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Abstract
In the framework of data envelopment analysis (DEA), Tone (Eur J Oper Res
130(3):498–509, 2001) introduced the slacks-based measure (SBM) of efficiency,
which is a nonradial model that incorporates all the slacks of the evaluated decision-
making units (DMUs) into their efficiency scores, unlike classical radial efficiency
models. Next, Tone (Eur J Oper Res 143(1):32–41, 2002) developed the SBM super-
efficiency model in order to differentiate and rank efficient DMUs, whose SBM
efficiency scores are always 1. However, as pointed out by Chen (Eur J Oper Res
226(2):258–267, 2013), some interpretation problems arise when the so-called super-
efficiency projections are weakly efficient, leading to an overestimation of the SBM
super-efficiency score. Moreover, this overestimation is closely related to discon-
tinuity issues when implementing SBM super-efficiency in conjunction with SBM
efficiency. Chen (Eur J Oper Res 226(2):258–267, 2013) and Chen et al. (Ann Oper
Res 278(1):101–121, 2019) treated these problems, but they did not arrive to a fully
satisfactory solution. In this paper, we review these papers and propose a new comple-
mentary score, called composite SBM, that actually fixes the discontinuity problems
by counteracting the overestimation of the SBM super-efficiency score. Moreover,
we extend the composite SBM model to different orientations and variable returns to
scale, and propose additive versions. Finally, we give examples and state some open
problems.
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1 Introduction

Data envelopment analysis (DEA) is a well known nonparametric mathematical pro-
gramming technique, developed by Charnes et al. (1978) based on a previous work of
Farrell (1957), which allows us to assess the relative efficiency of a homogeneous set
of decision-making units (DMUs) which consume several inputs in order to produce
a number of outputs. In the last two decades, there have been remarkable advances in
bothDEAmethodologies and practical applications in awide range of fields. Although
there are several bibliographic reviews available (see, for instance, Seiford (1997),
Tavares (2002), Emrouznejad et al. (2008), Cook and Seiford (2009)), the recent bib-
liographic compilation by Emrouznejad and Yang (2018), providing a full listing of
more than 10000 DEA-related articles ranging from 1978 to late 2016, is noteworthy.

Roughly speaking, from the observed inputs andoutputs and assumingno functional
relationship between them, aDEAmodel estimates a best-practice frontier, also known
as efficient frontier, with respect to which all DMUs are evaluated. In the original CCR
(Charnes et al. 1978) and BCC (Banker et al. 1984) DEA radial models, the inputs are
proportionally reduced while maintaining the outputs unchanged or the outputs are
proportionally expanded keeping constant the inputs, depending on the orientation of
the model. Shortly after, the additive model was introduced by Charnes et al. (1982)
(see also Charnes et al. (1985)). This model could handle both input excesses and
output shortfalls simultaneously, but it could not deliver an efficiency score as the
ones obtained by the CCR and BCC radial models. To address this shortcoming,
Pastor et al. (1999) and Tone (2001) proposed the enhanced Russell graph measure
(ERGM) and the slacks-based measure (SBM) of efficiency respectively, which are
equivalent. These models incorporate all the slacks of the evaluated DMUs into their
efficiency scores, unlike classical radial efficiency models.

Usually, an efficiency DEA model classifies DMUs into two groups: efficient and
inefficient. Efficient DMUs always have an efficiency score equal to 1 but, are all
efficient DMUs equally efficient? To discriminate between efficient DMUs and rank
them, Andersen and Petersen (1993) proposed the so-called radial super-efficiency
model, whose fundamental idea is to eliminate the DMU under evaluation from the
reference set. Tone (2002) developed the SBM super-efficiency model which consists
on projecting the DMU under evaluation onto the subset of the production possibility
set dominated by the DMU, and then estimating the distance between the original
DMUand its projection. However, SBM super-efficiency has overestimation problems
when the aforementioned projections are weakly efficient, as pointed out by Chen
(2013). Moreover, this overestimation is closely related to discontinuity issues when
implementing SBM super-efficiency together with SBM efficiency (see for example
Chen (2013), Fang et al. (2013), Guo et al. (2017), Chen et al. (2019)), contrary to what
happenswith radialmodels. Inwords ofChen (2013), this discontinuity or gap between
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the SBM efficiency and super-efficiency scores may lead to interpretation problems
because of the sensitivity to small measurement errors or noise in the data. That is,
an efficient DMU may become extremely SBM inefficient upon a small increase in
inputs or a small decrease in outputs (and vice versa).

Since continuity is a very important and desirable property for DEAmodels (Robert
Russell 1990; Scheel and Scholtes 2003), the joint SBMand the continuous SBMmod-
els were introduced by Chen (2013) and Chen et al. (2019) respectively, in order to
solve the aforementioned discontinuity problems. However, although the joint SBM
model was thought to be continuous at first, we show that, in fact, it is not always con-
tinuous.On the other hand,we also show that the continuous SBMmodel introduced by
Chen et al. (2019) is not always weaklymonotonic and can lead to conflicting scores in
some cases. Moreover, we propose a new model, called composite SBM, that solves
the discontinuity problems by counteracting the overestimation of the SBM super-
efficiency score and is weakly monotonic. Nevertheless, this model presents some
issues, like nonlinearity or problems related to strong monotonicity.

This paper is organized as follows. In Sect. 2 we briefly introduce some general
concepts and notation. In Sect. 3 we review the original SBM efficiency and super-
efficiency models. In Sect. 4 we review the models presented by Chen (2013) and
Chen et al. (2019) in order to face the aforementioned discontinuity issue. In Sect. 5
we present the composite SBM model, studying its main properties and giving some
programs for computing its score. In Sect. 6 we extend the study to different orien-
tations, variable returns to scale, zero or negative data, and weights. Moreover, we
propose an additive version of the composite SBM model. In Sect. 7 we give some
examples showing that the interpretation and discontinuity issues are fixed by the com-
posite SBM model. Finally, in Sect. 8 we present some concluding remarks and state
some open problems. For the sake of readability, the proofs of all the results presented
in this work have been placed in Appendix A at the end of the paper.

2 Preliminaries

Notation and basic concepts are taken from Cooper et al. (2007). Vectors will be
denoted by lowercase bold-face letters (either roman or greek), and they will be con-
sidered as one-column matrices when necessary. The elements of a vector will be
denoted by the same letter as the vector, but unbolded andwith subscripts. The 0-vector
will be denoted by 0 and the context will determine its dimension. All definitions and
results are within the framework of constant returns to scale. Variable returns to scale
are discussed in Sect. 6.

2.1 Definitions

An activity with m inputs and s outputs is a pair of nonnegative vectors (x, y) , where
x ∈ R

m+ and y ∈ R
s+ are the inputs and outputs vector respectively. In this work, we

are going to suppose that all activities are strictly positive and, therefore, the set of
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activities is identified with R
m+s
>0 . Nevertheless, we discuss the possibility of zero or

negative data in Sect. 6.
Given a DMU that consumes m inputs and produces s outputs, it has an associated

activity (x, y) given by the inputs vector x = (x1, . . . xm) and the outputs vector
y = (y1, . . . ys), where xi is the amount of the i th input consumed by the DMU and
yr is the amount of the r th output produced by the DMU, i = 1, . . . ,m, r = 1, . . . , s.
Therefore, we can identify a DMU with its activity (x, y) in the same way that a point
is identified with its coordinates. It is very important to remark that, in this work, any
element of Rm+s

>0 is called “activity”, regardless of whether it is associated with an
existing DMU or not.

Let D = {DMU1, . . . ,DMUn} be a set of n DMUs, all of them having m inputs
and s outputs. The corresponding inputs vectors x j , j = 1, . . . , n, can be arranged
as the columns of the so-called m × n input data matrix X . Analogously, the outputs
vectors y j conform the columns of the s × n output data matrix Y . The production
possibility set defined by D is a set of activities given by

P = {
(x, y) ∈ R

m+s
>0 | x ≥ Xλ, y ≤ Yλ, λ ∈ R

n+
}
, (1)

although it is also denoted by T (of Technology) in the literature. Given two activities
(x, y) ,

(
x′, y′), we say that (x, y) is dominated by

(
x′, y′) if x′ ≤ x and y′ ≥ y; in this

case, we say that (x, y) is strictly dominated by
(
x′, y′) if

(
x′, y′) �= (x, y). The relation

“to be dominated by” defines a partial order over the set of activities and establishes
when an activity outperforms another in the sense that consumes less inputs while
producing more outputs. Moreover, the production possibility set (1) is formed by the
activities that are dominated by positive combinations of DMUs of the form (Xλ,Yλ)

with λ ∈ R
n+, and hence, it is interpreted as the set of “feasible activities” defined by

D (Cooper et al. 2007).
Given a real-valued function f defined on a set of activities A , we say that f is

weakly monotonic at (x, y) ∈ A if for any activity
(
x′, y′) ∈ A such that (x, y) is

dominated by
(
x′, y′), we have that f (x, y) ≤ f

(
x′, y′). Moreover, we say that f is

strongly monotonic at (x, y) ∈ A if f (x, y) < f
(
x′, y′) when (x, y) is strictly dom-

inated by
(
x′, y′). We say that f is weakly monotonic onA if it is weakly monotonic

at each activity in A , i.e. it is order-preserving. We say that f is strongly monotonic
on A if it is strongly monotonic at each activity in A .

