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Abstract 

Online banking fraud occurs whenever a criminal can seize accounts and transfer 
funds from an individual’s online bank account. Successfully preventing this requires 
the detection of as many fraudsters as possible, without producing too many false 
alarms. This is a challenge for machine learning owing to the extremely imbalanced 
data and complexity of fraud. In addition, classical machine learning methods must be 
extended, minimizing expected financial losses. Finally, fraud can only be combated 
systematically and economically if the risks and costs in payment channels are known. 
We define three models that overcome these challenges: machine learning-based 
fraud detection, economic optimization of machine learning results, and a risk model 
to predict the risk of fraud while considering countermeasures. The models were 
tested utilizing real data. Our machine learning model alone reduces the expected and 
unexpected losses in the three aggregated payment channels by 15% compared to a 
benchmark consisting of static if-then rules. Optimizing the machine-learning model 
further reduces the expected losses by 52%. These results hold with a low false positive 
rate of 0.4%. Thus, the risk framework of the three models is viable from a business and 
risk perspective.

Keywords:  Payment fraud risk management, Anomaly detection, Ensemble models, 
Integration of machine learning and statistical risk modelling, Economic optimization 
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Introduction
Fraud arises in the financial industry via numerous channels, such as credit cards, 
e-commerce, phone banking, checks, and online banking. Juniper  Research (2020) 
reports that e-commerce, airline ticketing, money transfer, and banking services will 
cumulatively lose over $ 200 billion due to online payment fraud between 2020 and 2024. 
The increased sophistication of fraud attempts and the increasing number of attack vec-
tors have driven these results. We focus on online and mobile payment channels and 
identity theft fraud (i.e., stealing an individual’s personal information to conduct fraud )
(Amiri and Hekmat 2021). The aim is to identify external fraudsters who intend to initi-
ate payments in their interests. As fraudsters gain access to the payment systems as if 
they were the owners of the accounts, they cannot be identified based on the account 
access process. However, the fraudster behaves differently during a payment transaction 
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than the account owner and/or the payment has unusual characteristics, such as an unu-
sually high payment amount or transfer to an account in a jurisdiction that does not 
fit the life context and payment behavior of the customer. The assumption is that algo-
rithms can detect anomalies in behavior during payment transactions.

West and Bhattacharya (2016), Abdallah et al. (2016), Hilal et al. (2021), and Ali et al. 
(2022) reviewed financial fraud. They found a low number of articles regarding online 
payment fraud. For example, Ali et  al. (2022) cited 20 articles on financial statement 
fraud and 32 articles on credit card fraud, see Li et al. (2021) for credit card fraud detec-
tion. Online payment fraud was not listed. The reviews also clarified that many articles 
utilized aggregated characteristics. However, we emphasize that fraud in online pay-
ments can only be detected based on individual data, as such fraud can only be detected 
through the possible different behavior of the fraudster and the account holder during 
payments. As fraudsters learn how best to behave undetected over time, they adapt their 
behavior. Therefore, self-learning defense methods are expected to outperform static-
rule-based algorithms. The correctness of the expectation was shown by Abdallah et al. 
(2016) and Hilal et al. (2021). Various machine-learning algorithms for fraud detection 
have been proposed in the literature, including decision trees, support vector machines, 
and logistic regression to neural networks. Aggarwal and Sathe (2017) discussed vari-
ous methods for outlier ensembles, and Chandola et al. (2009) provided a taxonomy and 
overview of anomaly detection methods.

A common feature in many studies is imbalanced data (i.e., the low proportion of fraud 
events in the dataset, see Wei et al. 2013; Carminati et al. 2015; Zhang et al. 2022a; Singh 
et al. 2022). Risk detection involves detecting fraudulent transactions and stopping them 
before execution.

In addition to the efficiency of the algorithms, the data basis is an important reason for 
the differences in fraud-detection performance. While many studies have utilized either 
often less rich synthetic or Kaggle data, we were able to work with real data. Log files, 
which have substantial information content in our work, are hardly expected in Kaggle 
data. The difference in the data complexity is also reflected in the number of features. 
Singh et al. (2022) showed that the feature space consists of 31 features compared to our 
147 features. Moreover, the proportion of fraudulent transactions in Singh et al. (2022) 
is more than a hundred times higher than in our case. Consequently, our data are much 
more unbalanced than any other study we know of, and the task of finding efficient fraud 
detection algorithms is more difficult.

However, limiting risk management to the optimal detection of anomalies does not 
ensure that losses caused by fraud are minimal. Optimal fraud detection can be econom-
ically suboptimal if, for example, it is efficient for small amounts of money but unsuc-
cessful for large amounts. Thus, the machine learning outputs for risk identification 
must be optimized from an economic perspective. We call this optimization the triage 
model. Yet, neither fraud detection nor the triage model can provide an answer to the 
question of how large the losses in a payment channel are. Therefore, we develop a statis-
tical risk model that considers the effects of countermeasures on loss potential. The risk 
model provides risk transparency and makes it possible to assess which measures in the 
fight against fraud in various payment channels make sense from an economic and risk 
perspective.
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Literature on fraud risk models often refers to qualitative or assessment models for 
assessing fraud risk or risk assessment models (Sabu et al. 2021). We are not aware of 
any quantitative fraud risk management framework that explicitly considers the impact 
of the fraud detection process statistically in risk modelling. For organizational, proce-
dural, and legal risk aspects, we refer to the literature. Montague’s (2010) book focuses 
on fraud prevention in online payments but does not consider machine learning and risk 
management in detail. The Financial Conduct Authority’s Handbook (FCA 2021) pro-
vides a full listing of the FCA’s legal instruments, particularly those relating to finan-
cial crime in financial institutions. Power (2013) highlights the difference between fraud 
and fraud risk from historical and business perspectives. Van Liebergen (2017) looks at 
“regtech” applications of machine learning in online banking. Fraud risk events in cryp-
tocurrency payment systems are different from the online banking cases under consid-
eration; see Jung et al. (2019) for fraud acting on a decentralized infrastructure and the 
review article of Trozze et al. (2022).

The development and validation of the three linked models are the main contributions 
of our work. To our knowledge, this is the first study to develop, validate, and link com-
ponents of the risk management process. The output of the anomaly detection model 
(i.e., the ROC curves), is the input for the triage model, which provides economically 
optimized ROC curves. Fraud statistics data were utilized to calibrate the various com-
ponents in the risk model. With these three models, the fraud risk management process 
can be qualitatively implemented at the same level as the risk management of market or 
counterparty risks (see Bessis (2011) to describe risk management in banks).

