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Abstract
To efficiently assess the performance of investing in stocks rather than in a bank
account for the long run, stochastic interest rate modelling is advocated. We introduce
a correlated stochastic interest rate model that addresses this problem. We derive
analytic formulas for general spectral risk measures in our setting, and apply our
results to Value at Risk, Expected Shortfall and GlueVaR. We characterize the short-
and long-term behaviour of these risk measures. We fit our model to financial markets,
perform an empirical study and evaluate risk numbers for realistic scenarios in the
future. Our results reveal sizeable sensitivities on parameter estimation, but we may
conclude that holding stocks for less than a few decades bears significant risk.

Keywords Asset allocation · Spectral risk measures · Vasicek process · Time
diversification · GlueVaR

JEL Classification G11

1 Introduction

We have recently seen a large number of papers concerning the question as to whether
or not the risk of holding stocks decreases over the timehorizon. For a detailed literature

The authors declare that they have no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

Dávid Zoltán Szabó thanks funding from National Research, Development and Innovation Office -
NKFIH, K-138826.

B Dávid Zoltán Szabó
davidzoltan.szabo@uni-corvinus.hu

Zsolt Bihary
zsolt.bihary@uni-corvinus.hu

1 Department of Finance, Corvinus University of Budapest, Fővám Square 8, 1093 Budapest, Hungary
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review on this topic we refer the reader to (Bihary et al. 2020). In essence, there
have been contradicting studies published, some arguing that stocks are riskier in the
long run, (Pástor and Stambaugh 2012; Avramov et al. 2017; Harlow 1991; Bodie
1995) whereas others claiming that due to time diversification the risk of holding
stock does decrease on a long time horizon (Siegel 1998). Other papers (Wilkie 2001;
Ferguson and Dean 1996) also claim that the conclusion of (Bodie 1995) such that
stock’s risk increases monotonically with the investment horizon is incorrect. In a
related work, Barberis (2000) examined buy-and-hold investors and assessed that even
after incorporating uncertainty of model parameters, investors should hold a greater
proportion of risky shares in their assets as time horizon increases.

Applying the methodology of (Treussard 2006) and (Nguyen et al. 2012; Bihary
et al. 2020) considered a framework where spectral risk measures (Acerbi 2002) were
used to investigate the riskiness of stocks relative to a money market account. They
used Geometric Brownian motion and a particular exponential Lévy subclass called
the Finite Moment Log Stable (FMLS) model (Carr and Wu 2003) to model the stock
price movement, and the risk free interest rate was assumed to be constant for any
time period. Given the very long investment horizons investigated, they pointed out
that incorporating stochastic interest rates would be important to further analyze the
research question.

Based on their study, we propose a modified framework where the stock price
follows a Geometric Brownian Motion, while as a novelty, the risk free interest rate
is also modelled as a stochastic process. As we are aiming to compare the long-term
behaviour of a risk-free bank account to stock prices, we also model the correlation
between the stochastic interest rate dynamics and the stock price process. The mean
reverting phenomenon of short term rates has been claimed in many studies (Brace
et al. 1997; Elliott and Mamon 2002; Jamshidian 1989). Short term rates appear to be
pulled back to a long-term average as time goes by. In this studywe use thewell-known
Vasicek process (Vasicek 1977) to model the short rates. The choice of the geometric
Brownian motion for asset prices and Vasicek model for interest rates are popular as
evidenced in recent articles (see (Baz et al. 2021; Rudin and Marr 2016; Kopa et al.
2018)).

In this framework we provide analytically tractable formulas for arbitrary spec-
tral risk measures of a corresponding proportional loss variable. Quantile-based risk
measures in the last two decades have gradually replaced the traditional variance
for portfolio selection problems (see (Brandtner 2013)). Important quantile-based
risk measures that have been extensively used in the literature are Value at Risk
(VaR) (Jorion 2007), Expected Shortfall (ES) (Acerbi and Tasche 2002) and Glue-
VaR (Belles-Sampera et al. 2014). In a recent study, Nadarajah et al. (2014) provided
a comprehensive review of estimation methods for ES. In Hu et al. (2021) we can see a
fresh approach on the topic of optimal dynamic portfolio of cryptoassets to minimize
VaR and ES. An objective of this paper is to assess how the findings of the aforemen-
tioned papers concerning long run risk translate when variance as a risk measure is
changed to spectral risk measures.

Weprove simple conditions that determine the short-term and long-term riskiness of
the portfolio.We also perform an empirical analysis to calibrate model parameters.We
use short rate and stock index price data from four major markets (USA, UK, France,
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Germany). As an example, we consider expected shortfall at 90% confidence. We find
that our analytic formula, when properly calibrated, fits the empirical shortfall for
intermediate investment horizons. We show that incorporating the stochastic interest
rate component into the model yields significantly different risk values compared to
assuming constant rate. Next we provide a detailed sensitivity test with respect to all
parameters, and offer a range of optimistic and pessimistic estimations for the riskiness
of holding stocks in the future. Although theoretically the long-term risk of holding
a stock decreases for all investigated markets, this effect only sets in after decades.
This implies that holding stocks for realistic investment horizons carries significant
risk compared to investing in a bank account in most market situations.

The rest of the paper is organized as follows. Section 2 presents the analytical results
expressing the spectral risk measure of the corresponding portfolio and proving results
concerning short-term and long-term behaviour of risk. Section 3 contains a detailed
empirical work, studying the robustness of the model parameter estimations using real
data points from the four countries. Based on this we also provide a prediction to see
how the risk of holding stocks relative to investing in a money market account would
change under different scenarios for a few decades. Section 4 concludes.