We say that an activity or a DMU is efficient (with respect to a given set D of
DMUs) if it is not strictly dominated by any positive combination of DMUs in D ;
otherwise, we say that it is inefficient. This concept of “efficiency” is equivalent to the
classic “Pareto-efficiency” concept and it does not depend on any efficiency model.
If P is the production possibility set defined by D , then any activity out of P results
efficient. The set of efficient activities in P is known as the (strongly) efficient frontier
(or Pareto-Koopmans frontier) of P , and we denote it by ∂S(P). It is clear that ∂S(P)

is in the frontier of P , known as the weakly efficient frontier of P and denoted by
∂W(P). The inefficient activities in ∂W(P) are known as weakly efficient, although in
fact they are not efficient.
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(a)

(b)

Fig. 1 a) Classically, a model is applied to a DMU (called DMUo) in a given set of DMUs in order to
obtain its score. b) Given a model and a set of reference DMUs, we construct a score function defined on
activities. The image of an activity (x, y) is the score that the model would assign to a new hypothetical
DMU with activity (x, y)

2.2 Score functions and efficiency scores

Classically, given a set of DMUs, a model is applied to one of these DMUs in order
to obtain, among other things, its score (efficiency, super-efficiency, etc.). But in this
work, we are going to compute scores through what we call “score functions”: given a
model and a set D of DMUs (which we call reference DMUs), a score function (with
respect toD) is a real-valued function defined on activities (i.e. fromR

m+s
>0 toR), such

that the image of (x, y) is the score that the model would assign to a new hypothetical
DMU with activity (x, y), considering D ∪ {(x, y)} as the set of DMUs (see Fig. 1).
There are a wide variety of models and hence, of score functions, but all of them
must be at least weakly monotonic and satisfy some continuity properties, because
similar activities must obtain similar scores in order to avoid sensitivity problems.
Precisely, the main advantage of this methodology is that results about continuity,
differentiability and monotonicity can be directly applied to score functions.

Efficiency measures (also called inefficiency measures) are the core of the DEA
methodology. Restricted to inefficient activities, continuity is a property that any
efficiency measure should satisfy, because discontinuities can produce serious inter-
pretation problems (Robert Russell 1990; Scheel and Scholtes 2003). Moreover,
monotonicity is also an important property that should be required. In this aspect,
strong monotonicity is the most desirable property, but we have to note that even
weak monotonicity is an elusive property for efficiency measures. For example, Ando
et al. (2012) proved that there does not exist any weakly monotonic efficiency mea-
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sure that uses a p-norm least-distance approach to the closest projections over the
efficient frontier. Later, Fukuyama et al. (2014) showed that ratio-form least-distance
efficiency measures do not satisfy weak monotonicity either. Ando et al. (2017) gave
a further discussion about monotonicity of minimum distance efficiency measures.
Nevertheless, any efficiency measure should be at least weakly monotonic for the
sake of interpretability.

GivenD a set of reference DMUs, an efficiency score (with respect toD) is a score
function such that, applied to inefficient activities, represents an efficiency measure.
Apart from being continuous in P (the production possibility set defined by D) and
weaklymonotonic, Fukuyama et al. (2014) pointed out some other desirable properties
that any efficiency score f should satisfy:

1. f (x, y) = 1 if and only if (x, y) is efficient.
2. 0 ≤ f (x, y) ≤ 1 for any (x, y) ∈ P .

Note that if (x, y) /∈ P , then it is efficient and hence, f (x, y) = 1. So, we cannot
demand global continuity, because weakly efficient activities in ∂W(P) are inefficient
and, according to property 1, their efficiency scores cannot be equal to 1. Precisely,
the discontinuity of efficiency scores in ∂W(P) leads to discontinuity problems when
implementing SBM efficiency in conjunction with SBM super-efficiency, exposed by
Chen (2013). Note that the classical radial efficiency score is globally continuous but
it does not hold property 1, since inefficient activities in ∂W(P) have radial efficiency
score equal to 1 (Charnes and Cooper 1962).

3 Original SBMmodels

In this Section we are going to review the SBM efficiency and super-efficiency models
given by Tone (2001, 2002) and define their corresponding score functions. In the rest
of the paper, we are going to suppose thatD is a set of n reference DMUs, X ,Y are the
input and output data matrices of D respectively, and P is the production possibility
set defined by D .

We define the SBM efficiency score (with respect to D) of an activity (x, y) as

ρ∗ (x, y) = min
λ,s−,s+

ρ
(
x, y, s−, s+

) = 1 − 1
m

∑m
i=1 s

−
i /xi

1 + 1
s

∑s
r=1 s

+
r /yr

s.t. x = Xλ + s−,

y = Yλ − s+,

λ ∈ R
n+, s− ∈ R

m+, s+ ∈ R
s+,

(2)

if (x, y) ∈ P , and ρ∗ (x, y) = 1 if (x, y) /∈ P . The vectors s−, s+ are called inef-
ficiency slack vectors (Guo et al. 2017). Considering s−∗, s+∗ optimal inefficiency
slack vectors, we refer to the activities of the form

(
x − s−∗, y + s+∗) as efficient (or

optimal) targets. Program (2) is based on the original SBM efficiency model given
by Tone (2001), in the sense that ρ∗ (x, y) is the score that the Tone’s original SBM
efficiency model would assign to a new DMU with activity (x, y). We conclude that
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ρ∗ is an efficiency score because it satisfies properties 1 and 2, it is weakly mono-
tonic and ρ∗|P is clearly continuous. With respect to monotonicity, we have the next
result:

Proposition 1 The SBM efficiency score ρ∗|P is strongly monotonic.

Wedefine the SBMsuper-efficiency (S-SBM) score (with respect toD) of an activity
(x, y) as

δ∗ (x, y) = min
λ,t−,t+

δ
(
x, y, t−, t+

) = 1 + 1
m

∑m
i=1 t

−
i /xi

1 − 1
s

∑s
r=1 t

+
r /yr

s.t. x + t− ≥ Xλ,

0 < y − t+ ≤ Yλ,

λ ∈ R
n+, t− ∈ R

m+, t+ ∈ R
s+,

(3)

where t−, t+ are called super-efficiency slack vectors (Guo et al. 2017). Taking into
account the SBM super-efficiency model given by Tone (2002), we have that δ∗ (x, y)
is the score that a new DMU with activity (x, y) would have. Note that in Tone’s
S-SBM program, the DMU under evaluation must be excluded from the original set
of DMUs. However, in program (3), there is no need to make any exclusion. This is
one of the advantages of working with score functions.

The set of activities in P that are dominated by (x, y) is given by

P̄ = {(x̄, ȳ) ∈ P | x̄ ≥ x, ȳ ≤ y} . (4)

Hence, the constraints of (3) are equivalent to
(
x + t−, y − t+

) ∈ P̄ and then, accord-
ing to Tone (2002), δ can be interpreted as a weighted l1 distance from (x, y) to
activities in P̄ . Note that although technically δ is not a distance in the mathematical
sense, we are going to use the term “distance” in the same way that it is used in Tone
(2002). In this case, if t−∗, t+∗ are optimal super-efficiency slack vectors for (3), then(
x + t−∗, y − t+∗) are the activities in P̄ closest to (x, y), which are called super-
efficiency projections of (x, y). Note that, since the distance between a point and a
closed set is defined by the distance between the point and the closest point in the
set, δ∗ (x, y) can also be interpreted as a distance from (x, y) to P̄ . It is important to
remark that, according to Chen (2013), an overestimation of the S-SBM score δ∗ (x, y)
is produced when (x, y) has weakly efficient (and hence inefficient) super-efficiency
projections. This overestimation occurs because the inefficiency of such projections is
not taken into account by δ∗ (x, y). This fact is closely related to discontinuity issues
when implementing SBM efficiency in conjunction with SBM super-efficiency, as we
will see in Sect. 4.

It is clear that the S-SBM score δ∗ is continuous. With respect to monotonicity,
Tone (2002) proved that δ∗ (αx, βy) ≥ δ∗ (x, y) for any activity (x, y), α ≤ 1 and
β ≥ 1. Next, we present a more general result.

Proposition 2 The S-SBM score δ∗ is weakly monotonic.
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Remark 1 (Strong monotonicity) The S-SBM score δ∗ is constantly equal to 1 for
activities in P and hence, it is obvious that it is not strongly monotonic for ineffi-
cient activities. However, it is important to note that δ∗ is not strongly monotonic
for efficient activities either, because it does not take into account the inefficiency
of super-efficiency projections. For example, let us consider D = {D1,D2,D3} a
set of reference DMUs with two inputs and one normalized output, where D1 =
((10, 40) , 1), D2 = ((15, 25) , 1) and D3 = ((30, 20) , 1). As we will see in Exam-
ple 2, activities of the form ((30 + c, x2) , 1) with 0 < x2 < 20 have the same S-SBM
score δ∗ (with respect to D) when c ≥ 0 varies.

