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Abstract
The soft robotics field is on the rise. The highly adaptive robots provide the opportunity to bridge the gap between machines 
and people. However, their elastomeric nature poses significant challenges to the perception, control, and signal processing. 
Hydrogels and machine learning provide promising solutions to the problems above. This review aims to summarize this 
recent trend by first assessing the current hydrogel-based sensing and actuation methods applied to soft robots. We outlined 
the mechanisms of perception in response to various external stimuli. Next, recent achievements of machine learning for 
soft robots’ sensing data processing and optimization are evaluated. Here we list the strategies for implementing machine 
learning models from the perspective of applications. Last, we discuss the challenges and future opportunities in perception 
data processing and soft robots’ high level tasks.
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1 Introduction

Soft robots usually have compliant bodies, composed of 
elastomer material to perform tasks in dynamic and unstruc-
tured environments [1]. Such compliance also extends the 
functionality of robots toward human interaction and bio-
medical applications [2, 3]. Similar to living creatures, soft 
robots also need sensors to retrieve meaningful information 
from the environment (exteroception) and monitor the inter-
nal states (proprioception) for corresponding actions [4]. 
The sensing signal from the outside is essential to achieve 
closed-loop control for higher control accuracy [5]. Unlike 
the traditional rigid robots, soft robots have an infinite 
degree of freedom (DoF), plus the system typically showed 
high nonlinearity and hysteresis [6, 7]. These characteris-
tics pose significant challenges to soft robotic sensing and 
control [8, 9]. Embedded soft sensors are viable solutions, 

as they are deformable [1, 10] and show less mechanical 
mismatch when applied to soft robotics.

Among the common materials for flexible sensors (such 
as carbon nanotube (CNT), MXene, and reduced graphene 
oxide (rGO)), hydrogels are especially promising to address 
the challenges. They are three-dimensional cross-linked 
hydrophilic polymer networks containing water [11]. Hence, 
the mechanical properties can be tuned [12] to be highly 
stretchable, making it especially suitable to apply for soft 
robot sensing and actuation. Since hydrogels serve as the 
building block for life [13], they are ideal for making elec-
tronic skins by mimicking biological skins. The hydrogel 
mobile ions serve as the ionic conductors, endowing it with 
tuned conductivity. They are also transparent for light-based 
sensing. With the incorporated ionic pendant groups or salt, 
hydrogels can respond to different stimuli by interacting with 
polymer networks [14] to serve as multifunctional sensors. 
They are already applied to detect strain [5], pressure [15], 
and temperature [16]. Further improvement of the hydrogel 
sensors may boost the sensing capability to rival biological 
organisms [17, 18].

After obtaining the sensing signal from the hydro-
gel, it is hard to form the soft robot’s state representa-
tions [19], as the governing equation is almost impracti-
cal to represent. Machine learning (ML) is a promising 
approach to deal with the problem, since it is data-driven 
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and can empirically approximate the unknown model [20, 
21]. Therefore, it can estimate the behaviors of the soft 
systems without explicitly discovering the underlying 
dynamics. The process of ML decoding the signals helps 
to reconstruct the original physical phenomenon [22, 23]. 
In addition, machine learning can help soft robots to per-
form more advanced tasks, such as manipulation [24], 
shape detection [23], touch recognition [25, 26], state 
estimation [6], and multi-modal fusion. These capabili-
ties may improve soft robots’ proprioception, enabling 
reliably closed-loopcontrol [24] and responses to external 
stimuli [28] (Fig. 1).

Another nascent field exerting a significant impact to 
soft robots is simulation with ML [29]. The point-based 
methods can be coupled with deep learning to provide 
solutions for soft robots’ simulation and virtual data pro-
cessing. It also enabled virtual predictions of the soft 
robot with optimized designs and controllers [15]. There-
fore, the overlap among soft robots, hydrogel sensors, and 
machine learning is increasing dramatically [30], and it 
is worthy of more review papers to dive into the interdis-
ciplinary field.

This review is organized by first outlining hydrogel 
engineering techniques, since they are essential for soft 
robots applications. Then, we systematically introduce 
how hydrogel sensors and actuators contribute to the soft 
robot’s performance. Next, we dive into how machine 
learning can be leveraged for soft robots’ sensing sig-
nal processing and optimized design by simulation. Last, 
future opportunities and directions are enlightened for 
upcoming researches.