2 Analytical results

We are to mathematically formulate how the spectral risk measure associated with
holding stocks rather than a risk-free bank account deposit, depends on the holding
period. As stated, both the stock and the risk-free deposit are modelled by stochastic
processes. More precisely, we analyze the spectral risk measure of the proportional
loss variable:

Y (t) = B(t) − S(t)

B(t)
= 1 − S(t)

B(t)
. (1)

Equation 1 expresses how the yield on a money market bank account over a stock
proportionally performs against the bank account itself.With the help of this particular
Y (t) loss variable we will be able to obtain analytical expressions for different risk
measures. For modelling the short term interest rate we choose a one dimensional
Vasicek-model, that satisfies the following stochastic differential equation (SDE):

dr(t) = κ(θ − r(t))dt + σr dWr (t), r(0) = r , (2)

where κ denotes the speed of reversion, θ is the long-term mean level, σr is the
instantaneous interest rate volatility and r is the initial value of the process.

In this set-up, the money market account value at time t is given by the following
formula:

B(t) = B(0)e
∫ t
0 r(u)du (3)
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For modelling the stock price movement, we use Geometric Brownian Motion
(GBM) that satisfies the following SDE:

dS(t) = μS(t)dt + σS S(t)dWS(t) (4)

whereμ denotes the drift of the process and σS is the instantaneous stock price volatil-
ity.

With the aforementioned choices we have a separate SDE for the rate and for
the stock model. They are both governed by a standalone Wiener process, and we
also assume that these two Wiener processes are correlated with a constant level of
correlation.

corr(Wr ,WS) = ρ (5)

It is well known that the solution to the Vasicek model described in Eq. 2 reads as:

r(t) = re−κt + θ
(
1 − e−κt) + σr e

−κt
∫ t

0
eκs dWr (s) (6)

Themoneymarket account value at a future time t is given by the following formula:

B(t) = B(0)e
∫ t
0

(
re−κu+θ(1−e−κu)+σr e−κu

∫ u
0 eκs dWr (s)

)
du

(7)

Similarly, the solution of the GBM described in Eq. 4 is given as follows:

S(t) = S0e
(μ−σ 2

S /2)t+σSWS(t) (8)

We now proceed to express the Y loss variable at time t . S(0) and B(0) both
represent the initial investment amount that we henceforth without loss of generality
assume to be 1.

Y (t) = e
(μ−σ 2

S /2)t+σSWS(t)−
∫ t
0

(
re−κu+θ(1−e−κu)+σr e−κu

∫ u
0 eκs dWr (s)

)
du − 1 (9)

In order to further express Y (t), we first consider the ln( S(t)
B(t) ) process. Once we

derived properties of ln( S(t)
B(t) ), we can investigate the related Y (t) quantity.

ln(
S(t)

B(t)
) = (μ − σ 2

S /2)t −
∫ t

0

(
re−κu + θ

(
1 − e−κu)

)
du

− σr

∫ t

0

∫ u

0
eκ(s−u) dWr (s)du + σSWS(t) (10)
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We observe that in Eq. 10 there are two deterministic terms and two stochastic
terms. Performing the integral the difference of two deterministic terms read as:

(μ − σ 2
S /2)t − r

1 − e−κt

κ
− θ

(

t − 1 − e−κt

κ

)

(11)

The sum of the two stochastic terms read as:

− σr

∫ t

0

∫ u

0
eκ(s−u) dWr (s)du + σSWS(t)

= −σr

∫ t

0

∫ t

s
eκ(s−u) dudWr (s) + σS

∫ t

0
dWS(s) (12)

where we exchanged the two variables in the first term. With the help of Cholesky
decomposition, dWS can be expressed as: dWS(t) = ρdWr (t) + √

1 − ρ2dW (t),
where W (t) is a Wiener process that is independent of Wr (t). Applying this decom-
position to Eq. 12 we obtain:

∫ t

0
(−σr

1 − e−κ(t−s)

κ
+ σSρ)dWr (s) + σS

∫ t

0

√
1 − ρ2dW (s) (13)

In Eq. 13 we have two Itô integrals both with deterministic integrands. We know
that such integrals are normally distributed with 0 mean and variances that can be
expressed as follows:

∫ t

0
(−σr

1 − e−κ(t−s)

κ
+ σSρ)2d(s) (14)

∫ t

0
σ 2
S (1 − ρ2)d(s) (15)

respectively.
AsW (t) andWr (t) are independent Wiener processes, the two integrals as random

variables are also independent, therefore we get that the sum of the two stochastic
terms in Eq. 12 is a normally distributed random variable as follows:

N(0,
∫ t

0
(−σr

1 − e−κ(t−s)

κ
+ σSρ)2d(s) +

∫ t

0
σ 2
S (1 − ρ2)d(s)) (16)

Finally we get that ln( S(t)
B(t) ) is also of normal distribution as follows:

N(EXt , V At ) (17)

where the expected value is

EXt = (μ − σ 2
S /2)t − r

1 − e−κt

κ
− θ

(

t − 1 − e−κt

κ

)

(18)
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and the variance after performing the integral in Eq. 16 reads as:

V At = σ 2
r

κ2

(

t − 2

κ
+ 2

κ
e−κt + 1

2κ
− 1

2κ
e−2κt

)

−2σrσSρ

κ

(

t − 1

κ
+ 1

κ
e−κt

)

+ σ 2
S t (19)

Using Itô isometry we also get for the variance of ln(S(t)) and ln(B(t)) the follow-
ing:

σ 2
ln(S(t)) = σ 2

S t, σ 2
ln(B(t)) = σ 2

r

∫ t

0

(
1 − e−κ(t−s)

κ

)2

d(s) (20)

Based on this and using Itô isometry once again we obtain:

Corr [ln(S(t)), ln(B(t))] = ρ

∫ t
0 (1 − e−κ(t−s))ds

√
t
∫ t
0 (1 − e−κ(t−s))2ds

(21)

Having established these results, we focus on expressing the spectral risk measure
of Y (t).

