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Abstract
With frequent political conflicts and public health emergencies, global supply chains are constantly under risk interference, 
significantly reducing supply chain resilience (SCR), especially for the knowledge-intensive supply chains (KISCs). To 
assess and improve the resilience of KISC, this paper uses complex network theory to construct a directed weighted network 
model suitable for KISC and expresses the SCR as a comprehensive capability that can resist risk and recover from it. Using 
quantitative indicators plus qualitative assessment to quantify the resilience index and identify the network key nodes. Two 
resilience improvement paths are proposed for KISCs, improving firms’ development capacity and industrial backup. In the 
case study, the resilience of the integrated circuit (IC) supply chain is assessed and improved according to real data from 
the global IC industry. The findings show that (i) The resilience assessment based on the directed weighted network aligns 
with industrial reality. (ii) Improving firms’ development capability and industrial backup can improve SCR. (iii) Effective 
improvement of resilience requires targeting key nodes in the supply chain network (SCN). Moreover, the degree of firms’ 
development capability improvement and industrial backup intensity should be within a specific range.

Keywords Supply chain resilience · Knowledge-intensive supply chain · Complex network theory · Directed weighted 
network · Resilience improvement paths

1 Introduction

In recent years, the frequency and intensity of supply chain 
interference by internal and external risks such as natural 
disasters and human factors have increased. This effect is 
more significant for knowledge-intensive supply chains 
(KISCs), which take knowledge, technology, experience, 
and information as their core production factors.

The 2011 earthquake in Japan shut down some automo-
tive raw material suppliers. Since the parts produced by 
these suppliers have core technologies and monopoly pat-
ents, the disruption of this production process significantly 
affected the global automotive supply chain. It shows 
that when critical participants in the supply chain are 
affected, it is likely to cause the avalanche phenomenon, 

which vividly describes the concept of the key nodes in 
the supply chain (Craighead et al. 2007). The fierce trade 
war between the US and China in 2019 led many Chi-
nese chemical raw material manufacturers to relocate their 
factories to other countries in Southeast Asia as the US 
restricted the number of goods imported from China. This 
caused losses to Chinese firms and affected the global 
chemical raw material supply chain. In 2020, COVID-19 
exposed the supply chain to many problems (Hald and 
Coslugeanu 2022), especially leading to the closure of 
integrated circuit (IC) design, manufacturing, and pack-
aging and testing firms. For example, Malaysia, which 
occupies 13% of the global packaging and testing market, 
closed its firms three times, and TSMC’s wafer production 
capacity was insufficient. These sharply reduced chip pro-
duction. Moreover, as of 2023, the IC supply chain has yet 
to recover. Digital technology supply chains, such as the 
software supply chain and metaverse, are typically KISC 
today. Due to the global nature of the various technologies 
and proprietary copyrights in this type of supply chain, the 
impact can spread quickly and be very costly if something 
goes wrong at one point. For example, in 2022, in the gam-
ing software supply chain, Blizzard terminated the renewal 
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of its gaming rights with China’s NetEase, resulting in 
over 100 million Chinese gamers losing their games.

These cases illustrate the current problems faced by 
KISCs.

1. The network structure of KISC globalization is more 
vulnerable to political factors and unexpected events 
(Zhang et al. 2021).

2. KISC participants are often technologically or ecologi-
cally bound to each other, making KISCs have key nodes 
that, when affected, can significantly impact the entire 
supply chain.

3. The impact of risk on KISCs is significant, so the recover-
ability of KISCs after risk interference is crucial.

Supply chain resilience (SCR) is the ability of a supply 
chain to adapt and recover from risk (Hosseini et al. 2019). 
Properly assessing and improving SCR not only enhances 
the ability of the supply chain to resist risk but also the abil-
ity to recover from it. Therefore, it is increasingly important 
to assess SCR and investigate the impact of different strate-
gies to improve it, especially in supply chain network (SCN) 
structures (Kamalahmadi and Parast 2016).

There are two research directions currently for resil-
ience based on SCN. The first sees the need to simulate 
the real supply network, emphasizing the product flow 
during operation. Such studies often assessed SCR by 
constructing a three-level or multi-level network struc-
ture that divides supply chain participants into suppliers, 
manufacturers, and distributors, focusing on the product 
inventory and transportation processes (Tan et al. 2019; 
Li et al. 2017). The second is the qualitative assessment 
method combined with graph theory. Such studies had 
two focuses. One is to study the structural characteristics 
of SCN, such as complexity and redundancy (Birkie et al. 
2017; Ivanov and Dolgui 2019). The other is to find the 
factors influencing SCR through expert evaluation meth-
ods or explanatory structural models (Jain et al. 2017; 
Pavlov et al. 2018).

There is no denying that the two types of SCN-based 
resilience studies are very realistic and practical. However, 
KISCs have characteristics that distinguish them from other 
supply chains, leading to the inapplicability of these two 
research approaches.

 (i) In KISC, the production of the product is highly 
modular, with heterogeneous intermediate products 
provided by participants at different stages of produc-
tion. Many supply chain participants have multiple 
roles, possibly as both suppliers and manufacturers.

 (ii) KISC participants often have deep binding relation-
ships and relatively closed ecosystems. Therefore, 
the critical factors to the resilience of KISCs are the 

supply chain participants’ relationships. It is mean-
ingless to discuss the structure of the network alone.

The characteristics of KISC bring two implications for 
current research. On the one hand, the supply chain’s tra-
ditional three-level or multi-level network structure cannot 
accurately describe the location of KISC participants in the 
network. For example, in the automotive supply chain, firms 
that produce engines are both suppliers in the production 
process of cars and manufacturers based on other engine 
parts. In the digital technology supply chain, many mid-
dleware providers are not just suppliers but also developers 
based on different plug-ins. Thus, it does not make sense 
to roughly divide the participants in the KISC network into 
suppliers, manufacturers, and distributors.

On the other hand, the deep binding relationships 
between KISC participants allow SCR to be not assessed 
just from the physical structure of the SCN. Furthermore, 
quantitative variables such as product logistics or inventory 
cannot explain these relationships. For example, in the IC 
supply chain, the complexity of the network structure is 
less important than the degree of technical match between 
the participants. In the software supply chain or metaverse, 
product logistics and inventory do not affect its ability to 
function correctly at all. Moreover, the deep binding rela-
tionships resulted in a technological stratification of firms, 
forming a directional and hierarchical network structure 
for KISC.

Therefore, there is a need to build an SCN model that 
aligns with the characteristics of KISCs. The assessment 
and improvement of resilience should focus on the compre-
hensive capability of KISCs to cope with risks rather than 
the network structure characteristics. The following lists the 
three questions studied in this paper, and we will explain 
them in detail in Section 4.

1. Build a network model suitable for KISCs
  A directed weighted network is a powerful tool for 

describing the associative relationships and directions 
of the network nodes. Therefore, based on complex net-
work theory, this paper establishes a directed weighted 
network for KISCs. In this network, a class of firms that 
provide the resources (materials, equipment) required 
in the product production process is treated as a supply 
chain participant, denoting a network node. We use the 
market concentration rate, sales growth rate, and patent 
number growth rate as quantitative indicators to meas-
ure the relationships among supply chain participants, 
denoting the directed arc weights. This network structure 
clearly describes the locations and roles of KISC partici-
pants and indicates their relationships.