The performance of our risk management framework is the second contribution, 
although the performance comparison of our fraud detection method with the literature 
is limited and cautious, due the use of synthetic data instead of real data, a considera-
tion of different channels in payments with different behavioral characteristics of bank 
customers, and the publication of incomplete statistics. Nevertheless, we compared our 
work with Wei et  al. (2013) and Carminati et  al. (2015), both of which analyze online 
banking fraud based, in part, on real data. The true positive rate (TPR) at a false positive 
rate (FPR) of 1% was 45% . In Wei et al. the TPR is between 49% and 60% , but unfortu-
nately, the FPR is unknown. In the relevant scenario of Carminati et al. (2015), the TPR 
is 70% with an FPR of 14% . This FPR is not acceptable to any bank. Processing by spe-
cialists leads to high costs. We discuss all these statements in detail in the  "Validation 
results" section. Considering all three models, the theoretical and practical importance 
of our approach becomes clear. The expected losses in a scenario of CHF 2.023 million, 
which utilizes the results of machine learning without economic optimization in the tri-
age model, common in the literature, are reduced to CHF 0.800 million with the triage 
model (i.e., a reduction in the loss potential by more than 60% follows). In addition, if 
fraud detection is implemented without a risk model, fraud risk can be massively overes-
timated. Applying our models to three different payment channels, the overestimation of 
risk ranged from 54% to over 700%.

The remainder of this paper is organized as follows. In "Fraud risk management 
framework" section, the model selection for the fraud risk management framework is 
motivated and described. In "Online payment fraud anomaly detection" section, we con-
sider the anomaly-detection model. "Fraud detection triage model" section links fraud 
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detection to an economic perspective utilizing the triage model. "Risk model" presents 
the statistical risk model. "Conclusion" section concludes.

Fraud risk management framework
We provide an overview of the three interrelated quantitative models in the context of 
risk management: online payment anomaly detection, triage model, and risk model.

Online payment fraud anomaly detection

The goal of anomaly detection is to detect fraudulent activities in e-banking systems and 
to maintain the number of false alarms at an acceptable level. The implementation of the 
model consists of three steps: pre-filter, feature extraction, and machine learning.

Non-learning pre-filters ensure that both obvious fraud and normal transactions are 
sorted early to reduce the false positive rate. Only transactions that pass the pre-filter 
step are passed on to the machine-learning model. Banks utilize non-customer-based 
static if-then rules, such as blacklists or whitelists. Pre-filters free the algorithms from 
obvious cases. The adaptability and flexibility of the machine-learning model is neces-
sary to counter the ever-improving attacks of fraudsters with effective fraud detection.

Our data face the following general challenges in payment fraud detection (per Wei 
et  al. 2013): large transaction volume with the need for real-time fraud detection, a 
highly imbalanced dataset, dynamic fraud behavior, limited forensic information, and 
varying customer behavior.

Given the extremely imbalanced data, fully supervised algorithms typically struggle. 
Aggarwal and Sathe (2017) proposed unsupervised and weakly supervised approaches 
based on features that encode deviations from normal behavior. For each customer par-
ticipating in an e-banking session, we assess whether the agent’s behavior is consistent 
with the account holder’s normal behavior. The key information for behavioral analysis 
lies in the sequence of the customer’s clicks during the session. We show that, unlike 
online e-commerce transactions (see Wei et al. 2013), transaction data, customer behav-
ior data, account data, and booking data are also important for the performance of the 
algorithm. More precisely, these features are divided into behavioral, transactional, and 
customer-related features. Starting with nearly 800 features, 147 were extracted utilizing 
a Bagged Decision Tree Model (BDT). These numbers are many times higher than those 
for credit card fraud with one to two dozen features (see Table 8 in Hilal et al. 2022). 
The high dimensionality of the feature space also arises in machine learning corporate 
default prediction models, where several steps are needed to extract all noisy features 
(see Kou et al. 2021).

Our e-fraud model operates according to the following principles.

•	 The model learns the “normal” behavior of each customer based on historical pay-
ment data and online banking log data.

•	 Each new transaction is checked against the learned “normal” behavior to determine 
if it is an anomaly by extracting the 147 features from the data.

•	 If an anomaly is detected, it is flagged as suspected fraud.
•	 Detected transactions that are not found to be fraudulent after manual review are 

reported back to the model for learning purposes.
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As there are very few known fraud cases, all base learners are trained on fraud-free data 
only in step one. Fraud cases are only utilized in step two of ensemble aggregation when 
the base learners are combined to form the final predictive function. The first step is to 
define base learners who are rich enough to detect a wide range of suspicious transac-
tions or online user sessions. We consider three base learners: the density-based outlier 
detection model (unsupervised, Local Outlier Factor (LOF)), the isolation-based outlier 
detection model (unsupervised, Isolation Forest (IF)), and a model for normal customer 
behavior (supervised, Bagged Decision Trees (BDT)) as base learners (see Breunig et al. 
(2000), Chandola et al. (2009); Zhang et al. (2022b) for LOF, Liu et al. (2012); Tokovarov 
and Karczmarek (2022) for IF). We refer to individual instances of LOF, IF, or BDT as 
base learners. The BDT model is not only a base model, but it is also utilized for feature 
selection in the other two base models: LOF and IF. The LOF method is suitable for out-
lier detection, where each observation is assigned an outlier level based on its distance 
from the nearest cluster of neighboring observations. The aim is to detect outliers in 
inhomogeneous data, for which classical global outlier methods typically do not provide 
satisfactory results. Conversely, IF explicitly isolates anomalies without capturing all 
normal instances. These two methods consider the heterogeneity in the data.

In the second stage, the base learner’s fraud score was aggregated. We consider two 
approaches to determine the weights in the ensembles: a simple averaging and a super-
vised approach, although our model largely consists of unsupervised procedures because 
of the limited availability of fraud cases for which we can extract all the required features. 
However, we introduce supervision where we utilize scarce labelled data to adjust the 
importance of certain base learners in the voting scheme, ultimately deciding whether 
an observation is fraudulent. The penalized logistic regression chosen for classification 
allows for a better interpretation of the model, as the weights can be utilized to identify 
base learners, subsets of features, and subsets of samples that have been particularly use-
ful in detecting a particular type of fraud.

Triage model

The fraud detection model calculates scores and, in comparison with a threshold value, 
decides whether a transaction is flagged as an anomaly. This process results in the prob-
ability of detection for a given investigation effort, as indicated by the ROC curve. By 
making the threshold dependent on the transaction size, we can ensure that larger trans-
action amounts are more likely detected than smaller ones. This gives up part of the true 
positive rate (TPR) to reduce overall economic losses (i.e., the TPR decreases for a given 
FPR). This economic optimization that leads to adjusted ROC curves defines the triage 
model.

To minimize expected cumulative losses, the constant fraud anomaly detection thresh-
old becomes a function of the transaction amount. Here, the transaction amounts are 
random variables whose distributions are estimated. In the optimization problem, the 
transaction function is chosen to maximize the average cumulative sum of the detected 
fraudulent transactions, where the expected FPR must not exceed a certain threshold. 
Utilizing this optimal threshold function, the fitted ROC curves were obtained.

The optimization problem has a unique solution if the ROC curve is a concave func-
tion of the false positive rate function of the threshold and if the acceptance set of the 
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expected false positive function constraint is convex. With the chosen piecewise lin-
ear false positive constraint function, the assumptions regarding the existence of an 
optimum are satisfied. The ROC curves that result when fraud anomalies are detected 
serve as inputs for the optimization. However, because only a vanishingly small num-
ber of fraud cases exist, the TPR values for certain FPR levels are subject to consider-
able uncertainty. Hence, cubic spline functions were utilized for the ROC curve of the 
optimization.

The UK Finance (2019) report states that the recovery value for online and mobile 
banking in the UK is 18% of the potential loss. Therefore, we introduced an extension to 
the optimization program to include recovery.

