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Abstract
Due to the war in Ukraine, the European Commission has released its “Save Gas 
for a Safe Winter” plan, communicating the goal of reducing gas consumption in 
the electricity sector, among others. In this paper, the gas consumption in the elec-
tricity sector is picked up and the well-established concept of demand response is 
brought into alignment with the consumption of gas in the electricity sector, lead-
ing to the concept of gas-to-power demand response. Two proposed programs based 
on this concept are then applied in a production planning approach that shows how 
companies could proactively contribute to easing the tense situation in Europe, par-
ticularly in Germany, especially using methods such as scheduling and/or lot-sizing. 
This article is intended to serve as a basis for further discussions in the political and 
economic sectors.
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1 � Motivation

In July 2022, as a result of the war in Ukraine, the European Commission (EU-
COM) announced its plan to reduce gas demand: “Save Gas for a Safe Winter”. 
According to this plan, member states are to reduce gas consumption by 15% by the 
spring of 2023 and, in particular, create incentives for energy savings in industry; cf. 
EU-COM (2022a). In addition to this plan, the proposed regulation on coordinated 
gas reduction states that: First, measures taken on national level shall, for example, 
financially incentivise industry to reduce energy consumption; second, the measures 
shall be market-based; third, measures shall be considered that reduces gas in the 
electricity sector; cf. EU-COM (2022b). The last point in particular aims to reduce 
the use of gas-fired power plants, which currently lead to significantly higher elec-
tricity prices, also due to the merit order; cf. Dellnitz et al. (2020).

Especially with regard to the third point of the European Commission’s regula-
tion, demand response in the electricity sector is a well-established concept that 
turns passive electricity consumers into active market participants; cf. Eid et al. 
(2016). Aligning such a concept to gas-fired electricity instead of electricity in 
general might be a promising instrument helping to ease the situation in Europe. 
However, even apart from the current tense situation—for example, beyond win-
ter 2022/2023—the concepts presented here can be applied to make gas-based 
electricity consumption more flexible and responsive. As a consequence, the 
concept of gas-to-power demand response is proposed in this paper. In addition, 
companies can apply planning approaches such as scheduling and/or lot-sizing, 
in particular, to leverage flexibility potentials by using the gas-to-power demand 
response concept. The main purpose of this article is therefore to conceptualize 
gas-to-power demand response concepts and to demonstrate how such concepts 
can help alleviate the current tight situation, especially in Germany. This could 
serve as a basis for further research and discussion.

The remainder of this article is organized as follows: In Sect. 2, we will pre-
sent a short primer on demand response in general and propose the new concept 
of gas-to-power demand response. Two possible programs for this are presented. 
These programs are examplified in a production planning approach. Therefore, 
Sect. 3 is devoted to a brief literature overview of related studies, model devel-
opment and problem description. Section 4 presents the results of the computa-
tional study and discusses the necessity of incentivation when using gas-to-power 
demand response programs. Section 5 concludes this work.

2 � Demand response and the concept of gas response

2.1 � Gas‑to‑power demand response

Demand response (DR) is a well-established concept in Europe for enhancing 
system coordination and system reliability via market-based mechanisms; cf. 
EU-COM (2013) and (Albadi and El-Saadany 2008). In the context of electricity 
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systems, the employment of smart meters—in conjunction with information and 
communication technology—is turning end users of electricity, such as compa-
nies, into active market players. In this context, DR can be understood as electric-
ity demand that is responsive to economic signals. Different DR programs can be 
differentiated [cf. Eid et al. (2016) for a detailed overview]:

•	 Price-based DR: The economic signals are electricity prices, and special elec-
tricity tariffs, such as real-time pricing (RTP), where the electricity price is 
adjusted hourly (or at shorter intervals), allowing end-users to adjust their elec-
tricity consumption to these dynamic prices.

•	 Incentive-based programs: Customers are motivated to provide load flexibility 
via incentives or penalties. Under emergency DR, for example, grid operators 
instruct participants to reduce electricity consumption at very short notice dur-
ing periods when the grid is jeopardized. Customers receive appropriate incen-
tives—of a financial nature, for example—or penalties if they do not comply.