2  Hydrogels for Soft Robots

2.1  Hydrogel Engineering

Soft robots may be subject to large strains, so the hydro-
gel-based devices need to be stretchable. To cater for this 
requirement, chemical crosslinking of hydrogels by cova-
lent bonds or physical entanglement are common synthesiz-
ing methods. Yet the material may suffer from slow stim-
uli response and poor self-healing. To solve the problem, 
approaches like double network [31, 32], hybrid-crosslinking 
[33, 34], fiber reinforcement [35], nanoparticle [36–38], and 
slide-ring cross-linker [39] were developed. These methods 
are closely correlated with the hydrogel’s microstructure. 
An example of a stretchable hydrogel’s molecular structure 
is shown in Fig. 2a.

Double network hydrogel’s two networks are cross-linked 
by covalent bonds. One network has short chains, and the 
other has long chains. When the ionic gel is stretched, the 
short-chain network ruptures and dissipates energy to make 
the gel more stretchable Fig. 2b while tolerating defects and 
notches. The significant enhancement can be credited to the 
synergy of two mechanisms: crack bridging by the network 
of covalent cross-links and hysteresis by unzipping the net-
work of ionic cross-links. Note that the sensing device fab-
ricated with this method might show hysteresis, which needs 
engineering approaches to tailor it [41, 42].

Another critical requirement is the device’ robustness and 
reliability, which can be achieved by self-healing Fig. 2c 
and water retention. The healing mechanisms can be catego-
rized as extrinsic and intrinsic behaviors. Extrinsic healing 

Fig. 1  The relationship among soft robot, hydrogel sensors, and machine learning
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depends on the small capsules of healing agent [43] or vas-
cular networks [44] to form new polymer chains that con-
nect the fractured parts. Intrinsic mechanisms can heal more 
times by the reorganization of dynamic covalent bonds or 
through noncovalent interactions [45], like hydrogen bond-
ing, π−π stacking, metal–ligand interaction, and electrostatic 
interactions [16, 46, 47]. Water retention can be achieved by 
combining hydrogel with elastomer [48] or adding gelatin-
glycerol. The prior method can use sticking or coating to 
form, and adding gelatin-glycerol can be achieved by 3D 
printing [45, 46, 51].

2.2  Hydrogel Sensors

Unlike traditional electronic systems that transmit electricity 
with electrons, hydrogels use ions [52] to conduct electricity, 
making them perfect for sensing and signal conduction [53]. 
The hydrogel sensors can be divided based on the energy 
conversion approaches as follows.

2.2.1  Mechanical Energy to Electrical/Optical Energy

When the hydrogel sensors are subjected to mechanical 
deformations or applied forces, they produce a change in 

the electrical signal. Strain sensors, pressure or tactile sen-
sor [54, 55], acoustic sensors, and touchpad [56] can all be 
summarized into this category. The electrical-based sens-
ing mechanism can be capacitive, resistive, piezoionic, and 
triboelectric.

The capacitive sensors’ configuration is generally 
designed as the dielectric elastomer sandwiched between the 
hydrogel Fig. 3a. When subjected to pressure or twisted by 
external torque, the distance between the hydrogel changes, 
reflecting a capacitance change. They are fast responsive 
with high linearity [57], yet they are susceptible to environ-
mental contamination and conductive objects [58].

Meanwhile, the resistive type sensor responds to changes 
in cross-section and length to sense the resistance change 
Fig. 3b. With strain-sensitive additives, the sensitivity can be 
even higher. Current issues associated with the resistive type 
are temperature-related drifting and poor long-term stability. 
On the other hand, making use of these temperature coupling 
effects, the strain sensors can be applied for multi-modal 
sensing Fig. 3c, d.