Definition 1 Given a random loss variable X , the spectral risk measure of X , ρφ(X)

is defined as

ρφ(X) =
∫ 1

0
F−1
X (p)φ(p)dp,

where φ ∈ L1([0, 1]), and the following properties are true:

• φ is positive;
• φ is monotonically increasing;
• ∫ 1

0 |φ(p)|dp = 1.

We indeed work with spectral risk measures throughout this paper, but we will use
an equivalent definition derived as a special case of Choquet integrals (Choquet 1954).
This formulation also appears in decision theory to model uncertainty (see for instance
(Grabisch andLabreuche 2010) and (Labreuche andGrabisch 2018)). Choquet integral
risk measures (see for instance (Sriboonchita et al. 2009)) are defined as follows.

Definition 2 Given a random loss variable X , the Choquet integral risk measure of X ,
ρh(X) is given by

ρh(X) =
∫ ∞

0
h(1 − FX (x))dx +

∫ 0

−∞
[h(1 − FX (x)) − 1]dx,

where h, the so-called distortion function (Wang 1996) is non-decreasing and satisfies
h(0) = 0 and h(1) = 1.

123



The riskiness of stock versus money market investment… 399

Nguyen et al. (2012) notes that for concave distortion functions h there exists a
connection between Choquet integral risk measures and spectral risk measures such
that if h′(1− p) = φ(p), then ρh(X) = ρφ(X). In this work, we will refer to spectral
risk measures and Choquet integral risk measures interchangeably.

Therefore, our first goal is to express ρh(Y (t)).

Theorem 1 The spectral risk measure of Y (t) with distortion function h is given by
the formula:

ρh(Y (t)) = 1 − eEXt

∫ ∞

−∞
h′(�(z))

1√
2�

ez
√
V At− z2

2 dz (22)

Proof Arguing along the lines that S(t)/B(t) is a lognormally distributed random
variable and denoting by Z the standard normally distributed random variable we
obtain:

P(Y (t) > x) = P(Z ≤ ln(1 − x) − EXt√
V At

) = �(
ln(1 − x) − EXt√

V At
) (23)

We apply the substitution ln(1−x)−EXt√
V At

= z ⇔ dx = −√
V Atez

√
V At+EXt dz to

obtain

ρh(Y (t)) =
∫ 1

0
h(P(Y (t) > x))dx +

∫ 0

−∞
[h(P(Y (t) > x)) − 1]dx

= −(

∫ −∞

C
h(�(z))

√
V Ate

z
√
V At+EXt dz

+
∫ C

∞
[h(�(z)) − 1]√V Ate

z
√
V At+EXt dz)

=
∫ C

−∞
h(�(z))

√
V Ate

z
√
V At+EXt dz

+
∫ ∞

C
[h(�(z)) − 1]√V Ate

z
√
V At+EXt dz (24)

where C = −EXt/
√
V At .

Note that using this definition Y (t) ≤ 1 holds under any circumstances. Also x and
z are inversely proportional thus the observed change in the integrals holds.

We can integrate by part to obtain:

ρh(Y (t)) = h(�(z))ez
√
V At+EXt |C−∞+

h(�(z) − 1)ez
√
V At+EXt |∞C

−
∫ ∞

C
h′(�(z))

1√
2�

e− z2
2 ez

√
V At+EXt dz (25)
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Substituting the values on the boundary points using h(0) = 0, h(1) = 1 we can
assert that

ρh(Y (t)) = 1 − eEXt

∫ ∞

−∞
h′(�(z))

1√
2�

ez
√
V At− z2

2 dz (26)

�	
We now consider important specific cases such as the VaR, ES and GlueVaR. Note

that since the underlying distribution Y (t) is continuous for all t , therefore ES is
equivalent to Tail Conditional Expectation (TCE) or Tail Value at Risk (TVaR).

For the case of Expected Shortfall at confidence level α (ESα(·)), the distortion
function of the loss variable (Y ) is

hα(x) =
{

x
1−α

if 0 ≤ x < 1 − α,

1 if 1 − α ≤ x ≤ 1.

We can express the (ESα(·)) of the loss variable (Y (t)) by substituting into Eq. 26:

ESα(Y (t)) = 1 − 1

1 − α
eEXt

∫ �−1(1−α)

−∞
1√
2�

ez
√
V At− z2

2 dz

= 1 − 1

1 − α
eEXt+ V At

2

∫ �−1(1−α)

−∞
1√
2�

e− 1
2 (z−√

V At )
2
dz

= 1 − 1

1 − α
eEXt+ V At

2 (�(�−1(1 − α) − √
V At )) (27)

As for the Value at Risk at confidence level α (VaRα), applying the definition
(P(Y (t) ≤ VaRα(·)) = α) we argue as follows:

P(Y (t) ≤ x) = 1 − P(Y (t) > x) = 1 − �(
ln(1 − x) − EXt√

V At
) (28)

By definition we obtain:

α = 1 − �(
ln(1 − VaRα(·)) − EXt√

V At
) (29)

