N

)
= 0 holds because (

a, L, b,K,��� Ỹ ,N
)
 lies on the boundary of Bj . These two properties are equivalent to 

the fact that the proposed transformation function is grounded like a copula  
function. TC(a,��� b, 0,N), TC(��� a, b, 0,N) , TC(a, b, 0,��� N) , and 
TC

(
��� a,��� b, Ỹ ,��� N

)
 have the properties of the marginal distribution of ai, bi, Ỹi , 

and Ni . Additionally, T
C(0,��� b, 0,0) = T

C(��� a, 0,0, 0) = T
C(0,0, 0,��� N) =

T
C

(
��� a,��� b,��� Ỹ ,��� N

)
= 0 and TC(��� a,��� b, 0,��� N) = 1 , which 

ensures that the cumulative probability over the entire domain is equal to 1 as in a well-
defined distribution function. Tc inherits the properties of being continuous from above and 
nondecreasing for ga(a), gb(b) , and g

Ỹ

(
Ỹ
)
 from T. We show that the TC-volume is non-

negative for the 3-variated case, which naturally extends to the 4-variated copula. Then, let 
us assume a0 ≤ a1, b0 ≤ b1 , and Ỹ0 ≤ Ỹ1 . We define the 3-box

Given that ga(a) and gb(b) are nondecreasing and g
Ỹ

(
Ỹ
)
 is nonincreasing, the TC- 

volume of the 4-box B is given by

Y∗
(
�z0 + (1 − �)z1

)

= Y∗
(
ai,�Li0 + (1 − �)Li1, bi,�Ki0 + (1 − �)Ki1,�Ni0 + (1 − �)Ni1

)

≤ ���
{
Y∗

(
z0
)
, Y∗

(
z1
)}

.

M =
[
a0, a1

]
×
[
b0, b1

]
×

[
Ỹ0, Ỹ1

]
.
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Given that TC is concave, for all � ∈ [0,1] , we have

In particular, when � =
1

2
 , we can define T l

2

=
1

2
[T

C

(
a1, b0, Ỹl

)
+ TC

(
a0, b1, Ỹl

)
].

From the concavity of TC, we have T l

2

− TC

(
a0, b0, Ỹl

)
≤ TC

(
a1, b1, Ỹl

)
− T l

2

 , 
which implies that

Therefore, we have that the volume

TC is nondecreasing in Ỹl , T0
C
≤ T1

C
 , and TC(M) = T1

C
− T0

C
≥ 0, which implies 

that the transformation function TC behaves as a 3-increasing function and is similar 
to a 3-copula (and then the 4-copula) function.   ◻

Proof of Corollary 2.2.1 The proof easily follows by applying the steps described in 
this corollary.

Proof of Proposition 2.2.1 Since the LPF and the TF depend on the substitutability 
parameter set Θ ; the LPF depends on the availability parameters in the economy, Θa

,Θb , and ΘN ; and the TF depends on Θa,Θb , and Θ
Ỹ
 , the shape of the resulting GPF 

depends on these 5 sets of parameters. The marginal technical rate of substitution 
(MRTS) between L and K MRTS

(
U
(
a∗, L;Θa

)
,V

(
b∗,K;Θb

)
,Θ

Ỹ
,Θ

)
 also depends 

on these parameter sets; then, the elasticity of substitution of the GPF is defined by

In addition, based on Ida et  al. (2014), any measure of dependence � based 
on the copula C of a generalized Archimedean copula should be of the form 
� = ∬

I2
f (u, v,C(u, v;Θ))dC(u, v;Θ) , where f = f (u, v,C) is an appropriate smooth 

positive function. Then, the dependence measure only depends on the copula’s 
parameter set, i.e., � = �(Θ) .   ◻

TC(M) = TC

(
a1, b1, Ỹ0

)
− TC

(
a1, b0, Ỹ0

)
− TC

(
a0, b1, Ỹ0

)
+ TC

(
a0, b0, Ỹ0

)

−TC

(
a1, b1, Ỹ1

)
+ TC

(
a1, b0, Ỹ1

)
+ TC

(
a0, b1, Ỹ1

)
− TC

(
a0, b0, Ỹ1

)
.

TC

[
�
(
a1, b0, Ỹl

)
+ (1 − �)

(
a0, b1, Ỹl

)]
≥ �TC

(
a1, b0, Ỹl

)
+ (1 − �)TC

(
a0, b1, Ỹl

)
;

2T l

2

= TC

(
a1, b0, Ỹl

)
+ TC

(
a0, b1, Ỹl

)
≤ TC

(
a1, b1, Ỹl

)
+ TC

(
a0, b0, Ỹl

)
.