Here we show an example of hydrogel applied on the 
soft robot’s sensing using resistance measurement Fig. 4a, 
b. Highly sensitive strain and pressure sensors are integrated 
as the artificial electronic skin for soft robots by 3D printing 

Fig. 2  a Schematic illustration of a hydrogel’s molecu-lar structure 
b Photographs of the stretchable hydrogel during a stretch-release 
process. c Micrographs of the self-healing process adapted from [40] 

by Zhouyue Lei & Peiyi Wu, 2019, Nature communication, Creative 
Commons license
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Fig. 4c, providing proprioceptive or haptic feedback. To 
fully utilize the sensors, researchers integrate redundant 
resistive strain and pressure sensors at different locations of 
the soft robot, so that the sensor network can obtain more 
information and monitor the task manipulation in a time 
series.

Alternatively, utilizing the transparent characteristic of 
ionic gels, the optic signal can be captured when subjected 
to mechanical stimuli. Using composite of ZnS–silicone 
gel–silicone elastomer as the material system [57], ZnS par-
ticles impart a soft robot with the ability to vary its color and 
sense both external touch and shape changes. Alternatively, 
a tactile sensor can use a camera to track the sensor surface 
to measure both the magnitude and direction of an applied 
force. These vision-based tactile sensors can measure the 
2D texture and 3D topography of the contact surface, utiliz-
ing elastomeric gel as the sensing surface and a camera to 
capture the contact deformation from changes in light. This 
type of 2D images are especially suitable for deep learning 
processing, leading to higher-level tasks.

The latest studies on hydrogel’s piezoionic effect is prom-
ising to create ionic skin with sensing ability similar to bio-
logical skin. The anions and cations in hydrogels have dif-
ferent mobility. So when the material is pressed, it causes an 
ionic gradient that generates voltage [60]. The self-powered 

method can be applied for neuromodulation with living ani-
mals and monitoring different motions [61–63]. Meanwhile, 
it can also sense multi-modal signals using the thermoelec-
tric effect [64].

Another recently emerged type of triboelectric nanogen-
erator is made with hydrogel to perform tactile sensing with 
high performance [54]. Typically, the hydrogel part needs to 
be coated with elastomer, and it generates electricity when 
separated from the dielectric layer. In comparison, the volt-
age generated by triboelectric effect can be very high, show-
ing high sensitivity to dynamic pressures. It is even possible 
to detect precontact event by optimizing elastomeric elec-
tret, which greatly expand the functionalities of soft robot 
[55]. Some recent studies of hydrogel sensors applied to soft 
robots are listed in Table 1.

2.2.2  Thermal Energy to Electrical Energy

Thermal sensing is also essential for soft robots to iden-
tify the object and avoid hazardous environments [68]. 
The hydrogel thermal sensor can convert the temperature 
stimuli into electrical or optical responses. The electrical-
based sensing can be divided into three categories, resistive, 
capacitive, and thermoelectric type.

Fig. 3  a The schematic illustration and a photograph of a capacitive 
sensory system using gel and elastomer. b The structure of a typical 
resistive sensor. c The capacitive and resistive response of the sensory 
system upon changes of temperature and strain. The figure is adapted 

from [40] by Z. Lei & P. Wu, 2019, Nature communication, Creative 
Com-mons license. d The embedded sensors on the top of the soft 
finger are used to estimate the soft actuator’s twisting [59]
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The resistive thermal sensor’s mechanism lies in the 
temperature dependent ions migration rate [40]. Due to the 
material’s high sensitivity, they were seen applied as the 
thermal transducer [71]. To characterize the thermal sensi-
tivity of a resistor, the temperature coefficient of resistance 

(TCR) is often used. It describes the percentage change of 
resistance per Celsius degree. The double network hydro-
gel exhibited a TCR of 2.6%/℃ [31], which is already 
more sensitive than some semiconductor thermistors. By 

Fig. 4  a Images of the interaction sequence between a ball and a soft 
robotic gripper. b ΔR of each gel sensor as a function of time is plot-
ted during the interaction sequence. c Schematic illustrations of the 
actuator with somatosensation enabled by ionogel. The figures are 

adapted from [67], by R. Truby et al. (Reproduced with permission). 
d Fast bending actuation of the hydraulic hydrogel actuator. The fig-
ure is adapted from [80], by H. Yuk et al. 2019, Nature communica-
tion, Creative Commons license

Table 1  List of hydrogel sensors applied on soft robot research

References Modality Sensor material Application on soft robots

[59] Strain, thermal PAAm hydrogel coated with Ecoflex Proprioception and exteroception with modality 
discrimation