Finally we get

VaRα(Y (t)) = 1 − e�−1(1−α)
√
V At+EXt (30)

With the help of VaR we can express ES using the defining relation between the
two risk measures:

ESα(·) = 1

1 − α

∫ 1

α

VaRγ (·)dγ (31)
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Based on this we again obtain the formula for ES:

ESα(Y (t)) = 1

1 − α

∫ 1

α

(1 − e�−1(1−γ )
√
V At+EXt )dγ

= 1 − 1

1 − α

∫ �−1(1−α)

−∞
�′(u)eu

√
V At+EXt du

= 1 − 1

1 − α

∫ �−1(1−α)

−∞
1√
2�

e− u2
2 eu

√
V At+EXt du

= 1

1 − α
eEXt+ V At

2

∫ �−1(1−α)

−∞
1√
2�

e− 1
2 (u−√

V At )
2
du =

= 1 − 1

1 − α
eEXt+ V At

2 (�(�−1(1 − α) − √
V At )) (32)

We can see that Eqs. 27 and 32 yield the same formula.
We also illustrate the GlueVaR risk measure that has been introduced in (Belles-

Sampera et al. 2014). This risk measure considers more than just one confidence
interval to capture managerial and regulatory attitudes towards risk. GlueVaR is a risk
measure that can be expressed as a linear combination of three risk measures: ES at
confidence levels β and α and VaR at confidence level α.

Given confidence levels α and β, the distortion function for GlueVaR read as:

hh1,h2β,α (x) =

⎧
⎪⎨

⎪⎩

h1
1−β

· x if 0 ≤ x < 1 − β,

h1 + h2−h1
β−α

· [x − (1 − β)] if 1 − β ≤ x ≤ 1 − α,

1 if 1 − α ≤ x ≤ 1.

Given a random variable X and fixed tolerance levels α and β so that α < β,
GlueVaRh1,h2

β,α (X) can be expressed as a linear combination of ESβ(X), ESα(X) and
VaRα(X).

That said, GlueVaRh1,h2
β,α (X) reads as:

GlueVaRh1,h2
β,α (X) = ω1 · ESβ(X) + ω2 · ESα(X) + ω3 · VaRα(X) (33)

where

⎧
⎪⎨

⎪⎩

ω1 = h1 − (h2−h1)·(1−β)
β−α

,

ω2 = (h2−h1)
β−α

· (1 − α),

ω3 = 1 − ω1 − ω2.

As for our loss variable for a certain time Y (t), GlueVaRh1,h2
β,α (Y (t)) can be

expressed as follows:

GlueVaRh1,h2
β,α (Y (t)) = 1 − ω1

1 − β
eEXt+ V At

2 (�(�−1(1 − β) − √
V At ))−
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ω2

1 − α
eEXt+ V At

2 (�(�−1(1 − α) − √
V At ))

− ω3 · e�−1(1−α)
√
V At+EXt ) (34)

2.1 Asymptotic behaviour of risk measures

Wenow investigate how the aforementioned riskmeasures behavewhen the concerned
time period is infinitesimally small or infinitely large.

Theorem 2 For α > 50% and β > 50% the following holds:

lim
t→0+

∂VaRα(Y (t))

∂t
= ∞,

lim
t→0+

∂ESα(Y (t))

∂t
= ∞,

lim
t→0+

∂GlueVaRh1,h2
β,α (Y (t))

∂t
= ∞ (35)

Proof Recall Eq. 30 and examine themonotonicity of VaR at t → 0+ by taking its first
partial derivative with respect to t (we denote this partial derivative by ′ throughout
this proof):

VaR′
α(Y (t)) = −e�−1(1−α)

√
V At+EXt · (�−1(1 − α) · √

V At
′ + EX ′

t ) (36)

The first partial derivatives of EXt and
√
V At with respect to t are obtained as

follows:

EX ′
t = μ − σ 2

S /2 − θ + (θ − r)e−κt (37)
√
V At

′ = V A′
t

2
√
V At

(38)

where V A′
t = σ 2

r
κ2

− 2σrσSρ
κ

+ σ 2
S − 2σ 2

r
κ2

e−κt + σ 2
r

κ2
e−2κt + 2σrσSρ

κ
e−κt and we simply

get that V A′
0 = σ 2

S > 0
V A0 = 0 and V At > 0 hold for all t > 0 as this is the variance of a random

variable, thus
√
V A0 = 0.

Based on this, we obtain the following:

lim
t→0+

√
V At

′ = ∞ (39)

We also obtain that EX ′
0 = μ−σ 2

S /2−r and utilizing the fact that�−1(1−α) > 0
if α < 50% and �−1(1 − α) < 0 if α > 50%, and having a look at Eq. 36 conveys
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the following:

{
limt→0+ VaR′

α(Y (t)) = −∞ if α < 50%,

limt→0+ VaR′
α(Y (t)) = ∞ if α > 50%.

As ESα(X) ≥ VaRα(X) for all X and ESα(Y (0)) = 0 we get that

lim
t→0+ ES′

α(Y (t)) = ∞ if α > 50%.

As a positive linear combination of ESβ(Y (t)), ESα(Y (t)) and VaRα(Y (t)), we also

obtain that the statement of the theorem holds for GlueVaRh1,h2
β,α (Y (t)) as well.

�	
We can conclude that for reasonable confidence intervals (α > 50%), (β > 50%) all
three risk measures start to increase initially.

We now discuss the long-term behaviour by analysing what happens when t → ∞.

