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Abstract: Adhesion between an elastic body and a smooth, rigid substrate can lead to large tensile stresses 

between them. However, most macroscopic objects are microscopically rough, which strongly suppresses 

adhesion. A fierce debate has unfolded recently as to whether local or global parameters determine the 

crossover between small and large adhesion. Here, we report simulations revealing that the dependence of the 

pull-off force Fn on the surface energy γ does not only have two regimes of high and low adhesion but up to four 

regimes. They are related to contacts, which at the moment of rupture consist of (i) the last individual 

Hertzian-shaped contact, in which is linear in γ, (ii) a last meso-scale, individual patches with super-linear 

scaling, (iii) many isolated contact patches with extremely strong scaling, and (iv) a dominating largest contact 

patch, for which the pull-off stress is no longer negligible compared to the maximum, microscopic pull-off stress. 

Regime (iii) can be seen as a transition domain. It is located near the point where the surface energy is half the 

elastic energy per unit area in conformal contact. A criterion for the transition between regimes (i) and (ii) 

appears difficult to grasp. 
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1  Introduction 

When two solids come into contact, attraction due  

to van der Waals interaction is unavoidable. If their 

surfaces were perfectly smooth, maximum tensile 

forces between them could be crudely estimated 

through the ratio of surface energy ,  which is 

typically of order 50 mJ/m2, and their interaction range, 

  which is roughly 5 Å. However, we all know that 

lifting off an object with an area of 1A   cm2 does not 

necessitate a force anywhere near / 10,000A    N. 

The established reason for the failure of our crude 

calculation is that the elastic energy needed to conform 

two surfaces to each other generally exceeds the 

surface energy gained during microscopic contact 

formation by orders of magnitude [1–6]. This is why 

only a small fraction of the nominal contact is in 

microscopic contact when a zero or tensile normal 

load is applied. As a consequence, the pull-off stress 

(averaged over a domain large compared to atoms 

but small compared to macroscopic dimensions) must 

be small compared to maximum local tensions, unless, 

the surfaces are very smooth and/or the solids are 

extremely compliant. 

The elastic energy needed to conform two surfaces 

to each other, 
fce

,v  is dominated by contributions 

from large-wavelength height undulation when the 

Hurst roughness exponent H lies in the typical range 

of 0.5 1H   [2, 4–7]. Adding roughness at small 

wavelengths then barely increases 
fce

v  although it 

does increase the local mean-square gradient 2g  and 

even more so the local mean-square curvature 2 , 

see also Eq. (A2). It thus came as a surprise when 

Pastewka and Robbins [8] proposed a criterion for 

macroscopic adhesion less than a decade ago that 

depends only on local parameters. Their theory, which 

received much skepticism [2, 4–7, 9, 10], is based on 

the question above what surface energy the area–load 
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Nomenclature 

ΔW  dissipation energy in a loading/unloading cycle 

Δa  linear size of a mesh element 

  Johnson parameter 

 γ surface energy 

  reduced surface energy 

t
  reduced surface energy at transition 

loc
  local reduced surface energy 

2  mean square curvature 

s
  short wavelength cut-off 

r
  roll-off wavelength 

T
  Tabor parameter 

  characteristic range of adhesion 

  pull-off stress 

 A nominal contact area  

( )C q  height spectra of indenter 

 E* contact modulus 

p
F  pull-off force 

max
F  maximum characteristic tensile force  

 H Hurst exponent 

 RC characteristic radius curvature of rough  

  substrate 

 W work of adhesion 

 ar relative contact area  

 g mean gap or interfacial separation 
2g  mean square gradient 

( )h q  Fourier transform of the substrate height 
2h  mean square height 

rms
h  root-mean-square height 

 p external normal pressure 

 p* reduced contact pressure 

0
q  smallest non-zero wavelength in the system

d
r  domain size ratio 

f
r  fractal ratio 

ela
v  elastic energy in true contact 

fce
v  elastic energy in full contact 

  
 
relation seizes to be (approximately) linear at small 

reduced pressures * */ ( ) ,p p E g  where p is the 

nominal contact pressure. At that point, a non-negligible 

relative contact area forms at zero load so that a 

perceivable force might be needed to separate the 

surfaces. 

Simulations, which revealed that adding roughness 

at small wavelengths in fact does not alter pull-off 

forces, apparently rebutted the necessity for a local 

stickiness criterion [4, 9]. However, such calculations 

are not particularly telling when the range of adhesion 

exceeds the amplitude of the added roughness. In 

fact, an analysis of the gap distribution function of 

adhesive, randomly rough, adhesive surfaces revealed 

that the gap distribution function lost its asymptotic 
1/3g  scaling at small gaps g near the point, where 

local stickiness criteria predict the onset of stickiness 

[11]. In addition, simulations using short-range 

adhesion down to the smallest scale indicated a 

transition between sticky and non-sticky, which 

apparently supported the Pastewka Robbins criterion 

[12]. However, this time, the limited system size can 

be argued to have led to false conclusions. Thus, the 

validity of or even the necessity for a local stickiness 

criterion remains an open issue. 