To take account to the previously stated goals of the EU-COM (see Sect.  1), an 
alignment of DR to the consumption of gas (instead of electricity in general) could 
be a promising approach. In the literature, the concept of “natural gas demand 
response” is very slowly emerging, but is aimed more at programs for direct gas con-
sumption by industry, etc., and is less related to electricity generation. For example, 
economic signals are gas prices in price-based programs; e.g., Ruhnau et al. (2022). 
To account for the consumption of gas-fired electricity and shift or reduce end-use 
electricity consumption at times when gas-fired power plants are increasingly used 
to generate electricity, we propose the concept of “gas-to-power DR (G2P-DR)” to 
mitigate such a situation. In G2P-DR, the economic signals are not the gas prices but 
the gas factors inherent in the electricity mix. This concept is also motivated by the 
fact that, for example, in June and July of 2022 large quantities of gas-fired power 
[in mWh] were generated (and needed) in Germany; see www.​smard.​de. Figure 1 
shows the gas-fired power generation in Germany for one working week (Mon–Fri) 

Fig. 1   Gas-fired power generation in Germany, 07/18/22–07/22/22

http://www.smard.de


	 M. Hilbert et al.

1 3

in July 2022 (Fig. 1 is obtained from www.​smard.​de). However, the gas factors are 
obtained by dividing the amount of gas-fired power generated during a given period 
by the maximal amount of gas-fired power generated in a period over all periods of 
the time horizon considered. Instead of the maximum value, a specified reference 
value can also be used. Based on these factors, different programs are conceivable, 
see Subsect. 2.2.

2.2 � Two gas‑to‑power demand response programs

We will now present two possible G2P-DR programs: the first related to RTP 
adapted to G2P-DR, and the second related to emergency DR. Possibilities to 
incentivize end users such as companies to participate in one of these programs 
are discussed in Sect. 4.

•	 Factor-based G2P-DR: Real-time-factorization (RTF) This program follows the 
idea of RTP, but uses hourly (or more frequent) gas factors instead of electricity 
prices as economic signals. Figure 2 shows a corresponding gas factor trajectory 
for the gas-fired power generation shown in Fig. 1. Along real-time gas factors, 
companies, for example, can shift electricity-intensive processes to times when 
these factors are low. Such an approach is usually followed in the context of pro-
duction planning under RTP when electricity costs are to be reduced; cf. Bänsch 
et al. (2021).

•	 Incentive-based G2P-DR: Emergency G2P-DR (EDR) The idea is that partici-
pants will receive an external signal to reduce electricity consumption at very 
short notice during periods when more electricity is being generated from gas-
fired power plants and fed into the power grid. A prespecified critical gas factor 
can be defined and a breaching of such critical value triggers a notice. In Fig. 3, 
a critical factor of 0.9 is selected, which results in 6 different time frames of dif-
ferent length. For example, a company can reduce its electricity consumption 
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for production processes in response to such a notice. A justification for external 
signaling in production planning can be found in Scholz and Meisel (2022).

3 � Application of G2P‑DR in bicriteria production planning

3.1 � Brief literature overview

In this paper, two topics—namely factorization of electrictiy consumption and 
event-driven (re-)planning—are combined and applied in production planning to 
address the current gas crisis in Europe. Since the first topic is closely related to the 
energy-efficient production planning (EEPP) research strand, we first provide a brief 
overview of related articles; for a general overview regarding energy-aware produc-
tion planning, however, see e.g. (Biel and Glock 2016; Gao et al. 2020) and (Bänsch 
et al. 2021), or (Neufeld et al. 2022) for multicriteria production planning consid-
ering, for example, parallel machines (hybrid flowshops in particular). Cf. (Dong 
and Ye 2022; Oukil et al. 2022) or (Wang and Wang 2022) for current work in the 
research area of energy efficient production planning.