Risk model

Losses from transaction fraud are included in operational risk incurred by banks. As for 
other operational risks, one of the key questions from a risk-management perspective is 
whether the allocated resources and countermeasures are adequate. To answer this, one 
needs some way of quantifying the risk incurred, ideally a Value-at-Risk (VaR)-model 
that fits the general risk framework of the bank. Simply, the model calculates the loss 
L = E(�)× E(τ ) where � is the expected event frequency (fraud), and τ is the expected 
loss per event. The challenge is to determine the distributions of these variables in a 
tractable and plausible manner and define a model while having very scarce data on past 
events. We chose the path of an aggregated simulation of many scenarios per e-channel 
to account for the inherent uncertainty in the choice of these parameters.

Unlike market or credit risk, fraud risk is borne by comparatively few individuals or 
groups who utilize very specific strategies and technologies to overcome vulnerabil-
ity in the payment process. Simultaneously, defenders analyze attack plans and update 
their countermeasures. In this constantly changing environment, neither the frequency 
of attacks nor the transaction amounts can be assumed to be statistically regular with 
great certainty. Therefore, we propose a simple, flexible stochastic model composed of 
basic building blocks. With such a model, risk managers can quickly adjust the model as 
needed, perform what-if analyses, or simulate changes in payment infrastructure.

The basic model structure for the e-fraud risk model consists of (i) independent mod-
els for the three channels, whose components and parameters can be flexibly assembled 
and adjusted, (ii) sub-models in each channel based on three model types, and (iii) a 
recovery model for each channel. The three model types for the three different online 
payment channels in this study are a Beta model (restricted distribution of transaction 
amounts), a Generalized Pareto Distribution (GPD, unrestricted distribution of transac-
tion amounts), and a “mass attack model” (many simultaneous Beta-type attacks).

Countermeasures against fraud and recovery measures after fraud events play an 
essential role in determining risk potential. Therefore, they were integrated into the risk 
models. Countermeasures against online fraud can be divided into those that strengthen 
the general infrastructure of the payment process and those that focus on defense against 
actual attacks. The former is conceptually part of the risk model described above, as it 
affects the frequency and possibly the transaction size of the attacks. However, the latter 
is better understood in the context of recovery and is considered in the triage model.
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Online payment fraud anomaly detection
Data

Raw data consisted of transaction data, interaction data between customer and e-bank-
ing interface, account, booking, and customer reference data. All users with fewer than 
10 logged online sessions were removed as input for ensemble learning. The removed 
cases were handled separately by utilizing a case-back model.

The transaction history in our dataset consists of 140 million transactions over three 
years. One hundred fraud cases are reported, but only 11 cases can be linked to the 
recorded 900’000 online session logs: a 0.0012% fraud rate. Only 900’000 of the 140 mil-
lion transactions were possible as the log files were only stored in the bank for three 
months. This change occurred after the project.

A feature vector is created for each e-banking session based on raw data. The interac-
tion pattern features consist of n-grams constructed from customers’ request sequences 
and normalized deviations from the expected duration between each pair of consecu-
tive requests sent by a customer in an online session. Particular attention was paid to 
the typical time required to complete a two-step verification process during enrolment. 
Payment pattern characteristics were calculated for weekday, weekly, and monthly sea-
sonality. These include normalized deviations from the expected payment amount and 
remaining account balance. Technical data included the IP address of the online session, 
the HTML agent, and the number of JavaScript scripts executed. Finally, we utilized his-
torically observed confirmed fraudulent transaction identifiers as the ground truth for 
the weakly monitored part of the pipeline.

Several quality checks were performed. Consistency tests ensure that the session inter-
action data and transactions match, for example, that the account exists or that a recipi-
ent is listed in the transaction. We also checked for missing or non-parsable values, the 
latter removed.

The data are extracted from several different data sources within the bank in a two-
step Python extract, transform, and load (ETL) process, and converted into features for 
the algorithm. First, we introduce all raw data into a standard structured format for all 
data sources. Then, we perform the feature engineering described in the following sec-
tions to compute the data input for the ensemble.

Our fraud rate 0.0012% is much lower than that reported in the literature. The figures 
in the two online banking fraud papers, Wei et al. (2013) and Carminati et al. (2015), are 
0.018% and 1% , respectively. For credit card fraud, the fraud case number is larger, such 
as 2% in Piotr et al. (2008). Outside the banking fraud sector, anomalies account for up 
to 40% of the observations (see Pang et al. 2020). Similar numbers hold in Zhang et al. 
(2022b), who tested their ensemble-based outlier detection methods on 35 real datasets 
from various sectors outside the financial sector, with an average fraud rate of 26%.

Feature extraction

For weak supervision, we utilized historically observed confirmed fraudulent transac-
tion identifiers as the ground truth. For training and inference, we created a feature 
vector for each e-banking session based on the raw data. Each feature aims to encode 
deviation from expected (“normal”) customer behavior, as observed in historical 
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interactions with the online banking interface and executed transactions. Three types 
of features are considered.

Behavioral features

The underlying motivation for utilizing features derived from customers’ online ses-
sion logs is that a large fraction of online payment fraud involves hijacking, where a 
foreign agent (human or robot fraudster) takes control of the e-banking session. Con-
sequently, it is expected that the timing and sequence of requests posted by the user 
in a fraudulent session will be significantly different from those in a non-fraudulent 
session. We utilize the information about user request types (e.g., “get account bal-
ance”, “create payment”) and corresponding timestamps to construct the following 
features:

•	 Normalized n-gram frequency of user’s requests within the online session. We 
utilized single, pairs and triplets of consecutive requests (1-, 2- and 3-grams) to 
derive a fixed-size representation. We performed normalization by dividing the 
number of occurrences for each request with the total number of requests in each 
session.

•	 Normalized time between consecutive user request n-grams. For each pair of recorded 
consecutive n-grams, we transformed absolute time between them into deviations by 
computing z-scores relative to respective historical observations.

•	 Technical attributes of a session (e.g., IP address of the online session, HTML agent, 
screen size, and the number of executed Javascript scripts) in binary format - 0 if 
previously observed, otherwise 1.

Transactional features

Transactional features aim to quantify how anomalous aggregate payments scheduled 
in an online session are compared with previously executed payments and the remain-
ing balance on the account. They are designed to capture attempts to empty a victim’s 
account through a single large or many small transactions, while being mindful of sea-
sonal patterns (e.g., holidays, travel expenses, bills, etc.).

•	 Normalized ratio of the payment amount relative to remaining account balance. We 
normalize by computing z-scores relative to historically observed ratios.

•	 Deviation of the scheduled payment amount from the seasonally expected amount. 
We compute four deviations per session using z-scores relative to historical pay-
ments executed in the same hour of the day, day of the week, week of the month, and 
month of the year, respectively.

•	 Scheduled time for payment execution in binary format - 0 if immediate, 1 if lagged.