The above-presented argument raised against the 

necessity of local stickiness criteria starts from the 

large scale and investigates what happens if more 

roughness is added at small wavelengths. However, 

this procedure needs to be inverted when investigating 

if the contact formation of a single mesoscale contact 

patch is hysteretic, or, sticky. Here, we call a contact 

patch mesoscale when it extends over a connected 

domain large enough to include saddle points and 

maxima of the undeformed gaps. 

The dynamics of contact formation and rupture of 

such an (isolated) contact patch, as well as the tensile 

load it can carry, obviously depend on the local 

geometry but are unaffected by the height profile of 

the substrate far away from it, as is demonstrated in 

Fig. 1. The roughness unfolding to the left and to  

the right of the shown domain does not impact the 

load-bearing ability of the central contact patch as 

long as that additional domain makes no contact with 

the elastic body. In other words, when keeping the 

properties of the height spectrum at short wavelengths, 

thus fixing g, increasing the ratio of short wavelength 

cutoff and roll-off wavelength 
s r

/  —both implicitly 
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defined further below in Eq. (1) through their 

corresponding wave numbers—would reduce the 

number density of the mesoscale contact patches and 

thus the total load they can carry but not their 

individual stickiness. Thus, it seems as though asking 

whether individual contact patches are sticky and to 

what degree this can be observed in a macroscopic 

experiment are two separate issues, which we address 

in this work using computer simulations. 

2 Model 

Our model is similar to that used in previous numerical 

studies [12, 13]. Specifically, a rigid substrate and an 

elastic body interact through a Morse potential for 

which the areal interaction energy density reads 
2 / /( ) (e 2e ).g gv g       Here,   is the energy gained 

when making microscopic contact, g is the gap between 

the surfaces, a negative gap indicating an overlap, 

and   is the interaction range. The elastic energy  

density is given by   * 2
ela ( / 4 () | |)

q
v E q u q , where 

   2 i1
) d (( e )rq r

A
u u q r  is the Fourier transform of the  

periodically repeated displacement field ( )u r  of the 

elastic body defined in the xy -plane. The domain is a 

square with an area of 2A   , so that the smallest 

non-zero wavenumber fitting into it is 
0

2π /q   . 

The Fourier transform of the substrate height, ( )h q , 

is given by default by 

  

 


   
  

 

0

1i2π

0

1 for
( )

( ) e
for

r

HXr

r s

q q q
C q

h q
A q q q

q

qq   (1) 

and zero else, reflecting real height spectra, ( )C q  
2| ( )|A h q , for a wide variety of surfaces [14]. Here, 

0
h  is 

a constant of unit length, ( )X q  a uniform random 

variable on (0, 1), and r ,s r ,s2π/q  . Important numbers 

to be deduced from Eq. (1) are the mean-square (ms) 

height 2h , ms height gradient 2g , ms height curvature 
2 ,  and the full-contact elastic energy 

fce
.v  The 

dependencies of these quantities on the variables 

defining the height spectrum are compiled in the 

Appendix. Note that the exponent 1 H  in Eq. (1) 

must be replaced with 0.5 H  for line indenters. 

Simulations were run using a house-written 

Green’s function molecular dynamics code [15] using 

mass-weighting in combination with the fast-internal- 

relaxation-engine (FIRE) optimizer, as described 

previously [16]. The elastic body and rigid rough 

substrate are brought into contact at zero external 

stress. Only one set of simulations considers different 

preloads. They are reported in the last figure of this 

work. Retraction was achieved through a ramp, in 

which the elastic body’s center-of-mass, ( 0)u q  , was 

changed quasi-continuously from one value to the 

next within 200 time steps by moving )0(u q   in 

steps of 0.1% of the root-mean-square height, which 

translates to 2% of the interaction range at a Tabor 

parameter of 
T

1  . This was then followed by a 

relaxation of 600 time steps at fixed )0(u q  . Using 

this procedure, the surface moves in a quasi-static 

fashion so that viscoelastic and inertial effects are 

small. Any hysteresis reported in the results section 

therefore relates to adiabatic processes. In real 

experiments [17], the work of adhesion and the energy 

hysteresis would be generally larger, in particular 

when allowing the system to relax between compression 

and decompression. 

