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Abstract
The paper industry manufactures corrugated cardboard packaging, which is unassembled and stacked on pallets to be sup-
plied to its customers. Human operators usually classify these pallets according to the physical features of the cardboard 
packaging. This process can be slow, causing congestion on the production line. To optimise the logistics of this process, 
we propose a visual recognition and tracking pipeline that monitors the palletised packaging while it is moving inside the 
factory on roller conveyors. Our pipeline has a two-stage architecture composed of Convolutional Neural Networks, one 
for oriented pallet detection and recognition, and another with which to track identified pallets. We carried out an extensive 
study using different methods for the pallet detection and tracking tasks and discovered that the oriented object detection 
approach was the most suitable. Our proposal recognises and tracks different configurations and visual appearance of pal-
letised packaging, providing statistical data in real time with which to assist human operators in decision-making. We tested 
the precision-performance of the system at the Smurfit Kappa facilities. Our proposal attained an Average Precision (AP) 
of 0.93 at 14 Frames Per Second (FPS), losing only 1% of detections. Our system is, therefore, able to optimise and speed 
up the process of logistic distribution.

Keywords Manufacturing automation · Cardboard packaging · Pallets recognition and tracking · Pallets workflow control

1 Introduction

In logistics, the goods transported by road, air and water 
must be moved using platforms known as pallets. Pallets, 
which are made of cheap lumber and nails, serve as a solid 
load base. They are a standard means of moving products 
in logistics centres but are also used for easy transportation 
when shipping by road, sea, or air. About 5.1 billion pallets 
are used around the world [1] and many of them are used 
to move boxes of goods and products from producers or 
manufacturers to customers.

Packaging factories usually design and manufacture solu-
tions for consumer, retail, industrial products, e-commerce, 
etc. Some of these solutions consist of creating corrugated 
cardboard packaging for fruit, vegetables, and bulk agricul-
ture. Manufacturers make and supply their customers with a 
wide variety of corrugated board for this kind of packaging, 
such as solid boards or tailored folding carton sheets. The 
products are supplied as batches of disassembled packaging 
vertically stacked on a pallet for easy transportation (Fig. 1).

In factories, the pallets travel in arbitrary positions on a 
set of roller conveyors controlled by human operators, as 
shown in Fig. 2. The structure of conveyors creates paths 
connecting different nodes of the logistics network within 
the factory. The pallets carry the product from several 
machines that produce corrugated cardboard and on the 
roller conveyors to the storage locations in the warehouse 
or to the shipping gates for road transport. Figure 3 shows a 
partial view of a roller conveyor map in a Spanish Smurfit 
Kappa factory in which the proposed system was tested. 
It illustrates points along the route at which conveyor lines 
join and the load can be diverted using a roller turntable. 
The turntables are controlled by a human operator. This 
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operator can change the pallet trajectory by rotating it any 
angle from 90 up to 180°. At this point, the operator identi-
fies the product manually and diverts it by following storage 
and distribution policies (type of product, warehouse status, 
delivery date, etc.). The standard speed of the roller con-
veyor system is 0.08 m/s. This pace was chosen by the fac-
tory to avoid the excessive vibration of the load on the pallet.

To improve the tasks that this human operator performs, 
we implement an automatic visual monitoring system for 
the pallets. The idea is to achieve flexibility through ware-
house automation, as suggested in [2]. Our system assists 
the operator to sort packages in order to ensure that they 
can be distributed around the factory more efficiently and 
without errors.

In a previous work [3], we used low-cost colour cam-
eras to carry out preliminary experiments with which to 
detect and recognise pallets loaded with different types 
of disassembled packages. The proposal in question 
also makes it possible to track pallets along the path of 
the roller conveyor. However, we found some problems 
with YOLO-type object detectors when the pallets were 
partially occluded in the image while the turntable was 
rotating. This problem forced the tracker to change the 
ID and generate the wrong statistics. We have, therefore, 
extended the experimentation in order to solve this issue 
and thus improve the detection, recognition and tracking 
processes. We have specifically tested more state-of-the-
art tracking methods and now propose the use of an Ori-
ented Bounding Boxes technique with YOLOv5, while 
also maintaining Mask R-CNN and the original YOLOv5 
in the comparison. The goal is to improve the performance 
of our system by reducing the number of detections lost by 
our previous Pallet Detector, especially when the pallet is 
not completely seen by the camera while the turntable is 
rotating. This new solution, therefore, makes it possible 
to increase the robustness of our system. In this paper, we 
carry out extensive and rigorous experimentation on these 
three detectors and different types of trackers, from tradi-
tional to deep learning–based trackers with the objective 