In energy-efficient production planning, electricity consumption (EC)—as a 
green measure—is often combined with classical criteria, such as makespan or 
total tardiness. In more recent developments of EEPP, time-dependent electric-
ity costs are taken into account to evaluate energy consumption with respect to 
time—leading to a price-based factorization of electricity consumption; cf. e.g. 
(Mansouri et al. 2016; Jia et al. 2017; Wichmann et al. 2019; Ding et al. 2021) 
and (Ho et  al. 2021). In some contributions, a carbon emission-based factori-
zation of electricity consumption is considered to further focus the green per-
spective; cf. (Lei and Guo 2015; Ding et  al. 2016; Dellnitz et  al. 2020; Schulz 
and Linß 2020) and (Gu et al. 2021). Here, the flexibility of production systems 

Fig. 3   Exemplary emergency boundary
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usually is captured by variable machine states (e.g. “on”, “off”, etc.) and/or differ-
ent (discrete) production speed levels and/or the embedding of parallel machines 
with different power requirements; cf. e.g. (Ding et al. 2016; Giglio et al. 2017; 
Schulz et  al. 2019, 2020; Dellnitz et  al. 2020) and (Wang et  al. 2022). In par-
ticular, these multicriteria-based studies have shown that minimizing (factorized) 
electricity consumption generally does not simultaneously minimize the makes-
pan of a production; see also (Mansouri et al. 2016) and (Jia et al. 2017). How-
ever, none of these works considered time-dependent gas factorization to address 
the current European gas crisis.

The second topic—event-driven (re-)planning—is also part of the EEPP litera-
ture. In this strand of research, companies’ planning tools are aligned with exter-
nal signals, such as excessive power availability or insufficient power on the grid. 
Companies then respond by accelerating or shutting down production, eventually, 
in order to obtain a reward. Here, the studies of (Zhang et al. 2018; Weitzel and 
Glock 2019) and (Scholz and Meisel 2022) are worth noting. In Scholz and Mei-
sel (2022), for example, the authors considered, among other things, production 
scheduling when companies receive a short-term external signal about the avail-
ability of excess renewable energy. To deal with such signals, the authors applied 
a multicriteria approach, combining total tardiness, peak load, and consumption 

Table 1   Classification of 
selected articles in the context 
of EEPP

Articles Cmax EC Price − ∕CO2
− factorizedEC

Gas-fac-
torized 
EC

Anghinolfi et al. (2021) ✓ ✓ ✗ ✗
Zhang et al. (2019) ✓ ✓ ✗ ✗
Zhou et al. (2021) ✓ ✓ ✗ ✗
Li et al. (2018) ✓ ✓ ✗ ✗
Mansouri et al. (2016) ✓ ✓ ✗ ✗
Dai et al. (2013) ✓ ✓ ✗ ✗
Chen et al. (2020) ✓ ✓ ✗ ✗
May et al. (2015) ✓ ✓ ✗ ✗
Lu et al. (2018) ✓ ✓ ✗ ✗
Dai et al. (2019) ✓ ✓ ✗ ✗
Wei et al. (2022) ✓ ✓ ✗ ✗
Cao et al. (2021) ✓ ✗ ✓ ✗
Schulz et al. (2019) ✓ ✗ ✓ ✗
Moon et al. (2013) ✓ ✗ ✓ ✗
Schulz et al. (2020) ✓ ✗ ✓ ✗
Heydar et al. (2022) ✓ ✗ ✓ ✗
Ho et al. (2021) ✓ ✗ ✓ ✗
Ding et al. (2016) ✓ ✗ ✓ ✗
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of excess renewable energy. However, handling gas-related events is also an open 
issue in this research strand.

Table 1 summarizes our observations.
To the best of our knowledge and as a consequence of the above Table 1, the 

G2P-DR programs proposed in this paper have not yet been studied in the EEPP 
literature.

3.2 � Problem description

We now study a single-stage parallel machine production planning problem in order to 
exemplify and demonstrate the applicability and the impacts of the two proposed G2P-
DR programs in Sect. 2.2. The practical relevance of such problems has been justified 
by, for example, Moon et al. (2013). We perform short-term integrated scheduling and 
lot-sizing over one working week, i.e. from 12 p.m. on Sunday to 12 p.m. on Friday, 
under the following assumptions [(e.g., Giglio et al. (2017)]:

•	 The planning horizon (18/07/2022–22/07/2022) is divided into 480 periods of one 
quarter hour each.