4 Global continuous SBMmodels

From theSBMefficiency and super-efficiencymodels definedbyTone (2001) andTone
(2002) respectively, it is possible to construct a global SBM score function defined
on the whole Rm+s

>0 such that it coincides with ρ∗ for activities in the corresponding
production possibility set P and, on the other hand, it coincides with δ∗ for the rest
of activities (see Fang et al. (2013); Guo et al. (2017)). Nevertheless, as it was firstly
showed by Chen (2013), this score is not continuous in the weakly efficient frontier
∂W(P), making it hard to interpret and justify the scores in applications. As it is
also pointed out by Chen (2013), this discontinuity issue is closely related to the
overestimation of the S-SBM score produced when the super-efficiency projections
are weakly efficient. So, the idea to fix the discontinuity problem is to define a new
model that penalizes the inefficiency of such projections in some way.

In this section we are going to review the joint SBM (J-SBM) and the continuous
SBM (CSBM) models introduced by Chen (2013) and Chen et al. (2019) respectively.
Both models try to solve the discontinuity problem but, unfortunately, they do not give
a fully satisfactory solution for different reasons thatwe are going to show. Specifically,
the J-SBM score is not continuous in some cases and the CSBM score, even being
continuous, is not weakly monotonic in some cases. It must be taken into account that
we have changed some notation to simplify and adapt it to our study.

4.1 The joint SBMmodel

Given D , the space of activities Rm+s
>0 is splitted into three regions:

– Region (I) or technical inefficiency zone: P − ∂S(P), i.e. inefficient activities.
– Region (II): efficient activities with all super-efficiency projections being efficient.
– Region (III): efficient activities with at least one inefficient super-efficiency pro-
jection.

With respect to the notation of Chen (2013), super-efficiency projections are called
“S-SBM reference points” and, analogously for inefficient activities, efficient targets
are called “SBM reference points”.

Given an activity (x, y), the J-SBM model assigns a score φ∗ (x, y) that coincides
with ρ∗ (x, y) if (x, y) is in Region (I), is equal to δ∗ (x, y) if (x, y) is in Region (II)
and, for activities in Region (III), the author introduces a relaxed SBM super-efficiency
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model that penalizes the inefficiency of super-efficiency projections:

φ∗ (x, y) = min
λ,s̃−,s̃+

φ
(
x, y, s̃−, s̃+

) = 1 − 1
m

∑m
i=1 s̃

−
i /xi

1 + 1
s

∑s
r=1 s̃

+
r /yr

s.t. Xλ = x − s̃−,

Yλ = y + s̃+,

λ ∈ R
n+, s̃− ∈ R

m free, s̃+ ∈ R
s free.

(5)

The reference points given by model (5) are those of the form
(
x − s̃−∗, y + s̃+∗)

where s̃−∗, s̃+∗ are optimal. Note that s̃−, s̃+ are free slack vectors.
Chen (2013) uses binary variables in order to express the J-SBM score in a single

model, constructing a “switch” between the three different models from each region
(see Equation (9) in Chen (2013)). However, in the way the model is expressed, the
“switch” does not work correctly between Region (II) and Region (III). Anyway, this
mistake could be fixed by re-defining the J-SBM score piecewisely instead of using
binary variables, although its computation would need several stages. Namely, in a
first stage, we need to know to which region the activity belongs and then, in a second
stage, we apply (2), (3) or (5) for activities in Region (I), (II) or (III), respectively.

Moreover, Corollary 1 in Chen (2013), which states that the reference points given
by the J-SBM model are efficient, is not fulfilled. This issue is treated by Lin et al.
(2018), giving a counterexample and a revised model.

Finally, and most importantly, according to Theorem 5 in Chen (2013), the J-SBM
score is supposed to connect all three regions in a continuous way. Unfortunately, this
is not true in some cases as we show in Example 2 (see Fig. 3 (b)), and this mistake can
not be fixed. The reason for this to happen is that, sometimes, the relaxed model (5)
gives a reference point quite far away from the evaluated activity. The discontinuity
of the J-SBM score was recognised in a corrigendum paper by Chen (2014), ensuring
that “it can be easily corrected by constraining the reference point to be fixated on a
specific strongly Pareto-efficient point”. However, the details of this proposition were
not given and, as far as we know, there is not any further paper that clarifies it.

4.2 The continuous SBMmodel

Given an efficient activity (x, y) with t−∗, t+∗ optimal super-efficiency slack vectors
for (3), the SBM efficiency score (with respect toD) of its super-efficiency projection
given by

(
x + t−∗, y − t+∗) is

ρ∗ (
x + t−∗, y − t+∗) = min

λ,s−,s+
1 − 1

m

∑m
i=1 s

−
i /

(
xi + t−∗

i

)

1 + 1
s

∑s
r=1 s

+
r /

(
yr − t+∗

r
)

s.t. x + t−∗ = Xλ + s−,

y − t+∗ = Yλ − s+,

λ ∈ R
n+, s− ∈ R

m+, s+ ∈ R
s+.

(6)
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The following propositions allow us to simplify program (6). Moreover, Proposi-
tion 4 implies that the programs given in (Chen et al. 2019, Equation (2)) and (Chen
et al. 2019, Equation (4)) are equivalent.

Proposition 3 Let s−∗, s+∗ be optimal for (6), if t−∗
i > 0 for some i ∈ {1, . . . ,m},

then s−∗
i = 0, and if t+∗

r > 0 for some r ∈ {1, . . . , s}, then s+∗
r = 0.

Proposition 4 The objective function of (6) can be replaced by

1 − 1
m

∑m
i=1 s

−
i /xi

1 + 1
s

∑s
r=1 s

+
r /yr

. (7)

According to Chen et al. (2019), we define the continuous SBM (CSBM) score
(with respect to D) of an activity (x, y) as

CSBM (x, y) = 1 − 1
m

∑m
i=1

(
s−∗
i − t−∗

i

)
/xi

1 + 1
s

∑s
r=1

(
s+∗
r − t+∗

r
)
/yr

, (8)

where t−∗, t+∗ are optimal super-efficiency slack vectors for (3) and s−∗, s+∗ are
optimal inefficiency slack vectors for (6). Note that (8) may not be well-defined if
optimal slacks t−∗, t+∗, s−∗ or s+∗ are not unique for the activity (x, y). In this case,
the CSBM score may depend on which optimal slacks we choose.

The CSBM model can calculate both SBM efficiency (for activities in Region
(I)) and SBM super-efficiency (for activities in Region (II)) scores, and it is indeed
continuous. Nevertheless, as we show in Example 1, it may not be weakly monotonic
for activities in Region (III) and hence, in these cases, it is not a valid score.

Example 1 We are going to consider a set of DMUs used in Doyle and Green (1993),
Tone (2002) that consists of six efficient DMUs with four inputs and two outputs
(see Table 1). In order to evaluate the first DMU, we are going to consider D =
{D2, . . . ,D6} as the set of reference DMUs. Then, the S-SBM score (with respect to
D) of D1 is 1.0116 and its super-efficiency projection is ((80, 627.89, 54, 8) , (90, 5))
whose SBM efficiency score is 0.7299. The nonzero optimal slacks for programs (3)
and (6) are t−∗

2 = 27.89, s−∗
4 = 4.4 and s+∗

2 = 1.82, giving a CSBM score of 0.7397.
Now, let us consider D1′ equal to D1 except for the first input, that is increased

in one unity, changing from 80 to 81. The S-SBM score (with respect to D) of D1′
is 1.0103 with super-efficiency projection ((81, 624.82, 54, 8) , (90, 5)) whose SBM
efficiency score is 0.7428. The corresponding nonzero optimal slacks are t−∗

2 = 24.82,
s−∗
4 = 4.35 and s+∗

2 = 1.63, giving a CSBM score of 0.7517.
Since D1′ is strictly dominated by D1 and CSBM

(
D1′) > CSBM (D1), we con-

clude that the CSBM score is not weakly monotonic in this case. Using the same
technique as in the proofs of propositions 1 and 2, it can be proved that this type of
example can only appear when an input or output that does not have any associated
optimal slack is altered. In our case, when the first input is worsened, the decrease
in the S-SBM score is not able to compensate for the increase in the SBM efficiency
score of the super-efficiency projection.
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Table 1 Data of DMUs from
Example 1

Inputs Outputs
x1 x2 x3 x4 y1 y2

D1 80 600 54 8 90 5

D2 65 200 97 1 58 1

D3 83 400 72 4 60 7

D4 40 1000 75 7 80 10

D5 52 600 20 3 72 8

D6 94 700 36 5 96 6

According to Fukuyama et al. (2014), there does not exist any weakly monotonic
efficiency measure that uses a ratio-form least-distance approach to the closest pro-
jections over the efficient frontier. It seems that something similar can happen with
the CSBM score, since (8) is a ratio-form expression.