of optimising the warehouse distribution in order to pre-
vent the dis-placement of forklift trucks and congestion in 
the node queues. This consequently leads to a reduction in 
vehicle traffic, which may cause accidents, and to produc-
tion not being affected by the saturation of manufacturing 
lines. Moreover, the limited space in the warehouse can 
be used more efficiently.

This paper is organised as follows. Section 2 presents the 
visual recognition and computer vision techniques used in 
industrial logistics, while Section 3 presents our proposal for 
the implementation of a visual monitoring intelligent system 
for packaging pallets on conveyor belts. Section 4 shows the 
results obtained in a real scenario with different kinds of pal-
lets, and finally, Section 5 shows a summary of our findings 
and contributions, along with the main limitations of this 
work and some future research lines.

Fig. 1  Manufacturing stages: (a) Containerboard roll. (b) Softwood fibre sheets obtained by processing different kinds of rolls. (c) Corrugated 
cardboard sheets obtained by mixing fibre sheets. (d) Folding boards with which to build cardboard boxes

Fig. 2  Pallet transporting stacked disassembled packaging. Camera 
height ~ 6.5 m, pallet height ~ 2.5 m

180 The International Journal of Advanced Manufacturing Technology (2023) 126:179–195



1 3

2  Related works

Digital transformation processes have, in the last few years, 
begun to be used to optimise logistics in factories, and more 
specifically, machine vision, as reviewed by [4]. The work 
of [5] and [6] discusses how image processing and com-
puter vision techniques contribute to improving logistics by 
automating a great variety of operations, such as security 
and protection, occupancy of storage, traceability and track-
ability or inspection for quality control, etc.

Specialised algorithms based on machine learning have 
recently been implemented in order to recognise packag-
ing boxes on pallets. For example, in the study [7] shows 
a Neural Network (NN) called TetraPackNet that is used 
to detect corner points from the images of the side faces of 
pallets. This approach was designed as an extension of a 
well-known NN called CornerNet [8]. Previously, in [9], the 
same authors implemented a pipeline consisting of a combi-
nation of segmentation algorithms. This pipeline detects the 
whole pallet unit and its number of visible stacked packaging 
boxes.

In the aforementioned works, the packages on pallets are 
recognised but are neither spatially located in the environ-
ment nor tracked when they change position. Focusing on 
this aspect, some work such as that shown in [10] have pre-
sented a method with which to detect, localise and track 

multiple pallets by applying machine learning to the data of 
a 2D laser rangefinder on board a mobile robot. More specif-
ically, they have combined a segmentation NN such as Faster 
R-CNN [11] in cascade with a convolutional classifier.

Other approaches are focused on recognising and locating 
pallets in warehouses or other types of objects/packages on 
conveyor belts. In the first case, the goal is to discover the 
position of the pallet pockets in order to insert the forks of 
a forklift truck correctly, as occurs in [12] or [13]. In this 
respect, [14] compared state-of-the-art image algorithms 
for object detection with classic neural detectors such as 
YOLOv1 [15] in all cases when applied to the recognition of 
pallets in grayscale images. The results showed a significant 
improvement in accuracy and response time. In [16], the 
authors used RGB cameras and compared some known Con-
volutional Neural Networks (CNNs) such as Faster R-CNN, 
YOLOv4 [17] and SSD [18], again in order to recognise pal-
let pockets. 3D cameras and processing algorithms of point 
clouds (3D-Keypoints, depth segmentation, etc.) were also 
used in [12, 19, 20] and [21] for this same task. Note that 
the purpose of all these works is automatic pallet detection, 
but using only views of the side faces. Moreover, they detect 
only the lumber platform and not the load of packages.