Throughout this work, all (dimensionless) parameters 

defining the model were varied, except for the Hurst 

exponent H, which was kept at 0.8H  , because this  

 

Fig. 1 Cross-section of an adhesive elastic body, which is pulled off a rigid, self-affine substrate. The interference d is the difference 
between the elastic body's bottom-surface center-of-mass and the indenter's highest point. The shown cross-section contains the highest 
point of our default configuration. The shown cross-section is 10% of a cut through the square simulation cell. 
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a rather generic value. The two remaining dimensionless 

parameters defining the height spectrum are 

“domain-size ratio” 
d d

/ 4r    and “fractal ratio” 

f r s
/ 64r    . Moreover, the default (local) Tabor 

parameter defined as 1 1/ 3 * 2/ 3

T c
/( )R E    was set 

to 
T

1  . The reduced surface energy 
fce

/ v   was 

varied over several orders of magnitude for each 

system. 

When relating our model to real systems,   should 

be of order 50 mJ/m2 and 
s
  around one nanometer, 

or, if we assumed our smallest mesh to be already 

slightly coarse, 
s
  would be a few ten nanometers, in 

which case   would need to be reduced by the elastic 

energy per unit area required to make contact at the 

scales below the mesh size Δa . Thus, when changing 

 , we don’t have a mind a change of the surface 

energy itself, but rather of the other parameters 

affecting 


, *

0
E  or the height spectrum, because these 

parameters tend to vary much more from one 

experiment to the next than the surface energy. In this 

sense, when calling adhesion small, we don’t mean to 

say a small value of the real surface energy but the 

reduced surface energy. In addition, we assume the 

length of the simulation cell to be small compared to 

the normal dimension of the elastic body so that 

macroscopic peeling or confinement effects can be 

neglected. In many cases, it would be appropriate to 

consider our entire simulation cell to represent a single 

element in finite-element method based simulations 

[18–20] of technical systems. 

The discretization of the elastic body was set to 

s
Δ / 16.a   Even for the largest values of 



 considered 

here, this choice turned out sufficient to avoid lattice 

trapping, i.e., contact hysteresis associated with 

individual degrees of freedom, which are mesh 

elements in our case. In the absence of lattice trapping, 

reducing Δa  at fixed range of interaction alters the 

values for our quantities of interest only by a few 

percent so that trends remain unchanged. The default 

system size was 4,096 4,096.  Several hundred if not 

thousand simulations had to be run in total, each one 

being fairly long with thousands of steps forming the 

stepped ramp, each step in a ramp necessitating 800 

time steps. Due to this large computational burden, 

we did not attempt to reduce the minor systematic 

discretization errors, which would have required us to 

quadruple the number of Green’s function molecular 

dynamics (GFMD) elements. Instead, we found it 

more important to reduce statistical uncertainties by 

averaging over a few, usually five random realizations. 

In fact, many more simulations were conducted than 

those summarized here. However, it took us some time 

to detect coherent trends and to represent them such 

that they are not hidden by data scatter. 

3 Results 

To set the stage for the analysis of how different 

dimensionless parameters affect the pull-off force in 

adhesive systems, we first present results on an 

individual random realization for our default parameter 

set. This choice makes the ratio of the range of 

interaction used in the Morse potential and the root- 

mean-square height take the values 
rms

/ 0.125h   

for 1   and 
rms

/ 0.0268h   for  0.1 . Given that 

the difference between the highest and the lowest point 

is roughly 4h , the range of interaction—using a fixed 

ratio of mesh size and 
s
 —turns out approximately 

3% of |max( ) min( )|h h  even at the high end of 

investigated surface energies. 

Figure 2(a) reveals three obvious regimes for the 

dependence of the pull-off force on the reduced surface 

energy  : A large and a small pull-off force regime at 

0.8   and 0.3,   respectively. They are separated 

by a narrow cross-over regime near 0.5.   Averaging 

similar curves over several random realizations clearly 

broadens the cross-over regime. However, for any 

investigated individual system, we did not find the 

cross-over regime to be significantly larger than the 

one reported in Fig. 2(a), even when increasing the 

system size or reducing the short-wavelength cutoff 

by a factor of four while keeping the roll-off wavelength 

fixed. This claim will be substantiated further below. 

To explore the correlation between relative contact 

area and stickiness, Fig. 2(b) reports the relative 

contact area 
r
( , 0)a F   as obtained under zero load 

(full squares) and right before snap off, 
r p
( , )a F   

during the retraction from a zero-load configuration 

(open squares). Here, we only count surface points 

under compressive stress toward true contact. 

