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problem
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ABSTRACT

The dynamics of a spacecraft propelled by a continuous radial thrust resembles that of a

nonlinear oscillator. This is analyzed in this work with a novel method that combines the

definition of a suitable homotopy with a classical perturbation approach, in which the low

thrust is assumed to be a perturbation of the nominal Keplerian motion. The homotopy

perturbation method provides the analytical (approximate) solution of the dynamical

equations in polar form to estimate the corresponding spacecraft propelled trajectory

with a short computational time. The accuracy of the analytical results was tested in an

orbital-targeting mission scenario.
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1 Introduction

The study of spacecraft motion under radial propulsive

acceleration is a classical problem in spaceflight

mechanics, and represents one of the few cases in

which some properties of the propelled trajectory can

be obtained in an analytical form [1, 2]. Several

techniques are available to analyze this problem. For

example, Prussing and Coverstone-Carroll [3] proposed

a graphical approach to identify the allowable regions

of motion when the acceleration magnitude has a

constant value. Their results were later extended to

the case of variable spacecraft mass [4], and completed

by including the J2 effect in a planetocentric mission

scenario [5]. Other approaches use elliptic integrals [6, 7]

to describe the spacecraft propelled trajectory. Izzo

and Biscani [8] discussed an analytical solution of

the spacecraft equations of motion using Weierstrass

integrals. More recently, the classical radial thrust

problem was analyzed for spacecraft equipped with

propellant-less propulsion systems [9], such as solar

sails [10–13], electric sails [14, 15], and magnetic sails [16].

In the context of a radial low-thrust mission scenario,

that is, when the propulsive acceleration may be

considered as a small disturbance of the Keplerian motion,

perturbation methods represent a convenient analysis

tool [17, 18]. In fact, perturbations based on asymptotic

series expansions have recently been used to obtain

accurate approximations of spacecraft dynamics in a

number of special cases, which differ in terms of the type

of propulsion system used by the spacecraft [19, 20] or

the thrust vector direction [21, 22].

A well-known technique originally proposed by He [23,

24] combines the typical perturbative approach with

a suitably defined homotopy [25, 26]. Although this

homotopy perturbation method has been applied to a

wide range of science engineering problems [27–31], it

has never been applied to approximate the trajectory of

a radially accelerated spacecraft. Accordingly, the aim

of this work is to present the first application of He’s

homotopy perturbation method to spacecraft propelled

trajectory analysis within the context of the (continuous)

radial low-thrust problem. In particular, we discuss the

effectiveness of this technique in obtaining an analytical

approximation of the spacecraft propelled trajectory

when the propulsive acceleration is in the radial direction

and has a small and constant magnitude.

The remainder of this paper is organized as follows.

After a brief description of the mathematical equations

that model the system dynamics, we discuss the

application of the homotopy perturbation method and

derive an analytical approximation of the spacecraft

propelled trajectory. Then, a comparison is made with
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Nomenclature

{a1, a2, a3, a4} dimensionless coefficients
aR propulsive acceleration magnitude

(mm/s2)
E dimensionless error
H homotopy
k embedding parameter
L linear operator
N nonlinear operator
r radial coordinate (km)
t time (s)
ϵ dimensionless propulsive acceleration
θ polar angle (deg)
µ gravitational parameter (km3/s2)

ρ dimensionless radial coordinate
ρi i-th coefficient of power series
ρ linear approximation of ρ
τ auxiliary parameter

Subscripts
app analytical approximation
0 initial parking orbit
f final
num evaluated through orbital propagator

Superscript
′ derivative w.r.t. θ

other existing approximate solutions. Finally, a potential

mission application is discussed.

2 Spacecraft propelled trajectory
approximation

Consider a spacecraft that initially covers a circular

Keplerian orbit with a radius r0 around a primary body

with a gravitational parameter µ. The spacecraft is

equipped with a primary propulsion system that provides

the radial propulsive acceleration with a small and

constant magnitude aR ≪ µ/r20. The thrust vector acts

on the plane of the parking orbit for t ⩾ t0 ≜ 0; hence,

the two-dimensional spacecraft trajectory is described by

the variation of the radial distance r with the polar angle

θ, which is the angle measured counterclockwise from

the initial Sun–spacecraft line to the spacecraft position

vector direction (see Fig. 1).