Tl
C
= TC

(
a1, b1, Ỹl

)
− TC

(
a1, b0, Ỹl

)
− TC

(
a0, b1, Ỹl

)
+ TC

(
a0, b0, Ỹl

)
≥ 0.

�
�
U(a∗, L),V(b∗,K),Θa,Θb,ΘỸ

,ΘN ,Θ
�

=

⎛
⎜⎜⎜⎝

dLn
�
MRTS

�
U
�
a∗, L;Θa

�
,V

�
b∗,K;Θb

�
,Θ

Ỹ
,ΘN ;Θ

��

dLn
�

K

L

�
⎞
⎟⎟⎟⎠

−1

.
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Proof of Corollary 2.2.2 Based on Proposition 2.1.2 and the definition of a general-
ized Archimedean copula, we can denote the transformation function as

The marginal rate of technical substitution (MRTS) is given by

As u and v are simple variables, 
[
�−1

]�
(u;Θ) =

[
�−1

]�
(v;Θ) , which reduces to

Thus, we take the derivative with respect to Ln
(

K

L

)
 , and we obtain the elasticity 

of substitution, which is given by

Finally, suppose that ΘabN = {�} . If � = m(�) has an inverse ( m−1 ), then we 
obtain � = m−1(�) and � = �

(
m−1(�)

)
 . Similarly, if � = n(�) has an inverse, then 

� = �(�) = �
(
n−1(�)

)
 .   ◻

Proof of Proposition 2.2.2 Let Y = f (a, b;L,K) be the LPF and H(a, b) = AN be the 
TF. Both are defined in the (a, b) space for given values ofL,K , andN . A competitive 
firm maximizes Ỹ  over the set of feasible technology 
pairsD =

{
(a, b) ∶ TC

(
a, b, Ỹ ,N

)
≥ 0

}
 . Since we have shown that the transforma-

tion function TC is represented by a copula in the probability space with two increas-
ing and nondecreasing margins of a andb , respectively, the derived deterministic 
LPF f (a, b;L,K) also increases over the compact set D and attains its maximum at 
the TF by (i) and (iii) of Assumption 1. Then, the maximization of the 
LPFYi = f

(
ai, bi;L,K

)
= ���

Bj

{Ỹi ∶ TC

(
ai, bi, Ỹi

)
≥ 0}, which is subject to the TF 

H
(
ai, bi

)
=
{(

ai, bi
)
∶ TC

(
ai, bi,Ni

)
= 0

}
 occurs when they coincide over the TF, 

with the unique solution(a∗,b∗) when these curves are tangent at this point, which 
can occur only if the LPF is convex and the TF is concave or the LPF is sharper than 
the TF in the feasible augmented technology set.

In addition, given that the LPF and TF are represented by the distribution func-
tions F

(
ha(a), hb(b), hỸ (Y);Θa,Θb,ΘỸ

,Θ
)
 and F

(
qa(a), qb(b), qN(N);Θa,Θb,ΘN ,Θ

)
 , 

respectively, they are determined not only by the substitutability parameter set Θ but 

T(a, L, b,K, Y ,N) = C
(

U
(

a, L;Θa
)

,V
(

b,K;Θb
)

,W
(

gỸ
(

Y;ΘỸ
))

,X
(

gN (N);ΘN
)

;Θ
)

= C
(

�
[

�−1(U
(

a,L;Θa
))

+ �−1(V
(

b,K;Θb
))]

,W
(

gỸ
(

Y;ΘỸ
))

,X
(

gN (N);ΘN
)

;Θ
)

.

MRTS =

�T

�K

�T

�L

=
C

�

(a, L, b,K, Y ,N;Θ)�
�

(a, L, b,K;Θ)
[
�−1

]�
(v;Θ)V1

(
b;Θb

)
V2(K;Θ)

C
�
(a, L, b,K, Y ,N;Θ)�

�
(a, L, b,K;Θ)

[
�−1

]�
(u;Θ)U1

(
a;Θa

)
U2(L;Θ)

,

MRTS =
V1

(
b;Θb

)
V2(K;Θ)

U1

(
a;Θa

)
U2(L;Θ)

.