Interestingly, the scaling of 
r
( ,0)a   appears to level 

off with increasing   before it starts picking up again,  
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Fig. 2 (a) Pull-off force Fp, (b) relative contact area ra , and (c) 
work of adhesion W (closed squares) as well as energy hysteresis 
ΔW  (grey open circles) for one realization of the default surface. 
Open symbols in panel (a) relate to contacts in which the elastic 
body was retracted when the normal load reached zero for the 
first time, while closed symbols relate to earlier retractions right 
after the tensile stress was maximal. Both data sets overlap for  
γ < 0.5. Closed and open symbols in panel (b) show ra  at zero 
load and just before snap-off, respectively. Variables were 
normalized as follows: Fp is expressed in units of Fmax, which is 
the maximum tensile stress of the cohesive zone model times the 
nominal contact area, while γ is divided by the elastic, full-contact, 
areal energy density fce.v  Finally, W and ∆W are normalized by γ 
times the nominal contact area A. 

something we found to be the rule at relatively small 

r s
/   ratios rather than a peculiarity of this individual 

random realization. The data points labeled (i) and 

(iv) in Fig. 2(b) are the last ones for which the contact 

at zero load and at snap-off consist of a single patch, 

see Fig. 3, where the contact stresses are shown 

according to the numerals (i)–(vi) used in Fig. 2(b). 

The transition between sticky and non-sticky also 

becomes apparent in the work of separation W, 

which is the work done to separate the two surfaces 

from a zero load configuration, and most prominently 

in the dissipated energy ΔW  that is lost in a closed 

cycle, in which the surfaces are first brought quasi- 

statically into zero-load contact and then separated 

quasi-statically again. In Fig. 2(c), both quantities 

change substantially near 0.5 


 where depinning 

force 
p

F  and non-contact area 
r

1 a  also have a steep 

dependence on adhesion. Due to the small hysteresis 

that occurs for 
T

1  , single-asperity contacts [10, 21] 

and the ensuing difficulty to compute accurate 

numbers, we abstained from reporting our estimates 

for ΔW  at 0.5.   However, ΔW  drops at least by 

three decades when the hysteresis is related to the 

snap off of an individual asperity compared to the 

lowest investigated value of   at which we find more 

than one contact patch at snap-off in our default 

configuration. 

The cross-over between the sticky, large-pull-off-force 

regime and the non-sticky, small-pull-off-force regime 

correlates with qualitative changes in the contact 

topography, which can be deduced from selected 

zero-load and pull-off-force stress fields shown in Fig. 3. 

They reveal a cross-over from a close-to-percolating 

contact to a single-asperity contact and a reduction of 

relative, repulsive contact area from 0.71  to 0.0075  

when the surface energy is merely reduced by a factor 

of approximately three. To achieve a similar change 

for a non-adhesive contact under a compressive load 

L, L needs to be reduced from *0.44 /L E g  by a 

factor slightly exceeding 100 for the given system [22]. 

Here, we call the system to be “close-to-percolating” 

when it is possible to identify a path through it from 

one side to the opposite side such that the (linear 

dimension of the) visited non-contact domains are 

never larger than the larger of two adjacent contact 

patches that need to be visited on the path. 

In real systems, the “fractal ratio” 
f

r  is much larger 

than the ones that can be currently realized in 

simulations. To nevertheless ascertain if the reported 

trends remain robust under varying fractal ratios, we 

added 
f

32r   and 
f

128r   to our analysis, while 

keeping all other dimensionless parameters used in 

the problem definition constant. In addition, we 

considered 
f

512r   for which the domain-size ratio 

d
r  was reduced to unity. All cases were averaged over 

five independent random realizations, which smears 

out the cross-over regime, since its location varies 

somewhat from one random realization to the next. 

Geometric means were chosen, because they reduce 

the effect of statistical outliers compared to arithmetic 

or harmonic averages. 

Figure 4(a) reveals that increasing 
f

r  makes the 

transition between single to many-asperity contacts 

move to slightly larger .  Coming from large  , the 

drop in depinning force and—even more clearly—in 

the work of adhesion and its hysteresis still occur at  
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Fig. 4 Same quantities as in Fig. 2. This time, different ratios 

r sf /r λ λ  are considered and results averaged geometrically over 
five independent configurations. Moreover, only zero-load relative 
contact areas are shown. In addition, the work of separation and 
its hysteresis are represented in two separate panels, i.e., in (c) 
and (d), respectively. Dashed lines are drawn to guide the eye. 
Circles, squares, diamonds, and plus symbols represent the data 
sets for f 32, 64,128,r  and 512, respectively. 

the latest near 1 / 2.   In addition, subtle indications 

for a change of scaling can be found in the single- 

asperity-contact regime. Specifically, Fig. 4 reveals (a) 

a slight crossover in the 
p
( )F   scaling for 

f
512r   

near 
1c

0.1   and (b) in the ( )W   scaling for 
f

128r  , 

again near 0.1.   Inside the single-asperity regime, 

the values of ,  where the 
r
( )a   scaling crosses over 

from Hertzian to a meso-scale contact-patch scaling, 

are difficult to ascertain. For the smallest 
f
,r  the 

increase of 
r

a  at pull off with 
f

r  even seems to level 

off at the large -   end of the single-asperity regime, 

while no clear changes in scaling are detectable for the 

largest studied value of 
f
.r  For a recent analysis of 

how the contact area scales at fixed adhesion with a 

changing compressive load, we refer the reader to a 

recent study by Salehani et al. [23]. 

