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Abstract: The incorporation of the saturation of the tangential contact stress with the increase of the normal 

contact stress is required for the analysis of the friction phenomenon of solids and structures subjected to a high 

normal contact stress, which cannot be described by the Coulomb friction condition, in which the tangential 

contact stress increases linearly with the increase of the normal contact stress. In this article, the subloading- 

friction model, which is capable of describing the smooth elastic–plastic transition, the static–kinetic transition, 

and the recovery of the static friction during the cease of sliding, is extended to describe this property. Further, 

some numerical examples are shown, and the validity of the present model will be verified by the simulation of 

the test data on the linear sliding of metals.  
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1  Introduction 

All bodies in the natural world are exposed to the 

friction phenomena, contacting with the other bodies. 

Therefore, it is indispensable to analyze the friction 

phenomena rigorously in addition to the deformation 

behaviors of the contact bodies themselves. 

Here, it should be noticed that the friction is the 

typical irreversible, i.e., plastic phenomenon, so that 

it should be formulated within the framework of the 

elastoplasticity theory. Then, the various friction models 

in the elastoplasticity have been formulated as the 

rigid-plasticity [1, 2] and the perfect-plasticity [3–10]. 

However, these past formulations fall within the 

conventional plasticity assuming that the interior of 

the sliding-yield surface is the purely-elastic domain, 

so that the accumulation of plastic sliding during  

the cyclic loading of the tangential contact stress as 

seen in the loosening of the bolt and nut cannot be 

predicted. In addition, the simple friction model [11] 

falling within the framework of the creep model 

without the sliding yield surface was formulated, but 

the creep model is inapplicable to the general sliding 

velocity, since the creep sliding is induced in any low 

stress level as delineated by Hashiguchi [12, 13], and 

thus it was applied only to the simulation of the sliding 

behavior at high sliding velocity [14]. Eventually, it is 

irrelevant to the usual sliding behavior including the 

quasi-static sliding. 

Further, various friction models regardless to the 

elastoplasticity have been proposed hitherto so that 

they are limited to the one-dimensional sliding behavior 

represented by the rate-and-state model [15–21] and 

the fundamentally-irrational models [22–27] involving 

the time itself in order to describe the recovery of the 

friction coefficient caused by the cease of sliding have 

been proposed, which result in the loss of the 

objectivity as the constitutive relation [28, 29]. The 

loss of the objectivity is evident from the fact that the 

evaluation of elapsed time is accompanied with the  
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Nomenclature 

u , nu , tu  Sliding displacement vector and its 

normal part and tangential part 
eu , e

nu , e
tu  Elastic sliding displacement vector and 

its normal part and tangential part 
pu , p

nu , p
tu  Plastic sliding displacement vector and 

its normal part and tangential part 

tu  Tangential component of sliding 

displacement vector to contact surface

ut  Unit tangential sliding vector 

f , nf , 
t

f  Contact stress vector and its normal 

part and tangential part 

nf , tf  Normal and tangential components of 

contact stress vector to contact surface

ft  Unit tangential contact stress vector 
ew  Elastic sliding work 

e( ) u  Elastic sliding energy function 

E  Elastic sliding modulus tensor 

n , t  Elastic sliding coefficient in normal 

and tangential directions 

( )f f  Sliding-yield function of sliding stress 

vector 

n  Unit outward-normal vector to contact 

surface 

 

tn  Unit direction vector of plastic sliding rate, 

which is the tangential component of 

outward-normal vector to sliding subloading 

surface 

r  Sliding normal-yield ratio 

( )U r  Function in evolution of r 

  Sliding hardening function 

s , k  Material constant specifying the maximum 

(static) and minimum (kinetic) values of  ,

 ,   Material constant designating the decrease 

of hardening function by plastic sliding 

and recovery of hardening function by 

time-elapse 

 ,   Positive plastic multiplier in terms of stress 

rate and strain rate 
pm , cm  Sliding plastic modulus and creep modulus
epE  Elastoplastic sliding modulus tensor 

ng  Function describing dependence of 

normal contact stress on contact stress 

ratio 

nc  Material constant dominating inclination 

of sliding-yield surface at null normal 

contact stress 

ambiguity in the judgment about when the sliding 

commences and ceases, especially in the state that 

the sliding velocity varies in a low-velocity region. 