With respect to the detection and recognition of objects 
on conveyor belts, in [22–24], for instance, the authors used 
traditional computer vision methods (contour and ellipse 

Fig. 3  Partial map of a roller conveyor connecting different factory nodes in a Spanish Smurfit Kappa factory
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detection), and deep learning based methods (Mask R-CNN 
and YOLO) to localize and track cardboard and plastic 
boxes on different types of conveyors belts in the logistics 
industry. In the same line, but applied to other industries, in 
[25], an improved tiny version of YOLOV3 is used to detect 
coal and gangue on a coal conveyor belt. In [26], mean-
while, background subtraction and segmentation is used to 
detect foreign materials (metal, wood, rubber, etc.), and in 
[27], ResNet, VGG and DenseNet architectures are used 
to detect imperfections in thermoforming food packages. 
Although these works are not focused on pallet detection, 
the approaches used are similar to that of our proposal, since 
they address object detection and instance-level recognition 
in different fields and industries. As occurs in our problem, 
the objects are homogeneous and it is difficult to distinguish 
them.

Unlike the works described above, our method is focused 
on detecting and recognising packaging loaded on pallets, 
and not on lumber platforms as described in [12, 14, 16]. 
Moreover, we use video sequences captured from an RGB 
camera with a bird’s eye view configuration rather than a 
side view to detect the packing, as occurred in [7, 9]. Our 
proposal is based on 2D techniques rather than 3D process-
ing, as in [12, 19, 20], signifying that we require less com-
putational complexity and there is less dependency on the 
camera type and its location. Moreover, only a few works, 
such as [10], are able to carry out trackability. The major-
ity of works do not, therefore, process video but only static 
images without movement. In our proposal, we add this 
essential processing in order to not only recognise, but also 
control roller conveyor congestion. Our system does this by 
tracking the number of pallets of each type, and estimating 
the starting point (source machine) from the pallet trajectory. 
The proposal analyses the characteristics of roller conveyor 
congestion and allows the factory to make the decisions. Our 
goal is inspired by [28], but considers a different application 
scenario and provides a completely different solution.

3  Methods

Deep learning algorithms are in a phase of continuous devel-
opment and progress, especially when applied to computer 
vision. However, even when using these algorithms, object 
detection and segmentation tasks are a challenge yet to be 
solved in some applications. This development and progress 
have, over the years, generated significant research and 
results in the fields of both object detection [29–31] and 
segmentation [32]. Another important line of research to 
have emerged in recent years is the image tracking, as shown 
in [33, 34]. Deep learning algorithms are also undergoing 
a boom in this area [35] because they facilitate large-scale 
work in different environments and situations. Taking the 

study and analysis of some of the aforementioned algorithms 
as our starting point, we propose a monitoring system for the 
recognition and tracking of palletised packaging (MOSPPA) 
in the paper industry.

The general scheme of the proposed method is shown 
in Fig. 4. It consists of a two-stage architecture composed 
of CNNs, one for detection and recognition, and the other 
for tracking. Our system is able to select from among three 
different detection algorithms: YOLOv5 [36], YOLOv5 with 
Oriented Bounding Box (YOLOv5OBB) [37, 38] or Mask 
R-CNN for the detection stage [39] combined with differ-
ent visual trackers based on correlation filters such as Ker-
nelized Correlation Filters (KCF) [40], sparse representation 
such as Multiple Instance Learning (MIL) [41], adaptive 
correlations in Fourier space such as Minimum Output Sum 
of Squared Error (MOSSE) [42], or deep learning strate-
gies such as DeepSORT [43], StrongSORT [44] or ByteTrack 
[45] for the tracking stage. These algorithms were trained 
and tuned for the specific task of monitoring disassembled 
packaging.

In the first stage, the RGB cameras, in a bird’s eye view 
configuration, start recording the video sequence when a 
laser sensor located on each turntable detects the presence 
of a pallet. Each frame in this sequence is the input image 
of our Pallet detector, which processes this input and infers 
a prediction. This prediction contains three fields: the loca-
tion of the pallet in the image, the score or confidence of 
the pallet type, and the predicted class or pallet type. The 
format of the pallet location differs depending on the CNN 
used (YOLOv5, YOLOv5OBB or Mask R-CNN), as will be 
discussed later.

In the second stage, the output obtained previously from 
the Pallet detector acts as the input for this stage. This input 
allows the selected tracking algorithm to estimate a unique 
identification number for each pallet and maintain that iden-
tifier throughout its trajectory. It is, therefore, possible to cal-
culate the counters for the production statistics and logistics. 
Moreover, pallet location, confidence and type are used to 
visualise results and calculate the direction of the pallet on 
the turntable. This direction is achieved by measuring the 
centroid displacement of the pallet location in the image.