Unfortunately, the results presented in Fig. 4 do not 

provide fully conclusive information on the correctness 

of local stickiness criteria [8, 12]. They are based on a 

dimensionless surface energy, * 3

loc T c
( ) / ( )f E R g   , 

which depends only on local parameters, i.e., on the 

microscopic surface energy, the inverse characteristic 

surface curvature 
c

R , and a function of the Tabor 

parameter, 
T

( )f  . Neither, the scaling nor the function 

T
( )f   were stated explicitly in the original literature 

[8]. However, for large 
T

 , a power law dependence 

from the arguments presented in the original literature  

were deduced [12] according to which 
T

{ /   
* 3 7 / 3

c
( )}E R g  with a prefactor of order unity. Using this 

dependence, we find 
1c f

12( )8 0.235r    and 
1c f

(r  

512 0 2) .11 when 
loc

1   in our model, i.e., at the 

point where the local stickiness criterion predicts    

a transition between sticky and non-sticky. These 

numerical values are on par with the simulation results. 

Yet, the data do not allow us to confirm or to reject the 

correctness of the hypothesis that 
1c
  decreases with 

f
r  when the Tabor parameter remains constant.  

Nonetheless, it seems clear that the sudden, drastic 

 

Fig. 3 Stress fields of configuration at zero-load (top row) and right before snap-off (bottom row) for reduced surface energies γ  at 
the large-γ  end of the non-sticky regime (left column, 0.27γ ), in the center of the cross-over regime (center column, 0.55γ ), and 
at the low-γ  end of the sticky regime (right column, 0.90γ ). The labels (i)–(vi) correspond to those used in Fig. 2(b). 
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increases of the pull-off force, work of adhesion, and 

its hysteresis coming from small   are related to the 

transition from single to multi-asperity contacts rather 

than to a cross-over in scaling of individual contact 

patches or to a dramatic increase of the relative contact 

area with adhesion. 

We also analyzed the effect that the system size has 

on the scaling behavior within the various regimes 

and the locations separating them. To this end, we 

varied 
d

r  from 
d

2r   to 
d

8r   while keeping the 

fractal ratio and the Tabor parameter constant. 

Figure 5 shows results of an individual surface 

realization rather than averages so that the sharpness 

of transitions between different scaling domains does 

not get smeared out through averaging. The individual 

realization was chosen to be the one for which   

took the median value for the transition between the 

single and the many-asperity regime. Coming from 

large surface energies, no significant dependence  

on the surface energy on all measured quantities is 

observed down to a value of 1  , below which small 

systems are no longer self averaging. The transition 

from the many to single-asperity domain occurs 

again at 
t

1 / 2   in all cases. A marginal reduction, 

supposedly irrelevant in practice, is observed in 
t

  

with increasing 
d

r . In contrast, all computed quantities 

reveal a clearly noticeable size dependence in the 

one-asperity regime. Interestingly, the pull-off force 

and relative contact area do not scale with 2

d
1 / r , which 

would happen if the (local) geometric features of the  

 

Fig. 5 Same quantities as in Fig. 4. This time, different ratios 

dd /r λ  are considered with fixed f 64.r  Here only one 
calculation is shown. 

highest asperities and thus last asperity in contact 

were independent of 
d

r . Unraveling the nature for this 

correlation, which falls in the domain of extreme-event 

statistics, is beyond the scope of this work. It would 

be a similarly non-trivial exercise to ascertain the 

expected height difference between the highest and 

second-highest peak for a given spectrum. Brute- 

force computing appears to be the only option to get 

statistics. 

The last varied dimensionless number is the Tabor 

parameter, see Fig. 6. It reveals an intricate dependence 

of the quantities of interest on 
T

 , in particular with 

respect to long-range adhesion. First, the transition 

between single and many-asperities contacts is no 

longer sharp at small 
T

 . Nonetheless, all computed 

properties keep changing their functional dependence 

on   around 0.5  , which, of course, will seize to 

be true in the (irrelevant) case of the interaction range 

being no longer small compared to the root-mean- 

square roughness. Second, the pull-off force, 
p

F , 

relative to its theoretically maximum value for flat 

contacts, 
max

F , is increased noticeably for 1   as 

adhesion becomes long ranged. However, the absolute 

value of 
p

F  is generally reduced compared to short- 

range adhesion, because 
max

F  decreases with increasing 

interaction range. Yet, in the usual single-to-many- 

asperity-contact transition regime ( 0.5)   even 

absolute values of 
p

F  can be relatively high for 

long-ranged adhesion, since the surfaces can “see” 

many asperities in addition to the highest. Third, the 

energy hysteresis is reduced by many orders of  

 