� =

⎛⎜⎜⎜⎝

dLn[MRTS]

dLn
�

K

L

�
⎞⎟⎟⎟⎠

−1

=

⎛⎜⎜⎜⎝

d
�
Ln

�
V1(b;Θb)
U1(a;Θa)

�
+ Ln

�
V2(K;Θ)

U2(L;Θ)

��

dLn
�

K

L

�
⎞⎟⎟⎟⎠

−1

=

⎛⎜⎜⎜⎝

dLn
�

V2(K;Θ)

U2(L;Θ)

�

dLn
�

K

L

�
⎞⎟⎟⎟⎠

−1

.
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also by the parameters Θa , Θb , ΘỸ
 , and ΘN . Then, once we maximize the LPF, which 

is subject to the TF, the optimal values a∗ and b∗ also depend on Θ , Θa,Θb , ΘỸ
 , and 

ΘN.
Since we obtain the GPF by substituting a∗ and b∗ into the LPF, we have

  ◻

Appendix A.2: Proofs for the Microfounded CES Model

A.2.1. Proofs of Random Variable Transformations

Here, we show how to obtain the margins of the transformed random variables used 
in our examples. For a Pareto distributed random variable cI , its density function is 
given by

If we use the transformation Z = −ci, its density is

Therefore, we have the resulting marginal probability

However, using the transformation R =
1

ci
 , we have

and the resulting marginal probability (where 0 < 𝛾c <
1

c
) is given by

We use the results from Appendix A.2.1 for the transformed Pareto random vari-
ables ha(ai) =

1

ai
, hb(bi) =

1

bi
 and h

Ỹ

(
Yi
)
= −Yi to obtain (4) by substituting their 

marginal distributions into the nested Clayton copula (3). Similarly, we use the 

Y∗ = Y∗
(
L,K,N,U(a∗, L),V(b∗,K);Θ,Θa,Θb,ΘỸ

,ΘN

)
.

fci(c) = 𝜌
𝛾𝜌
c

c𝜌+1
,where c ≥ 𝛾c > 0.

fZ(z) = fci (−z)
||||
d(−z)

dz

|||| = �
��
c

(−z)�+1
;

P
(
ci > c

)
= P(−Z > c) = P(Z < −c) = FZ(−c) =

∫

−c

−∞

𝜌
𝛾𝜌
c

(−u)𝜌+1
du =

(
c

𝛾c

)−𝜌

.

fR(r) = fci

(
1

r

)|||||||

d
(

1

r

)

dr

|||||||
= �

��
c(

1

r

)�+1

||||−
1

r2

|||| = ���
c
r�−1,

P
(
ci >

1

c

)
= P

(
1

R
>

1

c

)
= P(R < c) = FR(c) =

∫

c

0

𝜌𝛾𝜌
c
u𝜌−1du = 𝛾𝜌

c
c𝜌.◻
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following Pareto random variables qa
(
ai
)
= −ai, qb

(
bi
)
= −bi, and qN

(
Ni

)
=

1

Ni

 to 
obtain (5).

A.2.2. Model Proofs

Proof of Lemma 3.1 Fixing the probability P0 = P
(
ai >

1

a
, bi >

1

b
, Yi > Y

)
 in Eq. (4) 

and solving for 
(

Y

�Y

)�

, we have

Now, we define �a = �L
(
1 + L−�

)− 1

�� and �b = �K
(
1 + K−�

)− 1

�� and substitute 
them into the previous equation to obtain

We change the scale to obtain 
(
a�L

)−��
+
(
b�K

)−��
= 1, and finally, we obtain

To derive the TF, we fix the probability P1 = P
(
ai > a, bi > b,Ni ≤ N

)
 in Eq. (5) 

and simplify the equation to obtain

  ◻

Proof of Lemma 3.2 We define the following Lagrange multiplier function:

Then, we combine the first-order conditions to obtain b2�� = 1+L�

1+K�
a2�� . Substitut-

ing the previous equation into the constraint and solving for a�� , we have

(
Y

�Y

)δ�

= 1 + P−δ
0

−

[(
a�a

)−��
+
(
b�b

)−��
− 1

] δ

�
.

Y = �Y

⎛⎜⎜⎝
1 + P0

−δ −

��
a�L

�
1 + L−�

�− 1

��

�−��
+

�
b�K

�
1 + K−�

�− 1

��

�−��
− 1

� δ

� ⎞⎟⎟⎠

1

δ�

= �Y

�
1 + P0

−δ −

�
(a�L)

−��L−� + (b�K)
−��K−� + (a�L)

−��
+ (b�K)

−�� − 1
� δ

�

� 1

δ�

.

Y = �Y

(
A −

[(
a�L

)−��
L−� +

(
b�K

)−��
K−�

] �

�

) 1

��

, where A = 1 + P0
−δ.

H(a, b) =

(
a

�a

)��

+

(
b

�b

)��

= 1 + P−�
1

(
�NN

)��
= AN .