2.  Assess the resilience of KISCs through the established 
network and identify key nodes
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  In this paper, we consider two aspects when assess-
ing SCR: the ability to resist risk when faced with it, 
i.e., supply chain vulnerability (SCV), and the ability to 
recover after suffering risk, i.e., supply chain recoverabil-
ity (SCR*) (Rajesh and Ravi 2015; Vimal et al. 2022). 
Based on the relationships among SCR, SCV, and SCR* 
(Birkie et al. 2017; Hosseini et al. 2019; van der Vegt 
et al. 2015), SCR is negatively correlated with SCV and 
significantly positively correlated with SCR*. Thus, we 
represent SCR as a function of SCV and SCR*. Depend-
ing on the established network structure, we quantify 
SCR by assessing the vulnerability index through net-
work cohesion and the recoverability index through the 
SIR risk propagation model. Pournader et al. (2017) 
stated that the behavior or changes of specific partici-
pants would affect the entire supply chain. Many supply 
chains increasingly depend on critical firms (Nakatani 
et al. 2018). For example, the supply chain of Apple 
mainly depends on Apple itself. Therefore, we also iden-
tify the node importance index through the node contrac-
tion method to obtain the key nodes in the SCN.

3. Propose and simulate resilience improvement paths 
for KISCs

  Combining the characteristics of KISCs, we propose 
two resilience improvement paths. The first is to improve 
firms’ development capacity, that is, to the KISC par-
ticipants’ technology and other related capacities. The 
existence of stable ecological relationships among KISC 
participants results that a theoretical supplier selection 
game is not practical (Rajesh and Ravi 2015). So, we 
start with the supply chain participants’ own capacities. 
The second is industrial backup, a backup for certain 
production links in the KISC network. This approach 
does not create a new SCN but targets critical links in 
the KISC network, creating substitutability regarding 
technology and the market.

This paper aims to assess and improve the resilience of 
KISCs. In our study, we fully consider the characteristics 
of KISCs, construct a network model suitable for KISCs 
and assess the resilience using quantitative metrics plus 
qualitative evaluation. Most importantly, we proposed two 
resilience improvement paths and verified their effectiveness 
through numerical simulation.

2  Literature review

Currently, SCR has become a research hotspot. This section 
provides a literature review of relevant concepts and research 
methods for SCR. In addition, we summarize a table of the net-
work node and edge descriptions from the perspective of SCN.

2.1  Related concepts

Svensson (2000) introduced the concept of SCV, considered 
it a random interference, and emphasized the need to con-
struct a scientifically rigorous vulnerability theory model. 
Blackhurst et al. (2018) indicated that SCV is the suscepti-
bility and exposure of the supply chain to disruptive events. 
Zhang (2021) defined SCV as the impact of risk interfer-
ence on the effectiveness of the supply chain. Therefore, 
we understand SCV as the ability of the supply chain to 
resist risk, a critical dimension in the assessment of SCR. 
The lower the vulnerability index, the more risk resistant 
the supply chain is.

On the definition of SCR*. Ho et al. (2015) defined 
SCR* in three parts, reducing the possibility of disruptions, 
mitigating the impact of risk interference, and shortening 
the time to recover the original state. Kamalahmadi and 
Parast (2017) considered SCR* an adaptive capacity that 
can restore the supply chain to a stable operating condition 
by controlling its structure and function. Rajesh and Ravi 
(2015) stated that SCR* is the ability of the supply system 
to recover to its original or better state facing risk interfer-
ence. Therefore, we use recovery time to quantify SCR* and 
take it as another vital dimension to assess SCR. The time 
for the supply chain to recover from risk is calculated by the 
SIR model. A long time means a lower SCR*, the weaker 
the supply chain’s ability to recover.

The definitions of SCR in the current literature are clas-
sified into three categories. The first category defined SCR 
as an adaptive capacity, which is the ability of a supply chain 
to withstand and adapt to various risk interference (Hosseini 
et al. 2019; Pavlov et al. 2018). The second one consid-
ered SCR as a recovery mechanism, expressing the abil-
ity of a supply chain to recover from internal and external 
risk interference (Ambulkar et al. 2015; El Baz and Ruel 
2021; Ivanov and Sokolov 2019; Raj et al. 2015). The third 
expressed SCR as a continuity mechanism, the ability to 
recover from interference and maintain system continuity 
(Hosseini and Barker 2016; Longo and Ören 2008). Summa-
rizing previous scholars’ definitions of SCR, we found that 
SCR is usually associated with resisting risk and recovering 
after suffering it. Therefore, in assessing SCR, we focus on 
two aspects: the ability to resist when risk comes and the 
ability to recover after suffering risk.

2.2  Related research

In the SCV assessment, some scholars used directed net-
works and correlation algorithms to identify SCV factors 
and key nodes in the supply chain (Mizgier et al. 2013; 
Nakatani et al. 2018; Ma et al. 2020) developed a quanti-
tative evaluation method through graph theory, mainly for 
the physical connections of supply chain participants. Wang 
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et al. (2018) used a network attack graph model to simu-
late the supply chain loss under different attack methods to 
achieve the SCV assessment. We found that one part of the 
studies is mainly biased toward identifying impact factors, 
and another only considers the physical connections of SCN. 
There is no SCV assessment of directed relational networks, 
which is an aspect that this paper wants to remedy.

In the study of SCR*. Ivanov and Dolgui (2019) con-
cluded that structural diversity, process flexibility, and node 
redundancy are critical factors in low deterministic demand-
supply chains. Raj et al. (2015) used a survival function 
to quantify the recovery time of supply chain systems to 
indicate SCR*. Ivanov et al. (2018) used a control theory 
approach with optimal recovery planning to demonstrate that 
scheduling recovery actions are critical in ensuring SCR*. 
We find that only Raj achieved the quantification of SCR*, 
and the rest mainly focused on the influencing factors. Simu-
lation is an effective tool to visualize SCR*. So, we simulate 
the recovery process through the SIR risk propagation model 
and calculate the recovery time to quantify SCR*.

For the study of SCR, by modeling a real supply chain 
network, Tan et al. (2019) assessed SCR by measuring the 
structural redundancy of SCN. Li et al. (2017) represented 
each supply chain participant as a region and constructed 
a relationship matrix based on the number of products 
delivered and the physical distance among regions. SCR is 
measured by simulating supply chain disruptions through 
Monte Carlo and calculating the recovery time. Kim et al. 
(2015) argued that SCR depends on the SCN structure 
characteristics by studying different network structures, 

ignoring the correlation between nodes. Pavlov et al. (2018) 
proposed a new SCR assessment method based on the chain 
reaction and structural reconstruction approach, focusing 
only on the number of nodes and edges. Some studies took 
the various resilience influences summarized as network 
nodes to build Bayesian networks and achieved more resil-
ient supplier selection and siting strategies (Hosseini and 
Barker 2016; Lopez and Ishizaka 2019). These studies on 
SCR focused more on the SCN structure, product logistics, 
and inventory, ignoring the nodes’ role and the associative 
relationships among them. Therefore, these network mod-
els cannot describe KISCs clearly. What is most important 
in a KISC network is the deep binding relationships among 
participants, so it is not very meaningful to study purely in 
terms of the structural characteristics of the network.

We also summarize the research on resilience from the 
perspective of SCN, as shown in Table 1, which mainly 
focuses on the description of network nodes and edges. 
Firstly, most are based on directed networks and classify 
the node types into suppliers, manufacturers, and distribu-
tors. However, in KISC, participants often have multiple 
roles, which leads to this network structure not clearly 
explaining the location and role of KISC participants. 
Secondly, some use firms as nodes, clearly describing the 
location of participants in the network. Still, the descrip-
tion of the weight or meaning of the edges does not match 
the characteristics of KISCs. To compensate for this part 
of the gap, in the next section, we construct a directed 
weighted network model that meets the characteristics 
of KISCs.