Using the polar angle as an independent variable, and

paralleling the procedure detailed in Refs. [32, 33], the

spacecraft dynamics can be described by the second-order

nonlinear differential equation in Eq. (1):

ρ′′ + ρ− τϵ

(1− ρ)2
= 0 (1)

where the prime symbol denotes the derivative taken with

respect to θ, τ ∈ {−1, 1} is the dimensionless parameter

that models either an outward (τ = 1) or inward (τ = −1)

propulsive acceleration, and ϵ is the dimensionless value

of aR given by

ϵ ≜
aR
µ/r20

(2)

ρ is a type of dimensionless radial distance defined as

ρ ≜ 1− r0
r

(3)

Propelled
trajectory

Fixed direction

Outward
thrust

Inward
thrust

Primary
body

Parking
orbit

Initial
position

a
R

r0

θ
r

a
R

Fig. 1 Sketch of the problem with inward and outward
radial thrust.

The differential equation (1) is completed by the initial

conditions that model the state of the spacecraft along

the circular parking orbit.

ρ(0) = 0, ρ′(0) = 0 (4)

Note that Eq. (1) describes the dynamics of an

equivalent nonlinear oscillator. The application of

this equation in the context of trajectory analysis is

discussed in Ref. [32] (or Ref. [33]) for the outward (or

inward) thrust case. Although the general analytical

solution of Eq. (1) exists, it is not given in terms

of the elementary functions [6, 8]. To deal with this

issue, analytical approximations may be obtained using

perturbation methods, that is, by modeling the thrust

as a perturbation [34, 35] of the Keplerian motion, as

discussed in Section 2.1.
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2.1 Homotopy perturbation method

The analysis of the system dynamics described by Eq. (1)

is considered with the homotopy perturbation method

proposed by He [23]. To this end, the equivalent oscillator

dynamics is first decomposed into linear (L) and nonlinear

(N ) parts:

L(ρ) ≜ ρ′′ + ρ, N (ρ) ≜ − τϵ

(1− ρ)2
(5)

such that Eq. (1) can be rewritten as

L(ρ) +N (ρ) = 0 (6)

Then, analogous to Ref. [23], a homotopy H(ρ, k) is

constructed as

H(ρ, k) ≜ k (L(ρ) +N (ρ)) + (1− k) (L(ρ)− L(ρ)) (7)

where k ∈ [0, 1] is an embedding dimensionless parameter

and ρ is a generic linear approximation of the solution

of Eq. (1) that satisfies the two initial conditions given

by Eq. (4). The motivation behind the introduction of H
becomes clear by writing the auxiliary equation H(ρ, k) =

0, which is simplified as

L(ρ)− L(ρ) + k (L(ρ) +N (ρ)) = 0 (8)

Indeed, the roots of Eq. (8), which are functions of

k, can be changed by simply varying the embedding

parameter k within the interval [0, 1]. In particular,

when k = 0, Eq. (8) is reduced to the linear equation

L(ρ)− L(ρ) = 0. However, if k = 1, Eq. (8) is simplified

to L(ρ) + N (ρ) = 0, which coincides with the actual

system dynamics expressed by Eq. (6). In other words,

the solution of Eq. (8) varies with k and approaches the

solution of the original nonlinear oscillator described by

Eq. (6) in the limit as k → 1.

According to Ref. [23], the state variable ρ in Eq. (8)

can be expanded in a power series of the embedding

parameter k as

ρ = ρ0 + kρ1 + k2ρ2 + k3ρ3 + k4ρ4 +O(k5) (9)

where the coefficients ρi are functions of the polar angle

θ with zero initial conditions for i ⩾ 1.

ρi(0) = 0, ρ′i(0) = 0 for i ⩾ 1 (10)

while ρ0 satisfies the initial conditions of ρ in Eq. (4):

ρ0(0) = 0, ρ′0(0) = 0 (11)

Substituting Eq. (9) into Eq. (8) and equating the

zeroth-order terms in k yields

ρ′′0 + ρ0 = ρ′′ + ρ (12)

such that ρ ≡ ρ0. Without the loss of generality [23],

a potential straightforward solution of Eq. (12) that

satisfies the initial conditions (11) is selected.

ρ0 = ρ ≡ 0 (13)

To obtain differential equations describing the

dynamics of higher-order terms in k, the nonlinear

operator N (ρ) is approximated with a binomial

expansion, assuming that the linear and higher-order

terms in k of Eq. (9) have a small magnitude.

N (ρ) = − τϵ

(1− ρ)2

= − τϵ

(1− kρ1 − k2ρ2 − k3ρ3 − k4ρ4 −O(k5))
2

≃ −τϵ
(
1+2kρ1+2k2ρ2+2k3ρ3+2k4ρ4+O(k5)

)
(14)

in which Eq. (13) has been enforced. Substituting Eqs. (9)

and (14) into Eq. (8), the differential equation of the first-

order term in k is

ρ′′1 + ρ1 = τϵ (15)

Integrating Eq. (15) with zero initial conditions, as in

Eq. (10), yields

ρ1 = τϵ(1− cos θ) (16)

Similarly, the dynamical equation of the second-order

term in k is

ρ′′2 + ρ2 = 2τϵρ1 = 2ϵ2(1− cos θ) (17)

where Eq. (16) has been used to obtain the last term.