5 The composite SBMmodel

Example 1 shows that optimal slacks (and hence the SBM efficiency score) of super-
efficiency projections do not serve to quantify the overestimation of the S-SBM score
in some cases. Hence, for this purpose, we need scores that do not just take into account
the super-efficiency projection. Following this idea, in Sect. 5.1 we are going to define
a continuous score function γ that is equal to ρ∗ in Region (I) and coincides with
δ∗ in Region (II). Moreover, unlike the CSBM, γ will always be weakly monotonic.
Nevertheless, the computation of γ involves nonlinear programming and hence, in
Sect. 5.2, we are going to study some computational aspects.

5.1 Definitions and properties

We define the composite SBM (CompSBM) score (with respect to D) of an activity
(x, y) as

γ (x, y) = δ∗ (x, y) · max ρ∗|P̄ , (9)

where P̄ is the set of activities in P that are dominated by (x, y) (see (4)) andmax ρ∗|P̄
is the best (i.e. highest) SBM efficiency score of activities in P̄ , that can be interpreted
as the SBM efficiency score of P̄ as a set. Note that it is well-defined since P̄ is closed.

The idea behind the CompSBM score γ given by (9) is not to focus only on super-
efficiency projections, but on the entire set P̄: instead of interpreting δ∗ (x, y) as a
distance from (x, y) to its super-efficiency projection and penalize the inefficiency of
such projection, let us interpret δ∗ (x, y) as a distance from (x, y) to P̄ and penalize
the inefficiency of P̄ , i.e. the fact that any activity in P̄ is inefficient. These two points
of view are not equivalent, as we will see in Remark 5.
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Remark 2 (Unit-invariance) In the J-SBM, CSBM and CompSBM models, we are
implicitly assuming that slacks from different inputs and/or outputs can somehow
compensate for each other, as pointed out and discussed by Chen (2013). In the case
of the CompSBM model, according to expression (9), the optimal super-efficiency
slacks of (x, y) (which are contained inside δ∗ (x, y)) are compensated by the optimal
inefficiency slacks of the most efficient activity in P̄ (which are contained inside
max ρ∗|P̄ ). For this reason, unit-invariance is a very important property that these
models should satisfy. On one hand, J-SBM and CSBMmodels are proved to be unit-
invariant (see Chen (2013), Chen et al. (2019), respectively); on the other hand, the
CompSBM model is unit-invariant because the SBM efficiency and super-efficiency
models are unit-invariant (see Tone (2001, 2002)).

Next proposition clarifies the behavior of the CompSBM model, showing that it
integrates the SBM efficiency ρ∗ and the S-SBM δ∗ in its score.

Proposition 5 Let (x, y) be an activity and let P̄ be the set given by (4). Then

1. γ (x, y) = ρ∗ (x, y) if (x, y) is inefficient.
2. γ (x, y) = δ∗ (x, y) if (x, y) is efficient and max ρ∗|P̄ = 1, i.e. there are efficient

activities in P̄.
3. max ρ∗|P̄ < γ (x, y) < δ∗ (x, y) if (x, y) is efficient and max ρ∗|P̄ < 1, i.e. any

activity in P̄ is inefficient.

Analogously to what happens with the J-SBM and CSBM scores, Proposition 5
ensures that γ = ρ∗ in Region (I), γ = δ∗ in Region (II), and ρ∗ (x̄∗, ȳ∗) < γ (x, y) ≤
δ∗ (x, y) for (x, y) in Region (III), where (x̄∗, ȳ∗) is any super-efficiency projection of
(x, y). In the next results, we prove global continuity and weak monotonicity of the
CompSBM score.

Proposition 6 The CompSBM score γ is continuous.

Proposition 7 The CompSBM score γ is weakly monotonic.

Remark 3 (Super-inefficiency) The CompSBMmodel is based on the SBM efficiency
and super-efficiency models, providing a continuous score in the weakly efficient
frontier. However, since there is continuity, inevitably there will be efficient activities
(inRegion (III))withCompSBMscores less than 1 around theweakly efficient frontier,
as it also happens with J-SBM and CSBM scores. Although this may seem a little
counter-intuitive at first, Chen (2013) gives a clarifying example in his “Discussion
and summary” section. Following the same criteria as Chen (2013), an efficient activity
with score less than 1 is said to be super-inefficient. In fact, super-inefficiency is
interpreted by Chen (2013) as a “hidden” inefficiency, and Chen et al. (2019) affirms
that super-inefficiency is a new division for efficiency, different from existing studies
such as SBM efficiency and SBM super-efficiency. It is important to note that super-
inefficiency has to be interpreted under the assumption that slacks fromdifferent inputs
and/or outputs can somehow compensate for each other (see Remark 2). In the case
of the CompSBM score, an efficient activity is super-inefficient if the model estimates
that the magnitude of its optimal super-efficiency slacks is less than the magnitude of
the optimal inefficiency slacks of the most efficient activity in P̄ .
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Following Chen (2013), the super-inefficiency zone is formed by all the super-inef-
ficient activities; on the other hand, the super-efficiency zone is formed by all the
efficient activities that are not in the super-inefficiency zone, i.e. with scores greater
than or equal to 1. Each score (J-SBM, CSBM or CompSBM) can define a different
super-inefficiency zone, but they are always inRegion (III), around theweakly efficient
frontier (see Fig. 2).

According to Remark 3, any global continuous SBM model cannot determine
whether an activity is efficient or not, because super-inefficient activities have
scores less than 1 but they are efficient. For this reason, any score that produces
super-inefficient activities has to be taken as a complement to SBM efficiency and
super-efficiency models. On the other hand, it could be interesting to define an alter-
native SBM super-efficiency score that penalizes the lack of efficient activities in P̄
but it does not produce super-inefficient activities. Hence, in Remark 4 we construct a
super-efficiency score γse based on γ such that efficient activities obtain scores greater
than or equal to 1 (see (11)). However, as it happens with the S-SBM score δ∗, disconti-
nuities inevitably appear when implementing γse in conjunction with SBM efficiency,
leading to serious interpretation problems related to sensitivity.

Remark 4 (Composite SBM super-efficiency score) Lee (2021) defined a composite
super-efficiency index σ̈ ∗ such that efficient activities have scores greater than or
equal to 1 and the inefficiency of super-efficiency projections is penalized. Given an
activity (x, y), the corresponding score function (with respect to D) would have this
form:

σ̈ ∗ (x, y) = (
δ∗ (x, y) − 1

) · ρ∗ (
x̄∗, ȳ∗) + 1, (10)

where (x̄∗, ȳ∗) is a super-efficiency projection of (x, y). However, σ̈ ∗ may not be
well-defined if super-efficiency projections are not unique and, more importantly, it
is not weakly monotonic in some cases, as we show in this example: considering
the set of DMUs of Table 1, we have that the S-SBM score of D2 (with respect to
{D1, D3, . . . , D6}) is 1.4146 and the SBMefficiency of its super-efficiency projection
is 0.3185, giving a σ̈ ∗ score of 1.132; but increasing the fourth input of D2 from 1
to 1.5, we obtain that the S-SBM score is 1.3528 and the SBM efficiency of the
super-efficiency projection is 0.4392, that gives a σ̈ ∗ score of 1.1549.

In order to fix this, based on (9) and (10), we define the composite SBM super-
efficiency (CompS-SBM) score (with respect to D) of an activity (x, y) by

γse (x, y) = (
δ∗ (x, y) − 1

) · max ρ∗|P̄ + 1

= γ (x, y) · (
1 − 1/δ∗ (x, y)

) + 1, (11)

which is alwayswell-defined, unit-invariant, continuous andweaklymonotonic.More-
over, it fulfils γse = 1 in Region (I), γse = δ∗ in Region (II), and 1 ≤ γse ≤ δ∗ in
Region (III), penalizing the lack of efficient activities in P̄ . It is important to remark
that, although γse fixes the overestimation of the S-SBM score, it obviously produces
discontinuities in the weakly efficient frontier when implementing in conjunction with
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SBM efficiency, i.e. considering ρ∗ for inefficient activities (Region (I)) and γse for
efficient ones (Region (II) and (III)).

Remark 5 (Strong monotonicity) We will show in Example 4 (specifically with D5)
that there exist uncommon cases in which super-efficiency projections are inefficient
but there are efficient activities in P̄ . In these cases, max ρ∗|P̄ = 1 and hence, the
CompSBM score γ does not penalize the inefficiency of super-efficiency projections,
unlike J-SBM and CSBM scores. As a consequence, γ is not strongly monotonic for
efficient activities, as it happens with the S-SBM score δ∗ (see Remark 1), although
for other reasons and with a much lower frequency of cases.