Table 1  Supply chain network description

References Graph Nodes Edges Measure

(Wang and Ip 2009) Undirected graph Demand and supply Delivery lines The weighted sum of node 
resilience

(Adenso-Diaz et al. 2018) Directed graph Suppliers, plants, wholesalers and 
customers

Product flows Network reliability

(Ma et al. 2014) Undirected graph Manufacturers, suppliers, retailers 
and customers

Trading
relationships

Node centrality

(Xu et al. 2014) Directed graph Firms Demand-supply relations Customer satisfaction
(Kim et al. 2015) Directed graph Physical locations Transportation

links
The ratio of redundant nodes to 

total nodes
(Levalle and Nof 2015) Directed graph Firms Material flows The total cost of flow and total 

quality of service
(Han and Shin 2016) Undirected

graph
Risk factors Supply chain relations Average probability of

disruption per risk
(Li et al. 2017) Directed graph Suppliers, manufacturers, distri-

bution centers and retailers
Materials or
product
deliveries

Recovery time

(Nakatani et al. 2018) Directed graph Materials Material-to product links Market concentration
(Tan et al. 2019) Directed graph Materials and factory Relationship between 

materials and products
Network fabric redundancy
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3  Method

Firstly, in Section 4.1, we develop a directed weighted net-
work model suitable for KISCs. Secondly, in Section 4.2, 
we synthesize previous research on SCR and represent it 
as a comprehensive capability, including the ability of the 
supply chain to resist risk and recover from it. Moreover, the 
assessment of resilience is realized by calculating two ability 
indexes. Finally, by analyzing the characteristics of KISCs, 
we propose two resilience improvement paths in Section 4.3, 
including improving firms’ development capacity and indus-
trial backup. The flow chart of the research method is shown 
in Fig. 1.

3.1  Construction of the directed weighted network

3.1.1  Knowledge‑intensive supply chain network and its 
graphical description

Complex network theory is a unique perspective and 
approach for studying complex systems that focus on the 
topology of the associative relationships of individuals. It 
is the basis for understanding the nature of complex sys-
tems. Applying complex network theory, we can describe 
networks in the real world and explain the associative rela-
tionships among entities, such as the transportation network 
of the supply chain and the relationship between people (Ma 
et al. 2020). Today’s KISCs have highly modular product 

production and deep binding relationships among partici-
pants, making their network structures meet the definition 
of complex networks.

Considering the difference between KISCs and non-
KISCs, we construct a directed weighted network based on 
the product production process and the required resources. 
In modeling this, a class of firms that provide the resources 
(materials, equipment) required in the product production 
process is treated as a network node. The linkages between 
the firms are used as directed arcs. The following two sec-
tions will explain network nodes and directed arcs in detail. 
Such a network structure clearly describes the location and 
role of KISC participants and shows their relationships.

According to complex network theory, the directed 
weighted network is represented as  G = (V, E, W) , 
whereV =

{
v1, v2, v3 … vN

}
 is the set of nodes,vi repre-

sents the i th node in the network, and N denotes the total 
number of nodes.E =

{
e1, e2, e3 … eM

}
 is the set of directed 

arcs between nodes,ek denotes the kth associative rela-
tionships between nodes,M is the total number of directed 
arcs.W =

{
ωe1,ωe2,ωe3 …ωeM

}
 indicates the magnitude of 

the associative relationships between the nodes, ωek repre-
sentation is shown in Eq. (1).

(1)

ω
e
=

⎧
⎪⎨⎪⎩

inf There is no direct relationship between vi and vj
0 vi relationship with itself

ωij There is a direct relationship between vi and vj

Fig. 1  Method flow chart
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3.1.2  Description of network nodes

In modeling SCN, previous studies (Klibi and Martel 2012; 
Ma et al. 2020; Pournader et al. 2017) were mainly based 
on the triple network structure, which broadly divided the 
network nodes into three categories, suppliers, manufactur-
ers, and distributors. However, this way cannot accurately 
portray the location or role of KISC participants. Nakatani 
et al. (2018) used life-cycle inventory analysis to express 
network nodes as resources required in the supply chain and 
established a reachability matrix between various resources 
through a life-cycle inventory database. Nakatani’s model 
can describe the highly modular nature of product produc-
tion in KISC. Therefore, we adopt Nakatani’s idea of net-
work node description.

We do not classify KISC participants. Based on specify-
ing the resources required in the product production process, 
a class of firms providing the needed resources is taken as 
a network node.

3.1.3  Description of directed arcs

There are two critical issues about directed arcs in supply 
chain-directed weighted networks. One is the way of taking 
values, and the other is the meaning of weights.

In taking values, some scholars mainly considered the 
physical distance and transportation cost among network 
nodes (Elluru et al. 2019; Guo et al. 2019). The Global Sup-
ply Chain Pressure Index proposed by the New York Fed on 
January 4, 2022, also mainly considered transportation costs 
and purchasing managers’ index. However, for KISCs, such 
as the IC supply chain, the closeness of their technology and 
market ecology is more important than the cost of transpor-
tation. Digital technology supply chains, such as software or 
metaverse, are not influenced by logistics or product inven-
tory in the real world.

Therefore, we focus more on technology and market ecol-
ogy when taking values for the directed arcs in the KISC net-
work. We consider the past, present, and future of such firms 
represented by the nodes and set the directed arc weight ω 
as a function of several influencing indicators, including 
market concentration rate (MCR), sales growth rate (SGR), 
and patent number growth rate (PGR). The weights of the 
directed arc represent the size of the development capacity 
of such firms.

MCR represents the past, indicating the market share of 
the top n firms (In this paper, we take the top four firms, 
MCR4 ), and is a measure of the degree of concentration of 
the market structure of these firms. A higher MCR value 
means the node’s market monopoly is more severe and unfa-
vorable for the next associated node. SGR indicates the cur-
rent business capacity of firms represented by the node. A 

higher value of SGR means a higher demand for the product 
at the downstream node, which has a positive relationship 
with the next associated node. PGR is the current degree 
of technological innovation and production efficiency of 
the class of firms represented by the node. Innovation is 
the key to the development of KISCs, which determines the 
advancement of product functions and can fully reflect the 
development trend of firms in the coming decades. Irfan 
et al. (2019) also said that IT affects the ability to integrate 
information and coordinate operations in the supply chain. 
So, PGR is one of the most critical performance factors of 
KISCs innovation. A higher PGR value indicates that the 
higher innovation capability of the node is more favorable 
for the next associated node.

The above analysis shows the influence of the three 
indicators on the node associative relationships. MCR4 is 
inversely related to the associative relationships, while SGR 
and PGR are positively related. Therefore, the directed arc 
weight ω is calculated in Eq. (2). The value of ω indicates 
the development capacity of firms represented by the nodes. 
The higher value of ω , the stronger the development capac-
ity of firms.

Where SGR = sales of this year / sales of last year, 
PGR = number of patents this year / number of patents last 
year, MCR4 =

∑4

i=1
mi , mi indicates the market share of each 

firm.
There are two ways of interpreting directed arc weights, 

including similar and dissimilar weights (Tian et al. 2011). 
Using similar weights, a higher ω indicates that the distance 
between the nodes is smaller and the degree of associative 
relationships is closer. The degree of associative relation-
ships among nodes is the sum of the directed arc weights, 
while the distance among nodes is the sum of the inverse of 
the directed arc weights. Dissimilar weights are the opposite 
of similar weights. We use similar weights to explain the 
meaning of the directed arc weights. Therefore, if node i 
and node j are connected by two directed arcs with weights 
ωik , ωkj , the degree of association Sij and the distance dij of 
the two nodes are shown in Eqs. (3) and (4).

3.2  Quantification of supply chain resilience

We express the resilience of KISCs as a comprehensive 
capability, including the ability to resist risk when faced with 
it and the ability to recover after suffering risk. We quantify 

(2)ω = SGR × PGR∕MCR4

(3)Sij = ωik + ωkj

(4)dij = 1∕ωik + 1∕ωkj
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these two ability indexes in Sections 4.2.1 and 4.2.3. Consid-
ering the characteristics of KISC participants, we make the 
following two hypotheses based on the constructed network 
model.