Integrating Eq. (17) with zero initial conditions yields

ρ2 = 2ϵ2(1− cos θ)− ϵ2θ sin θ (18)

The same procedure may be applied to the third-order

term in k, that is

ρ′′3 + ρ3 = 2τϵρ2 = 4τϵ3(1− cos θ)− 2τϵ3θ sin θ (19)

whose integral is

ρ3 = 4τϵ3(1− cos θ) +
1

2
τϵ3θ2 cos θ − 5

2
τϵ3θ sin θ (20)

and to the fourth-order term

ρ′′4 + ρ4 = 2τϵρ3 = 8ϵ4(1− cos θ) + ϵ4θ2 cos θ − 5ϵ4θ sin θ
(21)

from which

ρ4 =8ϵ4(1− cos θ)− 11

2
ϵ4θ sin θ

+
3

2
ϵ4θ2 cos θ +

1

6
ϵ4θ3 sin θ (22)

Note that the coefficients ρi (with i ⩾ 1)

are all proportional to ϵi such that the binomial
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approximation (14) and corresponding results are valid

as long as ϵ (and the propulsive acceleration magnitude

aR) is sufficiently small (see Eq. (2)). It should be

noted that the approximation could, in principle, be

extended to higher-order terms; however, the increase

in accuracy would be negligible compared with the

numerical error introduced by the binomial expansion of

Eq. (14). Therefore, the approximation is truncated at

the fourth order.

Accordingly, a fourth-order approximation of the

function ρ = ρ(θ) can be obtained from Eq. (9) by

enforcing the conditions O(k5) = 0 and k = 1, that

is,

ρ ≃ ρ0 + ρ1 + ρ2 + ρ3 + ρ4 (23)

Bearing in mind Eqs. (13), (16), (18), (20), and (22),

Eq. (23) yields

ρ ≃ a1 ϵ+ a2 ϵ
2 + a3 ϵ

3 + a4 ϵ
4 (24)

where

a1 ≜ τ(1− cos θ) (25)

a2 ≜ 2(1− cos θ)− θ sin θ (26)

a3 ≜ 4τ(1− cos θ)− 5

2
τθ sin θ +

1

2
τθ2 cos θ (27)

a4 ≜ 8(1− cos θ)− 11

2
θ sin θ +

3

2
θ2 cos θ +

1

6
θ3 sin θ

(28)

Finally, the polar form of the spacecraft propelled

trajectory is retrieved from Eq. (3) as Eq. (29):

r(θ) =
r0

1− ρ(θ)
≃ r0

1− a1 ϵ− a2 ϵ2 − a3 ϵ3 − a4 ϵ4
(29)

2.2 Model validation

The accuracy of the trajectory approximated by

Eqs. (24)–(29) is tested by taking the outputs of an

orbital propagator as reference values, in which Eq. (1)

was integrated in double precision using a variable order

Adams–Bashforth–Moulton solver scheme [36, 37] with

absolute and relative errors of 10−12. The performance of

the proposed technique is compared with that of a second-

order perturbation method based on an asymptotic series

expansion, the results of which were applied in Ref. [33]

to approximate the spacecraft trajectory in the case of

inward (radial) propulsive acceleration, but may also be

generalized to include the outward case as

r(θ) =
r0

1− τϵ(1− cos θ) + ϵ2(2 cos θ − 2 + θ sin θ)
(30)

The latter expression slightly differs from that reported

in Ref. [33] where τ = −1. This is because in this work,

the polar angle θ was measured from the primary body-

spacecraft line at time t0 (see Fig. 1). Note that the

outputs of the orbital propagator were chosen as reference

values instead of the results obtained with the analytical

method based on elliptic integrals discussed in Ref. [6]

because of the reduced computational time required by

the orbital propagator. However, some tests have been

performed to compare the results of the approximation

method with those obtained by the analytical solution.

The results are practically identical to those discussed in

the remainder of this section.

To compare the performance of the two approximation

methods, a dimensionless error is defined as

E ≜

∣∣∣∣rapp − rnum
rnum

∣∣∣∣ (31)

where rapp is the radial distance at a generic polar angle

θ estimated with Eq. (29) or Eq. (30), and rnum is the

actual radial coordinate calculated with the (numerical)

orbital propagator. The variations in dimensionless errors

E obtained with Eqs. (29) and (30) when ϵ = 1% are

shown in Figs. 2(a) and 2(b) for an outward thrust

(τ = 1) and inward thrust (τ = −1), respectively.