Remark 6 (Alternative composite scores)Wecan use anyweaklymonotonic efficiency
score f instead of ρ∗ in the definition of the CompSBM score γ (9). In this case, we
need continuity of f |P and the fulfilment of properties 1 and 2 of Fukuyama et al.
(2014) (see Sect. 2.2). Hence, it is easy to prove that γ results continuous and weakly
monotonic, even if the efficiency score f is not weakly monotonic. This makes it
possible to use efficiency scores like the SBM-Max efficiency (Tone 2010, 2016), that
is not weakly monotonic in some cases (Fukuyama et al. 2014; Ando et al. 2017). It
could be interesting since there is a close connection between SBM-Max efficiency
and SBM super-efficiency models (Tone 2017).

5.2 Computational aspects

Given an activity (x, y), the set P̄ is formed by all the activities in P that are dominated
by (x, y) (see (4)). Hence,

max ρ∗|P̄ = max
λ,t−,t+

ρ∗ (
x + t−, y − t+

)

s.t. x + t− ≥ Xλ,

0 < y − t+ ≤ Yλ,

λ ∈ R
n+, t− ∈ R

m+, t+ ∈ R
s+,

(12)

where, according to (2), the objective function of (12) is

ρ∗ (
x + t−, y − t+

) = min
λ,s−,s+

ρ
(
x + t−, y − t+, s−, s+

)

s.t. x + t− = Xλ + s−,

y − t+ = Yλ − s+,

λ ∈ R
n+, s− ∈ R

m+, s+ ∈ R
s+.

(13)

Note that λ in (12) and (13) are different internal variables of these programs. In fact,
the constraints of (13) assure that the constraints of (12) involving λ are satisfied and
hence, it suffices to demand nonnegativity of t−, t+ and t+ < y in (12). But, in this
case, we have to note that (13) may result infeasible for some nonnegative small values
of t−, t+. The next result allows us to simplify (12).
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Proposition 8 Let (x, y) be an activity and let P̄ be the set given by (4). Then

max ρ∗|P̄ = max
t−,t+

min
λ,s−,s+

ρ
(
x, y, s−, s+

)

s.t. x + t− = Xλ + s−,

y − t+ = Yλ − s+,

λ ∈ R
n+, s− ∈ R

m+, s+ ∈ R
s+,

s.t. t− ∈ R
m+, t+ ∈ R

s+, t+ < y.

(14)

The innerminimization programof (14) canbe linearized using theCharnes-Cooper
transformation (Charnes and Cooper 1962; Charnes et al. 1978). Note that in the outer
maximization program we only demand nonnegativity of t−, t+ and hence, the inner
minimization program may result infeasible for some small values of t−, t+. If we
do not want this to happen, we must demand all the constraints of (12) in the outer
program. Note that program (14) can be viewed as a nonlinear maximization program,
but it is also a continuous maximin problem with coupled constraints. Some methods
for solving this kind of problems are provided by Shimizu andAiyoshi (1980), Rustem
et al. (2008), Tsoukalas et al. (2009), among others.

Remark 7 (Lower bound) In some cases, computation of max ρ∗|P̄ by means of (14)
may result too expensive (see Example 4). In these cases, we can compute a lower
bound given by ρ∗ (x̄∗, ȳ∗) where (x̄∗, ȳ∗) is a super-efficiency projection of (x, y).
Then,

γlow (x, y) = δ∗ (x, y) · ρ∗ (
x̄∗, ȳ∗) , (15)

is a lower bound of the CompSBM score γ (x, y). Usually, ρ∗ (x̄∗, ȳ∗) is very close (or
even equal) to max ρ∗|P̄ , and its computation only involves linear programs (applying
the Charnes-Cooper transformation): (3) for the super-efficiency projection and (6)
for its efficiency. On the other hand, Tsoukalas et al. (2009) propose an algorithm
for solving continuous maximin problems that requires a lower bound and hence,
ρ∗ (x̄∗, ȳ∗) could serve for computing max ρ∗|P̄ using this algorithm.

6 Extensions

In this section we are going to extend the CompSBM model to different orientations
and returns to scale. Moreover, we discuss nonpositive data, and weighted inputs
and/or outputs. Finally, we present a version adapted to the additive model.

Orientations.TheCompSBMscore is defined in a nonoriented form.Nevertheless,
considering the input and output oriented versions of the S-SBM model (Tone 2002),
we can adapt our CompSBM score to these orientations. In this way, the input oriented
CompSBM score (with respect to D) of an activity (x, y) is given by γI (x, y) =
δ∗
I (x, y) · max ρ∗

I |P̄ , where δ∗
I and ρ∗

I are the input oriented versions of δ∗ and ρ∗
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respectively. In order to compute max ρ∗
I |P̄ , it is easy to prove that

1 − max ρ∗
I |P̄ = min

t−
max
λ,s−

1

m

m∑

i=1

s−
i /xi

s.t. x + t− = Xλ + s−,

λ ∈ R
n+, s− ∈ R

m+,

s.t. t− ∈Rm+,

which is a linear continuous minimax problem with coupled constraints. Analo-
gously, the output oriented CompSBM score (with respect to D) of (x, y) is given
by γO (x, y) = δ∗

O (x, y) ·max ρ∗
O|P̄ , where δ∗

O and ρ∗
O are the output oriented versions

of δ∗ and ρ∗ respectively. In order to compute max ρ∗
O|P̄ , it is easy to prove that

1/max ρ∗
O|P̄ − 1 = min

t+
max
λ,s+

1

m

s∑

r=1

s+
r /yr

s.t. y − t+ = Yλ − s+,

λ ∈ R
n+, s+ ∈ R

s+,

s.t. t+ ∈Rs+, t+ < y,

which is also a linear continuous minimax problem with coupled constraints.
Returns to scale. In this work, all definitions and results are within the framework

of constant returns to scale. Nevertheless, we can modify the programs to consider
different returns to scale. For example, for variable returns to scale in the CompSBM
model we have to add the constraint

∑n
j=1 λ j = 1 to programs (3) and (14). It is worth

noting that, taking variable returns to scale, nonoriented S-SBM models are always
feasible (Tone 2002), but oriented models may result infeasible. In these cases, it will
be impossible to compute oriented CompSBM scores.

Zero or negative data. The CompSBM model can accept zero or negative data as
long as the SBM efficiency and super-efficiency models accept it. In fact, how to deal
with zeros in data is discussed in Tone (2001, 2002) and, more recently, how to handle
with nonpositive data in general is discussed in Tone et al. (2020), Lee (2021).

Weights.We can consider different weights for each input and/or output. For exam-
ple, we can compute the S-SBM score in (3) by means of the weighted objective
function

δw

(
x, y, t−, t+

) =
1 + 1∑m

i=1 w−
i

∑m
i=1 w−

i t
−
i /xi

1 − 1∑s
r=1 w+

r

∑s
r=1 w+

r t
+
r /yr

,

where w−,w+ are the corresponding weights vectors. Analogously, the SBM effi-
ciency model would also have to take into account these weights.

Additive model. Finally, we can adapt the CompSBM score to the additive model.
Following Charnes et al. (1982), the additive efficiency score (with respect to D) of
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an activity (x, y) in unit-invariant form is defined as

α∗ (x, y) = max
λ,s−,s+

α
(
x, y, s−, s+

) = 1

m + s

(
m∑

i=1

s−
i

xi
+

s∑

r=1

s+
r

yr

)

s.t. x = Xλ + s−,

y = Yλ − s+,

λ ∈ R
n+, s− ∈ R

m+, s+ ∈ R
s+.

(16)

Note that α∗ is not an efficiency score satisfying properties 1 and 2 (see Sect. 2.2).
In fact, an activity (x, y) is efficient if and only if α∗ (x, y) = 0. On the other hand,
following Du et al. (2010), we define the additive super-efficiency score (with respect
to D) of (x, y) as

β∗ (x, y) = min
λ,t−,t+

β
(
x, y, t−, t+

) = 1

m + s

(
m∑

i=1

t−i
xi

+
s∑

r=1

t+r
yr

)

s.t. x + t− ≥ Xλ,

0 < y − t+ ≤ Yλ,

λ ∈ R
n+, t− ∈ R

m+, t+ ∈ R
s+.

(17)

If (x, y) is inefficient, thenβ∗ (x, y) = 0. So, from (16) and (17)we can define the addi-
tive composite score (with respect toD) of (x, y) as γadd (x, y) = β∗ (x, y)−min α∗|P̄ .
Hence, γadd is negative for inefficient activities, and nonnegative for activities with
efficient activities in P̄ .

7 Examples

In this section we are going to illustrate the J-SBM, CSBM and CompSBM models
with some examples. We have used R 3.6.0 (R Core Team 2020) for computations.
Specifically, we have used the deaR package (Coll-Serrano et al. 2020) for computing
linear scores, and theNLopt package (Johnson 2019) for solving the nonlinear program
(14) in Example 4.