[67] Strain, thermal, pressure Ionogel and ecoflex by embedded 3D printing Proprioceptive and haptic feedback
[66] Proximation (triboelectric) Organohydrogel electrode and elastomeric electric Precontact detection to trigger robotic control
[68] Strain Hydrogel with graphene oxide and MXene Vision guided searching in fire and underwater 

locomotion in chemical spills
[69] Strain Alg-PAAm hydrogel Motion/deformation sensing at extremely cold 

conditions. gesture recognition
[57] Strain and pressure Hydrogel, Ecoflex and ZnS Dynamic coloration and sensory feedback from 

external and internal stimuli
[70] Strain Gelatin/glycerol hydrogel by 3D printing Self-healing sensorized actuator with long term 

stability
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introducing ethylene glycol/glycerol, extremely high TCR 
values of 19.6%/℃ [73] and 24%/℃ [73] are reached.

The capacitive type utilizes the hydrogel swelling and 
shrinking property to convert the thermal stimuli into a 
change of capacitance. When the thermal responsive hydro-
gel is subjected to temperature changes, it will show a volu-
metric transition as a result of the interaction between the 
polymer network and the solvent [74].

Recent emerged hydrogel-based thermoelectric material 
showed surprisingly high seeback coefficient. The work uses 
alkali salts and an iron-based redox to generate 17.0 mil-
livolts per degree Kelvin, which is two orders higher than 
traditional thermoelectric materials [66]. Later, the hydrogel 
made by synergistic coordination and hydration interactions 
[77] showed thermal sensitivity of − 37.61 millivolts per kel-
vin. These encouraging findings indicate hydrogel can play a 
significant role in soft robots’ self-powered thermal sensing.

2.3  Hydrogel Actuators

Aside from sensing applications in soft robotics, hydrogels 
can be applied as actuators to swell or shrink [77]. The 
swelling degree of the hydrogel is determined by the free 
energy of expansion and the entropy of mixing. They could 
be affected strongly by electricity, temperature, pH, light. 
These condition changes could act as the stimuli for actua-
tion [78].

The most frequently seen actuator is the dielectric elas-
tomer actuator (DEA). It comprises a dielectric elastomer 
layer, sandwiched between two ionically conductive hydro-
gel layers. When a high voltage is applied between the 
hydrogels, ions of opposite charges accumulate along the 

hydrogel/elastomer interface. This induces Maxwell stress 
between the hydrogels, resulting in thickness contraction 
and area expansion. The development of hydrogel-based 
actuator showed promising applications in various complex 
environments. A pressure-resilient soft robot made of DE 
and hydrogel swimming at extreme ocean depths has been 
studied recently [79]. To make soft actuators with high-
speed and high-force, hydraulic actuation of hydrogels has 
been explored Fig. 4d. This soft robot can be sonically cam-
ouflaged in water [80], making it very promising for future 
underwater exploration.

3  Machine Learning for Soft Robot

Some recent research on machine learning techniques 
applied to soft robots are listed in Table 2. To better illustrate 
how the field is progressing, we use several key features, 
such as sensor used, data type, multi-modal or not, ML tech-
nique, and its applications, to categorize these works.

3.1  Machine Learning for Sensing

Machine learning-based method is promising for both soft 
robot proprioception and objects recognition when resistive 
or capacitive readings are available [92, 93]. The object iden-
tification was seen frequently based on the finger curvature 
data using machine learning algorithms [81]. The techniques 
can be convolutional neural networks (CNN) and recurrent 
neural networks (RNN). RNN deals time series data more. It 
can be used for inverse mapping problems and flexible strain 
sensors modeling. Researchers used LSTM (Long short term 