•	 The two conflicting criteria, makespan and gas-fired electricity consumption, are 
minimized simultaneously.

•	 The single-stage parallel machine environment consists of several machines whith 
non-identical electricity coefficients.

•	 Different machine states and discrete production speed levels that allow for integer 
output in a period are taken into account to leverage gas-fired electricity consump-
tion (five different speed levels in total).

•	 Electricity coefficients (in kW) are randomly generated for each state of each 
machine: Off (0 kW); Ramp-up (drawn from U{20,21,…,60} ); Standby (drawn from 
U{4,5,…,8} ); Production (drawn from U{145,146,…,210}).

•	 The change in electricity consumption with variation of the production speed is cal-
culated using the conversion formula in Schulz et al. (2020).

•	 All jobs are known at the beginning of the working week and the due dates are at 
the end of the working week. The quantities demanded for each job are randomly 
generated.

•	 Preemption and lot-splitting are possible.
•	 A machine can process at most one job in one period, and the selected production 

speed cannot change in one period. The latter also applies to a selected machine 
state.

•	 For simplicity, warehousing, backlog and machine setups are neglected.
•	 For RTF, the gas factors shown in Fig. 2 are used. For EDR, the highlighted emer-

gency time frames shown in Fig. 3 are used.

According to this problem description, a bicriteria mixed-integer minimization prob-
lem (MIP) is formulated by (1)–(14) in the case of RTF. Regarding EDR, (2) is simply 
replaced by (2*) in (1)–(14):
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Table 2 contains the corresponding symbols.

(2*)min GEDR =

T
∑

t=1

cEDR
t

⋅ s
buy

t

(1)min Cmax = �

Table 2   Indices, parameters and variables

Indices

m Machine m ∈ M = {1, ...,M}

j Job j ∈ J = {1, ..., J}

i, h Machine states i, h ∈ I = {0, ..., I} with the following states: off ( i = 0 ), ramp-up ( i = 1 ), standby 
( i = 2 ) and production ( i = 3)

t Period (a quarter hour) t ∈ T = {1, ...,T}

� Production speed level � ∈ N = {1, ...,N}

Parameters

cRTF
t

Gas factor in period t of the electricity mix considered
cEDR
t

cEDR
t

= � if a critical event occurs in period t, 0 otherwise. 𝜌 > 0 is a prespecified penalization 
factor

a
prod

�j
Quarter hourly production rate of job j on each machine at speed level �

dj Demanded quantities of job j
� tran
ih

Transition parameter from machine state i to state h (1 if possible, 0 otherwise)
aelec
im

Quarter hourly electricity consumption of machine m in state i ∈ I ⧵ {I}

âelec_I
�m

Quarter hourly electricity consumption of machine m in production state I at speed level �

Decision variables

xjmt� Equals 1 if job j will be processed on machine m in t at speed level � , otherwise 0
�state
imt

Equals 1 if machine m has state i in period t, otherwise 0

�̂state_Imt�
Equals 1 if machine m is in production state I at speed level � in period t, otherwise 0

s
buy

t
Amount of electricity [in kWh] to be purchased in period t

�t Equals 1 if a job is produced in period t and 0 otherwise
� Nonnegative auxiliary variable used for linearization
Cmax Equals the makespan
GRTF Equals the gas-factorized electricity consumption to be minimized
GEDR Equals the penalization from electricity consumption in critical periods to be minimized
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(2)min GRTF =

T
∑

t=1

cRTF
t

⋅ s
buy

t

(3)

s.t.