Hypothesis 1 The firms represented by the nodes in the 
established directed weighted network are heterogeneous.

Hypothesis 2 The nodes in the SCN must include all links 
of the product production process.

3.2.1  Quantification of the supply chain’s ability to resist risk

Zhang (2021) defined SCV as the impact of risk interfer-
ence on the effectiveness of supply chains. Wagner and 
Neshat (2012) said that measuring SCV will help man-
agers and public policymakers understand risk exposure. 
Therefore, we can appreciate SCV as the ability of a sup-
ply chain to resist risk when faced with it and use the 
vulnerability index as one of two critical dimensions in 
assessing SCR. The higher the vulnerability index, the 
more likely the supply chain is to be disrupted by risk. 
This subsection quantifies the vulnerability index using 
network cohesion.

Network cohesion was first studied in social behavior 
networks to explore the closeness of relationships between 
people. Higher cohesion indicates a stronger relationship 
and less interference from the external environment. As 
SCN becomes more complex and diverse, network cohe-
sion is beginning to be applied to assess SCV (Carnovale 
et al. 2019; Huang et al. 2022). There is a deep binding 
relationship between KISC participants, a crucial point of 
differentiation from traditional supply chains centered on 
logistics and product inventory. Therefore, we measure the 
ability of KISC to resist risk using network cohesion that 
focuses more on the relationships between participants. 
The higher the cohesion, the lower the vulnerability index, 
which means that KISC will be more capable of resisting 
risks. The network cohesion is calculated by Eq. (5).

where 𝜕ω(G)(0 < 𝜕ω(G) < 1) is the network cohesion of the 
directed weighted network G . S is the sum of the average 
node association degree of G . Si is the association degree of 
node i with neighboring nodes. Ni is the set of neighbors of 
node i . Lω is the reconciled average shortest distance of the 
directed weighted network. dω

ij
 denotes the weighted shortest 

distance of nodes i and j.n represents the total number of 
nodes in the network.

(5)
�ω(G) =

1

S × Lω =
1

∑n

1

Si

Ni

×

∑
dω
ij

n(n−1)

In assessing the vulnerability index, we should focus on net-
work nodes and consider the associative relationships among 
them. Therefore, SCV is divided into node network vulner-
ability and associative relationship network vulnerability. The 
relationship between the two network structures is shown in 
the adjacency matrix in Table 2.

We need to calculate the network cohesion of two networks 
to quantify SCV. The network cohesion �ω(G) consists of sup-
ply chain network nodes, and �ω

(
G∗

)
 consists of associative 

relationships. The specific calculation Eqs. (6) and (7) are as 
follows.

Where S is the sum of the average node association degree 
of the directed weighted network. Lω is the reconciled average 
shortest distance of the directed weighted network. q is the 
number of neighboring nodes of node i . dω is the weighted 
shortest distance between two nodes. N is the number of nodes 
in G . Ni denotes the set of neighbors of node vi in G . ωij is the 
weight of directed arcs between two nodes in G . M is the num-
ber of nodes in G* , which is equal to the number of directed 
arcs in G . Mek denotes the set of neighbors of node vek in G* . 
ωekeh is the directed arc weight between two nodes in G* . and 
its value can be determined by the product of the weights of 
the corresponding connected edges in G.

The vulnerability index is evaluated based on the nodes 
themselves and the associative relationships among them, as in 
Eq. (8). we consider node networkG and associative relation-
ship network G*equally important, so α = β = 0.5.

(6)
�ω(G) =

1

S(G) × Lω(G)
=

1
∑N

i=1

1

qi
×
∑

j∈Ni
ωij ×

∑
i≠j d

ω
ij

N(N−1)

(7)

�ω
�
G*

�
=

1

S
�
G*

�
× Lω

�
G*

� =
1

∑M

k=1

1

qek
×
∑ω

h∈Mek ekeh
×

∑
k≠h d

ω

ekeh

M(M−1)

(8)SCV =
1

α �ω(G) + β �ω
(
G∗

)

Table 2  Node networkG and associative relationship networkG*

network adjacency matrix

Node networkG 0 ω
12

inf inf inf

inf 0 ω
23

ω
24

inf

inf inf 0 inf ω
35

inf inf inf 0 ω
45

inf inf inf inf 0

associative 
relationship 
networkG*

0 ω
12
× ω

23
inf ω

12
× ω

24
inf

inf 0 ω
23
× ω

35
inf inf

inf inf 0 inf inf

inf inf inf 0 ω
24
× ω

45

inf inf inf inf 0
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3.2.2  Identification of the node importance index in supply 
chain network

Participants are in the different production processes in 
KISCs and have different importance. The recoverability of 
each node after suffering a risk is also different. An impact 
on a specific participant may bring more significant indirect 
losses. Identifying the importance index of nodes in a sup-
ply chain network can serve as an essential parameter when 
assessing SCR* and provide a direction for research on SCR 
improvement.

In identifying the network node importance, some studies 
argued that the node’s degree distribution plays a vital role in 
SCN and roughly assume that each node and arc has the same 
probability of failure (Kim et al. 2015). It does not apply to 
real-world KISCs. Because in the KISC networks, the loca-
tion or connectivity of participants is essential, but what is 
more important is the relationships among participants.

We use the node contraction method to implement the 
evaluation of the node importance index. The node contrac-
tion method is one of the methods to evaluate the impor-
tance of nodes in complex networks (Berberler et al. 2021; 
Jia-sheng et al. 2011). The application of the node contrac-
tion method is mainly for some networks where the node 
contraction does not affect the system operation process. 
For example, in the software supply chain, middleware is 
developed by combining several underlying libraries to 
realize the functional requirements. Therefore, middleware 
development belongs to its sub-supply chain in the entire 
software supply chain. A contraction of the middleware node 
still allows for a clear representation of the entire supply 
chain operation process. This situation is in line with the 
highly modular nature of the production of KISC products.

Assuming that each node normally operates in the con-
structed directed weighted network, the contraction method 
can contract a node with other nodes it points to into one 
node. The weights of the contracted directed arc are the 
product of the two nodes’ directed arc weights. The net-
work structure before and after contraction is shown in 
Table 3. Calculating the cohesion of the contracted network 
to achieve node importance assessment.

In the mathematical model, the nodes themselves and the 
associative relationships (directed arc) owned by the nodes 
are considered in the node importance identification. The 
specific calculation steps are as follows.

 (i) Calculating the initial network cohesion �ω(G) and 
�ω
(
G∗

)
 using Eqs. (6) and (7).

 (ii) Contraction of node vi and calculate the contracted 
network cohesion �ω

(
G
(
vi
))

 and �ω
(
G∗

(
vi
))

.
 (iii) According to Eqs.  (9), (10), and (11), assess the 

important index of node vi.

 (iv) Executing operation (ii) (iii) for each node in the net-
work.

Where IMCG

(
vi
)
 denotes the importance of node vi in 

supply chain network G . IMCG*

(
vek

)
 denotes the impor-

tance of node vek in supply chain node associative relation-
ship (directed arc) network G* . Mi

ek
 is the set of nodes in 

G* corresponding to all directed arcs of vi in G . qi is the 
number  of  neighbor ing nodes  wi th  node vi  . ∑

k∈Mi
ek
IMCG*

�
vek

�
∕qi is the sum of the importance of all 

association relations (directed arcs) generated by node vi . 
IMC

(
vi
)
 is the important index of node vi.

 (xxii) Normalizing the node importance index using 
Eq. (12) because IMCG

(
vi
)
 may be greater than 1. 

where IMCf

(
vi
)
 denotes the node important index 

of vi after normalization; N is the number of nodes 
in the network G.