Example 2 Let us consider D = {D1,D2,D3} a set of reference DMUs with two
inputs and one normalized output, where D1 = ((10, 40) , 1), D2 = ((15, 25) , 1)
and D3 = ((30, 20) , 1). In Figs. 2 and 3, we have computed binary logarithms of
different scores of activities of the form ((x1, x2) , 1). The super-inefficiency zones are
represented, showing how discontinuity issues on weakly efficient activities are fixed
by the CSBM and CompSBM scores, but not by the J-SBM score. Note that in cases
where there is only one output (as in this example) the super-efficiency projections
(x̄∗, ȳ∗) are among the most efficient activities in the corresponding set P̄ , and hence
max ρ∗|P̄ = ρ∗ (x̄∗, ȳ∗). Then, computing the CompSBM score γ is equivalent to
computing γlow (see (15)), whose program is linear.

Activities of the form ((30 + c, x2) , 1) with 0 < x2 < 20 have the same S-SBM
score δ∗ when c ≥ 0 varies. But only when c = 0 the super-efficiency projection is
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(a) (b)

(c) (d)

Fig. 2 Diagrams representing binary logarithms of different scores (with respect to the reference DMUs
of Example 2) of activities with a normalized output equal to 1: (a) SBM efficiency in conjunction with
S-SBM, (b) J-SBM, (c) CSBM, (d) CompSBM. The solid lines separate activities with score < 1 from
activities with score ≥ 1, and dashed lines represent the weakly efficient frontier. In plots (b), (c) and (d),
the zones between solid and dashed lines are the super-inefficiency zones, fixing the discontinuity issues in
(c) and (d)

(a) (b)

(c) (d)

Fig. 3 Details of super-inefficiency zones in Figure 2

efficient and, in this case, it is equivalent to the fact that only when c = 0 there are
efficient activities in the corresponding P̄ . According to this, the J-SBM, CSBM and
CompSBMmodels penalize activities of the form ((30 + c, x2) , 1)with 0 < x2 < 20
and c > 0.
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Table 2 SBM efficiency score
(ρ∗), S-SBM score (δ∗), SBM
efficiency score of
super-efficiency projections
(ρ∗ (

x̄∗, ȳ∗)
) that coincides with

the best SBM efficiency score in
the corresponding P̄
(max ρ∗|P̄ ), and CompSBM
score (γ ) of activities
A1, . . . ,A4 from Example 3

ρ∗ δ∗ ρ∗ (
x̄∗, ȳ∗)

max ρ∗|P̄ γ

A1 1 1.5 1 1 1.5

A2 1 1.5 0.875 0.875 1.3125

A3 0.8 1 0.8 0.8 0.8

A4 1 1.0263 0.8 0.8 0.821

Table 3 Catch-up, frontier-shift and Malmquist index of DMU D4 changing from A1 to A2 and from A3
to A4 (see Example 3) in the original SBM form and using the CompSBM score, with no orientation and
taking the exclusive scheme

Catch-up Frontier-shift Malmquist index

A1 → A2 SBM 1 0.866 0.866

CompSBM 0.875 0.9258 0.8101

A3 → A4 SBM 1.2829 1 1.2829

CompSBM 1.0262 1 1.0262

Example 3 In this examplewewant to illustrate how to introduce theCompSBMmodel
into the Malmquist index computation. Note that this methodology is also applicable
to the J-SBM and CSBMmodels. We consider the set of DMUsD = {D1,D2,D3} of
Example 2 and another DMU D4 with activity changing from A1 = ((30, 10) , 1) to
A2 = ((40, 10) , 1), while the activities of the DMUs in D remain unchanged. In this
way, using the SBM efficiency and super-efficiency models, we can compute the SBM
Malmquist index (Tone 2004) of D4, that is the product of two factors: the catch-up
and the frontier-shift. On one hand, the catch-up (or recovery) is interpreted as the
DMU’s relative efficiency change, so catch-up values greater than 1 indicate progress,
values less than 1 indicate regress, and a catch-up equal to 1 means no change. On
the other hand, the frontier-shift (or innovation) is related to the technological change
in the efficient frontiers and hence, analogously to the catch-up, values greater, less
and equal to 1 indicate progress, regress, and no change, respectively, of the efficient
frontier with respect to the evaluated DMU.

Nevertheless, we can also compute a Malmquist index using the CompSBM score
(or the J-SBM or CSBM scores) instead of the S-SBM score. Table 2 shows the
scores of A1 and A2, while Table 3 shows the results of the Malmquist index with no
orientation and using the exclusive scheme (see Tone (2004) for details). The original
SBM Malmquist index does not detect the catch-up, and its frontier-shift does not
take into account the inefficiency of the super-efficiency projection of A2. On the
other hand, these problems do not appear when the CompSBM score is used instead,
obtaining a catch-up smaller than one and a frontier-shift indicating less technological
regress of the efficient frontier with respect to D4.

Now, let us consider that the activity of D4 changes from A3 = ((50, 20) , 1) (that
is weakly efficient) to A4 = ((50, 19) , 1), while the activities of the DMUs in D
remain unchanged. Analogously, we can compute the SBMMalmquist index of D4 in
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Table 4 Nonoriented scores of DMUs from Example 4. The scores are as follows: S-SBM score (δ∗),
SBM efficiency score of super-efficiency projections (ρ∗ (

x̄∗, ȳ∗)
), the best SBM efficiency score in the

corresponding P̄ (max ρ∗|P̄ ), J-SBM score, CSBM score, a lower bound of the CompSBM score (γlow =
δ∗ · ρ∗ (

x̄∗, ȳ∗)
, see Remark 7), CompSBM score (γ ), and CompS-SBM score (γse), all of them computed

with respect to the set of reference DMUs given by all the DMUs excluding the evaluated DMU

DMU Scores
δ∗ ρ∗ (

x̄∗, ȳ∗)
max ρ∗|P̄ J-SBM CSBM γlow γ γse

D1 1.0116 0.7299 0.8565 0.4990 0.7397 0.7384 0.8664 1.0099

D2 1.4146 0.3185 0.4525 0.3791 0.3791 0.4505 0.6401 1.1876

D3 1.0781 0.597 0.597 0.6732 0.6732 0.6436 0.6436 1.0466

D4 1.1563 0.6162 0.6162 0.7633 0.7633 0.7125 0.7125 1.0963

D5 1.5859 0.9687 1 1.5458 1.5458 1.5363 1.5859 1.5859

D6 1.0198 0.7422 0.8227 0.6158 0.7577 0.7569 0.839 1.0163

its original form or using the CompSBM score instead. Table 2 shows the scores of A3
andA4,while Table 3 also shows the results of theMalmquist indexwith no orientation
and using the exclusive scheme. The catch-up of the original SBMMalmquist index is
overestimated due to the discontinuity of the SBM efficiency score on weakly efficient
activities described in Example 2. This problem is again solved when the CompSBM
score is used instead, resulting in a catch-up very close to 1.

Example 4 We are going to consider the same set of DMUs of Example 1, used in
Doyle and Green (1993), Tone (2002), consisting of six efficient DMUs (power plant
locations) with four inputs and two outputs (see Table 1). Table 4 shows nonoriented
scores (although Tone (2002) only considers the input oriented scenario) and Table 5
shows the corresponding efficient targets of super-efficiency projections, with optimal
slacks in parentheses. Note that the difference between the original DMU and the effi-
cient target of a super-efficiency projection is given either by optimal super-efficiency
slacks or by optimal inefficiency slacks (of the super-efficiency projection), separately
in each input and output. This fact is shown in Table 5, where super-efficiency slacks
are displayed in bold italic, inefficiency slacks in bold, and each input or output has
either bold italic or bold slacks, but not both (see Proposition 3). It should be also
noted that the S-SBM score only takes into account “bold italic slacks”, ignoring
“bold slacks”.

Note that, for D5, ρ∗ (x̄∗, ȳ∗) < 1 and it does not coincide with max ρ∗|P̄ , whose
value is 1. Hence, D5 has super-efficiency projections that are inefficient, but there
are also efficient activities in the corresponding P̄ . In this case, the CompSBMmodel
does not penalize the inefficiency of such super-efficiency projections (because there
are efficient activities in P̄), contrary to the J-SBM and CSBM models. An important
conclusion is that the CompSBM score is not strongly monotonic in some cases,
because D5 can be improved (specifically, the second input can be lowered up to 525)
keeping the original S-SBM score and, since there are efficient activities in P̄ , the
CompSBM score of D5 will not change.