Theorem 3 For any 0 < α < 1 confidence interval the following holds:

⎧
⎨

⎩
limt→∞ VaRα(Y (t)) → −∞ if μ − σ 2

S
2 − θ > 0,

limt→∞ VaRα(Y (t)) → 1 if μ − σ 2
S
2 − θ < 0.

(40)

⎧
⎨

⎩
limt→∞ ESα(Y (t)) → −∞ if μ − σ 2

S
2 − θ > 0,

limt→∞ ESα(Y (t)) → 1 if μ − σ 2
S
2 − θ < 0.

(41)

Proof We are to examine how VaRα(Y (t)) behaves when t → ∞.
Taking a look at Eq. 19 we get the that 0 ≤ √

V At ≤ √
t · ( σr

κ
+ σS) + C for a

fixed C > 0 for all t ≥ 0.
We also obtain from Eq. 37:

⎧
⎨

⎩
limt→∞ EXt = ∞ if μ − σ 2

S
2 − θ > 0,

limt→∞ EXt = −∞ if μ − σ 2
S
2 − θ < 0

Thereforewhen inspecting limt→∞ 1−e�−1(1−α)
√
V At+EXt ,we can see fromEq. 31

that EXt contains terms of linear growth of t , whereas
√
V At contains terms of

sublinear growth of t , thus we can disregard the �−1(1− α)
√
V At term to obtain the

statement of the theorem for VaR.
As for investigating limt→∞ ESα(t) we first note that limt→∞

√
V At = ∞ as in

Eq. 19 the only terms that are either not constant or do not have a 0 limit in t → ∞ are

t( σ 2
r

κ2
− 2σrσSρ

κ
+σ 2

S ) ≥ t( σr
κ

−σS)
2 > 0. Thus limt→∞

√
V At ≥ √

t |σr
κ

−σS|+CV =
∞, where CV is constant.
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Besides, EXt + V At
2 in the limit of t → ∞ is either −∞ or ∞ or constant CL .

We carry on by inspection of cases.

Case 1 limt→∞ EXt + V At
2 = −∞ or CL

We obtain that

lim
t→∞ ESα(t) = 1 − 1

1 − α
lim
t→∞

�(�−1(1 − α) − √
V At )

e−EXt− V At
2

= 1 (42)

Case 2 limt→∞ EXt + V At
2 = ∞

We obtain that

lim
t→∞ ESα(t) = 1 − 1

1 − α
lim
t→∞

�(�−1(1 − α) − √
V At )

e−EXt− V At
2

= 1 − 1√
2π(1 − α)

lim
t→∞

e− (�−1(1−α)−√
V At )

2

2 · (−√
V At

′
)

e−EXt− V At
2 (−EX ′

t − V A′
t

2 )
(43)

where by the last step we applied L’Hôpital’s rule. This can be further expressed as

lim
t→∞ ESα(t)

= 1 − 1√
2π(1 − α)

lim
t→∞ e− (�−1(1−α)−√

V At )
2−2EXt−V At

2 ·
√
V At

′

EX ′
t + V A′

t
2

= 1 − e− (�−1(1−α))2
2

1√
2π(1 − α)

lim
t→∞ e�−1(1−α)

√
V At+EXt ·

√
V At

′

EX ′
t + V A′

t
2

= 1 − e− (�−1(1−α))2
2

1√
2π(1 − α)

lim
t→∞

e�−1(1−α)
√
V At+EXt

2
√
V At

· V A′
t

E X ′
t + V A′

t
2

(44)

We know that limt→∞ V A′
t = C1 > 0, limt→∞ EX ′

t + V A′
t

2 = C2 > 0 due to the
assumptions of this case and the fact that both terms are bounded function of t . Hence

limt→∞ V A′
t

E X ′
t+ V A′

t
2

= C3 > 0. Therefore we can further write Eq. 44 as

lim
t→∞ ESα(t) = 1 − e− (�−1(1−α))2

2
C3√

2π(1 − α)
lim
t→∞

e�−1(1−α)
√
V At+EXt

2
√
V At

(45)

And we can argue that the numerator of the last term within the lim sign is of expo-
nential growth of t , whereas the denominator is of sublinear growth of t , to claim that
the limit depends solely on EXt . If limt→∞ EXt = −∞ then limt→∞ ESα(t) = 1.
If limt→∞ EXt = ∞ then limt→∞ ESα(t) = −∞.
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As limt→∞ EXt = ∞ implies that we are within Case 2., and for this subcase we
have shown that limt→∞ ESα(t) = −∞, besides for cases other than this particular
subcase limt→∞ ESα(t) = 1 we argue that we have completed the proof for ES as
well. �	
Corollary 3.1 As a positive linear combination of VaR and ES we also obtain the
corresponding result for GlueVaR:

⎧
⎨

⎩
limt→∞ GlueVaRh1,h2

β,α (Y (t)) → −∞ if μ − σ 2
S
2 − θ > 0,

limt→∞ GlueVaRh1,h2
β,α (Y (t)) → 1 if μ − σ 2

S
2 − θ < 0.

(46)

3 Empirical results

In Sect. 2 we have established theoretical results for the risk of Y (t) concerning
infinitesimally small or infinitely long holding periods. Now, by examining real life
market data, we investigate risk behaviour when a practically reasonable (few years,
few decades) investment horizon is of interest. Thus, the main goal of this section is to
complement the findings of Sect. 2 by assessing the relative performance of the chosen
asset when the holding period is a fixed time. In order to complete this task we both
fit the parameters of the short interest rate Vasicek model and the stock index price
GBM process to publicly available data from four countries: USA, Germany, France,
and UK. We applied straightforward conversion from historical 3 month government
bond yields to get an approximation for the short term rates. For the stock indices,
we considered S&P 500, DAX Index, CAC 40 Index, FTSE 100; and we either used
(Investing 2022) or (Bloomberg 2022) to get data points. For all four countries we used
total return indices that represent not only profits obtained by price movements, but
also include dividend earnings. All time series were collected for the 33-year period
between January 1988 and November 2020 with monthly frequency.