Besides, the Coulomb friction equation with the 

nonhardening friction yield surface enclosing the 

purely-elastic domain is adopted widely in the 

commercial finite element method (FEM) software, 

e.g., Abaqus, Marc, etc., and explained extensively in 

the well-known monographs (e.g., Refs. [30, 31]). It is 

merely capable of describing the constant friction 

coefficient independent of the sliding displacement. 

The subloading-friction model (Hashiguchi et al. 

[32, 33]) is capable of describing the smooth elastic– 

plastic transition, the reduction of friction coefficient 

from the static to the kinetic friction, the recovery to 

the static friction during the cease of sliding, etc. It has 

been applied to the metal friction [32, 33], the metal- 

to-soil friction [34] and the stick–slip behavior [35]. 

Further, it has been extended to describe the orthotropic 

anisotropy [36, 37] and the viscoplastic sliding behavior 

for the lubricated (wet) friction [38]. 

Now, it should be recognized that the tangential 

contact stress increases but saturates with the 

increase of normal contact stress. This property is of 

crucial importance for the predictions of the friction 

behaviors in the fastening of bolts and nuts, the 

wedge driving or penetration, the compression of 

solid body, the strip rolling processing of metal plates, 

the earthquake occurrence caused by the sliding 

phenomenon between continental plates and oceanic 

plates, etc., in which high normal contact stresses 

are applied. However, it cannot be described by the 

Coulomb friction condition [12, 13], in which the 

tangential contact stress increases linearly with the 

normal contact stress. Then, the formulations of the 

subloading-friction model taking account of this 

property have been proposed by Hashiguchi et al. 

[32, 33] and Ozaki et al. [39]. However, the former 
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formulations [32, 33] adopting the teardrop-type or 

the parabola-shaped sliding yield surface involve the 

physical irrationality that the tangential contact stress 

decreases with the increase of the normal contact 

stress in a high normal contact stress region, and the 

latter formulation [39] is irrelevant to solid materials 

as metals but limited to the rubbers.  

In this article, the rigorous subloading-friction 

model incorporating the sliding-yield stress function, 

in which the tangential contact stress increases but 

saturates with the increase of the normal contact stress, 

will be formulated, and the numerical examples for 

the monotonic and the reciprocal sliding under 

several levels of normal contact stress with various 

stationary time of sliding will be shown, adopting the 

present model. Further, the validity of the present 

model will be verified by the simulation of the test 

data [14] on the linear sliding between metals.  

2 Sliding displacement and contact stress 

The sliding displacement vector u , which is defined 

as the relative sliding displacement of the counter 

(slave) body to the main (master) body, is orthogonally 

decomposed into the normal sliding displacement 

vector nu  and the tangential sliding displacement 

vector tu  to the contact surface as Eq. (1) [13, 40]: 

 n tu u u                 (1) 

where 

   = ( ) = ( ) =  
     

n n

t n ( )

u   u u n n n n u n

u u u I n n u
        (2) 

n n

t
t u t u u u

t

, ( 0, 1)

u

u

      

       


   
 

n u n u

u
t u u t n t t

u

 (3) 

n is the unit outward-normal vector of the surface of 

main body, and I denotes the second-order identity 

tensor. The minus sign is added for nu  to be positive 

when the counter body approaches the main body.  

The sliding displacement vector u  can be exactly 

decomposed into the elastic sliding displacement eu  

and the plastic (irreversible) sliding displacement 
pu  in the additive form even for the finite sliding 

displacement, i.e., 

  peu u u                   (4) 

  


 

e e e
n t

p p p
n t

u u u

u u u
                (5) 

where 

   

    

e e e
n

e e e e
t n

( ) ( )

( )

u u n n n n u

u u u I n n u
           (6) 

    


    

p p p
n

p p p p
t n

( ) ( )

( )

u u n n n n u

u u u I n n u
          (7) 

The contact stress vector f acting on the main body is 

additively decomposed into the normal contact 

stress vector nf  and the tangential contact stress 

vector tf  as Eq. (8): 

    n t n t ff ff f f n t             (8) 

where 

n n

t n t f t

( ) ( )

( ) ( 0)

f

f

      
        

f n f n n n f n

f f f I n n f t n f
     (9) 

n

t
t f t f t f

t

, ( 0, 1)

f

f

   

       


   
 

n f

f
t f f t n f f

f

 (10) 

The minus sign is added for nf  to be positive when 

the compressive stress acts to the main body by the 

counter body. 