3.1  Pallet detection

On the one hand, YOLOv5 is an algorithm that was designed 
to detect instances of known objects by computing bounding 
boxes in order to mark their regions in the image. This object 
detector has three main parts: the backbone, the neck and 
the head. The NN employed as the backbone in YOLOv5 
is Cross Stage Partial Network (CSP) [46], which is used to 
extract visual features from the input images. These features 
can be low-level features (corners or borders) or high-level 
features (e.g. the eyes, nose or ears of a cat). The neck used 
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to generate feature pyramids in order to learn features in 
different sizes and scales is the Path Aggregation Network 
(PANet) [47] and finally, YOLOv5 uses the same head as in 
the previous versions. This applies anchor boxes and gener-
ates the output bounding box regression and object clas-
sification. A bounding box is a rectangle that surrounds the 
object detected in the image, and most importantly, it is the 
pallet location estimated by YOLOv5.

However, from a top view perspective, a straight bound-
ing box does not fit rotated pallets correctly. The OBB gen-
erated by YOLOv5OBB can, therefore, estimate the orien-
tation of the pallet with greater precision. YOLOv5OBB, 
therefore, maintains the same structure as YOLOv5, but 
also includes some new features with which to solve the 
angle prediction of the pallets detected as shown in Fig. 5. 
Note that the formulation of the prediction as a classifica-
tion problem rather than a regression problem is the most 
important improvement, together with the addition of the 
Circular Smooth Label (CSL) [38] technique. This new tech-
nique allows the resolution of important issues in oriented 
object detection, such as the periodicity of angles and the 
exchangeability of edges.

On the other hand, the Mask R-CNN algorithm detects 
the object instances by segmenting the image in regions, in 
which each region contains only the object pixels. These 

regions, which are better known as masks, are the pallet 
location generated by Mask R-CNN in the image.

This object detector is divided into two stages. The first 
stage is composed of a Feature Pyramid Network (FPN) that 
uses a ResNet101 CNN as a backbone in order to extract 
features from the image. This stage also contains a Region 
Proposal Network (RPN), which processes the feature map 
extracted by the FPN in order to propose regions that may 
contain objects. The second stage obtains the regions pro-
posed by the first stage and assigns them to different areas 

Fig. 4  Pipeline of our implementation

Fig. 5  Calculation of OBB by learning to predict to the angle offset 
between the predicted OBB and the ground truth OBB
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of the feature map, after which the objects, bounding boxes 
and masks are extracted.

Figure 6 shows several examples of pallet detection using 
the three aforementioned methods. These examples show 
that all of these methods are able to detect and recognise 
pallets of varied shapes, heights, widths and colours under 
different indoor light conditions (morning and afternoon) 
with AP values higher than 90%.

We chose these three methods from among those shown 
in [29–32] because they achieved the best performance (in 
terms of accuracy, precision and time) for similar tasks to 
ours, without being forced to run on extremely expensive 
GPUs. These algorithms take an image as input, and follow 
a supervised learning methodology. This signifies that they 
have to be taught to recognise the objects by means of a prior 
training phase. In this phase, the NNs learn to automati-
cally extract image features of objects. These features allow 
these NNs to perform a full classification (Mask R-CNN) or 
a classification-regression task (YOLOv5, YOLOv5OBB).

3.2  Pallet tracking

Tracking algorithms were formerly used to predict the location of 
an object in a video sequence from an initial detection in the first 

frames. Trackers are now able to track moving objects within the 
Field of View (FoV) of a camera, developing a dynamic detec-
tion. The objects must, therefore, be detected beforehand in static 
images, after which the temporal information regarding the spa-
tial features that define each detection is analysed.