We estimated the parameters for each country as follows. μ and σS were obtained
as the sample mean and sample standard deviation of monthly logarithmic returns of
the particular index, scaled to a yearly basis. θ was obtained as the sample mean of
the empirical short-term rates.

Contrary to the parameters of the GBM process and the θ long-term mean level,
it is not straightforward to fit the speed of inversion κ and instantaneous volatility
σr parameters. The speed of mean reversion of short term rates have been studied
in (van den End 2011) for some countries, and their findings reveal that depending
on the particular country the estimation for the mean reversion κ parameter can be
quite different (0.015–0.091), moreover the estimation for all countries has a wide
confidence interval. Based on these results, we chose κ = 0.1 for all four countries,
and we will pay special attention to how sensitive the calculated risk values are to this
somewhat arbitrary κ value. Once κ has been fixed, we fit σr by assuming that the
empirical short rate series represent the stationary distribution of the Vasicek process.

The stationary variance of the Vasicek process is given as σ 2
r
2κ , which we estimate as

the sample variance of the short rate series. The σr parameter can then be calculated.
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Table 1 Estimated parameters for our correlated stock index-stochastic interest rate model

Estimated parameters on a yearly basis

Country μ σS θ μ − σ2
S
2 − θ σr ρ

USA (%) 11.32 14.59 3.35 6.91 1.18 –4.13

France (%) 10.47 19.08 3.52 5.13 1.51 –21.21

Germany (%) 10.21 20.87 3.11 4.92 1.27 –18.69

UK (%) 8.62 14.26 4.35 3.26 1.64 –4.3

We also show the μ − σ2
S
2 − θ values that characterise the theoretical long-term behaviour. The estimation

is based on data from the January 1988–November 2020 time range. For the estimation of σr we assumed
κ = 10% for all four countries. All values are expressed on a yearly basis

We chose the above described strategy because the long-term profitability of the bank
account depends more on the long-term uncertainty of the rate, rather than on its
instantaneous volatility.

Regarding the estimation of the ρ correlation level, we recall Eq. 21, where ρ and
the correlation between ln(S(t)) and ln(B(t)) are related to each other. Using empirical
monthly logarithmic returns, we obtain an estimation for Corr [ln(S(t), ln(B(t)] at
t = 1

12 . Once this estimate is obtained we calculate ρ using Eq. 21.
Table 1 contains all estimated parameters using the January 1988-November 2020

time frame for each of the four countries. We can see that the μ − σ 2
S
2 − θ > 0

condition holds for each country, implying that all three risk measures (VaR, ES,
GlueVaR) diverge to −∞ as t → ∞ for sensible (α, β > 50%) confidence levels. We
now proceed by assessing how the parameter estimations vary when considering 10
year long time ranges for estimation. In Fig. 1 we see that μ − θ and ρ estimations
can be quite different depending on the actual 10 year long window, whereas σS is
somewhat less volatile. For the rest of the analysis we stick to examining ES90%.
Even though in risk management practice α = 90% may sound too low, it properly
represents the risk tolerance of an equity fund.

In order to ascertain the calibration quality of ourmodelling framework,we compare
empirically calculated ES90% values to the ones obtained from Eq. 27 after plugging
in the estimated model parameters for the four countries from Table 1. Note that we
are unable to provide an unbiased estimation for empirical Expected Shortfall due to
the limited number of observations. We resort to using an estimation which involves
all neighbouring monthly Y (t) observations for a fixed t value. Such sample is a time
series itself and it has auto-correlation due to overlapping time periods. In order to
accurately estimate empirical Expected Shortfall, we would need independent sample
items. For a smaller t value we can still provide a fairly accurate empirical Expected
Shortfall estimation as in these samples there are only a moderate number of items
that are not independent. Due to this limitation, we can reasonably compare empirical
Expected Shortfall estimations with analytical Expected Shortfall estimations up to 5
years. In Fig. 2 we can see this comparison for the four countries and we can see that
the two curves are reasonably close to each other. This is reassuring of the goodness of
the model of this paper and so we can extend the time frame and calculate analytical
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Fig. 1 This figure shows the estimates of the three parameters for each country using a 10 year long
rolling window technique. The x axis denotes the end of the 10 year long period upon which the parameter
estimation was conducted and the y axis shows the corresponding estimated parameter

Expected Shortfall values for longer time periods, where empirical estimation is no
longer viable. One possible explanation as to why the line corresponding to empirical
Expected Shortfall is above the analytical one is supported by one of the stylised facts,
namely the heavy tailed distribution of stock price returns. The shorter the time frame
the more the returns deviate from normal distributions, and this is reflected by the lines
where up to a few years for all four countries empirically calculated risks are higher
than the one given by the formula assuming normally distributed returns.

We check how much impact of using a stochastic Vasicek short-rate model has on
the analytical ES90% values compared to the deterministic short-rate case. Figure 3
reveals that as the two curves are visibly different for all four countries, there is a
significant impact of applying the stochastic short-rate model. We can also see that
the analytical ES90% values with stochastic short-rates are always bigger than with
constant short-rates, which translate to a more conservative estimation for the risk
values.