3 Hyperelastic sliding behavior 

The hyperelastic-based plastic constitutive relation 

is adopted in order to formulate the rigorous 

constitutive equation for sliding phenomenon, while 

the elastic sliding displacement is quite small because 

it is induced by the elastic deformation of the surface 

asperities which are infinitesimally small compared 

with the contact surface. Then, let the contact stress 

vector f be given by the hyperelastic relation with the 

elastic sliding energy function e( ) u  as 






e

e

( ) u
f

u
                (11) 

Then, the elastic sliding work we done during the 

elastic sliding is uniquely determined by the elastic 



1110 Friction 11(6): 1107–1120 (2023) 

 | https://mc03.manuscriptcentral.com/friction 

 

sliding displacement eu  before and after the elastic 

sliding as Eq. (12): 

e e
e

ee e
00 0

e
e e e e e e

0e

( )
d d ( ( )) ( ) ( )w

   
      

 
u u

u

uu u

u
f u u u u u

u
  

(12) 

Let the following simplest elastic sliding energy 

function e( ) u  in the quadratic form be adopted. 

 e e e( ) /2 u u Eu              (13) 

where the second-order tensor E  designates the 

elastic contact tangent stiffness modulus fulfilling the 

symmetry 
TE E . The substitution of Eq. (13) into 

Eq. (11) leads to 

 e e 1,f Eu u E f              (14) 

Assuming the isotropy on the contact surface, i.e. 

the independence of frictional property to a sliding 

direction on the contact surface and introducing the 

normalized rectangular coordinate system 1 2 3( , , )e e e  

1 2( , , )e e n  fixed to the contact surface, the elastic 

contact tangent stiffness modulus tensor E  is given 

as Eq. (15): 

t n t 1 1 2 2 n

1

1 1 2 2

t t t n

( ) ( )

1 1 1 1
( ) ( )

   

   


           

           


E I n n n n e e e e n n

E I n n n n e e e e n n

(15) 

where n  and t  are the normal and tangential elastic 

contact moduli, respectively. Equation (14) with Eq. (15) 

leads to 

   e e e
t t t t n

t n

1 1
,n 

 
f u u u f f         (16) 

4 Elastoplastic sliding velocity 

The plastic sliding velocity is formulated based on 

the subloading surface concept and the tangential- 

associated flow rule in this section. 

4.1 Sliding normal-yield and sliding subloading 

surfaces 

Firstly, let the sliding normal-yield surface and the 

sliding subloading surface, which passes through the 

current contact stress and is similar to the sliding 

normal-yield surface, be given by 

( )f f                 (17) 

=( )f rf                 (18) 

where   is the sliding hardening/softening function, 

and r is the sliding normal-yield ratio, i.e., the ratio of 

the size of the sliding–subloading surface to that of 

the sliding normal-yield surface as shown in Fig. 1. 

Here, Eq. (19) holds for the isotropic yield stress 

function. 

t n t n t t n n

t n

t n t n
f

t n

( , ) ( , ) ( , )( )

( , ) ( , )

f f f f f f f f f f ff

f f

f f f f f f

f f

    
  

     
 

 
 

f

f f f f

t n  (19) 

Then, the consistency condition for the sliding 

subloading surface in Eq. (18) is given by 


  


( )f

r r  f
f

f
            (20) 

The evolution rule of the sliding hardening/softening 

function   is given as Eq. (21) (Fig. 2): 

p

k s k s
( ) ( ) ( )                 u   (21) 

i.e. 

p

k s k s
d ( ) d ( )d ( )t                u  

where s  and k  are the maximum and the minimum 

values of the sliding hardening/softening function  , 

respectively, while let s  and k  be called the static  

 
Fig. 1 Sliding normal-yield and subloading surfaces.  
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Fig. 2 Variation of sliding hardening function. Reproduced with 
permission from Ref. [32], © Elsevier Ltd. 2004. 

and the kinetic sliding hardening function, respectively. 

  is the material constant specifying the decrease of 

the sliding hardening function  , i.e., d  per a unit 

plastic displacement pd u , and   is the material 

constant specifying the increasing (recovering) rate 

of  , i.e. d  per a unit time increment dt. 