Table 2  Recent soft robot studies with machine learning for data processing

References Sensor Data type Multi-model ML technique Task

[81] Force and bend sensor Times-series Yes KNN Object identification,control
[82] Strain, pressure, temperature sensor Times-series Yes KNN Gesture recognition
[83] Strain sensor Times-series No RNN Kinematic modeling,force modeling
[84] Simulation data Particle points No NN,LSTM Sensor placement,object 

classification,stiffness prediction
[85] Camera 3D point clouds No CNN 3D shape estimation
[86] Camera-based tactile sensors 2D images No CNN Propriocetion,object and size class-

fication
[87] Camera-based tactile sensors 2D images No CNN,LSTM Slip detection
[88] Camera-based tactile sensors,camera 2D images Yes CNN Vision and touch cross-modal predic-

tion
[89] Strain and temperature sensor Times-series Yes CNN Modality discrimination
[90] Camera and strain sensor 2D video and resistive Yes RNN + CNN Future images of environment inter-

action prediction
[70] Strain sensor Times-series No RNN Sensor modelling and force closed 

loop control
[91] Triboelectric sensor Voltage times-series Yes PCA + SVM Object classification
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memory) to estimate the contact force in the soft robots [6], 
and the approach can model the kinematics of a soft actuator 
in real-time while being robust to sensors’ nonlinearity and 
drift. Further optimization was seen using transfer learning 
to improve the performance [83]. Some studies also utilize 
CNNs for time series feature extraction, yet CNNs appeared 
more in problems requiring two or three dimensions data 
[94]. Capacitive arrays can provide sensing data in two 
dimensions. By feeding the data into CNN or feed-forward 
neural networks (NN), they can classify and localize touch 
events on the interface or capture surface deformations in 
real-time [26, 95].

Other types of sensing modality can be combined using 
ML techniques to boost the sensing capability [29]. When 
thermal conductivity, contact pressure, object temperature 
and environment temperature are fed to the multiple layer 
perceptrons (MLPs) simultaneously, machine learning can 
improve the object recognition. It discerns shapes, sizes, and 
materials in a diverse set of objects with improved accuracy, 

comparing to single modal inputs [96]. Pressure sensing has 
been combined with other modality using machine learning 
to expand the sensing capability. Using machine learning 
techniques, such as support vector machine (SVM), the soft 
robot can detect obstacles and recognize the gestures [25].

Vision-based proprioception and tactile sensing can be 
obtained simultaneously using embedded cameras or depth 
sensors by extracting high-resolution information from the 
deformation of the soft robots Fig. 5a, b. Training the data 
with CNN can lead to object detection, slip detection [87, 
97], robot’s shape or angle proprioception [28, 86, 98], and 
interaction prediction [90]. For example, in research for 
soft robot 3D shape proprioception, the system uses a CNN 
to encode the input images from the internal cameras into 
latent representations, and then train a decoder neural net-
work to reconstruct the 3D shapes of the robot [85].

Combining multisensory information and transferring 
multi-modal [22] representations across tasks was also 
explored in recent studies. To fuse the sensor data and 

Fig. 5  a The basic principle of the Gelsight b An example pattern of printed markers on the Gelsight. The figures are adapted from [101], by W. 
Yuan et al. (Creative Commons license) c vision to touch prediction model. The figure is adapted from [88], by Y. Li et al.
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perform prediction, a feature representation of the visual and 
haptic data can form compact feature vectors. Then, decod-
ers are used to predict self-supervised objectives [99]. In 
addition, deep models can incorporate raw inputs from both 
vision and touch, by concatenating the outputs of the camera 
images, GelSight images, and the action network. The out-
put was applied to predict the grasp success probability. In 
this way, the soft gripper can grasp a wide range of unseen 
objects with a higher success rate and lower force [100]. 
Cross-modal prediction can also be made possible with deep 
learning. With visual and tactile sensors, researchers can 
collect a dataset of vision and tactile image sequences. Then, 
a conditional model that incorporates the scale and location 
information of the touch can be transformed to vision. The 
deep learning model requires a generator, with two CNN-
based encoders and one decoder. In this way, it uses vision 
sequence and touch reference to predict the touch results 
[88] Fig. 5c.

3.2  Machine Learning for Simulation and Control

Simulation can aid robot characteristics prediction and 
optimal design. Prior attempts using finite element analy-
sis (FEA) were computationally expensive [102]. Recently 
developed physics engines are combined with deep learn-
ing to optimize soft robots Fig. 6a. Such gradient-based 

optimization methods can be more computationally effi-
cient [103]. Besides, by simulating virtual robots using 
data-driven models, we can simultaneously optimize 
multiple objectives, such as geometry Fig. 6b, controller 
models, [104] and physical system properties for system 
identification.