Next we check the sensitivity of the analytical ES90% curves to different model
parameters. In Fig. 4 we can see the sensitivity with respect to the (κ, σr ) pair by
choosing three different κ parameters (0.05, 0.1, 0.2) and calculating the corresponding
σr estimation based on themethodwe have previously described. As already discussed
it is challenging to estimate κ and also the corresponding σr parameters, therefore we
want to demonstrate that applying our method where we rely on the variance of the
observed short-term rates we can provide accurate analytical ES90% numbers. That
said, Fig. 4 indeed reveals that the curves corresponding to the different (κ, σr ) pairs
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Fig. 2 This figure compares for each country the empirically estimated ES90% values to the analytical
ES90% values up to 5 years. As for the analytical ES90% values, we calculated them using the parameters
presented in Table 1

Fig. 3 This figure concerns the extent of the impact of using stochastic rates rather than constant rates by
comparing ES90% values. As for the constant rate case, we assumed r(t) = r = θ for all t ≥ 0, and μ,
σS be equal the parameters in Table 1 for a given country, whereas for the stochastic rate case for a given
country, we chose all parameters from Table 1, also assuming r(0) = θ

123



The riskiness of stock versus money market investment… 409

Fig. 4 This figure shows how sensitive the ES90% values are with respect to the κ, σr parameter pair whilst
fixing all other parameters from Table 1, also assuming r(0) = θ

are very close to each other. The only clearly visible difference appears for the USA,
but the differences between the curves are still lower than what we have seen in Fig. 3.
This is reassuring that using κ = 0.1 for all four countries leads to accurate results.

In order to complete the sensitivity analysis with respect to other parameters, we
will compare the analytical ES90% with parameters coming from Table 1 to analytical
ES90% with parameters using first quartile (Q1) and third quartile (Q3) estimations for
the particular parameter whilst leaving all other parameters fixed coming from Table
1. As for quantifying Q1 and Q3 estimations for a certain parameter we recall the
10 year long time range estimation that we have already shown in Fig. 1. We have a
number of estimations for the parameters by rolling the 10 year long window over the
whole time frame to calculate Q1 and Q3.

The most important factor in the relative riskiness of the stock and the bank account
is the difference between their growth rates. Indeed,μ−θ in ourmodel can be identified
as the stock risk premium.Therefore,we here consider the sensitivity analysis onμ−θ .
In Fig. 5 we can see that the actual size of this difference clearly has a big impact on
the analytical ES90% value. With the Q1 μ − θ value the curves are highest, while
they are lowest with the Q3 μ − θ value. This reflects our expectations, that the stock
is less risky if its premium over the risk-free rate is greater and vice versa.

In Fig. 6 we can see how sensitive the analytical ES90% values are with respect to
σS . Although the riskiness of the stock strongly depends on its volatility, the estimated
volatility range is rather narrow (see Fig. 1). For this reason, the risk curves for the
_Q1, _Avg and _Q3 are not very different. As expected, the greater the volatility the
higher the risk values are. The biggest difference can be seen for Germany, where the
volatility range is the widest.
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Fig. 5 This figure shows how sensitive the ES90% values are with respect to the μ − θ difference whilst
fixing all other parameters. As for the _Q1 and _Q3 ES90% calculation, μ and θ are given by taking the
first and third quartile of the μ− θ estimates using the 10 year long rolling window technique, whilst fixing
all other parameters from Table 1. As for the _Avg ES90% calculation, all parameters are given from Table
1. We also assumed r(0) = θ for each case

In Fig. 7 we can see how sensitive the analytical ES90% values are with respect
to ρ. Figure 7 shows that the sensitivity with respect to ρ is small. The greater the
correlation the risk values are somewhat higher.

Finally, we can make a prediction for the ES90%. In order to do so we consider an
investor who decides whether or not they should invest in a particular stock index or in
themoneymarket accountwith a unit ofmoney in a given currency.We choose the r(0)
as the short term rate at November 2020 for all four countries. As for the future stock
and short-term process evolution, we consider highly optimistic and highly pessimistic
scenarios. As for the optimistic scenario, we choose ρ = ρQ3, σS = σSQ1 ; and μ and
θ based on (μ − θ)Q3. Likewise for the pessimistic scenario, we choose ρ = ρQ1,
σS = σSQ3 ; and μ and θ based on (μ − θ)Q1. The curves for all four countries spread
out, to state that we cannot firmly claim which investment type will be the better one.
Nonetheless, we can still conclude that the stock will perform better after a while if
the considered time of investment is longer, but under any scenarios to see this effect
we have to wait a significant number of years. For only a few years the money market
account is the less risky investment choice. Obviously the α level the user chooses
affects the ESα curves, but we expect similar results with other α levels as well.

Finally, we demonstrate the sensitivity of the results on the length of the time
window, used for parameter estimations. To this end, we investigated the US market
once again, where much longer data sets are available provided by (French 2022).
We repeat the estimation and prediction using this dataset that covers July 1926-April

123



The riskiness of stock versus money market investment… 411

Fig. 6 This figure shows how sensitive the ES90% values are with respect to the σS parameter whilst fixing
all other parameters. As for the _Q1 and _Q3 ES90% calculation, σS is given by taking the first and third
quartile of the σS estimates using the 10 year long rolling window technique, respectively, whilst fixing all
other parameters from Table 1. As for the _Avg ES90% calculation, all parameters are given from Table 1.
We also assumed r(0) = θ for each case

2022. With this longer data set, we could use a much longer 25 year window for
parameter estimation. Related results can be seen in Fig. 9. One would expect that a
longer rolling window provides more reliable estimations, making related predictions
more robust. The right graph of Fig. 9 shows that lines spread out to a smaller extent
compared to the USA graph in Fig. 8. Even based on a highly pessimistic scenario, the
risk of holding stocks would start to decrease in comparison to money market account
after around two years of time horizon. Nonetheless, even based on a highly optimistic
scenario, for more than one year of time period the riskiness of stocks keep rising.