Note: Let the microscopic background of Eq. (21) be 

given here. The following relation would hold between 

the sliding hardening function and the ratio of the real 

contact area to the apparent contact area. 

m a a m
, i.e., /r r                (22) 

where m  is the material constant designating the 

friction sliding resistance per unit apparent contact 

area, and ra is the ratio of the real contact area 
R

a  to the 

apparent contact area 
A

,a  called the real contact area 

ratio. i.e., 

 R
a

A

( 1)
a

r
a

               (23) 

Then, the following relation would hold from the 

time-derivative of Eq. (22) with Eq. (21). 

pk s
m a a

m m

,r r
   

   
 
 

      u     (24) 

On the other hand, the relation   a n1 exp( )r bf    

(b is the material constant) proposed for rubbers by 

Ozaki et al. [39] is irrelevant to the plastic sliding 

history, so that it would not hold in metals. 

The rate of the sliding normal-yield ratio r is given by 

p p( ) ( )r U r  0   u u          (25) 

with 

0 ( 1)

( ) cot 0 ( 1)
2

0 ( 1)

 
r

U r u r r

r

 
      
   

       (26) 

where u  is the material constant (cf. Hashiguchi 

[12, 13]). The contact stress is automatically attracted 

to the sliding normal-yield surface in the plastic 

sliding process, and it is pulled back to that surface 

even when it goes over the surface in numerical 

calculation because of 0r   for 1r   from Eq. (25) 

with Eq. (26), as shown in Fig. 3. 

4.2 Plastic sliding velocity and elastoplastic sliding 

velocity 

The plastic sliding velocity, the sliding velocity, 

and the contact stress rate are formulated in the 

following. 

The substitution of Eqs. (21) and (25) into Eq. (20) 

leads to  

p p

k s

( )
[ ( ) ( )] ( )

f
r U r      


      


     

f
f u u

f
  

(27) 

Now, assume the tangential-associated flow rule [12]: 

p p p

t
( 0)( , 0)           u n u n u      (28) 

where 

t t t

t t

( )( )
( 1, 0)

ff    
         

 
ff

n n n n
f f

 (29) 

with 

      
        

      t

( ) ( ) ( ) ( )
( )

f f f ff f f f
n n I n n

f f f f
 (30) 

where   and tn  are the magnitude and the direction, 

respectively, of the plastic sliding velocity. 

 

Fig. 3 Contact stress controlling function in subloading-friction 
model: Contact stress is automatically attracted to sliding normal- 
yield surface in plastic sliding process. Reproduced with permission 
from Ref. [32], © Elsevier Ltd. 2004. 
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The substitution of Eq. (28) into Eq. (27) leads to 


  


p c( )f

m mf
f

f
            (31) 

where 

      p c
k s( ) ( ) , ( ) ( 0)m r U r m r        (32) 

The positive plastic multiplier   is derived from 

Eq. (31) as Eq. (33):  

 
   

 
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c c

p
tp p

( ) ( )

,

f f
m m

m m


 
 

f f
f f

f f
u n     (33) 

Then, the rate of sliding displacement is given by 

substituting Eqs. (14) and (33) into Eq. (4) as Eq. (34): 
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It follows from Eq. (34) that 


 

   
    

  

c

tp

( )

( ) ( ) ( )

f
m

f f f

m




f
f

f f f f
Eu f En

f f f
 

leading to 
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i.e., 
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from which the plastic multiplier in terms of the 

sliding velocity, denoted by the symbol  , is given 

by Eq. (35):  

      
 

   
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f
Eu Euf

u
f f

En En
f f

  (35) 

Then, the inverse relation of Eq. (34) is given by  

Eq. (36): 

     
    
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m
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f
f E u n E u

f
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f
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f
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    (36) 

The loading criterion is given as Eq. (37) [12]: 

p c

p

( )
for 0 or 0

for others

f
m

 
     

 

0

0

 



f
u Eu

f

u

   (37) 