3.2.3  Quantification of the supply chain’s ability to recover 
from risk

Rajesh and Ravi (2015) stated that SCR* is the ability of 
the system to recover to its original or a better state when 
suffering risk. Therefore, we consider the ability of a sup-
ply chain to recover from a risk interference as another 
dimension of SCR.

(9)IMC
�
vi
�
= IMCG

�
vi
�
+

∑
k∈Mi

ek

IMCG*

�
vek

�
∕qi

(10)IMCG

(
vi
)
= 1 − �ω(G)∕�ω

(
G
(
vi
))

(11)IMCG∗

(
vek

)
= 1 − �ω

(
G∗

)
∕�ω

(
G∗

(
vek

))

(12)IMCf

(
vi
)
= IMC

(
vi
)
∕

N∑
i=1

IMC
(
vi
)

Table 3  Network structure before and after contraction

Network structure before and after 
contraction

adjacency matrix

Before contraction (assuming 
contract node 1)

0 ω
12

inf inf inf

inf 0 ω
23

ω
24

inf

inf inf 0 inf ω
35

inf inf inf 0 ω
45

inf inf inf inf 0

After contraction 0 ω
12
× ω

23
ω
12
× ω

24
inf

inf 0 inf ω
35

inf inf 0 ω
45

inf inf inf 0
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In KISCs, participants are often deeply bound to each 
other, meaning that a problem at one node will quickly prop-
agate to others. For example, in a gaming software supply 
chain, if a situation occurs in one of the underlying libraries, 
it can affect the functionality of many pieces of middleware 
at the same time. Therefore, we use the SIR risk propaga-
tion model to simulate the change in the state of all nodes in 
the KISC network after a risk interference. We measure the 
recoverability index of KISCs by calculating the time from 
the onset of suffering a risk until most nodes are out of risk.

The SIR model was initially used for the propagation of 
viruses, but there are some similarities between the propa-
gation of risk in the SCN and the propagation of viruses. 
Firstly, in the propagation environment, both are propa-
gated on complex networks. Secondly, in the propagation 
process and direction, both are propagated among entities 
with related relationships and are bidirectional. Finally, the 
propagated targets have different risk resistance. So, the 
propagation of risk in SCN can be done with the help of the 
SIR model (Kabir et al. 2020).

Angstmann et al. (2017) indicated that in the SIR risk 
propagation model, firms in SCN have three states, includ-
ing the state S of being easy to be interfered with by risk, the 
state I of having been interfered with by risk, and the state R 
of having been immune to risk. The state of firms will shift 
among the three states when suffering risk, and the process 
is shown in Fig. 2. The differential equation for state transfer 
between the three states are (13), (14), and (15).

(13)

d(s(t))

d(t)
=

d
(

S(t)

N

)

d(t)
=

1

N

(
d(S(t))

d(t)

)
=

1

N

(
−λI(t)

S(t)

N

)
= −�i(t)s(t)

(14)

d(i(t))

d(t)
=

d

(
I(t)

N

)

d(t)
=

1

N

(
d(I(t))

d(t)

)

=
1

N

(
�I(t)

S(t)

N
− �I(t)

)
= �i(t)s(t) − �i(t)

Where N represents the total number of firms in the sup-
ply chain, in our network model, N equals the number of 
network nodes multiplied by 4. S(t) is the number of firms 
that are not interfered by risk but are in state S at moment 
t , s(t) = S(t)∕N . I(t) is the number of firms that have been 
interfered with by risk in state I at moment t , i(t) = I(t)∕N . 
R(t) is the number of firms that have been immune to risk 
interference in state R at moment t , r(t) = R(t)∕N . λ denotes 
the risk propagation rate of firms that have been interfered 
with by risk. μ denotes the recovery rate of firms already 
interfered with risk.

As seen from the state transfer equation of the SIR model, 
the most critical is the risk propagation rate λ and recovery 
rate µ of the supply chain participants. Treating SCN as a 
bidirectional risk propagation network satisfies the require-
ments of the SIR risk propagation model. Then, we perform 
a weighted average of the overall risk propagation rate λ 
and recovery rate µ of SCN based on the actual situation of 
each node.

In measuring the risk propagation rate, we use the con-
cept of the OWA operator proposed by Ahn (2006), con-
sidering the probability of a risk event occurring and risk 
propagation range. From objective factors, generally, the 
higher the node importance, the more internal influencing 
factors of the node and the more likely the risk will occur, 
so the magnitude of risk occurrence probability of each 
node is quantified as the node importance index IMCf

(
vi
)
 . 

There is a positive correlation between the risk propaga-
tion range and the degree of association between nodes, so 
the value of the risk propagation range can be quantified 
as the weights of the directed arc between nodes. So, the 
uniform risk propagation rate within SCN is set as a func-
tion of the node importance and the weight of the directed 
arc in Eq. (16).

(15)d(r(t))

d(t)
=

d
(

R(t)

N

)

d(t)
=

1

N
(μI(t)) = μi(t)

Fig. 2  The state transfer process 
of the SIR model
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The node recovery rate is quantified using the method 
proposed by Zuo (2019). Considering the vulnerability 
index, the higher the vulnerability index, the more the supply 
chain is affected by the risk and the slower the recovery rate. 
Therefore, the uniform risk recovery rate within the SCN is 
set as a function of the inverse of the SCV in Eq. (17).

It is worth noting that the equation here only needs to 
ensure that λ and µ is in the range (0,1). Moreover, we 
make the following two assumptions about the initial state 
of the KISC participants.

Assumption 1 At the initial moment when the risk interference 
is encountered, only a very small percentage of firms are in 
states and. Therefore, the initial value of are set to 0.95, 0.03, 
and 0.02, respectively.

Assumption 2 The time scale of the risk interference is much 
smaller than the survival cycle of the system, which means 
that there are no firms not recovered in the risk simulation.

Simulations are performed by Eqs. (14, 15, and 16). 
We can simulate the state transition process of the supply 
chain participants through Matlab, as shown in Fig. 3. We 
obtain the time T from the beginning of risk interference 
to the time when most firms are out of risk. The ability of 
KISCs to recover from risk is quantified by the time T. As 
shown in Eq. (18).

3.2.4  Calculation of supply chain resilience index

Based on the summary of SCR in the introduction and the 
literature review, we describe SCR as two dimensions, the 
ability of the supply chain to resist risk and recover after 
suffering risk. We assess these two ability indexes using 
Eqs. (8) and (18).

Some scholars have reviewed quantitative research on 
SCR, stating that SCR is a function of SCV and SCR* 
(Hosseini et al. 2019; van der Vegt et al. 2015). Moreo-
ver, Longo and Ören (2008) indicated a certain negative 
relationship between SCR and SCV. Birkie et al. (2017) 
also highlighted a significant positive relationship between 
SCR and SCR*. So, the calculation of the resilience index 

(16)𝜆 = f1

⎛⎜⎜⎝

∑N

i=1
IMCf

�
vi
�
×

∑
j∈q 𝜔ij

q

N

⎞⎟⎟⎠
(0 < 𝜆 < 1)

(17)𝜇 = f2

(
1

SCV

)
(0 < μ < 1)

(18)SCR∗ =
1

Tr(t)≈1

is shown in Eq. (19), where ϵ denotes the adjustment coef-
ficient, ensuring that the SCR index is positive.

It is worth noting that the strength of this paper’s assess-
ment of SCR is that a resilience index can describe it. 
Although we have yet to have an explicit range of resilience 
indexes to tell how good or bad resilience is, this is not the 
focus of our attention. Our focus is on the change trends in 
SCR and the improvement of SCR.