We compare the findings of this paper with the related literature. Barberis (2000)
concluded that a buy-and-hold investor will optimally allocate an increasingly larger
weight in stocks the longer the time horizon is by using a vector autoregressive (VAR)
model and maximising utility functions. Pástor and Stambaugh (2012) concluded,
that contrary to conventional wisdom claiming that stocks are safer over long hori-
zons due to mean reversion in returns (see Siegel (2021)), long-term variance of real
stock returns is higher due to a number of uncertainty factors. Motivated by economic
theory, (Avramov et al. 2017) found that stocks can either be safer or riskier in the long
horizon depending on whether the investor employs the long-run risk, habit formation,
or prospect theory models to form prior beliefs about return dynamics. The results of
this paper are in line with the papers that inferred the reduced riskiness of stocks after
decades of time period. Some of the aforementioned papers provided a risk decompo-
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Fig. 7 This figure shows how sensitive the ES90% values are with respect to the ρ parameter whilst fixing
all other parameters. As for the _Q1 and _Q3 ES90% calculation, ρ is given by taking the first and third
quartile of the ρ estimates using the 10 year long rolling window technique, respectively, whilst fixing all
other parameters from Table 1. As for the _Avg ES90% calculation, all parameters are given from Table 1.
We also assumed r(0) = θ for each case

sition by splitting the long-horizon variance into multiple terms and associating them
with current uncertainty, future uncertainty, estimation risk. etc. The figures of this
study containing parameter sensitivities yield a similar kind of decomposition. The
effect of changing one parameter ceteris paribus and how much difference it adds to
the overall risk for a certain time horizon are given by Figs. 4, 5, 6 and 7. The risk
component due to employing stochastic rates can best be observed in Fig. 3. We can
clearly see that stochastic rates add significantly positive value to the risk of stocks,
even though there are other uncertain parameters such as μ − θ that add a greater
portion to the overall spectral risk.

4 Conclusion

For a passive investor, who holds a particular asset for years or even for decades, any
meaningful comparison between the riskiness of stocks andmoneymarket accounts in
the long run remains an essential research area. As suggested by (Bihary et al. 2020),
for long investment horizons a stochastic interest rate model, correlated with the stock
price, may be necessary. We considered a Geometric BrownianMotion process for the
stock price and a Vasicek process for the short-term rate process, with the twoWiener
processes correlated. Similarly to previous researchworks (Bihary et al. 2020; Nguyen
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Fig. 8 This figure shows three predictions for the ES90% risk measure for each country. Parameters to the
Pessimistic ES90% line are given by choosing κ and σr from Table 1 for a given country. As for the other
parameters, we chose ρ = ρQ1, σS = σSQ3 ; andμ and θ based on (μ−θ)Q1. Parameters to the Optimistic
ES90% line are given by choosing κ and σr from Table 1 for a given country. As for the other parameters,
we chose ρ = ρQ3, σS = σSQ1 ; and μ and θ based on (μ − θ)Q3. Parameters to the Neutral ES90% line
are given by choosing all parameters from Table 1. We also choose r(0) as the short term rate at November
2020 for each country. That is r(0) = 0.16% for USA, r(0) = −0.52% for France and Germany, and
r(0) = −0.05% for UK

Fig. 9 The left of this figure shows the estimates of the three parameters for USA applying a dataset that
covers July 1926-April 2022 using a 25 year long rolling window technique. The right of this figure shows
the predictions for the ES90% risk measure for USA based on this longer dataset and the corresponding
quantiles of the 25 year rolling window. Parameters to the Pessimistic ES90% line are given by choosing
ρ = ρQ1, σS = σSQ3 ; and μ and θ based on (μ − θ)Q1. Parameters to the Neutral ES90% line are given
by choosing ρ = ρQ2, σS = σSQ2 ; and μ and θ based on (μ − θ)Q2. Parameters to the Optimistic ES90%
line are given by choosing ρ = ρQ3, σS = σSQ1 ; and μ and θ based on (μ − θ)Q3. Besides, κ = 10%
and σr = 13.48% are used for all three lines, where σr = 13.48% corresponds to the long-term variance
estimation having fixed κ at 10%. We also choose r(0) = 0% as the short term rate at April 2022 for USA
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et al. 2012) we analyzed spectral risk measures to express the risk of a corresponding
random loss variable for each future time period with a closed formula.

Wepaidparticular attention to popular riskmeasures such asValue atRisk,Expected
Shortfall and GlueVaR and proved that under which conditions do the risk measures of
the corresponding random variable rise or fall in the short run and in the long run. We
checked that the condition to long-term fall is satisfied using parameter estimations
fromhistorical data points of fourmajor countries.Our study reveals that the robustness
of model calibration is strong, empirically estimated Expected Shortfall values are
reflected by our analytical formulas. We have shown that using stochastic short-rate
models we do get significantly more conservative estimations for the risk of the stock
index. Based on a prediction we can state that even though over a very long time period
the risk of stock will be lower than the risk of money market account, we have to wait
decades to see this effect, therefore considering only a few years of investment period
the money market account is the less risky investment type.
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