�t ⋅M ≥

J
∑

j=1

M
∑

m=1

N
∑

�=1

xjmt� ∀ t ∈ T

(4)� ≥ t ⋅ �t ∀ t ∈ T

(5)
N
∑

�=1

T
∑

t=1

M
∑

m=1

a
prod

�j
⋅ xjmt� = dj ∀ j ∈ J

(6)
I

∑

i=0

�state
imt

= 1 ∀ m ∈ M, t ∈ T

(7)�̂state_I
mt�

−

J
∑

j=1

xjmt� = 0 ∀ t ∈ T, m ∈ M, � ∈ N

(8)�state
Imt

−

N
∑

�=1

�̂state_I
mt�

= 0 ∀ t ∈ T, m ∈ M

(9)�state
imt

+ �state
hm,t+1

≤ 1 + � tran
ih

∀ i, h ∈ I, m ∈ M, t ∈ T�{T}

(10)
M
�

m=1

⎛

⎜

⎜

⎜

⎝

N
�

�=1

âelec_I
�m

⋅ �̂state_I
mt�

+

I−1
�

i = 0

aelec
im

⋅ �state
imt

⎞

⎟

⎟

⎟

⎠

= s
buy

t ∀ t ∈ T

(11)�state
0m1

+ �state
1m1

= 1 ∀ m ∈ M

(12)xjmt� , �t ∈ {0, 1} ∀ t ∈ T, j ∈ J, m ∈ M, � ∈ N

(13)�state
imt

, �̂state_I
mt�

∈ {0, 1} ∀ t ∈ T, i ∈ I, m ∈ M, � ∈ N

(14)s
buy

t , � ≥ 0 ∀ t ∈ T
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With (1) and (2) or (2*), we simultaneously minimize the makespan Cmax and the 
gas-factorized electricity consumption GRTF under RTF or makespan and the penal-
ization of electricity consumption GEDR when EDR is applied, respectively. Con-
straints (3)–(4) control the makespan. More precisely, �t equals 1 if a job is pro-
cessed in a period t on any machine. Note here that M equals the total number of 
machines and serves as a correction factor if the right hand side is greater than 1. 
Furthermore, t ⋅ �t gives the total number of periods if any job is still to be pro-
cessed in period t. With (5), we have modelled equality conditions for meeting the 
demanded quantities dj for each job j. The due dates of the jobs are therefore at the 
end of the planning horizon and are thus implicitly considered by (5). Equation (6) 
ensure that a machine has only one state and never becomes stateless. Equation (7) 
in combination with (8) control the production state in tandem with the speed level, 
i.e. �state_Imt�  equals 1 if any xjmt� equals 1 in (7). The latter is only the case when one 
job j is assigned to machine m at speed level � in period t. Equation (8) couple the 
production mode i = I of a machine with one speed level exclusively. Constraints (9) 
control the state transitions of a machine. Here, a machine can either retain a state 
�state
imt

+ �state
hm,t+1

= 2 , with h = i and 1 + � tran
ih

= 2 , or can change it, choosing h ≠ i , if 
the transition from state i to state h is feasible. Equation (10) balance the electricity 
consumption and equation (11) are used for initialization, i.e., a machine m is either 
in the off state ( i = 0 ) or the ramp-up state ( i = 1 ) in the period t = 1 . (12)–(14) are 
binary and non-negativity conditions.

The presented model is solved applying the modified weighted Tchebycheff 
method (MWTM) in the case of RTF, and both the MWTM and the method of the 
global criterion using the Tchebycheff metric with lexicographic reoptimization 
(MGC) in the case of EDR. The weighted Tchebycheff method is a commonly used 
scalarization method in multi-objective optimization for computing (weak) Pareto 
optimal solutions. Applying this method with a modified augmented Tchebycheff 
metric (instead of the classical Tchebycheff metric) leads to strictly Pareto optimal 
solutions by systematically varying the weights of the objective functions; cf. Liu 
(2016) and Miettinen (1998). In the case of EDR, we are additionally interested in a 
single Pareto-optimal solution. Since no preference information of a decision-maker 
is considered, we apply the method of the global criterion using the Tchebycheff 
metric and lexicographic reoptimization. The method of the global criterion using 
the Tchebycheff metric produces a single (weak) Pareto optimal solution that mini-
mizes the distance between a reference point (e.g., the ideal point) and the feasi-
ble objective region. Since this can lead to a weak Pareto optimal solution, lexico-
graphic reoptimization is used to address this shortcoming. Further details can be 
found in Miettinen (1998).