L = �Y

(
A −

[(
a�L

)−��
L−� +

(
b�K

)−��
K−�

] �

�

) 1

��

− �

[(
a

�a

)��

+

(
b

�b

)��

− AN

]
.
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Similarly, we derive the expression for the optimal value of b��

Then, we substitute these optimal values into the LPF as

   ◻

Proof of Lemma 3.1.1 Consider the copulas C(W, Z) = max
{(

W−� + Z−� − 1
)− 1

� , 0
}

 , 

where Z = max

{[
U−�+V−� − 1

]− 1

� , 0

}
 and 

C(U,V) = max

{[
U−�+V−� − 1

]− 1

� , 0

}
 . Then, by using the generators 

�(t) =
1

�

(
t−� − 1

)
 and �(t) =

1

�

(
t−� − 1

)
 in the next formula �c = 1 + 4∫

1

0

�(t)

� �
(t)
dt and 

applying simple algebra, we obtain �wuv =
�

2+�
 and �uv =

�

�+2
 , respectively. However, 

using the formula � =

(
dA

dB

)(
B

A

)
 , we calculate the elasticity of substitution of trans-

formation and local production functions.

First, we define Z =

[(
a�L

)−��
L−� +

(
b�K

)−��
K−�

] 1

�� from the transformation 

function and obtain the rate of substitution (RS) as RS = �
(

Z

Y

)��−1

 ; then, we obtain 
the derivative

Thus, we obtain the result �Yab =

(
dLn|RS|
dLn

(
Y

Z

)
)−1

=
1

1−��
. Second, the technical rate 

of substitution (TRS) is given by TRS =
�

1−�

(
K

L

)�+1

 ; then, we obtain the derivative

a�� =
���
L
�
��

K
L�K�AN

�
��

K
K�

(
1 + L�

)
+ ���

L
L�
√(

1 + L�
)(
1 + K�

) .

b�� =
���
L
�
��

K
L�K�AN

�
��

K
K�

√(
1 + L�

)(
1 + K�

)
+ ���

L
L�(1 + K)�

.

Y∗ = �Y

�
A − A

−
�

�

N

�
�−��
L

√
1 + L�L

−�

+ �
−��

K

√
1 + K�K−�

� 2�

�

� 1

��

.

dLn|RS|
dLn

(
Y

Z

) =
d

dLn
(

Y

Z

)
(
Ln(�) + (1 − ��)Ln

(
Y

Z

))
= 1 − ��.

dLn|TRS|
dLn

(
K

L

) =
d

dLn
(

K

L

)
(
Ln

(
�

1 − �

)
+ (1 + �)Ln

(
K

L

))
= (1 + �).
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Thus, we obtain the result �KL =

(
dLn|TRS|
dLn

(
K

L

)
)−1

=
1

1+�
.

Finally, to obtain the identities, we rewrite � and � as functions of �Yab , �KL, �wuv 
and �uv to obtain � =

2�wuv

1−�wuv
 and � =

2�uv

1−�uv
 .   ◻

Appendix B: General Definitions and Theorems

Definition B.1 A 4-dimensional copula is a function C from 
I4 = [0,1] × [0,1] × [0,1] × [0,1] to I = [0,1] that satisfies the following properties:

(1) For every (U,V ,W.X) ∈ I4 , if at least one of such variables is zero, then 
C(U,V ,W,X) = 0;

(2) C(1,1, 1,N) = N; C(1,1,W, 1) = W  ; C(1,V , 1,1) = V  , and C(U, 1,1, 1) = U;
(3) For every r, s ∈ I4 such that r ≤ s, VC(M) =

∑
sgn(c)F(c) ≥ 0;

where M =
[
r1, s1

]
×
[
r2, s2

]
×
[
r3, s3

]
×
[
r4, s4

]
 and the sum is over all the vertices 

c =
(
c1, c2, c3, c4

)
 of M (each ck is equal to either rk or sk ) and sgn(c) is given by

Theorem (Sklar’s Theorem) Let C be a 4-copula and U,V ,W, and X be the mar-
ginal distributions of the random variables ai, bi Ỹi, and Ni respectively. Then, there 
exists a 4-dimensional distribution function F with margins U,V , and W defined by

Conversely, let F be a 4-dimensional joint distribution function with margins 
U,V ,W, and X . Then, for all 

(
a, b, Ỹ ,N

)
 in ℝ

4 there exists a 4-dimensional copula C 
defined by (B.1). If U,V ,W , and X are all continuous, then C is unique; otherwise, C 
is uniquely determined on its range Ran(U) × Ran(V) × Ran(W) × Ran(X).
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