A short payment history and many accounts with relatively infrequent transactions 
proved detrimental to seasonality modelling, hence, these features were omitted from 
the final model.
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Customer‑related features

Customer-related features provide insight into peer groups, relationships with other 
customers, and the service packages they utilize. These include:

•	 Sociodemographic(e.g., age, nationality, profession, and income)
•	 Seniority of client relationship
•	 Product usage (i.e., savings, investment accounts, and mortgages)
•	 Relationship to other customers (i.e., shared accounts, spouses, and family)

These features were not considered within the scope of our study because of data limita-
tions and time constraints.

Functionality and structure of the fraud model

Base learner: bagged decision tree

Bagged decision trees (BDT) are trained utilizing the concept of transfer learning, which 
assumes that distinguishing between the behaviors of different clients within their online 
sessions is a related problem in distinguishing between fraudulent and non-fraudulent 
sessions. The underlying motivation considers that a large fraction of online payment 
fraud involves hijacking or when a foreign agent (human or robot fraudster) takes con-
trol of the e-banking session. As fraudulent sessions are rare and non-fraudulent sessions 
abound, the utilization of transfer learning enables the extraction of custom patterns 
from a much broader dataset and the use of supervised learning. Transfer learning com-
prises two phases. A learning phase where one discriminates behavioral characteris-
tics of each customer vs. non-customers and a prediction phase where discrimination 
between non-fraudulent and fraudulent users sessions were considered in this study. The 
“non-customer” class label is then attributed to fraudulent behavior.

The decision function in BDT base learners is the probability that an observation, a 
planned transaction x, is a “non-customer behavior.” This value is equal to the average 
probability observed for all decision trees in the forest.

where M is the number of trees in the bagged forest, cj is the corresponding customer 
behavior class, and Pi(Y  = cj|X = x) is the probability that observation x is a “non-cus-
tomer behavior” as predicted by the ith tree. Customer behavior class cj consists of the 
collected sessions and transactions, excluding potential fraud. The model was fitted as 
follows:

•	 For each customer cj , we collect the associated sessions, excluding the potential fraud 
cases. This set represents the “behavior of customer cj.”

•	 From the pool of all customer sessions C−j (excluding cj ) we draw a uniform sample 
of observations to generate a set representing the class “behavior of customer cj not,” 
� cj for short, and equal in size to the cj set. Equal sampling is performed to ensure that 
none of the other customers are overrepresented in � cj.

(1)δBDT(x) =
1

M
i

Pi(Y �= cj|X = x)
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•	 Each bagged forest in the ensemble is trained on a matching feature subspace utiliz-
ing all these observations. The forests consist of 100 decision trees each.

BDTs provide variable selection as an additional benefit, owing to the large amount of 
data involved in supervised classification. Therefore, they can be utilized to estimate the 
importance of variables and adequacy of feature engineering. We achieve this by calcu-
lating the Gini impurity decreases at each split point within each tree for each feature. 
Gini impurity is a measure of the likelihood that a randomly selected observation would 
be incorrectly classified by a specific node m:

where pmi is the portion of samples classified as i at node m. These impurity decreases 
were averaged across all decision trees and outputs to estimate the importance of each 
input variable. The greater the decrease in impurity, the greater the importance. Utiliz-
ing these results, we can identify the relevant subsets of input variables.

Relying on the concept of transfer learning (if the problem described in  ?? is suffi-
ciently like fraud detection), we use BDT to select a subset of N = 147 features. Particu-
larly important were features measuring the deviation from the typical time required to 
complete a two-step verification process during login. Features that encode the relative 
time between n-grams and specific user request sequences are important. The following 
additional base model was built using the features selected by BDT.

Base learner: local outlier factor

The Local Outlier Factor (LOF) detection method assigns an outlier level to each 
observation based on its distance from the nearest cluster of neighboring observations 
(Breunig et al. 2000). The general intent of the LOF model is to identify outliers in the 
interior region of data, for which classical global outlier methods and the other con-
sidered algorithm, isolation forest, usually do not provide satisfactory results. The LOF 
decision function is as follows:

with K a k-neighborhood and LD(x) the local reachability distance density from x to its 
k-th nearest neighbor. We fit the model for each customer by collecting the first associ-
ated sessions or transactions, excluding potential fraud. Each LOF in the ensemble is 
created utilizing all these observations on a subspace of the relevant features selected by 
BDT and the sampled hyper-parameter. Finally, each time a new observation is available, 
its decision function value is computed regarding the observations from the training set.

Base learner: isolation forest

The IF algorithm recursively splits the data into two parts based on a random thresh-
old, until each data point is isolated. The algorithm randomly selects a feature at each 
step, and then randomly selects a division value between its minimum and maximum 

(2)IG(m) = 1−

1
∑

i=0

p2mi

(3)δ LOF (x) =

1
|K |

∑

j∈K LD(xj)

LD(x)
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values. The algorithm filters out data points that require fewer steps to be isolated from 
the entire dataset. In our case, IF separates one observation from the rest of a randomly 
selected subsample of the original dataset (Fei Tony et al. 2008). Anomalies are instances 
with short average isolation path lengths. The IF decision function is

where E(H(x)) is the average number of edges traversed to isolate the node and C is the 
average number of edges traversed in an unsuccessful search. To fit the model, we first 
collected each client’s associated sessions or transactions, excluding potential fraud 
cases. In step two, each isolation forest in the ensemble was created utilizing all these 
observations in a matching feature subspace. Each forest consisted of 100 isolated trees. 
Finally, each time a new observation was available, its decision function value was com-
puted regarding the isolation trees created based on the training set.

Base learner scores combination

The decision functions of the base learners produced by our ensembles must be com-
bined into a single fraud score. As these are in different ranges and scales to render the 
decision functions comparable, we first replace the original scores by their ranks, regard-
ing the non-fraudulent training scores. Rank normalization is more robust and numeri-
cal stable as opposed to z-scores, for example. Therefore, we replaced the original scores 
with their ranks regarding the non-fraudulent training scores for each base learner:

where Vis the set of all δBase(p) over all observations p′ in the learners’ training subsam-
ple, with Base being LOF, IF, or BDT.

Owing to the few fraud cases, our model largely consists of unsupervised procedures. 
However, we introduced supervision utilizing scarce labelled data to readjust the impor-
tance of particular base learners in the voting scheme, ultimately deciding whether an 
observation is fraudulent.

The following score combination procedure was established. First, a training set com-
prises all fraud cases in the sample, along with healthy transactions uniformly sampled 
over customers from the ensemble training data. Second, a logistic regression is trained 
to classify observations as fraudulent or not utilizing the 6N normalized decision func-
tion features and the known fraud status on past transactions as the label.

The following binary-class penalized cost function is minimized:

where yi is the fraud label of transaction i, X ′
i is a row of 6N decision functions describ-

ing transaction i, R is the regularization factor, and (w,  c) is a set of weights defining 
the decision boundary between the two classes: fraud and non-fraud. To account for the 
imbalance between fraud and non-fraud transactions in our sample, we assign asymmet-
ric penalties for fraud misclassification, as opposed to non-fraud classification.