All calculations are conducted via GAMS 41 using CPLEX with 12 threads and 
a relative optimality criterion of 0.001 on a 64 bit Windows 10 PC with 3500 MHz, 
16 cores and 32 logical processors. For example, the computation of corresponding 
Pareto front representations for the presented instance demonstrated in the next sec-
tion required in total approximately 5500 s in the case of RTF and approximately 
2528  s in the case of EDR. In the latter case, the computation of Pareto-optimal 
points using the MGC took in total approximately 47 s.
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4 � Results and discussion

For an instance of the presented MIP, we show representations of the Pareto fronts 
both under RTF and under EDR [using (2*) instead of (2)] in this section. The data 
used for the numerical example shown can be found in Appendix 1. The scenario 
consists of 4 machines ( M = 4 ) with randomly generated coefficients and 5 jobs 
( J = 5 ). The quantities dj are also generated randomly and the total demand of all 
jobs corresponds to approx. 88.73% of machine utilization at the highest production 
speed. The implications drawn are also valid for other calculated scenarios.

4.1 � Results in the case of RTF

On the left-hand side of Fig.  4, we see a Pareto front representation visualiz-
ing the trade-off between makespan and gas-factorized electricity consumption. 
Consequently, the schedule which results in a minimal makespan does not result 
in the minimal gas-factorized electricity consumption. The corresponding elec-
tricity consumption of those two schedules are depicted in the diagram on the 
right in Fig.  4. Ultimately, this means that a company can choose whether it 
executes the schedule minimizing the makespan of 421 periods or the sched-
ule which minimizes gas-factorized electricity consumption but with a makes-
pan of 480 periods, or any Pareto optimal schedule inbetween. This freedom of 
choice is only possible if flexibility potentials exist (e.g. in production processes 
and/or a time buffer to meet the demand) enabling the exploitation of trade-offs 
between makespan and gas-factorized electricity consumption.

But why would a company execute a schedule that reduces gas-factorized 
electricity consumption if it comes at the expense of the makespan? Therefore, 
appropriate incentives must exist. An initial guess could be that market-based 
electricity prices already reflect gas factors so that production scheduling can 
follow the classic RTP. However, such a one-to-one relationship between elec-
tricity prices and gas factors is not generally valid. This means that, under RTP, 
minimizing electricity costs does not minimize gas-factorized electricity con-
sumption as shown in Fig. 5. In Fig. 5, electricity prices and corresponding gas 
factors (again, the 29th CW of 2022, Mon–Fri) do have a positive correlation of 
≈ 0.68 . This still results in trade-offs between electricity costs and gas-factorized 
electricity consumption. We also checked this for each workweek (Mon–Fri) 
in August 2022 in Germany, and while we see partially higher correlations of 
≈ 70 − 78% , this one-to-one relationship still does not hold.

For a country’s energy supply, it is reliable to manage energy consumption 
according to classical concepts, e.g., via (local) balancing groups. In times of 
crisis, however, the scarcity of individual energy resources may force a switch 
to a different pricing scheme which particularly protects the source in question. 
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Therefore, we show a simple scheme that does not affect the optimality of our 
planning problems. To incentivize companies aiming at this goal, an electric 
utility can choose, for example, a price p ⋅ cRTF

t
 per kWh, with p > 0 . The com-

pany’s objective (2) then adjusts as follows:

To put it clearly, an optimal solution regarding (2) is also optimal for (2′). Such a 
one-to-one correspondence between prices and gas factors can therefore be a reli-
able tool in crisis situations such as the winter of 2022/2023.