5 Sliding-yield surface with saturation of 

tangential contact stress 

Now, we adopt the following sliding-yield stress 

function  t n( ) ( , )f f f ff  in Eq. (17): 

  t
t n

n n

( ) ( , )
( )

f
f f f f

g f
f            (38) 

leading to the sliding normal-yield surface (Fig. 4): 

t n t n
/ , i.e.,f g f g               (39) 

where  n n n( ) ( 1)g g f  is the function of n ,f  satisfying 

the conditions: 

n

n

t n

0 for 0

1 ( ) for

f
g

f f
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        (40) 

n nn
n
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for 0

0 for

c fdg
g

fdf

     
          (41) 

leading to 

n nt
n

nn

for 0

0 for

c ff
g

ff




      
        (42) 

where nc  is the material constant with the inverse 

dimension of stress. Equation (39) represents the 

sliding normal-yield surface with the fusiform shape, 

which expands from the origin to the positive direction 

of the normal contact stress nf  in the three-dimensional 

stress space t1 t2 n( , , ).f f f  The tangential contact stress 
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t
f  on the sliding normal-yield surface increases with 

the normal contact stress nf  and saturates at tf  , 

while it approaches faster to the saturation (maximum) 

value   for a larger value of nc , as shown in Fig. 4(a). 

The sliding normal-yield and the sliding subloading 

surfaces satisfying Eqs. (40) and (41) are shown in 

Fig. 4(b). 

The following differentiations hold for Eq. (38). 

 
  

 
t

n2
t n n n

( ) ( )1
,

f f f
g

f g f g

f f
          (43) 


 

 n f t n2
n

( ) 1
( )

f
g f g

g

f
t n

f
           (44) 

noting Eq. (19). Further, it follows from Eqs. (19) and 

(29) that 

   
       

t n
t f f

tt

( ) ( , )f f f f

f

f
n t t

f
       (45) 

 t f t fEn Et t               (46) 

t n n f t n2

n

t n f n f n2

n

( ) 1
[ ( ) ] ( )

1
( )

f
g f g

g

g f g
g

 

 


     



 

f
E I n n n n t n

f

t n (47) 


    


t

f t n f n t n t f2
n n

( ) 1
( )

f
g g

g g


  f

f
Et t n t

f
   (48) 


   

 t n f n t n2
n

( ) 1
( )

f
g f g

g
  f

Eu t n u
f

      (49) 

The substitutions of Eqs. (44)–(49) into Eqs. (34)–(36) 

lead to 

1 1
= ( )
 

    
 

  
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t n

c
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n
tp

1
( )g g m

g

m

 

 



f

u I n n n n f

t n f

n

     

(50)

 

= [ ( ) ]
t n

c

t n f n t n2

n
t fp

t n

1
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/

g g m
g

m g
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 
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 
  
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

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or 

=
c

ep

t fp

t n/

m

m g






 f E u t          (52) 

with 

( )   

 




ep
t n

t f t n f n t n2
n

p
t n

1
( )

/

g g
g

m g

 
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

f

E I n n n n
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(53)

 

Let the explicit function satisfying Eqs. (40) and (41) 

be given by Eq. (54): 

    n n n n n n n1 exp( ,   exp() )g c g c cf f     (54) 

Eqations (44)–(51) with Eq. (54) are expressed in the 

coordinate system ( 1 2, , )e e n  as Eqs. (55)–(59): 

=
n f1 1 f2 2 n t n n2

n

( ) 1
[ (  ) exp( ) ]

f
g t t c f c f

g


  


f

e e n
f

  (55) 

Fig. 4 Sliding normal-yield and subloading surfaces with saturation of tangential contact stress. 
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
   

 t n f1 1 f2 2 n n t n n2
n
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f
g c f c f
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f
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f
   

(56) 
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exp( ) ]

f
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g

c f c f
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f
Eu t e t e
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n u

       

(58)

 

The following eight material constants are involved 

in the present friction model, and they are determined 

as follows. 

n  and t  may be given large values for metals 

because they are microscopically based on the elastic 

deformation of the surface asperities. Here, note 

that they are necessary in order to formulate as the 

elastoplasticity by avoiding the rigid-plasticity in which 

the stress increment cannot be determined uniquely 

for the input of sliding displacement increment. 

s  and k  are determined, such that the tangential 

contact stress coincides with the peak and the bottom 

values, respectively, in the linear sliding process under 

the infinitely large constant normal contact stress. 

  and   are determined to describe the decrease 

and the recovery, respectively, of the sliding hardening 

function  . 

u  is determined to describe the increasing rate of 

the contact stress for the plastic sliding rate. 

nc  is determined to designate the dependence of 

the ratio of the tangential vs. normal contact stress on 

the normal contact stress. 