When using deep learning for soft robot control, the 
regression-based controller can be designed in this way. It 
takes the input state vector z, which includes the target posi-
tion, the center of mass position, and the velocity of the soft 
component. During optimization, the algorithm performs 
gradient descent on variables W and b, and a = tanh (Wz + 
b) is the actuation-generated from the controller. Using the 
deep learning-based controller, a soft 2D walker optimized 
using gradient descent can find the gaits to achieve maxi-
mum distance [95].

Since the soft robot has infinite numbers of DoF, mod-
eling the compliant robot is complex, and reinforcement 
learning can be applied to address the complexity [105, 106]. 
The closed-loop control can also be achieved in a simulation 
environment with reinforcement learning. In this way, the 
model-free method can deal with the soft robot’s challenging 
deformation scenarios [107].

When the hybrid particle-grid-based simulation is com-
bined with deep variational convolutional autoencoder archi-
tectures, it can capture salient features of robot dynamics for 

Fig. 6  a Co-optimization algorithm pipeline for a biped soft walker. The figure is adapted from [25]. b Computational design pipeline for under-
water soft swimmer’s geometric and control design parameters. The figure is adapted from [96] (Creative common licence)



853Hydrogel and Machine Learning for Soft Robots’ Sensing and Signal Processing: A Review  

1 3

improved state estimation, control, and design [108]. Mean-
while, with the differentiable physical engine that simulates 
elastic deformation, it is possible to conduct supervised 
learning on multiple soft-body manipulation tasks with dif-
ferent configurations [109]. Moreover, based on simulation 
data, the feature extraction network can learn the representa-
tion of sparsely located sensors for optimized object grasp-
ing and proprioception [84, 110].

4  Future Challenges and Opportunities

In summary, there has been tremendous progress in the per-
formance and versatility of soft robots in recent years, lev-
eraging advanced machine learning techniques and gel type 
materials. To realize the full potential, fundamental devel-
opments in materials engineering, smart structures, sensing 
mechanisms, and data processing algorithms are required to 
boost the progress of soft robotics [4, 111].

We believe that ionic gel-based sensing, especially multi-
modal stimuli sensing, will play a critical role in the sophis-
tication of soft robotics. However, several things need to 
consider. First, how to optimize the wiring for large area 
haptic sensor arrays? This question hampers soft robots’ 
real-world applications. Also, resistive tactile sensing using 
hydrogel can lead to unwanted drift, as the hydrogel is sensi-
tive to temperature changes, which is hard to find real-time 
solutions to avoid it.

Using machine learning to aid in sensing and control 
is a promising way, as it could impact the space of what 
is possible with intelligent robotics systems. Yet, there 
remained challenging tasks to solve. For instance, current 
3D shape proception is still not integrated with feedback 
control to enable controlled shape change. Also, humans 
fuse different sensing modalities using maximum likelihood 
estimation and the Bayesian method, yet we rarely witness 
studies applying these principles on soft robots for multi-
modal fusion due to engineering difficulties. Moreover, deep 
learning coupled with the physics engine will play a more 
significant role in the future to optimize the soft robots in 
multiple ways simultaneously. However, this field is still in 
its infancy. Future development is expected when more inter-
disicplinary collaborations are available.

In the short term, the field is focusing on soft robots’ sen-
sory actuation, techniques for processing the sensor infor-
mation, and feedback control. The longer-term goal lies in 
future exploratory robots that can navigate the unpredictable 
natural world. We expect to see a trend toward more com-
plex hybrid systems dealing with various robotic tasks. In a 
more realistic environment, the sources of information are 
more diverse, so it requires more sophisticated deep learn-
ing models to fuse the multi-modal signals and perform 
high-level tasks. This demands the algorithms to derive 

efficient representations of the environment from the high-
dimensional sensor inputs and use them to generalize the 
past experience to new situations. Humans and other animals 
seem to solve problems through a harmonious combination 
of reinforcement learning and hierarchical sensory process-
ing systems [112]. Therefore, deep reinforcement learning 
is also a promising pathway for the soft robot to deal with 
advanced tasks [113, 114], such as decision-making and pol-
icy learning. In that way, the soft robot can perform multiple 
steps of action, solving more complicated tasks.
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