We have used the NLopt package (Johnson 2019) for solving the nonlinear pro-
gram (14) in the computation of max ρ∗|P̄ . Specifically, we have used the following
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Table 5 Efficient targets of super-efficiency projections of DMUs from Example 4 with optimal slacks
in parentheses. Super-efficiency slacks t−∗

i , t+∗
r are displayed in bold italic and inefficiency slacks (of

super-efficiency projections) s−∗
i , s+∗

r in bold, for i = 1, . . . , 4 and r = 1, 2

DMU Efficient targets (and slacks)
x1 x2 x3 x4 y1 y2

D1 80 627.89 (27.89) 54 3.6 (4.4) 90 6.82 (1.82)

D2 17.3 (47.7) 200 6.7 (90.3) 1 24 (34) 2.67 (1.67)

D3 45.5 (37.5) 525 (125) 17.5 (54.5) 2.62 (1.38) 63 (3) 7

D4 65 (25) 750 (250) 25 (50) 3.75 (3.25) 90 (10) 10

D5 70.5 (18.5) 525 (75) 27 (7) 3.75 (0.75) 72 4.5 (3.5)

D6 73.6 (20.4) 755.5 (55.5) 36 5 96 9.29 (3.29)

global nonlinear algorithms included in this package: DIRECT (Dividing RECtan-
gles) (Jones et al. 1993), its “locally biased” version DIRECT-L (Gablonsky and
Kelley 2001), and COBYLA (Constrained Optimization BY Linear Approximations)
(Powell 1998). Computation time varies depending on the algorithm: 150 seconds for
DIRECT, 20 seconds for DIRECT-L, and 2 seconds for COBYLA, using a 2 GHz
processor. Nevertheless, computation time grows exponentially with the number of
efficient DMUs, inputs and/or outputs, making it practically impossible to solve prob-
lems with, for example, more than 30 efficient DMUs with 5 inputs and 5 outputs.

8 Concluding remarks

The problem of ranking efficient DMUs continues to be an active issue that keeps gen-
erating new studies and methods within DEA (Jablonsky 2012; Zýková 2022). Since
its inception in the papers of Pastor et al. (1999) and Tone (2001), the SBM super-
efficiency model has proved to be an important tool for ranking efficient DMUs which
has been widely used by DEA practitioners in the last years. However, some interpre-
tation problems appear when super-efficiency projections are weakly efficient, since
the SBM super-efficiency model does not take into account the inefficiency slacks
of such projections and therefore, some efficient DMUs can not be properly ranked.
Moreover, this fact is closely related to discontinuities produced in the weakly effi-
cient frontier when implementing SBM super-efficiency in conjunction with SBM
efficiency. Authors like Chen (2013) and Chen et al. (2019) tried to solve these prob-
lems, but they did not arrive to a fully satisfactory solution. Nevertheless, their papers
lay the foundations for future studies on the subject.

In order to shed some light on this matter, we have introduced the CompSBM
model, leading to the first example of a weakly monotonic score that integrates the
SBM efficiency and S-SBM scores in a continuous way. Indeed, we have shown that it
coincideswith the S-SBMscorewhen theDMUs are efficientwith no inefficient super-
efficiency projections, and coincides with the SBM efficiency score when the DMUs
are inefficient. Moreover, the CompSBMmodel gives a continuous ranking of DMUs,
avoiding the abrupt changes in the scores shown by other models and hence, solving
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the discontinuity problems in the weakly efficient frontier. It can also be adapted to
other models such as the additive model or the SBMMalmquist index, or even we can
use alternative efficiency scores different from ρ∗ in the construction of a composite
score, giving us a deeper insight into the evolution of the performance of DMUs.

The idea behind the CompSBM model is not to consider only the super-efficiency
slacks, but also to penalize the lack of efficient activities in the set P̄ onto which super-
efficiency projections are projected. Since we demand continuity, super-inefficient
activities (i.e. efficient activities with scores less than 1) inevitably appear around the
weakly efficient frontier. Although it can be counter-intuitive at first, super-inefficiency
is interpreted as a “hidden” inefficiency (Chen 2013), assuming that slacks from dif-
ferent inputs/outputs can somehow compensate for each other. According to Chen
et al. (2019), super-inefficiency is a new division for efficiency, different from existing
studies such as SBM efficiency and SBM super-efficiency. Nevertheless, since super-
inefficiency is a relatively new concept, it is not yet considered by some researchers
who prefer to deal with discontinuities rather than with super-inefficiencies, although
discontinuities have serious interpretation problems related to sensitivity. Hence, we
have also defined a new weakly monotonous SBM super-efficiency score (based on
the CompSBM score and the work of Lee (2021)) that penalizes the lack of efficient
activities in P̄ without producing super-inefficient activities (see Remark 4). However,
discontinuities obviously appear in the weakly efficient frontier when implementing
this new super-efficiency in conjunction with SBM efficiency.

To sum up, the CompSBM score:

– is continuous,
– is weakly monotonous, and
– it allows ranking the efficient DMUs.

However, this score presents two difficulties, namely:

– its calculation requires solving nonlinear optimization problems, and
– it presents super-inefficiencies, which is the price we have to pay for having a
global continuous score.

We believe that the methodology employed in the construction of the CompSBM
score can help in the development of othermodelswith better properties, as for example
to be strongly monotonic (see Remark 5) or be easier to compute. Moreover, there are
some pending tasks that may be interesting, such as the use of the SBM-Max efficiency
model in the construction of the composite score (see Remark 6), or the study of the
potential infeasibility of oriented composite models under variable returns to scale. In
our opinion, these and other questions could lead to future results which, beyond any
doubt, will help to increase the understanding of the DEA methodology.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Not
applicable.

Availability of data andmaterial Not applicable.

Code availability We have used R 3.6.0 (R Core Team 2020) for computations. Specifically, we have used
the deaR package (Coll-Serrano et al. 2020) for computing linear scores, and the NLopt package (Johnson
2019) for solving the nonlinear program (14) in Example 4.

123



Continuous models combining slacks-based measures 385

Declarations

Conflicts of interest/Competing interests Not applicable.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Appendix

Proof of Proposition 1 We are going to prove that
∂ρ∗

∂xk
< 0 for k ∈ {1, . . . ,m} and

∂ρ∗

∂ yk
> 0 for k ∈ {1, . . . , s} using the Karush-Kuhn-Tucker (KKT) conditions. Let

(x, y) be an activity in P and s−∗, s+∗ be optimal inefficiency slack vectors for program
(2). Given k ∈ {1, . . . ,m}, we replace in (2) the parameter xk by a new variable x and

add the constraint x = xk whose KKTmultiplier is
∂ρ∗

∂xk
(x, y). Hence, the stationarity

condition associated to the new variable x is given by

∂ρ∗

∂xk
(x, y) = ∂ρ

∂xk

(
x, y, s−∗, s+∗) − μ−

k , (18)

whereμ−
k is the KKTmultiplier of the k-th constraint in (2). The stationarity condition

associated to s−
k of (2) is given by

∂ρ

∂s−
k

(
x, y, s−∗, s+∗) + μ−

k = ν[s−
k ] ≥ 0, (19)

where ν[s−
k ] is the KKTmultiplier of the nonnegativity condition of s−

k . Hence, apply-
ing (19) in (18) we obtain

∂ρ∗

∂xk
(x, y) ≤ ∂ρ

∂xk

(
x, y, s−∗, s+∗) + ∂ρ

∂s−
k

(
x, y, s−∗, s+∗)

= 1

1 + 1
s

∑s
r=1 s

+∗
r /yr

1

mxk

(
s−∗
k

xk
− 1

)

< 0,
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since s−∗
k < xk . Analogously, given k ∈ {1, . . . , s}, it can be proved that

∂ρ∗

∂ yk
(x, y) ≥ ∂ρ

∂ yk

(
x, y, s−∗, s+∗) − ∂ρ

∂s+
k

(
x, y, s−∗, s+∗)

= ρ
(
x, y, s−∗, s+∗)

1 + 1
s

∑s
r=1 s

+∗
r /yr

1

syk

(
s+∗
k

yk
+ 1

)

> 0.


�
Proof of Proposition 2 Let (x, y) be an activity and t−∗, t+∗ be optimal super-efficiency
slack vectors for program (3). Given k ∈ {1, . . . ,m}, we replace in (3) the parameter xk

by a new variable x and add the constraint x = xk whose KKTmultiplier is
∂δ∗

∂xk
(x, y).

Hence, the stationarity condition associated to the new variable x is given by

∂δ∗

∂xk
(x, y) = ∂δ

∂xk

(
x, y, t−∗, t+∗) − μ−

k , (20)

where μ−
k is the KKT multiplier of the k-th constraint in (3).

Let us suppose that t−∗
k > 0. The KKT stationarity condition associated to t−k of

(3) is given by

∂δ

∂t−k

(
x, y, t−∗, t+∗) − μ−

k = ν[t−k ] = 0, (21)

where ν[t−k ] is the KKT multiplier of the nonnegativity condition of t−k , that vanishes
in virtue of the corresponding complementary slackness condition. Hence, applying
(21) in (20) we obtain

∂δ∗

∂xk
(x, y) = ∂δ

∂xk

(
x, y, t−∗, t+∗) − ∂δ

∂t−k

(
x, y, t−∗, t+∗)

= −1

1 − 1
s

∑s
r=1 t

+∗
r /yr

1

mxk

(
t−∗
k

xk
+ 1

)

< 0, (22)

since t+∗
r < yr for r = 1, . . . , s.