Fig. 6 Same quantities as in Fig. 4. Here, different Tabor parameter 

Tμ  are considered with fixed f 64r  and d 4.r  
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magnitudes at small 
T

 , while the work of adhesion 

and the relative contact area at small   do not seem to 

be sensitive to the range of adhesion, a phenomenon 

known quite well from single-asperity indenters. In 

addition, for large 
T

 , the data collapses less well on 

a master curve, when varying 
T
  than when varying 

s
r  or 

d
r  while keeping the other dimensionless 

variables describing the height spectrum fixed. 

To further elucidate, amongst other things, the 

quasi-discontinuous change in the work of adhesion 

with surface energy, Fig. 7 shows load-displacement 

relations for various systems with reduced surface 

energies being 0.45   times factors between roughly 

2/5 and 5/2. The studied models include two “regular” 

two-dimensional contacts, both with Hurst exponent 

0.8H   and (a) 
d

5r   and 
f

102.4r  , (b) 
d

1r   and 

f
512r   as well as a 0.8H   line contact with (c) 

d
32r   and 

f
512,r   and finally (d) a two-dimensional 

contact, in which the surface topography has only   

a single wave length, 
d f

1,r r   and 90° rotational 

symmetry, similar to that of a square lattice. 

Specifically, the indenter profile (d) was defined as 

0 0 0
( , ) / 2 cos( ) cos( )h x y h q x q y     and 

0 rms
.2h h   

 

Fig. 7 Reduced compressive force, or, load max/L F , as a function 
of the dimensionless interference rms/d h  in approach and 
retraction for different reduced surface energies γ  and different 
indenters. Their dimensionless numbers other than 0.8H  are 
(a) 2,D  d 5,r  f 102.4,r  (b) 2,D  d 1,r  f 512,r  
(c) 1,D  d 32,r  f 512,r  and (d) 2,D  d 1,r  f 1.r  
Circles in (b) indicate the point of reaching zero load on 
approach for the first time. Dashed lines indicate a compression/ 
decompression (c/d) cycle, for which the motion is returned after 
zero load is first reached. These point are indicated with a solid 
circle. Grey areas relate to dissipated energy. 

At large surface energy, e.g., at 0.55   for 

randomly rough systems (a–c) and 1.13   for the 

single-sinusoidal indenter (d), the hystersis occurs 

(predominantly) at a negative stress. This moves 

toward a zero-stress hysteresis as the reduced surface 

energy decreases. Once reduced surface energies are 

small, i.e., at 0.25,   the energy hysteresis is much 

reduced and predominantly located at compressive 

stresses. 

The just-discussed behavior accounts for the quasi- 

discontinuous change of the various stickiness criteria 

with surface energy. For example, the 0.45   and 

0.55   approach curves in panel (b) look similar 

up to the interference① *

low
,d  where the contact with 

the slightly lower adhesion reaches zero, at which 

point the displacement direction is reverted. Upon 

retraction, a tiny hysteresis, which cannot be resolved 

with the used line width, ensues for the less-adhesive 

system. For the slightly greater surface energy, the 

first instance of zero load occurs at a much greater 

interference, since the tensile load increases again 

after it had almost reached the value of zero. Thus,  

a small change in   can substantially change what 

fraction of a load-displacement curve is sampled 

when reverting the compression at the first zero-load 

occurrence. This leads to a substantial change of all 

stickiness criteria, which would have also occurred if 

the compression had been reverted at a slightly positive 

load, which could be, for example, the gravitational 

load of the indenter. However, the largest relative 

discontinuity occurs in the energy hysteresis. 

Panels (b) and (d) in Fig. 7 also reveal that the 

hysteresis is relatively well localized when the system 

size (or the domain over which the stress-strain 

relation is coarse-grained) does not exceed the roll-off 

wavelength, in which case the hysteresis only extends 

over a range that is clearly less than 0.1 times the 

root-mean-square height, as is the case for the 

investigated single-sinusoidal roughness. This region 

becomes substantially larger as the roll-off domain, 

i.e., the ratio 
r

/   increases. 

Qualitatively, panels (b) and (d) in Fig. 7 look similar 

in that the load-displacement curves, ( ),L d  show two 

clear minima, which are located at medium and large 

interferences. They can be readily interpreted for the  

                                                        
① The interference is defined in the caption of Fig. 1. 
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single-sinusoidal roughness (d), as contact formation 

of the highest peak at small interference and of the 

saddle point at intermediate interference. A similar 

interpretation can be said to hold for the randomly 

rough contact of model (b), even if quite a few 

small-scale instabilities become apparent. The reason 

why (b) shows no hysteresis regarding the highest 

asperity is that the local Tabor parameter is 
T

1  , 

while interactions in the single-sinusoidal contact were 

shorter ranged and characterized with 
T

7.   The 

surface undulations becoming unstable at an increased 

interference 
rms

/ 0.25d h   for indenter (b) are related 

to relatively coarse scales, which is why a scale- 

dependent Tabor parameter would clearly exceed 

unity at the relevant length scale. 