(4)δIF(x) = 2−
E(H(x)

C

(5)δNorm
Base (p) = rank(δBase(p),V ),

(6)min
w,c

(

1

2
w′w + R

N
∑

i=1

αi log
(

e−yi(X
′
i w+c) + 1

)

)
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Choosing logistic regression to optimize the weights of the base learners ensures that the 
final score combination x′w represents the log-odds of an observation to be fraudulent.

where δ(x) is the probability that the observation x is fraudulent. Finally, to assign a fraud 
label to a session x, we compare the output combined score, or equivalently, the prob-
ability δ(x) , to a threshold y, which is chosen based on ROC curve analysis such that the 
defined maximum allowed false positive rate is not exceeded. The decision boundary of 
logistic regression is linear, where each base learner is assigned a weight wi to determine 
its relative importance for fraud classification. This structure simplifies the interpreta-
tion of the model because these weights can be utilized to identify the base learners, fea-
ture subsets, and sample subsets, which are particularly useful in detecting a particular 
type of fraud associated with a high weight wi . Appendix A provides a detailed descrip-
tion of the ensemble design.

Normal customer behavior model

In summary, we created an ensemble model for each client, which is re-trained with 
new data at regular intervals and can be described by the following steps:

•	 We consider the disjoint sets of behavioral features on session observations and 
transactional features on transaction observations.

•	 For each of the two features/observations-pairs, we define N = 1000 learners for 
each of the three model categories as follows.

–	 We fix N random sub-samples of features from the feature set. Each sub-sam-
ple remains fixed for all customers.

–	 For each customer, we fix N random observation samples from the customer-
specific sessions or transactions observations.

–	 For each of the three model categories, for each customer, and for i = 1, ...,N  , 
a base learner is defined by applying the model algorithm to the i-th features 
sub-sample and i-th observations sub-sample. Thus, this results in 6N base 
learners per customer, 3N for sessions, and another 3N for transaction data.

•	 The decisions for the three base learners are aggregated utilizing supervision, 
where the knowledge obtained from existing fraud cases is utilized to adjust the 
base learner weights.

Utilizing this representation, we train a model that (i) outputs an indicator of how 
likely a scheduled transaction is fraudulent, (ii) aggregates the overall provided deci-
sion functions to derive the unified hypothesis, while assigning more importance to 

(7)αi =

{

#samples
2#frauds

, yi = fraud
#samples

2#non-frauds
, else.

(8)x′w = log

(

δ(x)

1− δ(x)

)

− c
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learners that showcase the capability to better distinguish between fraud and non-
fraud, and (iii) deals with a large imbalance in class representation.

Validation results

The training, test, and validation sets consisted of data collected from July to October 
2017, as dictated by the availability of online session log files. Around 900’000 sessions 
formed the dataset.

Raw data were processed using ETL to derive customer-specific feature representa-
tions of each recorded online session. The data were then split into non-fraud and fraud 
sets. The fraud set was not utilized to train the unsupervised base learners. Non-fraud-
ulent (“healthy”) sessions were separated into training and test sets utilizing a 3-fold 
cross-validation split. We then sequentially trained the models on each derived training 
fold and computed the scores for observations in the corresponding test folds. Follow-
ing, we obtained an out-of-sample decision function value for each healthy session and 
each base learner. We then assigned base learner scores to each fraudulent session utiliz-
ing base learners trained on all healthy data.

The out-of-sample logistic regression decision function values were aggregated by 
averaging within their respective ensembles (LOFs, IFs, and BDTs). This step yields a 
3-dimensional representation of each customer’s online session. Finally, we utilized 
leave-one-out cross-validation to report the ROC curve measures. Hence, the logistic 
regression model is consecutively trained on an all-but-one observation, followed by 
computing the probability of an observation that was left out. Thus, we again obtain an 
out-of-sample fraud probability for each observation in the sample. We opted for leave-
one-out cross-validation to maximize the number of fraudulent observations in each 
training set, because these are particularly scarce. Once we have obtained the aforemen-
tioned out-of-sample probabilities for each observation, we construct an ROC curve to 
display the FPR and TPR relationship depending on the decision threshold.

Resultantly, when utilizing no transaction data, the detection rate of the machine 
learning model was in a realistic range of 18% true positives. These primary results can 
be easily optimized to increase the TPR and simultaneously reduce the FPR utilizing dif-
ferent measures. This led to an increase in true positives by up to 45%, see Table 1.

Overall, LOF seems to perform best over the entire dataset compared to IF and BDT. 
However, BDT has a slightly steeper ROC curve at the beginning, thus showing better 
pure outlier detection capabilities. Furthermore, because BDT seems to detect frauds, as 
discussed below, involving larger amounts than those detected by LOF, we cannot con-
clude that LOF outperforms the other approaches considered. Aggregating the decision 
functions of the ensembles utilizing simple means outperformed supervised aggrega-
tion. Through analysis of logistic regression weights assigned to each ensemble of learn-
ers, we determined that significantly higher weights were assigned to the LOF ensemble, 
most likely due to its best performance over the whole dataset. This dampened the input 
from the other two ensembles. However, this is not the case when the mean for aggrega-
tion is utilized. The results were affected by the small number of frauds and the size of 
the sample analyzed.

Different ensembles detected different types of fraud, and by observing figures 
depicting money saved per raised alarm, we see that different ensembles (LOF and 
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BDT) detect different types of fraud cases, displayed by a large difference in saved 
money per trigger. Logistic regression supervision alarms were affected mainly by 
LOF, thus making it miss large embezzlement detected by the BDT ensemble. This 
motivates the triage model described in the next section. As of the restriction of the 
FPR to no greater than 2%, the entire ROC curve is of less interest. The ROC AUC 
values for the LOF ensemble is 0.93, for the BDT ensemble 0.82, and for the mean 
decision function ensemble 0.91.

We compared our results with those of Wei et  al. (2013), and Carminati et  al. 
(2015). These are two of the few studies dealing with online fraud detection that use 
real-world data, at least in part. Wei et al. (2013) utilized an unsupervised approach, 
whereas Carminati et  al. (2015) utilized a semi-supervised approach. Table  2 com-
pares the performance of our model with those of Wei et  al. (2013) and Carminati 
et al. (2015). The results of this table should be interpreted with caution. First, differ-
ent payment channels were considered. Second, the data of Carminati et  al. (2015) 
were anonymized and did not include fraud cases. These are artificially added to tune 
1% of the data volume, compared to 0.018% in Wei et  al. (2013) and 0.0012% in our 
dataset. Third, Wei et al. (2013) did not report the FPR. Finally, Carminati et al. (2015) 
published an almost perfect error detection for scenarios I + II, but in scenario III, 

Table 1  The zero percentage TPR in the benchmark model is due to the fact that the static rule 
based model of the bank was not able to identify a single true positive case

The results of the mean aggregation approach derived from an aggregation of three standalone ensembles consisting 
of 500 LOF, 500 BDT and 500 IF base learners, where aggregation was performed by taking the mean value of decision 
functions from three different types of base learners

Model TPR FPR

Benchmark model 0% 1% and 2%

500 LOF 18% 1%

500 LOF 45% 2%

500 BDT 18% 1%

500 BDT 27% 2%

500 IF 0% 1%

500 IF 27% 2%

Mean decision function 36% 1%

Mean decision function 36% 2%

Supervised decision function 18 % 1%

Supervised decision function 18% 2%

Table 2  Comparing the performance of different anomaly fraud detection models

TPR means True Positive Rate and FPR the False Positive Rate

Paper TPR FPR Remark

Wei et al. (2013) 49%-60% NA –

Carminati et al. (2015) 98.26% 0.19% Scenario I+II

Carminati et al. (2015) 70% 14% Scenario III

Vanini et al. (2022) 45% 1% –

Vanini et al. (2022) 62% 3.5% –
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the false positives are too high; they generate too much manual work for the bank. 
The former scenarios are simple fraud scenarios that would be blacklisted and filtered 
out in our data before machine learning engages.