Although the accuracy of both approximations decreased

as the polar angle θ increased, it is clear from Fig. 2

that the homotopy perturbation method significantly

outperformed the asymptotic series technique used in

Ref. [33].

The accuracy of the analytical approximation (29)
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Fig. 2 Comparison between the accuracy of the asymptotic
series method of Ref. [33] (dash-dot line) and the homotopy
perturbation approach (continuous line) as functions of θ
when ϵ = 1%.
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decreased as the dimensionless propulsive acceleration

magnitude ϵ increased. This is because the binomial

expansion of Eq. (14) is valid as long as ρ is small, that is,

as long as ϵ ≪ 1 (see Eq. (24)). However, if the variation

of the polar angle is sufficiently small, Eq. (29) provides an

accurate approximation of the actual radial distance even

when ϵ reaches a few tenths. For example, if θ ⩽ 90 deg,

then the maximum value of E varied with ϵ ∈ (0, 0.25],

as shown in Fig. 3. In the worst case, when ϵ = 0.25

and τ = 1, Fig. 3(a) shows that Eq. (29) approximates

the actual radial distance with a dimensionless error

of less than 1%. If ϵ < 0.05, then the error decreased

to max(E) < 5 × 10−5. Note that the combination of

ϵ = 0.25 and τ = 1 allows the spacecraft to reach the

maximum radial distance of approximately 1.4r0 when

θ ∈ [0, 90] deg, as shown in Fig. 4(a). Figure 4(b) shows

the variation in the minimum r as a function of ϵ when
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Fig. 3 Maximum value of E as a function of ϵ when θ ⩽
90 deg.
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Fig. 4 Maximum or minimum value of the radial distance
as a function of ϵ when θ ⩽ 90 deg.

τ = −1. In this case, when ϵ = 0.25 and τ = −1, a

minimum primary-spacecraft distance slightly smaller

than 0.82r0 was obtained for the same polar angle value.

The approximate solution reduced the computational

time by approximately two orders of magnitude compared

with that required by an orbital propagator. However, the

solution discussed in Ref. [6], despite being analytical, is

only capable of providing the swept angle θ as a function

of r because it requires the solution of an elliptic integral

for each pair {r0, r} to obtain the corresponding value of

θ. In other words, although the results reported in Ref. [6]

are useful for calculating the flight time and swept angle

between two positions, the solution discussed in this

work can approximate the polar form of the spacecraft

propelled trajectory much more quickly.

3 Potential mission application

The analytical approximation of Eq. (24) (or of Eq. (29))

can be used to quickly solve a type of targeting problem,

the aim of which is to select the propulsive acceleration

magnitude required by a radially accelerated spacecraft to

reach the target point of given polar coordinates {rf , θf}.
For example, assume that θf = 90 deg and rf = 1.2r0

such that the target dimensionless radial distance is ρf =

1− r0/rf ≃ 0.166. In this case, considering an outward

radial thrust (τ = 1) and using Eq. (24), the condition

ρ = ρf yields the fourth-order polynomial equation:

(6.5843× 10−3)ϵ4 + (7.3009× 10−2)ϵ3

+ 0.4292 ϵ2 + ϵ− 0.166 = 0 (32)

which provides the propulsive acceleration magnitude

of ϵ ≃ 0.15595; this value is consistent with Fig. 4(a).

The propelled trajectory obtained with the analytical

approximation is shown in Fig. 5. It can be seen that it

practically coincides with that estimated by the orbital

propagator. Note that similar results can be obtained

with the second-order approximation of ρ, that is, by

assuming a3 = a4 ≡ 0 in Eq. (24). In this case, the

simulations showed that the target point was reached

with a dimensionless error of E ≃ 1.63 × 10−3, a value

consistent with Fig. 3(a).

4 Conclusions

This paper discussed the application of the homotopy

perturbation method in the trajectory analysis of a

spacecraft propelled by radial acceleration of a small
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and constant magnitude. The spacecraft dynamics is

equivalent to that of a nonlinear oscillator, whose

approximate solution was derived by defining a suitable

homotopy and modeling the thrust as a perturbative term

in Keplerian motion. The accuracy of the obtained polar

equation was validated by comparison with the output

of an orbital propagator.

The simulation results showed small errors in the

trajectory approximation, and confirmed that the

homotopy perturbation method significantly outperforms

the previously proposed approximate solution. In

particular, the analytical approximation of the spacecraft

trajectory can be used to analyze a simplified

targeting scenario without numerical simulations.

The computational time required by the proposed

approximation is significantly shorter than that of an

orbital propagator or existing analytical solutions based

on elliptic integrals.
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