On the other hand, let us suppose that t−∗
k = 0. From the KKT dual feasibility

conditions of (3), we have μ−
k ≥ 0 and hence, from (20) we obtain

∂δ∗

∂xk
(x, y) ≤ ∂δ

∂xk

(
x, y, t−∗, t+∗) = −1

1 − 1
s

∑s
r=1 t

+∗
r /yr

t−∗
k

mx2k
= 0. (23)

Analogously to (22) and (23), it can be proved that given k ∈ {1, . . . , s}, if t+∗
k > 0

then
∂δ∗

∂ yk
(x, y) > 0, and if t+∗

k = 0 then
∂δ∗

∂ yk
(x, y) ≥ 0. 
�
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Proof of Proposition 3 We define τ−, τ+ such that τ−
i = max

{
0, t−∗

i − s−∗
i

}
, τ+

r =
max

{
0, t+∗

r − s+∗
r

}
, for i = 1, . . . ,m and r = 1, . . . , s. From the constraints of (6),

we have

x + τ− ≥ x + (
t−∗ − s−∗) = Xλ∗,

y − τ+ ≤ y − (
t+∗ − s+∗) = Yλ∗, (24)

where λ∗ is optimal for (6), along with s−∗, s+∗. From (24) and taking into account
that τ−, τ+ are nonnegative, we have that

(
λ∗, τ−, τ+)

satisfies the constraints of
(3), and hence

δ
(
x, y, τ−, τ+) ≥ δ

(
x, y, t−∗, t+∗) . (25)

On the other hand, if we suppose that there exists i ∈ {1, . . . ,m} such that t−∗
i , s−∗

i >

0, then τ−
i < t−∗

i and hence δ
(
x, y, τ−, τ+)

< δ
(
x, y, t−∗, t+∗), that contradicts

(25). Analogously, if we suppose that there exists r ∈ {1, . . . , s} such that t+∗
r , s+∗

r >

0, then we arrive to the same contradiction. 
�
Proof of Proposition 4 Let (6)′ be the program (6) with objective function (7), and let
ρ∗
0 (x̄∗, ȳ∗) be the optimal result of (6)′, where (x̄∗, ȳ∗) = (

x + t−∗, y − t+∗) is a
super-efficiency projection of (x, y). On one hand, if s−∗, s+∗ are optimal for (6) then,
by Proposition 3, we have

ρ∗ (
x̄∗, ȳ∗) = ρ

(
x̄∗, ȳ∗, s−∗, s+∗) = ρ

(
x, y, s−∗, s+∗) ≥ ρ∗

0

(
x̄∗, ȳ∗) . (26)

On the other hand, if s−∗, s+∗ are optimal for (6)′ then, it can be proved analogously
to Proposition 3 that if t−∗

i > 0 for some i ∈ {1, . . . ,m}, then s−∗
i = 0, and if t+∗

r > 0
for some r ∈ {1, . . . , s}, then s+∗

r = 0. Hence

ρ∗
0

(
x̄∗, ȳ∗) = ρ

(
x, y, s−∗, s+∗) = ρ

(
x̄∗, ȳ∗, s−∗, s+∗) ≥ ρ∗ (

x̄∗, ȳ∗) . (27)

By (26) and (27) we have that ρ∗ (x̄∗, ȳ∗) = ρ∗
0 (x̄∗, ȳ∗). So, if s−∗, s+∗ are opti-

mal for (6) we have that ρ
(
x, y, s−∗, s+∗) = ρ

(
x̄∗, ȳ∗, s−∗, s+∗) = ρ∗ (x̄∗, ȳ∗) =

ρ∗
0 (x̄∗, ȳ∗), and then s−∗, s+∗ are also optimal for (6)′. Analogously, if s−∗, s+∗ are

optimal for (6)′, then they are also optimal for (6). 
�
Proof of Proposition 5 Property 2. can be deduced directly from (9).

1. If (x, y) is inefficient, then δ∗ (x, y) = 1. On the other hand, (x, y) ∈ P̄ and
hence max ρ∗|P̄ = ρ∗ (x, y) since ρ∗ is strongly monotonic (although only weak
monotonicity is needed) and any activity in P̄ is dominated by (x, y). So,γ (x, y) =
ρ∗ (x, y) by (9).

3. Since max ρ∗|P̄ < 1, by (9), γ (x, y) < δ∗ (x, y). On the other hand, since (x, y)
is efficient and there are not efficient activities in P̄ , we have that (x, y) /∈ P̄
and hence, there are optimal super-efficiency slack vectors for (3) that are not
simultaneously zero. So, δ∗ (x, y) > 1 and then γ (x, y) > max ρ∗|P̄ by (9).


�
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Proof of Proposition 6 We have that max ρ∗|P̄ depends on (x, y) through P̄ (i.e. the
set of activities in P that are dominated by (x, y)). From (4), it is clear that P̄ varies
in a continuous way with respect to (x, y). Moreover, since ρ∗|P is continuous and
P̄ ⊆ P , we have that max ρ∗|P̄ is continuous. Finally, since δ∗ is continuous, we
conclude that γ = δ∗ · max ρ∗|P̄ is also continuous. 
�

Proof of Proposition 7 Let (x, y) be an activity strictly dominated by
(
x′, y′). Consid-

ering P̄ and P̄ ′ the sets of activities in P that are dominated by (x, y) and
(
x′, y′)

respectively, it holds that P̄ ⊆ P̄ ′ and hence, max ρ∗|P̄ ≤ max ρ∗|P̄ ′ . On the other
hand, δ∗ (x, y) ≤ δ∗ (

x′, y′) since δ∗ is weakly monotonic. So, γ (x, y) ≤ γ
(
x′, y′)

by (9). 
�

Proof of Proposition 8 We are going to prove that, in order to compute (12), the objec-
tive function of (13) can be replaced by ρ

(
x, y, s−, s+

)
. Let (13)′ be the program (13)

with objective function ρ
(
x, y, s−, s+

)
, let ρ∗

0

(
x + t−, y − t+

)
be the optimal result

of (13)′, and let P̄ ′ be the subset of P̄ whose activities are not strictly dominated by any
other activity in P̄ . It is clear that if an activity (x̄, ȳ) ∈ P̄ maximizes ρ∗|P̄ or ρ∗

0 |P̄ ,
then (x̄, ȳ) ∈ P̄ ′, because ρ∗|P̄ and ρ∗

0 |P̄ are strongly monotonic (see Proposition 1).
Hence

max ρ∗|P̄ = max ρ∗|P̄ ′ , max ρ∗
0 |P̄ = max ρ∗

0 |P̄ ′ . (28)

Let (x̄, ȳ) = (
x + t−, y − t+

) ∈ P̄ ′ and let
(
λ∗, s−∗, s+∗) be an optimal solu-

tion for (13) or (13)′. We define τ−, τ+ such that τ−
i = max

{
0, t−i − s−∗

i

}
,

τ+
r = max

{
0, t+r − s+∗

r

}
for i = 1, . . . ,m and r = 1, . . . , s. From the constraints of

(13) or (13)′ we have

x + τ− ≥ x + (
t− − s−∗) = Xλ∗,

y − τ+ ≤ y − (
t+ − s+∗) = Yλ∗,

and so
(
x + τ−, y − τ+) ∈ P . Moreover,

(
x + τ−, y − τ+) ∈ P̄ because τ−

i , τ+
r ≥

0. Let us suppose that there exists i ∈ {1, . . . ,m} such that s−∗
i , t−i > 0. Then

τ−
i < t−i and hence, taking into account that τ− ≤ t− and τ+ ≤ t+, we have that(
x + t−, y − t+

)
is strictly dominated by

(
x + τ−, y − τ+)

, that is a contradiction
because

(
x + t−, y − t+

)
is not strictly dominated by any other activity in P̄ . Anal-

ogously for outputs. So, if t−i > 0 then s−∗
i = 0, and if t+r > 0 then s+∗

r = 0,
concluding that

ρ
(
x̄, ȳ, s−∗, s+∗) = ρ

(
x + t−, y − t+, s−∗, s+∗) = ρ

(
x, y, s−∗, s+∗) . (29)

On one hand, if s−∗, s+∗ are optimal for (13) then, by (29) we have

ρ∗ (x̄, ȳ) = ρ
(
x̄, ȳ, s−∗, s+∗) = ρ

(
x, y, s−∗, s+∗) ≥ ρ∗

0 (x̄, ȳ) . (30)
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On the other hand, if s−∗, s+∗ are optimal for (13)′ then, by (29) we have

ρ∗
0 (x̄, ȳ) = ρ

(
x, y, s−∗, s+∗) = ρ

(
x̄, ȳ, s−∗, s+∗) ≥ ρ∗ (x̄, ȳ) . (31)

Hence, by (30) and (31) we have that ρ∗ (x̄, ȳ) = ρ∗
0 (x̄, ȳ) for all (x̄, ȳ) ∈ P̄ ′, and then

ρ∗|P̄ ′ = ρ∗
0 |P̄ ′ . Taking into account (28) we conclude that max ρ∗|P̄ = max ρ∗|P̄ ′ =

max ρ∗
0 |P̄ ′ = max ρ∗

0 |P̄ . 
�
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