Fraud detection triage model
Formalization

We formalize the triage model and denote by � the set of all transactions with ω as a 
single transaction, T (ω) as the transaction amount function, and χF (ω) as the fraud 
indicator function, where χF (ω) = 1 represents fraud. Space � is attributed to a prob-
ability distribution P with p(x) as the density function of the transaction amounts. 
The threshold value L of the fraud score function S is a function of the transaction 
amount x. We define:

If we assume stochastic independence of the transaction amount T, score S and fraud 
indicator χF , we obtain the following interpretation:

Note that the assumptions of independence are strong, as transaction sizes are utilized 
as the input of the machine-learning model underlying the score. Conversely, the inde-
pendence of χf  and T implies that the transaction amounts of fraudulent transactions 
have the same distribution as those of non-fraudulent transactions. In the context of 
the value-at-risk model in the next section, we argue that there is little evidence to sup-
port this. This considered, the assumption of independence is theoretically difficult to 
uphold, but in practice quite necessary to obtain our results.

We formulate our optimization problem as follows:

under the constraint of the integrated FPR

The expectation in (11) is the average cumulated sum of fraudulent transaction amounts 
detected by the detection model. By letting q0 := E(χF ) and utilizing (10), we can rewrite 
it as

The constant q0 is irrelevant to the optimization. Setting g(x) = FPR(L(x)) , we reformu-
late the optimization problem in terms of the ROC curve as

(9)
γ (x) :=

1

E(1− χF )
E((S > L(x))(1− χF )|T = x),

φ(x) :=
1

E(χF )
E(S > L(x))χF |T = x).

(10)γ (x) = FPR(L(x)) φ(x) = TPR(L(x)).

(11)max
L

E(T (S > L(T ))χF )

(12)
∫ ∞

0
FPR(L(x))p(x) dx ≤ constant.

(13)max
L

∫ ∞

0
x q0 TPR(L(x))p(x) dx.
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under the constraint:

To account for the recovery, we introduce a recovery function θ : � → [0, 1] . This func-
tion changes the objective function in the optimization problem, as follows:

whereas this constraint does not change.

Optimization

To put our formal model into practice, we need to fix a distribution for transaction 
amounts. Utilizing approximately 12 million transactions from online banking and 1.2 
million from mobile banking, we approximated the distribution for both channels utiliz-
ing lognormal distributions. Although this choice does not particularly focus on the dis-
tribution’s tails, it will be seen that the optimal model still places strong emphasis on the 
detection of anomalies with large transaction amounts. Some basic statistics of the fitted 
distributions are given in Table 3.

The ROC curve is conceptually the output of the detection model described in the 
previous section. However, owing to the limited number of actual fraud cases available, 
the TPR values for the given FPR levels are tainted with considerable uncertainty. The 
ROC curve utilized in our optimization was obtained by fitting a cubic spline function 
to the base points, as presented in Table 4. The support points were adjusted to avoid 
unwanted spikes in the cubic interpolation.

As the triage model aims to prevent large losses with a higher probability than smaller 
ones, the optimal FPR will be an increasing function of the transaction size. To avoid 
possible optimization problems, we choose a simple form for FPR as a function of trans-
action size, namely, a piecewise linear function satisfying g(0) = 0 , g(T1) = a , g(T2) = 1 
for the parameters a > 0 and 0 < T1 < T2 (see Fig. 1).

(14)max
g

∫ ∞

0
xROC(g(x))p(x) dx

(15)
∫ ∞

0
g(x)p(x) dx ≤ constant.

(16)E[(1− θ)T (S > L(T ))χF ]

Table 3  Moments and quantiles of the fitted lognormal distributions in CHF for the online and 
mobile banking channel transactions

Mean Std. Dev. 90% 99% 99.9%

Online banking 2’355 11’290 4’722 30’304 118’663

Mobile banking 774 2499 1’699 8’565 27’954

Table 4  Support points for the cubic spline construction of the ROC curve

FPR 0 0.002 0.004 0.008 0.01 0.02 0.03 0.05 0.1 1

TPR 0 0.1 0.18 0.28 0.31 0.4 0.45 0.5 0.55 1
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The optimization problem can be simplified by assuming equality in (12) and solving a 
as a function of T1 and T2 . For a target integrated FPR of 0.4%, we obtained the solutions 
listed in Table 5.

Figure 1 illustrates the results for an online banking channel. The concave shape of the 
FPR curve up to T2 shows that the optimal solution emphasizes the detection of large 
transaction fraud cases, accepting, in turn, the less rigorous testing of small and moder-
ate transactions up to T1 . For transaction amounts larger than T2 , FPR and TPR are equal 
to 1 by construction. Hence, all such transactions are automatically flagged as anomalies.

Total Effectiveness

is the average percentage of integrated fraudulent transaction amounts detected as 
anomalies. In our optimized case, the rate was 39%.

Risk model
The model

Compound Poisson processes were utilized as basic building blocks. We utilize beta mar-
ginal distributions for modelling bounded transaction amounts and generalized Pareto 
marginal distributions (GPD) for unbounded ones. The so-called mass-attack model is 
formulated as a nested compound Poisson process with a marginal beta distribution. All 
subprocesses are aggregated independently. Loss statistics, such as value-at-risk or other 
quantiles of the distribution, are obtained by running Monte Carlo simulations.

Utilizing the limited available fraud data and drawing on discussions with practition-
ers, we develop the following model for online banking fraud:

(17)TE =
1

∫∞

0 xp(x)dx

∫ ∞

0
ROC(g(x))p(x) dx

Table 5  Optimized values

T1 T2 a1

Online banking 95’523 192’350 0.1437

Mobile banking 31’629 74’556 0.1568
FP

R

TP
R

Transac�on Amount in CHF Transac�on Amount in CHF

FPR-Curve Online Banking (Total FPR<40%) TPR-Curve Online Banking (Total Effec�vity 39%)

Fig. 1  Panel Left: False positive rate as a function of the transaction amount under the constraint that 
the total false positive rate is smaller than 0.4 percent. Right Panel: True positive rate as a function of the 
transaction amount. The total effectiveness is 39 percent
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•	 Isolated attacks with a moderate transaction size of up to CHF 70’000 are modelled 
by a compound Poisson process with beta marginal distribution.

•	 Isolated attacks with transaction amounts larger than CHF 70’000 are modelled by a 
compound Poisson process with GPD marginal.

•	 “Mass attacks” are modelled as a nested compound Poisson process, where the 
inner Poisson process simulates the individual transactions triggered by the mass 
attack. The inner process has a beta marginal distribution and generates transaction 
amounts up to CHF 20’000.

The intensities of the Poisson processes constituting the submodels vary. In our case, 
isolated attacks of moderate size were by far the most frequent, followed by isolated 
attacks of large size. Mass attacks were the least frequent.