6  Numerical experiments 

The principal mechanical responses of the present 

subloading-friction model will be examined by per-

forming the numerical experiments in this section. 

The material parameters are chosen with the two 

levels of the static sliding hardening functions s  as: 

 

  



  
 

  



3 3
n t

s k

1 1 1

1
n

5,000 MPa mm ,   5,000 MPa mm ;  

10,000 and 7,500 MPa,   7,000 MPa;

15,000 mm ,   110 s ,   15 mm ,

0.0002 MPa

u

c

 
 
  

 

and the tangential sliding velocity is chosen as t
u  = 

1 mm·min−1. 

Firstly, the tangential contact stress paths at five levels 

of constant normal contact stress are shown in Fig. 5, 

= [ ] (

= [ ] ( )
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t f1 1 f2 2 n n t n n n2
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t 1 1 2 2 n t f1 1 f2 2p
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e e e e n n u e e

c
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]

/

m

m g





u
(59)

 
Fig. 5 Tangential contact stress paths at five levels of normal contact stress for different static sliding hardening functions. Red short 
bar in each stress path indicates the maximum contact tangential stress, and black one indicates the contact tangential stress at infinite 
sliding displacement. 
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in which the sliding normal-yield surface for the static 

and the kinetic isotropic hardening functions are 

depicted by red and black curves, respectively.  

The maximum contact tangential stress is larger for 

the larger static sliding hardening function. 

Next, the variations of tangential contact stress at the 

five levels of normal contact stress in the monotonic 

sliding followed by the reverse sliding for the different 

static sliding hardening functions are shown in Fig. 6. 

The variations of tangential contact stress with the 

five levels of stationary sliding time just after the 

unloading for the different static sliding hardening 

functions in the monotonic and the reciprocal 

sliding are shown in Figs. 7 and 8, respectively. More 

remarkable recoveries of the tangential contact stress 

by the longer stationary sliding time are shown in 

these figures. 

The variations of the tangential contact stress in the 

pulsating sliding with three levels of stationary sliding 

time just after the unloading to the zero tangential 

contact stress is shown in Fig. 9. The recovery of the 

tangential contact stress with the increase of sliding 

time is shown, while it decreases gradually with the 

increase of number of cycles. 

 
Fig. 6 Variations of tangential contact stress at five levels of normal contact stress in monotonic sliding, followed by the reverse
sliding for different static sliding hardening functions.  

Fig. 7 Variations of tangential contact stress with five levels of stationary sliding time just after unloading for different static sliding
hardening functions. 
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7  Comparison with experiments 

The simulation of the test data for the linear sliding 

behavior for the boric acid lubricated A16111-T4 and 

tool steel interface in Ref. [14] is shown in Fig. 10 to 

verify the applicability of the present model to the 

description of real friction phenomenon. The linear 

sliding behavior at the constant normal contact stress 

is the most basic behavior among various sliding 

behaviors, but strangely, the available test data is 

quite little as the authors could find only the test data 

from Ref. [14]. Fortunately, this test data is suitable for 

the verification of the present model, since the rather 

high normal contact stress up to 600 MPa is applied 

in this data. The relations of the contact tangential 

stress vs. the sliding displacement for the five levels of 

the constant normal contact stresses are represented, 

where the values of the material parameters are 

chosen as  

3 3

n t

s k

1 1 1

1

n

500 MPa mm ,   500 MPa mm ;  

500 MPa,   63 MPa;

98 mm ,   11 s ,   15 mm ,

0.0002 MPa

u

c

 
 
 

 

  



  
 
  



 

 

Fig. 8 Variations of tangential contact stress during reciprocal sliding with five levels of stationary sliding time just after unloading for
different static sliding hardening functions. 