The state of the art of dynamic detection–based tracking 
methods consists of training correlation filters (KCF), discrimi-
native classifiers (MIL), adaptative correlations (MOSSE) or 
deep neural networks (based on SORT and ByteTrack) to dis-
tinguish the target from the background. Of all of them, we have 
selected some of the most representative methods for each type, 
e.g. KCF, MIL, MOSSE, DeepSORT, StrongSORT and ByteT-
rack, to be evaluated for our goal. KCF estimates an optimal 
image filter that, when applied to the input image, produces a 
desired response. The desired response is typically of a Gauss-
ian shape in the centre of the target location, signifying that the 
score decreases with the distance. It is highly efficient and is 
capable of running at hundreds of FPS. MIL trains a logistic clas-
sifier in an online manner in order to separate the object from the 
background. The algorithm obtains the samples by looking in a 
small neighbourhood around the current location so as to gener-
ate several potential positive predictions. MOSSE, our last choice 
of classical trackers, calculates correlations in Fourier space in 
order to minimise the sum of squared errors among actual and 

Fig. 6  Examples of detections 
from our Pallet detection mod-
ule using YOLOv5 (top row), 
Mask R-CNN (middle row) and 
YOLOv5OBB (bottom row)
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predicted correlations. MOSSE is, therefore, able to track objects 
rapidly.

With respect to trackers based on deep learning tech-
niques, DeepSORT is composed of four stages: detec-
tion, estimation, association and track identification. In 
our proposal, the original DeepSORT detector is replaced 
with our Pallet detector, which makes it possible to select 
between one of the three aforementioned NNs (YOLOv5, 
YOLOv5OBB or Mask R-CNN). The remaining stages 
have been maintained. The second stage is accordingly the 
original, and it propagates the detection from the current 
frame with a linear constant velocity model and a Kalman 
filter. The third stage attempts to assign detections to exist-
ing targets using the Intersection Over Union (IoU) as a cost 
matrix, solved by the Hungarian algorithm [48]. The final 
stage imposes a different identity on each object in the image 
when objects enter and leave the image.

The use of the StrongSORT tracker with new techniques 
was proposed in order to update and improve DeepSORT. 
Its authors first replaced the custom and simple CNN, which 
is used in DeepSORT to extract features, with a stronger 
feature extractor [49] which uses ResNet50 [50] CNN as 
a backbone, thus allowing the extraction of more discrimi-
native features. Second, the feature bank technique, which 
was used in DeepSORT to store features of short tracks, has 
been replaced with the feature updating strategy proposed in 
[51], which is more efficient in terms of time consumption. 
Finally, StrongSORT has adopted the Enhanced Correlation 
Coefficient (ECC) technique [52] for camera motion com-
pensation and the vanilla Kalman Filter has been replaced 
with the NSA Kalman Filter [53], which handles the prob-
lem of noise detection.

ByteTrack is a new method in which a new technique 
with which to perform data association has been proposed. 

Current deep learning trackers usually carry out this data 
association by eliminating bounding boxes with scores lower 
than a threshold. However, occluded objects are discarded, 
producing fragmented trajectories. This tracker tracks by 
associating bounding boxes with high or low scores, achiev-
ing very good results in several benchmarks.

Figure 7 shows examples of pallet tracking from the 
six aforementioned trackers. As can be seen, deep learn-
ing–based trackers, such as (i, d), (e, k) and (f, l), are more 
accurate because they take the output from the pallet detec-
tor as input, while the traditional trackers run both detection 
and tracking tasks. Traditional trackers, such as (a, g), (b, h) 
and (c, i), accordingly have a worse fit for the bounding box.

3.3  Set‑up and implementation

Our proposal is designed to be able to use several colour 
Intel®RealSense™ D415 cameras that provide images 
with a resolution of 640 × 480 pixels. Note that, although 
this camera also provides depth information, we have 
used only RGB data to speed up the detection process. 
We do not, however, discount the use of the depth chan-
nel in future work if it is required in order to improve the 
precision of new packages. These cameras capture up to 
30 FPS, but the FPS has been set to 15 by considering 
the speed of the roller conveyor in our experimentation. 
We have mounted a camera on two different turntables 
(Fig. 3) in order to monitor the traffic at different connec-
tion points of roller conveyors in industry. Figure 2 shows 
an example of a camera capturing a bird’s eye view of a 
turntable. The cameras are connected to a computer with 
the following components: an i5-7400 CPU 3.00 GHz (4 
cores/4 threads), 16 GiB DIMM DDR4 Synchronous 2, 

Fig. 7  Tracking examples from our Pallet tracker module comparing YOLOv5 with different trackers: MIL (a,g), KCF (b,h), MOSSE (c,i), 
DeepSORT(d,j), StrongSort (e,k) and ByteTrack (f,l)
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a Western Digital WDS500G2B0A WD 500 GB, and a 
NVIDIA GTX 1070Ti (8 GiB) GPU.