Mobile banking fraud is modelled analogously, albeit with transaction sizes only up 
to CHF 20’000, because larger amounts were inadmissible on this channel during our 
investigation. Hence, there is no Poisson process with GPD marginal in this case. Con-
trastingly, in the EBICS channel, which is an internet-based payment channel between 
banks, only the possibility of large fraudulent transactions was of interest. Hence, this 
model consists of a single compound Poisson process with GPD marginals above CHF 
100’000. The details of the parametrization are given in Appendix A.

Countermeasures against fraud and recovery measures after fraud events play an 
essential role in determining risk potential. Therefore, they were integrated into the 
risk models. Countermeasures against online fraud fall into two categories: those that 
strengthen general infrastructure of the payment process to make it harder for attack-
ers to find a weak spot, and those that are geared towards fighting off actual attacks. The 
first type is conceptually part of the base model described above, as it affects the fre-
quency and possibly the transaction size of attacks. However, the second type is better 
understood in the context of recovery.

A recovery variable is introduced in the triage model, which accounts for it often being 
possible to recover money even after it has been transferred to another bank through 
fraudulent transactions. Conversely, by monitoring transactions utilizing the fraud 
detection and triage model, a certain percentage of attacks can be identified even before 
the transactions are released. The ROC curve of the detection model’s ROC curve, in 
combination with the triage model, allows us to infer the probability of detection from 
the transaction size: such that this component of the recovery process is readily inte-
grated into the stochastic framework.

Owing to the nonlinearity of the risk statistics, the aggregation of the models was per-
formed at the level of individual scenarios. Thus, for each scenario, si , the loss of the 
overall model for one-year was calculated from the simulated loss events of the channel 
models:

(18)

Loss(si) =
∑

ChannelsCj

Loss(Cj , si)

=
∑

ChannelsCj

∑

Sub-modelUk

Loss(Cj ,Uk , si).
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For each sub-model, the loss is calculated by pulling the event frequency for the year 
according to the Poisson intensity, loss magnitude according to the marginal distribu-
tion, and stochastic recovery:

where Rec denotes recovery function. Simulated loss figures were obtained by simulating 
the nested overall model, from which the risk statistics could be calculated empirically. 
Juniper Research (2020) estimated the recovery rate as 18%.

Results

The simulation results for online banking are presented in Table 6. The table shows the 
simulation results without applying fraud detection utilizing a constant FPR level of 0.4% 
and the triage model for an integrated FPR of 0.4%, respectively. In this simulation, no 
additional recovery was applied.

The above table shows the strong mitigation of risk due to fraud detection. The triage 
model performs better than the constant FPR benchmark in all submodels, particularly 
for the GPD submodel. Recall that the triage model places strong emphasis on detecting 
large fraudulent transactions, even flagging all transactions larger than CHF 192′000.

As a second application, we compare the results of this risk model for the three 
e-channels with the bank’s overall 2019 risk policy. This means that we compare the cap-
ital-at-risk (CaR) limits for market and credit risks with operational risk limits, where 
the e-channel part is now calculated in our model. The following allocation of CaR 
holds according to the annual report of the bank1: Credit Risk, 69%; operational risk, 

Loss(Cj ,Uk , si) =

nPoisson
∑

k=1

Loss (Margin Distribution, si, k)(1− Rec(si, k))

Table 6  Simulated moments and quantiles for online banking based on 100’000 Monte Carlo 
simulations

Total represents the risk figures for all three distributions generalised Pareto (GPD), Beta and mass attack

in CHF 1’000 Mean Std. Dev. 90% 99% 99.9%

Total no detection 2’023 1’056 3’443 5’083 6’505

Total FPR 0.4 Pct 1’659 892 2’865 4’258 5’524

Total FPR Opt 0.4 Pct 800 535 1’518 2’403 3’114

Beta no detection 358 89 475 588 679

Beta FPR 0.4 Pct 293 81 400 504 585

Beta FPR Opt 0.4 Pct 206 65 291 376 442

GPD no detection 773 537 1’455 2’512 4’000

GPD FPR 0.4 Pct 634 484 1’251 2’248 3’450

GPD FPR Opt 0.4 Pct 81 91 207 361 489

Mass attack no detection 892 903 2’029 3’635 4’826

Mass attack FPR 0.4 Pct 732 743 1’690 2’983 3’920

Mass attack FPR Opt 0.4 Pct 514 523 1’199 2’100 2’799

1  CaR for credit risk is VaR on the bank’s quantile level and for market risk CaR was in the past chosen on an annual 
basis and a risk budgeting process was defined to align present risk with the annual risk budget.
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11%; market risk trading, 4%; market risk treasury, 11%; market risk real estate, 2%; and 
investment, 4%.

Approximately 1% of operational risk capital can be attributed to these three chan-
nels. Even if we add another 4–5% of the total volume to all payment services, including 
corporate banking and interbank payments, less than 10% of the operational risk capital 
is attributed to payment systems. As payment systems account for a significant portion 
of operational risk, our results confirm serious doubts about the accuracy of the chosen 
operational risk capital in banks. Without reliable models and data, capital is determined 
by utilizing dubious business indicators. Our models, which represent a micro-founda-
tion of risk, show that, at least in payment systems, trustworthy risk quantities can be 
derived by combining machine learning and statistics.

Conclusion
Defense against sophisticated online banking fraud involve several resources and meth-
ods. These include risk models, algorithms, human action, knowledge, computer tools, 
web technology, and online business systems in the context of risk management.

We show that anomaly detection is not only useful per se, identifying a significant 
proportion of fraud while controlling false alarms, but that linking anomaly detection 
with statistical risk management methods can significantly reduce risk. A bank equipped 
with an anomaly detection system will be exposed to orders of magnitude of higher risks 
in payments than a bank implementing our end-to-end risk management framework 
with the three components of fraud detection, fraud detection optimization, and risk 
modelling.

As fraud is part of regulated operational risk, our model allows us to analytically cap-
ture these operational risks without crude benchmarking. This also provides a microeco-
nomic foundation for capital adequacy. In the area of operational risk, these results put 
internal models that are not risk sensitive or difficult to verify on a solid footing.

A complicated problem, such as online payment fraud detection, requires a compre-
hensive understanding. A prerequisite for this is access to a large dataset. To evaluate 
our method, we utilized a real dataset from a private bank. Regardless of the chosen 
algorithm, feature extraction is an essential part of developing an effective fraud detec-
tion method. We utilized historically observed and confirmed fraudulent transaction 
identifiers as the ground truth. Each feature in the feature vectors for each e-banking 
session aims to encode deviations from normal customer behavior. Thus, behavioral, 
transactional, and customer-specific features are important.

Our framework opens interesting directions for future research. Roughly speaking, the 
framework goes in only one direction, from machine learning methods in fraud detec-
tion to statistical risk modelling. The feedback process from the risk model to the tri-
age model and from the triage model back to the fraud detection model is a challenging 
task that can be addressed utilizing reinforcement-learning methods. With such a feed-
back loop, the entire risk-management framework becomes a learning system. Another 
research direction is to extend the optimization of fraud detection (triage model) by 
considering transaction-dependent loss risks and other features such as customer seg-
mentation. More emphasis is placed on segments that are known or suspected to be less 
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alert or more vulnerable to fraudulent attacks. This resulted in a higher-dimensional tri-
age model.