Fig. 9 Variations of tangential contact stress in pulsating contact tangential stress with three levels of stationary sliding time just after 
unloading for different static sliding hardening functions.  
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while the tangential sliding velocity t
u  is 1 mm∙s−1 in 

the test data. 

The variations of the tangential contact stress are 

closely simulated by the present friction model, as 

shown in Fig. 10. 

The comparison for the relations of the tangential 

contact stress vs. the normal contact stress for four 

levels of the sliding displacement is shown in Fig. 11, 

which is depicted from the test and the calculated 

values. The fact that the ratio of the tangential contact 

stress to the normal contact stress is not constant but 

decreases gradually with the increase of the normal 

contact stress is simulated closely. The incorporation 

of the present model is required to describe the friction 

behavior in the test data accurately. A test datum 

specifying an explicit sliding displacement less than 

1 mm is not shown in the figure of Ref. [14]. Then, only 

the calculated result for the displacement 0.5 mm is 

shown by the dashed curve in Fig. 11. 

The quite close simulation of the test result [14] is 

attained by the present model. Then, the applicability 

of the present friction model for the prediction of 

real friction behavior between metals would be 

verified. Besides, the simulation of the test data was 

also performed by Gearing et al. [14]. However, 

their friction model [11] used for the simulation is 

 

Fig. 10 Comparison of the simulation results and test data of 
boric acid lubricated A16111-T4/tool steel interface in Ref. [14] 
for tangential contact stress vs. sliding displacement relations at 
six levels of normal contact stress, where the calculated results 
are shown by solid lines.  

 
Fig. 11 Comparison of the simulation results and test data of 
boric acid lubricated A16111-T4/tool steel interface in Ref. [14] 
for tangential contact stress vs. normal contact stress relations in 
four levels of sliding displacement, where the calculated results 
are shown by solid lines. The dashed curve shows the calculated 
result for the sliding displacement = 0.5 mm. 

physically impertinent belonging to the creep model, 

which is approximately applicable to the sliding 

behavior at high rate but inapplicable to the sliding 

behavior at the moderate rate including the quasi-static 

sliding behavior as delineated in Hashiguchi [12, 13], 

while the sliding velocity in the test data in Ref. [14] 

is rather high as t
u  = 1 mm∙s−1. On the other hand, 

the subloading-friction model is concerned with the 

sliding behavior in the general sliding velocity. 

The tangential contact stress lowers to a constant 

value after it exhibits the peak value, as shown in 

Figs. 6–8, and 10. Therefore, it would be independent 

of the sliding displacement for the sliding displacement 

larger than 5 mm, as shown in Fig. 11. The 

inconsistent tendency in the test results for the sliding 

displacement = 5, 10, and 20 mm in this figure would 

show the difficulty of the precise measurement of the 

tangential contact stress for a large sliding displacement 

in tests under a constant normal contact stress. 

8  Concluding remarks 

The subloading-friction model (Hashiguchi et al. 
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[32, 33], etc.) is extended in this article. The extended 

model is summarized to be capable of describing the 

following principal properties. 

1) The smooth transition from the elastic to the 

plastic transition leads to the continuous variation 

of the elastoplastic stiffness modulus, which is of the 

importance for the numerical calculation since the 

loading criterion, i.e., the judgment whether the plastic 

sliding induced is not required. 

2) The contact stress is automatically pulled back 

to the normal sliding-yield surface when it goes 

out from that surface, leading to the highly efficient 

numerical calculation. 

3) The friction decreases from the static to the 

kinetic friction. 

4) The friction resistance recovers during the 

stationary state of sliding. 

5) The tangential contact stress saturates with the 

increase of the normal contact, so that the tangential 

contact stress does not exceed the shear strength of 

the contacting solids. 

Property 5 was not furnished in the past subloading- 

friction model. These principal mechanical characteristics 

of the proposed model is represented by the 

numerical experiments for the linear monotonic and 

the reciprocal sliding with the cease of sliding in the 

unloaded state. Further, the validity of the present 

model is verified by the simulation of the test data [14] 

for metals. The present model will contribute to the 

development of the boundary value problems for the 

deformation/sliding of solids and structures subjected 

to a high normal contact stress. 
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