3.3  Supply chain resilience improvement paths

Previous literature on resilience improvement is mainly 
based on changing the network topology (Pavlov et  al. 
2018), link prediction (Lopez and Ishizaka 2019), sup-
plier selection game (Rajesh and Ravi 2015), and product 
safety stock (Vimal et al. 2022). However, changing the 
original network structure of KISCs, increasing the associa-
tion among network nodes, theoretical supplier selection, 
and excessive product inventory will likely damage some 
firms’ original interests significantly. Therefore, we draw 
on the “structure-process-redundancy” value-added network 
(Ivanov and Dolgui 2019). We propose two ways of resil-
ience improvement. One is to improve firms’ development 
capacity, and the other is the moderate industrial backup.

3.3.1  Improve firms’ development capacity

For the directed arc weights representing the associative 
relationships among firms. Some studies pointed out that 
SCV most likely originates from the associative rela-
tionships between supply chain participants (Ojha et al. 

(19)SCR = ϵSCR∗∕SCV

Fig. 3  Explanation of recovery time T
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2018; Pournader et al. 2017). Moreover, the description 
of SCR* also depends heavily on the closeness of the 
associative relationships. So, SCR may be influenced by 
the directed arc weights. Simchi-Levi et al. (2018) found 
that process flexibility can be a potential risk mitigation 
tool. Uddin and Akhter (2022) considered the positive 
impact of collaboration on supply chain capability. In 
KISC-directed weighted networks, process flexibility 
and supply chain collaboration refer to the improvement 
of firms’ development capacity, expressed as a change in 
the weight of the directed arc.

According to the description of the directed arc, it rep-
resents the development capacity of a class of firms. We 
can analyze the meaning of the change in the directed arc 
weights numerically, ω = SGR × PGR∕MCR4 . If a node’s 
directed arc weight increases, the degree of associative 
relationships will become stronger. Because the rise of 
SGR or PGR means that the node has a better business 
condition and innovation level, and the decrease of MCR4 
implies that such firms’ market structure will be more sta-
ble. Therefore, theoretically, SCR will be improved regard-
less of whichever node’s directed arc weight is raised.

3.3.2  Industrial backup

From the perspective of network nodes, node redundancy 
brings some robustness (Bode and Wagner 2015), indicating 
that the more complex the network is, the lower its vulner-
ability will be. However, redundant nodes increase the pos-
sibility of risk in the supply chain and reduce recoverability. 
So, node redundancy may affect SCR (Yazdanparast et al. 
2021), but this effect’s results are not clear. Ambulkar et al. 
(2015) argued that the continuous input and reallocation of 
resources must be considered in resilience improvement. 
Kumar et al. (2022) noted the need to consider reallocat-
ing supply chain resources or reinvesting resources. In this 
paper, the continuous input of resources is expressed as an 
industrial backup of a production process.

In our constructed directed weighted network, the 
industrial backup of a node is the addition of a new 
node with the same position as the original node in the 
SCN. The directed arc direction of the new node is the 
same as the backup node, and the weight is set to θ times 
the backup node. θ As the industrial backup intensity, 
ωnew = θ × ωold.

4  Case analysis

The case analysis in this paper takes the global IC supply 
chain as an example. As a typical KISC, the IC supply chain 
has been most needed to manage resilience in recent years. 

The reason is that chips are the core component of all elec-
tronic devices today. The impact on the global electronics 
market is enormous when the IC supply chain is under risk 
interference. For example, under the influence of COVID-
19, many car manufacturers have started to scale down pro-
duction due to the lack of automotive-grade chips.

In addition, chip development is a long-term global goal. 
If there is no designated direction or no strategy for solid 
development, it may cause a tremendous waste of resources. 
Identifying node importance and assessing resilience in this 
paper provide directions for managing the IC supply chain. 
We provide theoretical support for creating a more resilient 
IC supply chain.

4.1  Construction of a directed weighted network 
for the IC supply chain

According to the construction method of the KISC networks, 
we select eight classes of firms in the IC industry as net-
work nodes in Table 4. Based on the IC product production 
process, we establish a directed weighted network for the 
IC supply chain, as shown in Fig. 4. In quantitative indica-
tor data collection, the SGR data comes from the purchased 
SEMI industry reports, the PGR data from the incoPat data-
base, and the MCR4 data from the China IC Industry Devel-
opment Statistics Report. Then, according to Eq. (2), We 
quantify the weights of the directed arc from 2014 to 2020, 
as shown in Table 5.

4.2  Quantification analysis

Based on the collected data and the quantification method, 
the trends of SCV, SCR*, node importance index, and 
SCR of the global IC supply chain from 2014 to 2020 are 
obtained, as shown in Fig. 5. We should be more concerned 
with the change trends in the various indicators rather than 
specific values, as we do not have an exact value to indicate 
whether the situation is good or bad.

The quantified results show that.

Table 4  Description of network nodes in the IC supply chain

Node1 Electronic design automation (EDA) software firms

Node2 IP-based firms
Node3 fabless design firms
Node4 Integrated circuit manufacturing firms
Node5 Equipment manufacturing firms
Node6 Wafer manufacturing firms
Node7 Material production firms
Node8 Packaging and testing firms
Node9 The final product, not as an assessment node
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 (i) From the SCV and SCR* change trend graph, we 
find that before 2019, they generally remain stable 
and at a better level despite changes. In 2019, SCV 
rose from an average value of 5.5 to 6.0, a increase of 
10%. SCR* also fell from a best case of 2.15 to 1.84, 
a reduction of 16.8%. This unpromising situation in 
2019 continued until 2020.

   Based on our description of SCV and SCR*, this 
result illustrates the decreasing ability of the global 
IC supply chain to resist risk and recover after suf-
fering risk. After analysis, this change is most likely 
related to global IC development environment 
changes. 2019 saw a global trade war between China 
and the U.S., followed by the worldwide outbreak of 
COVID-19 in 2020, which significantly impacted the 
IC supply chain. Suggesting that political factors and 
unforeseen events affect KISC to a large extent.

 (ii) From the graph of node importance, we can find that 
IC manufacturing firms (node 4) have the highest 
node importance index, followed by EDA software 
firms (node 1) and material production firms (node 
7). The node importance of packaging and testing 
firms (node 8) is always low.

   This result corresponds to the analysis of KISC 
characteristics. For KISCs, the key nodes often 
lie in the production processes with core technol-
ogy patents or market monopolies. For example, 
IC manufacturing firms are the most critical nodes 
because ASML almost monopolizes high-precision 
lithography. EDA software firms are also in key posi-
tions in the supply chain due to their deep binding 
relationships and core technology patents on the IC 
ecosystem. Because of the relatively simple techni-
cal requirements of the packaging and testing firms, 
they are less important in the IC supply chain, despite 
being the necessary path for chip production.

   As the data shows consistently, China’s IC indus-
try was severely damaged by the 2019 U.S.-China 
trade war precisely because the U.S. government 
sanctioned critical nodes in the IC supply chain. For 
example, the U.S. government restricted access to 
EDA software and forced TSMC, an IC manufacturer, 
not to provide services for Chinese IC design firms.