Appendix A
The structure of our ensemble results from several design decisions based on both 
insights from the field (online banking) and experience in building machine learning 
models. Our ensemble model was built according to the following guidelines:

Customer-specific models The features used in our approach encode patterns in cus-
tomers’ session behaviour and transactions. These patterns vary widely from client to 
client, which is why we chose to use a client-specific model rather than a global model.

Global feature space Although behaviours vary, we have chosen to use the same fea-
ture representation for each session/transaction, which allows us to assign weights to 
specific (model, feature) pairs based on their performance across all clients. This in turn 
allows for consistent scoring across all clients and information sharing between clients 
when fraudulent activity occurs. In other words, our approach makes it easy for learners 
to adjust their weights.

Separation of models based on feature type We have chosen to form separate 
ensembles, one based on behavioural features and one based on transactional features, 
rather than concatenating all features into a single vector and forming a single ensemble 
based on concatenation. This ensures better interpretability and reduces the likelihood 
of constructing nonsensical feature subspaces during feature bagging.

Modified Bootstrap aggregation (Bagging) To build an ensemble of weak learners, 
we use a modification of bootstrap aggregation (bagging). Bagging is a meta-algorithm 
for ensembles that is used to reduce the variance and improve the stability of the predic-
tion as well as to avoid overfitting.

Bagging Pipeline
Observational sampling (bagging): Bagged ensembles for classification generate addi-

tional data for training by resampling with replacement from the initial training data to 
produce multiple sets of the same size of initial training data, one for each base learner. 
This is done to reduce the prediction variance. For the two outlier detection ensembles, 
we used variable subsampling (without replacement) to avoid problems associated with 
repeated data and to mimic random selection of the neighbourhood count hyperparam-
eter (cf. Aggarwal and Sathe 2017).

Feature bagging:  An important task in outlier detection is to identify the appropri-
ate features on which to base the analysis. However, these features may differ depend-
ing on the fraud mechanism. Therefore, instead of pre-selecting features, a more robust 
approach is to create an ensemble of models that focus on different feature sets and 
assign different weights to the models that use different features depending on their per-
formance. The procedure is applied to each base learner bj as follows:

•	 Randomly select a number rbj in range [d/10, d − 1] , where d denotes the feature 
dimension.

•	 Sample a subspace of features of size rbj
•	 Train the base learner bj on the sampled subspace.
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No Hyperparameter bagging: Due to limited fraud, tuning the hyperparameters via 
validation may lead to overfitting. For this reason, similar to feature selection, we 
could instead randomly select a set of different hyperparameters. In our case, how-
ever, IF and BDT are not expected to be sensitive to the choice of hyperparameters, 
and resampling the hyperparameter from LOF would be redundant to the subsam-
pling of the data performed. We therefore set all hyperparameters to reasonable ones 
found in the literature.

Sharing bagged features and parameters across customers: Subspaces for sampled fea-
tures and parameters for local outlier factors are shared between all client models and 
all types of base models (manifested in the respective weak learners). This allows, for 
example, the introduction of supervision in the aggregation step and increased inter-
pretability of the model, as it is easier to identify features relevant to the detection of 
certain types of fraud.

Model aggregation: Each base model provides a decision function δ(x) for a given 
observation x. The base model ensemble directly aggregates (majority voting or aver-
aging) the weak learner results based on different subsamples to form a single hypoth-
esis that determines the class membership of an observation. Usually, this aggregation is 
directly extended after a normalisation step to include models of different types, param-
eters or feature groups. In our approach, however, this final aggregation is performed 
based on a monitoring step that uses knowledge of available frauds to assign different 
weights to each pair (model, feature set). Essentially, these weights quantify how appro-
priate each model and feature pair is for fraud detection.

Appendix B
We refer to a composite Poisson process whose marginal distribution corresponds to 
a beta distribution as a beta model or as a GPD model if the marginal distribution cor-
responds to a generalised Pareto distribution. The mass attack model is a nested com-
pound Poisson process. The outer Poisson process models the mass attack event, while 
an inner Poisson process models the number of affected transactions. The extent of 
damage of the individual affected transactions is modelled with a beta distribution.

•	 Online banking:

–	 Beta model: Intensity 35, α = 0.42,β = 2.4 and scale : 71.000. By shifting and 
scaling, explicitly by the transformation x → α + (β − α)x , the beta distribution 
is shifted from [0, 1] to the interval [α,β] . The parameter α is called location, and 
β − α scale.

–	 GPD model: Intensity 3, shape = 0.25, location = 60.000, scale = 100.000.
–	 Mass Attack model: Intensity 0.1, intensity nested model 1000, Beta model 

α = 0.42,β = 2.4 and scale : 20.000.

•	 Mobile banking:

–	 Beta model: Intensity 45, α = 0.42,β = 2.4 and scale : 20′000.
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–	 Mass Attack model: Intensity 0.1, intensity nested model 1000, Beta model 
α = 0.42,β = 2.4 and scale : 20′000.

•	 Ebics:

–	 GPD model:shape = 0.25, location = 100′000, scale = 300′000.

•	 Recovery model:

–	 The recovery model models the percentage recovery in a fraud case. It has the 
following form:

–	 With a probability p1 = 65% , a complete recovery is simulated, i.e. no damage 
remains. This resulted from the fact that in the 159 fraud cases considered, it was 
actually possible to reduce the loss amount to zero even in 80% of the cases.

–	 With a probability p2 = 18% , a recovery of zero is simulated, i.e. the damage cor-
responds to the full amount of the offence.

–	 With probability 1− p1 − p2 , a recovery between 0 and 1 is simulated. A beta 
distribution is chosen as the distribution of these partial recoveries.

The beta distribution parameters for the online banking channel were fitted on the fraud 
cases recorded from 13/03/2013 to 13/03/2018. These are 159 fraud cases, of which 
both the initial fraud transaction amounts and the effective loss amount, i.e. the resid-
ual amount after recovery, were recorded. Of the 159 cases, 152 have a fraud amount 
between CHF 0 and 60,000, while the remaining 7 fraud amounts range between CHF 
100,000 and 300,000. A beta distribution was fitted on the 152 cases with fraud amounts 
up to 60,000 CHF, whereby the scaling parameter, i.e. the upper limit of the distribution, 
was defined as a free parameter of the fitting procedure and estimated by it to be 71,000 
CHF. Similar procedures apply to the marginal distribution fits of the GPD and mass 
attack models.

There exists significant statistical uncertainty and variability in the driving forces of 
the defined models. Putting the intended flexibility of the model structure into practice, 
we distinguish between ’easily accessible’ parameters, which should be subject to dis-
cussion at any time in the context of risk assessments, and ’deeper’ parameters, whose 
mode of action is less obvious and whose adjustment is subject to the process of model 
reviews. Roughly speaking, Poisson intensities, which determine the expected frequency 
of events, as well as upper and lower boundaries of the marginal distributions belong to 
the former category, while shape parameters for the Beta and GPD marginal distribu-
tions belong to the latter.
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