4.2 � Results in the case of EDR

As our second example, we conduct production planning under EDR as shown in 
Fig.  3. A value of 0.9 has been chosen as the critical gas factor; exceeding such 
a value triggers an emergency scenario on very short notice, in which electricity 
consumption during the emergency time window is penalized. In total, there are six 
time frames in which the critical value is exceeded. Since the companies will be 
notified to reduce their electricity consumption very shortly before such an emer-
gency period occurs, we propose a rolling-planning approach. This is a somewhat 
different approach than the one taken in the case of the RTF, where historical data 
have been used for the calculations, which is often the case in the corresponding 
literature; cf. e.g. Zhang et  al. (2018) or (Scholz and Meisel 2022). However, the 
rolling planning is conducted using the following procedure:

•	 Step 1: We solve the MIP (1), (2*)–(14) minimizing the makespan for the con-
sidered time horizon, neglecting any event, i.e. cEDR

t
= 0 ∀ t . This initial solution 

is saved.
•	 Step 2.1: When an event is triggered, we fix the decision variables related to the 

previous periods of the event to the corresponding values of the previously gen-

(2′)min G
(p)

RTF
=

T
∑

t=1

p ⋅ cRTF
t

⋅ s
buy

t = p ⋅

T
∑

t=1

cRTF
t

⋅ s
buy

t = p ⋅ GRTF.
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Fig. 6   Visualization of the described rolling planning
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erated solution. We solve the MIP again, computing a Pareto front representation 
via the MWTM, but considering the penalization of the electricity consumption 
in the emergency time frame.

•	 Step 2.2: Since a Pareto front representation is calculated in step 2.1, a single 
solution has to be selected by a decision-maker. This solution is saved. However, 
if a single solution is to be directly calculated, a no-preference method such as 
MGC can be applied instead.

•	 Step 3: Step 2.1 and 2.2 are repeated until no further event occurs in the consid-
ered time horizon. The last saved solution is then the final schedule.

By applying the described rolling planning, we obtain Fig.  6. Of course, if an 
initial generated solution is feasible, the subsequent solutions are also feasible. 
The blue symbols are respective Pareto fronts and the red crosses are the solutions 
obtained by MGC. In the southwest corner, we see the initial schedule with a makes-
pan of 421 and no penalized electricity consumption (since no event has been trig-
gered so far). By going forward through time and adjusting the schedule if an emer-
gency event is triggered, we obtain a final solution with a makespan of 450 and a 
penalized electricity consumption of about 2000 kWh. Note here that the 6th event 
has no effect because the makespan of 450 periods of the final schedule takes place 
before the corresponding emergency period begins. However, if all events were 
neglected, the penalized electricity consumption in this example would be 11,227 

Fig. 7   Gantt chart, obtained schedule in the 1st event

Fig. 8   Gantt chart, obtained schedule in the 2nd event
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kWh, which is 9227 kWh higher than the penalized electricity consumption deter-
mined by the described procedure.

Figure 7 depicts the schedule obtained by the MGC in the first event, which takes 
place from period t = 74 to t = 95 , inclusively. It can be seen that when the first 
event occurs, the speed levels of the machines decrease to consume less power dur-
ing the specific emergency time window. However, this throttling of the produc-
tion speed of the machines comes at the expense of the makespan. The result of 
the rescheduling process due to the second event is illustrated in Fig. 8. The second 
event takes place in the period t = 121 to t = 128 inclusive. Again, the speeds of the 
machines decrease during the duration of the second event, which in turn increases 
the makespan compared to Fig. 7.

Overall, the rescheduling is mainly reflected in the machine speeds. This behavior 
is vizualized for the fith and sixth event in Fig. 9. Note that the sixth event has no 
impact on the schedule because it occurs in the period t = 455 to t = 480 , but the 
jobs have already been fulfilled. See Appendix 1 for corresponding figures of the 
other rescheduling processes of the machine utilization.

Fig. 9   Rescheduling of machine utilization, 5th event
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As in the case of RTF, there have to be flexibility potentials to optimize for penal-
ized electricity consumption. In Fig.  6, points—and thus schedules—are selected 
that are located between the extreme points of the Pareto front. Of course, other 
schedules could be selected as well to proceed with such solutions.