 (iii) The trend graph of SCR shows that the resilience index 
in 2019 is at its lowest point in recent years, with a 
reduction of almost 33.4%. 2020 is still the same. The 

Fig. 4  The IC supply chain 
directed weighted network

Table 5  IC supply chain 
network data for 2014 to 2020

Edges/Year 2014 2015 2016 2017 2018 2019 2020

Edge1 3.38945 3.72186 3.47944 3.25184 3.40872 3.40289 3.07197
Edge2 3.49818 3.10002 4.38775 3.66156 3.55244 2.98054 3.30674
Edge3 2.94353 2.95952 3.05852 3.06535 3.00453 2.86228 2.71096
Edge4 3.36169 3.39349 3.12285 3.53289 3.36363 3.39198 3.36531
Edge5 4.20937 4.00270 4.00649 4.62014 4.49294 4.01727 4.11666
Edge6 3.74659 4.35901 3.57443 3.69574 3.94827 3.34186 3.56021
Edge7 3.53364 3.32414 3.82513 3.80873 3.54798 3.49528 3.20057
Edge8 3.42919 3.42062 3.16548 3.88023 3.64303 3.14364 3.32216
Edge9 4.06378 3.94029 4.27391 4.43432 3.59396 4.04523 4.09499
Edge10 3.54145 3.52201 3.50428 3.83630 3.65614 3.35423 3.37576
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results of the resilience assessment are very closely 
aligned with the current worldwide demand for IC sup-
ply chain development because many countries have 
realized to create a more resilient IC supply chain.

   On June 8, 2021, the U.S. White House conducted 
a comprehensive supply chain assessment under 
Executive Order 14,017. It emphasized improving 
the resilience of the IC supply chain by rebuilding 
production and strengthening industry coopera-
tion. The Chinese government has formulated rel-
evant policies as early as 2020 in response to the 
reduced resilience of the IC supply chain, including 
tax reduction, increased investment, and enhanced 
international cooperation for the IC industry. The EU 
also officially announced the Chip Bill on February 
8, 2022, which intends to use more than 43 billion 
euros to expand the IC supply chain.

In summary, based on the KISC-directed weighted net-
work model, the resilience assessment of the IC supply chain 
aligns with the industrial reality. From a real-world perspec-
tive, nodes with high importance index in the KISC network 
should receive more attention. Therefore, in the next section, 
we will discuss the impact of two resilience improvement 
paths on different importance nodes.

4.3  Simulation of supply chain resilience 
improvement paths

In this section, we use Matlab to investigate the effec-
tiveness of the two resilience improvement paths through 
simulation. Moreover, the essential in the simulation is the 
benchmarking data. Therefore, we use the global IC supply 
chain data in 2020 as a comparison. Explicitly, the compari-
son data before resilience improvement are SCV = 5.7632, 
SCR*=1.6739, and SCR = 0.2904.

4.3.1  Simulation of improving firms’ development capacity

According to the description of the directed arc weight in 
Section 4.1.3, it represents the development capacity of a 
class of firms. So, we vary the directed arc weights to study 
the changes in SCR. Combining with the node importance 
identified for the global IC supply chain in 2020, node 4 
with the highest importance and node 6 with lower impor-
tance are distinguished to simulate separately as (a) (b). The 
quantification results are shown in Fig. 6, where the hori-
zontal axis is the multiplier of the change of the directed 
arc weight ω . x = 1 indicates the initial state. The vertical 
axis represents the changing trend of SCV, SCR*, and SCR, 
respectively.

Fig. 5  Quantification results of SCV, SCR*, node importance index, and SCR
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(a) For the IC supply chain in 2020, we improve the devel-
opment capacity of such firms represented by node 4, 
the results are shown on the left side of Fig. 6.

(b) For the IC supply chain in 2020, we improve the devel-
opment capacity of such firms represented by node 6, 
the results are shown on the right side of Fig. 6.

Firstly, the change in SCR is mainly due to the change in 
SCV because the SCR* varies very little. The change in SCV 
for node 4 reaches its lowest point when the weights of the 
directed arc change 1.5 times, a 15.3% reduction. Node 6 has 
a linear increase in SCV. Secondly, by increasing the devel-
opment capacity of such firms represented by node 4, SCR is 
not continually improving but shows an inverted U-shaped. 
The highest level of the resilience index has a value of around 
0.31. Finally, increasing the development capacity of such 
firms represented by node 6 will decrease SCR.

Realistically, for node 4, with high importance in the 
IC supply chain. On the one hand, a certain degree of 
improvement in such firms’ development capacity means 
that the market structure will be more solid, the business 
condition will be better, or the innovation level will be 
higher. Therefore, resisting risk is better, making a higher 
SCR. On the other hand, if firms’ development capacity is 
improved beyond a specific range, the deep binding relation-
ship among participants can lead to the capability of other 
firms not matching node 4. For example, IC manufacturing 
firms meet the 3 nm production process, but the equipment 
manufacturing firms cannot provide a matching etcher. So, 
this situation will reduce SCR from a whole supply chain 
perspective.

For node 6, the development capacity of such firms has 
met the technology or market demand in the IC supply 
chain. For example, China’s IC design and packaging firms 
have advanced globally. However, if there is a problem in 
the manufacturing firms, then there is no use for advanced 
design and packaging technologies, resulting in a low SCR 
of China’s IC supply chain.

 (iii) The results in (a) and (b) show that improving firms’ 
development capacity is effective only for nodes with 
high node importance, mainly by affecting SCV and 
thus SCR. Therefore, node 4 and node 7, with high 
node importance in the IC supply chain, are targeted 
simultaneously. The results are shown in Fig. 7. The 
X-axis represents the changing range of the directed 
arc weights of node 4; the Y-axis represents the 
changing range of the directed arc weights of node 
7; and the Z-axis represents the changing trend of 
SCV and SCR, respectively.

Through simulation, it can be found that the over-
all SCR shows an upward convex trend, indicating that 

simultaneously changing the directed arc weights of node 
4 and node 7 can get a higher SCR. As illustrated in the 
figure, When the directed arc weights of node 4 and node 
7 are expanded by a factor of 1.6 and 1.4, respectively, the 
value of the resilience index reaches 0.3405, which is about 
10% higher than only changing the directed arc weight of 
node 4. In a realistic sense, simultaneously improving 
development capacity at multiple high-importance nodes 
can achieve a more efficient increase in SCR, suggesting 
that attention should be paid to a balanced development 
between the various classes of firms when improving SCR.

In summary, based on the simulation results in (a) (b) 
(c), the following conclusions are drawn.

1. Improving firms’ development capacity affects SCR 
mainly through SCV, explaining that this way can 
increase the ability of the supply chain to resist risk. 
Moreover, significant improvement in SCR can only be 
achieved through high-importance nodes.

2. Due to the deep binding relationship among KISC par-
ticipants, improving firms’ development capacity needs 
to be within a specific range to improve SCR effectively.

3. In practice, we can consider improving the development 
capacity of multiple nodes simultaneously to achieve a 
better significant SCR improvement.

4.3.2  Simulation of industrial backup

According to the analysis in Section 4.3.2, node redun-
dancy is likely to affect SCR. Therefore, this section uses 
the concept of node redundancy. Industrial backup for 
nodes with different importance, which means adding 
new nodes. The directed arc direction of the new node 
is the same as the backup node, and the weight is set to θ 
times the backup node. θ as the industrial backup inten-
sity, ωnew = θ × ωold . Industrial backup (d) (e) for node 4 
with high importance and node 6 with low importance, 
respectively. The results are shown in Fig. 8. Where the 
horizontal axis represents the value of industry backup 
intensity θ , x = 0 is the state without node backup, and the 
vertical axis represents the trend of SCV, SCR*, and SCR.

(iv) The industrial backup for node 4. The results are shown 
on the left side of Fig. 8.

(v) The industrial backup for node 6. The results are shown 
on the right side of Fig. 8.

Firstly, the industrial backup is through SCV and SCR*, 
thus affecting SCR. The maximum range of variation in 
SCV and SCR* exceeds 10%. Secondly, for node 4, with 
high importance, the maximum fluctuation range of SCR 
is more than 15%. Thirdly, for the less important node 6, 
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Fig. 6  Changing trends of SCV, SCR* and SCR when improving firms’ development capacity of node 4 or node 6
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Fig. 7  Changing trends of SCV and SCR when improving firms’ development capacity of node 4 and node 7
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industrial backup has little impact on the SCR, and when 
θ is small, SCR appears very low.