A saddle-point instability, as that observed in model 

(d) of Ref. [24], or, in related single-wavelength, two- 

dimensional (SW2D) indenters with 60° rotational 

symmetry, does not exist in single-wavelength line 

contacts (SWLCs) [25]. Obviously, line contacts do not 

even have saddle-points, which in a leakage context 

could also be called constrictions, since they cannot 

have profiles that are maximal along one direction and 

minimal in the (non-existing) orthogonal, interfacial 

direction. To investigate if this qualitative difference 

between one- and two-dimensional interfaces matters 

beyond single-wavelength roughness also for randomly 

rough surfaces, we complemented our simulations with 

one-dimensional (1D) randomly rough indenters. 

A comparison between 1D and 2D randomly rough 

indenters both having a non-negligible roll-off domain, 

as well as identical dimensionless numbers 0.8H  , 

f
102.4r  , and 

T
1  , reveal both similarities and 

discrepancies, see Figs. 7(a) and 7(c). Before discussing 

them, we wish to clarify that a 1D indenter with 

d
5r  , which is the value used for the 2D system, 

yields similar results as those shown for 
d

32r   but 

has greater data scatter, which is why we kept the 

latter for panel (d). A similarity between randomly 

rough 1D and 2D is the value where stickiness starts 

to pick up upon increasing adhesion, which in both 

cases is near 0.5  . However, the point of rupture 

after decompression occurs at distinctly more negative 

interferences for the 1D than for the 2D indenter. 

More importantly, the reduced pull-off load is almost 

two orders of magnitude larger in 1D than in 2D. 

Similarly, the relative contact area at pull off is much 

larger in 1D than in 2D, this time by a factor of 

approximately ten. These results are surprising given 

that the differential 2( )dC q q  is identical for 1D and 

2D surfaces on the self-affine branch as long as both 

have similar values H and similar cut-off and roll-off 

wavelengths. 

Interestingly, Johnson [26] found similar results  

for a one-dimensional, single-sinusoidal surface as 

we do for random roughness. Specifically, he found 

jump into complete contact when his parameter,  :  
1/ 2

2 *

0 0

4

π
,

q h E

 
  
 

 satisfied 
c

0.6.    This condition  

can be recast as    2

c
π 1.1,  which differs from our 

results only by a factor of two, if an almost percolating 

contact of a rough surface is associated with a full 

contact in Johnson’s model.  

4 Conclusions 

In this work, we demonstrated that possible quantitative 

measures for stickiness, which are pull-off force, work 

of adhesion, and energy hysteresis, are most sensitive 

to the adhesion for simple, randomly rough surfaces, 

when the elastic energy needed to make full contact 

is roughly half the adhesive energy gained in full 

contact, whereby we corroborate previous works [2, 4, 

6, 7, 9, 17, 27–29] emphasizing the importance of a 

global energy analysis for the assessment of stickiness 

over purely local stickiness criteria [8, 12]. Here, we 

say the sensitivity to be largest, when the relative 

change of the pull-off force with the relative change 

of the reduced surface energy is maximal. The precise 

value of this criterion might have to be altered for 

surfaces with correlation, in particular those having 

deep dimples. The relevant elastic energy density, 

which the surface energy would have to be compared 

to, might then be better defined relative to the elastic 

energy needed to create a percolating contact, e.g., 

the energy needed to create roughly 40% relative 

contact area [30, 31]. Once a contact percolates or is 

close to percolation, large, load-bearing contact 

patches can no longer be easily peeled off, at which 

point the macroscopic pull-off force starts to be 

sensitive to the maximum stress of the microscopically 
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valid traction law. Once a contact is far away from 

percolating at zero external force, it seems as though 

the adhesive pull-off is determined by one last asperity 

contact, or, depending on boundary conditions, e.g., 

when surfaces can tilt, by three last contact points. 

This speculation is supported by recent observations 

on the critical angular velocity of spinning asteroid, 

where non-gravitational, attractive forces between 

the rubble particles were found to not increase with 

their size [32]. Nonetheless, local stickiness criteria 

may still retain their right to exist, as there can be a clear 

difference between a hysteretic and non-hysteretic 

contact formation of the highest peak.  