In Fig. 10, only those solutions are selected which minimize the penalized elec-
tricity consumption when an event occurs. However, care has to be taken when 
choosing appropriate schedules because this could also lead to a “cold penaliza-
tion”. This means that a company may lose its flexibility in optimizing electricity 
consumption if another event occurs because the production makespan has already 
reached a maximum value that cannot be exceeded without violating the due dates 
of orders. Note here that period t = 480 is the due date for all jobs. In Fig. 10, such 
a cold penalization leads to a final schedule with a makespan of 480 periods and a 
penalized electricity consumption of 5108.3 kWh, which is higher than the 2000 
kWh under application of MGC. However, this is still lower than the 11,227 kWh in 
the case where all events are neglected and only the makespan is minimized.

As in the case of RTF, incentives must be provided for companies to participate 
in such a program. One possibility could be to grant a financial credit. This would be 
reduced depending on the penalized electricity consumed. The credit surplus would 
be paid out; in the event of a credit deficit, the company would have to make up the 
difference.

5 � Conclusion

In this paper, we have discussed the concept of gas-to-power demand response 
(G2P-DR) and proposed two possible programs for it: Real-time-factorization (RTF) 
as a factor-based program and emergency G2P-DR (EDR) as an incentive based 
program. The proposal for such an approach was driven primarily by the European 
Commission’s “Save Gas for a Safe Winter” plan, which seeks, among other things, 
to reduce gas consumption in the power sector. Therefore, demand-side mechanisms 
such as demand response were adopted and adjusted to create incentives for par-
ticipants (e.g., companies) to respond to increasing gas-fired power generation and 
corresponding power feed into the grid. The application of the proposed programs 
was exemplified in a production planning approach studying trade-offs between 
makespan and gas-fired electricity consumption. Both programs, RTF and EDR, 
show a significant reduction potential of consumed gas-fired electricity. In any case, 
both proposed programs have certain advantages. EDR is incentive-based and could 
ease a tight energy situation in times of need. RTF, on the other hand, penalizes 
and financially rewards companies for paying attention to their gas-fired power con-
sumption in general. Depending on the design of the two programs, a combination 
of these would also be conceivable. Of course, other ecological criteria (e.g. indirect 
emissions) or regulatory measures (e.g. a cap on gas prices) could also be added 
to the production planning concept described. In addition, as a subject of further 
research, the potential of the concept of G2P-DR as well as the complexity of the 
planning concept at hand can be studied in a larger computational study. Apart from 
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this, the gas-factors determined in this article are based on the overall electricity 
generation in Germany. This aspect can be further refined by focusing, for example, 
on individual balancing groups since in practice, companies usually procure their 
electricity locally. Thus, a consideration of gas factors at the local level could also be 
a subject of further study.

However, the main purpose of this paper was to show general ways in which 
quantitative planning methods such as scheduling and/or lot-sizing can help to ease 
or counteract the tense situation related to gas consumption in Europe due to the war 
in Ukraine. The ideas presented here could serve as a discussion point for further 
research or for the design of control-relevant micro- or macroeconomic instruments.

Appendix A Input data used for the numerical example

See Fig. 11 and Tables 3, 4 and 5.

Off
i=0

Ramp-up
i=1

Standby
i=2

Production
i=3

Fig. 11   Feasible machine state transitions

Table 3   Power levels of the 
machines [in kW]

m = 1 m = 2 m = 3 m 
= 4

Off 0 0 0 0
Ramp-up 28 40 44 20
Standby 5 7 8 2
Production 145 195 180 210

Table 4   Output of an arbitrary 
machine on a quarter-hourly 
basis

Speed level � � = 1 � = 2 � = 3 � = 4 � = 5

Output aprod
�j

1 2 3 4 5
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Table 5   Quantities demanded 
for the demonstrated example

j = 1 j = 2 j = 3 j = 4 j = 5

Quantities dj 1600 1700 1600 1800 1700

Equation A1: Conversion formula used for calculating âelec_I
�m

Appendix B Supplementary material

See Figs. 12, 13, 14, 15 and  16.
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Fig. 12   Rescheduling of machine utilization, no event occurs

Fig. 13   Rescheduling of machine utilization, 1st event
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Fig. 14   Rescheduling of machine utilization, 2nd event

Fig. 15   Rescheduling of machine utilization, 3rd event

Fig. 16   Rescheduling of machine utilization, 4th event
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