Realistically, for node 4, with high importance in the IC 
supply chain, the industrial backup will ensure the firms’ 

substitutability in the market and technology. This substi-
tutability will alleviate the technology or market monop-
oly, improving SCR. The industrial backup strength θ also 
needs to be within a specific range. Because when θ is 

Fig. 8  Changing trends of SCV, SCR* and SCR when industrial backup for node 4 or node 6
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Fig. 9  Changing trends of SCV, 
SCR*, and SCR when industrial 
backup for node 4 and node 7



The application of complex network theory for resilience improvement of knowledge‑intensive…

1 3

relatively large, intense market or technology competition 
is triggered within such firms, then reducing the SCR.

For the less important node 6, the SCR does not 
increase because the market pattern and technical require-
ments of such firms have already met the current demand. 
When the industrial backup intensity θ is low, the stable 
market pattern is disrupted due to the sudden industrial 
backup, leading to a significant decrease in SCR. That 
is why the Chinese government implemented industrial 
backup for IC manufacturing firms but did not focus on 
the packaging and testing firms.

(f) The results of (d) (e) show that the industrial backup 
needs to target the nodes with high importance and 
impact both SCV and SCR*. Therefore, the industrial 
backup is performed simultaneously for node 4 and 
node 7. The results are shown in Fig. 9. The X and 
Y axes indicate the variation range of the industrial 
backup intensity θ at node 4 and node 7, respectively. 
The Z-axis indicates the changing trend of SCV, SCR* 
or SCR, respectively.

As can be seen from the points marked in the SCV 
graph, a significant reduction in SCV only occurs when 
the two nodes have comparable level of backup and the 
value of θ is between (0.2, 0.6). The graph of SCR* shows 
that the intensity of industrial backup for node 7 is not 
critical, and only a higher level of backup for node 4 can 
effectively improve the SCR*. For SCR, when node 4 
has a backup level θ of 0.84 and node 7 has a level θ of 
0.38, the resilience index reaches a value of 0.384, a 32% 
increase compared to no measures.

In the real world, when the industrial backup is carried 
out simultaneously for multiple classes of firms, it will result 
in a more balanced technology backup or market distribution 
among supply chain participants, which is more valuable 
than a technological breakthrough at a single node.

In summary, the following conclusions are drawn for the 
industrial backup.

1. The industrial backup is through SCV and SCR*, thus 
affecting the SCR. This means that industrial backup not 
only increases the ability of the supply chain to resist 
risk but also improves its ability to recover.

2. The industrial backup intensity must be within a spe-
cific range and cannot cause market competition among 
firms.

3. When resources allow, industrial backup can be con-
sidered for multiple important nodes in the supply 
chain.

5  Conclusion and outlook

5.1  Conclusion

In this paper, by analyzing the product production process 
in KISCs, we identify two characteristics that distinguish 
them from non-KISCs, including the high degree of modu-
larity in product production and the deep binding relation-
ships among participants. Therefore, we develop a directed 
weighted network model more suitable for KISCs. This 
network structure clearly describes the location and role of 
KISC participants and indicates their relationships. In the 
resilience assessment, we express SCR as a comprehensive 
capability, including the ability to resist risk and recover 
from it. We quantify these two ability indexes and identify 
the node importance index. More importantly, we have pro-
posed two resilience improvement paths for KISCs. The case 
analysis leads to the following conclusions.

 (i) Expressing SCR as a comprehensive capability, the 
resilience assessment based on the directed weighted 
network for KISCs is in line with the actual situ-
ation of the industry. For example, the resilience 
assessment of the IC supply chain shows a signifi-
cant decrease in 2019 and 2020. The considerable 
reduction in SCR is due to the U.S.-China trade war 
in 2019 and the outbreak of COVID-19 in 2020.

 (ii) The two proposed resilience improvement paths are 
effective. For the IC supply chain, many countries 
have realized the importance of improving the devel-
opment capacity of firms and industrial backup. For 
example, the Chinese government had invested heav-
ily in industrial backup for the IC supply chain, and 
the U.S. government, through its 2021 Supply Chain 
Assessment Report, had begun to focus on the devel-
opment capacity of firms in the IC supply chain.

 (iii) The management of resilience needs to focus on 
the key nodes in KISCs. Moreover, the degree of 
improvement for firms’ development capacity and 
the intensity of industrial backup must be within a 
specific range. In KISCs, highly important nodes 
often have market monopolies or core technology 
patents. Improving the development capacity of 
these key nodes or conducting industrial backup can 
alleviate the market monopoly and technology gap, 
creating a degree of substitutability. However, if the 
degree of firms’ development capacity improvement 
or the intensity of industrial backup is too high, it 
will likely result in a technology mismatch or fierce 
competition among firms.
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5.2  Theoretical contribution and management 
implications

Theoretically, this study offers a new way to build supply 
chain networks, especially for supply chains with deep asso-
ciative relationships among participants. A class of firms 
can be treated as network nodes, and quantitative indicators 
affecting the relationships among nodes are used as weights 
for the directed arc. In resilience assessment, a more holistic 
approach is proposed, which needs to consider the supply 
chain’s comprehensive capability to resist risk and recover 
from it. Importantly, two resilience improvement paths are 
provided for supply chains where technology, knowledge, 
and experience are the main factors of production.

In the managerial sense of this paper, our findings can 
support the decisions of two types of managers.

The first category is for managers of firms in KISCs. On 
the one hand, the formulation of firm development strategies 
should be in line with the characteristics of the supply chain. 
For example, it is more critical for the chip supply chain 
to maintain technology matching and market equilibrium 
rather than product inventory and logistics levels. On the 
other hand, constructing a firm’s technology system should 
align with the technological requirements of upstream and 
downstream firms, i.e., the firms need to identify their posi-
tion in the SCN. For example, in the software supply chain, 
the choice of programming language should incorporate the 
upstream base library’s development environment and meet 
the downstream products’ performance requirements.

The second category is for KISCs’ industrial policy 
managers. From the analysis of the examples in this paper, 
improving the resilience of KISCs requires a balanced devel-
opment among firms. Therefore, the following points must 
be focused on in policy formulation for managing SCR. 
Firstly, policy objectives should not be centered on sup-
pressing competitors, which must maintain a technological 
balance among firms. Secondly, innovation-based policies 
need to be highlighted to consolidate existing technological 
advantages. Finally, there is a need to maintain a balanced 
market by continuously supporting small and medium-sized 
enterprises.

5.3  Limitations and future research

The results of this study should be interpreted while con-
sidering its limitations. When constructing KISC-directed 
weighted networks, we do not consider the phenomenon of 
technology stratification in KISC networks. For example, the 
manufacturing process may be 7 nm, 14 nm, or 28 nm in the 
chip supply chain. If the 7 nm process cannot meet the cur-
rent production demand, investing resources in a 28 nm line 
makes no sense. Therefore, although the results of this study 
are highly relevant, there should be caution in the specific 

measures of resilience improvement. The two resilience 
improvement paths we propose will be more targeted if the 
technology stratification is carried out in a subsequent study.

In our assessment of SCR, we have selected three quan-
titative indicators related to the characteristics of KISCs. 
However, this does not exclude the uncertain influence of 
other factors. So, future studies can consider more factors 
to achieve a more comprehensive assessment of SCR. For 
example, we can incorporate cost and risk factors to achieve 
lower costs and a less risky resilience improvement.

Our research is set in the context of KISCs, so the meth-
ods in this paper cannot be directly applied to other sup-
ply chains. However, it is easy to use the network model 
we have constructed to assess SCR as long as the relevant 
influencing factors are found according to the supply chain 
characteristics and the quantification method of the directed 
arc weights is changed.
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