While the model used for our study neglects effects, 

which certainly often matter in practice, such as 

viscoelasticity [33, 34], plasticity [35], and a roughness 

induced enhancement of adhesion [36, 37], occurring 

in systems beyond the small-slope approximation, 

our study substantially refines the picture having 

emerged from excellent, previous simulations [7, 21, 

28, 38–41] addressing the origin of quasi-static, elastic 

adhesion hysteresis. As mentioned above, we identified 

the existence of several adhesion regimes instead of 

just two regimes. In addition, using short-range 

adhesion, we find the transition between high and 

low adhesion to be more abrupt than previous works, 

despite having avoided lattice trapping. This may be 

well the case, because we used a relative large, local 

Tabor parameter, which is important to properly model 

the approach curve [10]. Unfortunately, systematic 

errors only disappear with the mesh size according 

to 1/ 3Δa  on the approach curve [21], so that reducing 

them by one digit requires the use of 1,000 times the 

original computational resources. In multi-asperity 

contacts, fast convergence of non-contact traction 

with either decreasing Δa  and/or increasing 
T

  is 

also required on retraction since opposite surfaces 

keep “seeing” each other after a local contact broke. 

A new algorithm [41] appears promising regarding 

efficient modeling of short-range adhesion, even if it 

is not yet clear, how systematic errors or computational 

efforts scale in practice with Δa  and the number of 

discretization elements. Nonetheless, further reducing 

the range of adhesion in simulations appears to be an 

important challenge to be met. Even more, there is 

conflicting evidence on what a desirable target range 

should be. Dispersive interactions have a range of a 

few Angstroms. However, analysis of experimental 

data lead to an estimate of 46 nm as an appropriate 

(effective) range of adhesion [42] in a particular 

system. This is still shorter ranged than what can be 

feasibly modeled as it comes to industrially relevant 

systems, as for example, in the context of valves or 

gecko-inspired climbing robots. Existing, systematic 

coarse-graining techniques certainly alleviate the 

situation but may have to be complemented so that 

they can reflect history-dependence whenever interfacial 

stresses are not an unambiguous function of the 

(mean) local interfacial separation. 

Last but not least, we find that dimensionality 

matters in that one-dimensional and two-dimensional 

contacts behave differently. This is particularly apparent 

in the limit of single-wavelength roughness, where 

the saddle-point related instabilities occur in 2D but 

not in 1D. Randomly rough, 2D surfaces have small 

pull-off forces when the real contact area at pull-off is 

small but increase when the areas between large 

contact patches no longer allows for peeling. In the 

vicinity of the crossover between large and small 

adhesion, i.e., near 0.5,   randomly rough line 

contacts require substantially larger relative pull-off 

forces than 2D contacts, even if their differentials 

( )dDC q q  are similar. This means that theories that are 

solely based on the height spectrum as roughness 

information, as for example Persson’s approach to 

adhesion [43, 44], might not be equally applicable to 

line and areal contacts, even if some of the discrepancies 

could arise due to a semi-empirical correction 

coefficient entering the theory. This coefficient could 

recently be related to the difference of the rms-height 

gradient averaged over the contact and that averaged 

over the entire surface [45]. Yet, it could also be that 

the theory is simply less accurate in line contacts  

than in areal contacts, as the theory fails to accurately 

account for the logarithmic corrections to the linear 

area-pressure relation in non-adhesive contacts at 

small pressures [46]. 
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Appendix 

For a periodically repeated cell, the mean squares of 

height, height gradient, and related properties follow 

from sums over all q  vectors having the form 

 ( ) n
n

C q
I q

Aq

            (A1) 

assuming 
2

( ) ( )C q A h q   and stochastic in-plane 

isotropy. Specifically, 

2

0
,h I 2

2
g I , 2

4
/4I  , *

fce 1
/ 2v I E    (A2) 

For a large linear system size  , the sums can be 

approximated with integrals by realizing that Δq  

  Δ Δ 2π / 0x yq q   so that for the form of ( )C q  

assumed in this work, 







            
         


22

r r 0

r

2

r

r

1
d ( )

2π

( ) 1
1

2π 2

( ) 1
1

2π 2

n
n

nn

H n

s

I q qC q q

C q q q

n q

C q q

H n q

    

(A3)

 

The second summand in the square bracket on the 

right-hand side of this equation can be simplified 

according to 

2

2
r r

1
lim 1 ln

2

H n

s s

n H

q q

H n q q





          
      

       (A4) 

in the special case, where 2 ,n H  e.g., for 1n   and 

0.5H  . 

Thus, for the relevant range of Hurst exponents 

0 1H  , the ms-height is mainly due to the spectrum 

near 
r

q  while ms-gradient and ms-curvature have their 

main contributions from small-wavelength undulations. 

The full-contact elastic energy stems predominantly 

from large- and small-wavelength contributions for 

0.5H   and 0.5,H   respectively. 
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