We additionally use a reflective/thrubeam laser dis-
placement sensor for each camera in order to detect tar-
gets based on position, i.e. the sensor is used as a camera 
trigger.

When the camera is triggered, the algorithm shown in 
Algorithm 1 starts to find an existing Identifier (ID) in the 
previous camera queue Queuei-1 (if there are multiple cam-
eras). If the previous queue is empty, the current i-camera 
algorithm starts to track the pallet, and the assigned ID is 
queued in its own queue Queuei. If the previous queue is not 
empty, then the algorithm obtains the ID from that camera and 
starts to track that ID.

Algorithm 1  Camera control algorithm 

1: if Queuei-1 is empty then
2:    ID, class, localization ← palletDetection (frame)
3:    Tracker ← ID
4:    Track ID
5:    Queuei.append(ID)
6: else
7:    ID ← Queuei-1.pop(0)
8:    Tracker ← ID
9:    Track ID
10:   Queuei.append(ID)
11: end if

Our system is, therefore, able to maintain the same ID 
throughout the roller conveyor map, although it is tracked by 
different cameras on its way. This issue prevents the pallet ID 
from being modified during the tracking process performed 

by other cameras located in the same path. The first cam-
era that detects and tracks a pallet is that which assigns the 
ID, while those that follow simply check whether there are 
already-identified pallets in the queues.

The coding was implemented in a conda environment: 
Python 3.9.12, PyTorch 1.10.1, CUDA 11.3 (with driver ver-
sion 470.129.06) and OpenCV 4.5.5 over Ubuntu 18.04.6 LTS 
Bionic Beaver. We also used PySide 6.2.2 to build the Graphical 
User Interface (GUI) so as to allow the human operator to visu-
alise the inspection tasks (Fig. 8). Our GUI allows the human 
operator to address the process and interact with devices such 
as cameras and laser sensors.

The GUI is divided into three columns: left, centre and 
right. The left-hand column contains two tables showing all the 
information related to the detection (pallet type, direction and 
timestamp). Real-time detections are shown in the top table. The 
colour indicates the reliability of the detection on the basis of 
the average score/confidence during the trajectory of the pallet 
on the turntable. Green means that there is confidence in the 
detection, while red warns the operator to check this pallet. The 
bottom table is employed to save a record of detections sorted by 
pallet type. In the centre column, we show the image from the 
camera when adding the predicted information from our system 
(Identifier (ID), class, score). Finally, statistical values regard-
ing production are shown in the right-hand column (pallets and 
pallets per minute in each direction and in total). These values 
help the operator to anticipate congestion on the roller conveyor.

The procedure is the following. First, packaging 
machinery manufactures each corrugated cardboard 
package. A package is finished when it has been cut 
according to the customer’s design (Fig. 9). The customer 

Fig. 8  Interface visualization of our system showing the detection and tracking of one of the cameras
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chooses the punched shape and the printing pattern. The 
disassembled packages are then stacked (with the printed 
design downwards) on a pallet until it is full, after which 
the pallet is located on a system of roller conveyors to be 
transported inside the factory.

Second, the pallet moves along the roller conveyor and 
passes through some checkpoints. Each of these checkpoints 
consists of our visual inspection system and a roller turn-
table, on which different conveyor lines converge (Fig. 3). 
When a pallet reaches the border of the inspection area, a 
laser sensor detects its presence and enables the camera to 
capture a video in real time. The images from the cameras 
are transmitted to a computer in which we run the pipeline 
shown in Fig. 4. As mentioned previously, our system rec-
ognises and tracks each pallet on the turntable, providing a 
unique ID for each pallet detected (Fig. 8).

4  Experiments and results

When describing the experimentation, we first present the 
dataset created to train and test the proposed system. Since the 
Pallet detector and Pallet tracker modules were implemented 

in order to allow the operator to work with different algo-
rithms, it was recommendable to compare the performance 
of the models. This was done by performing detection experi-
ments by calculating AP values for the validation and test set. 
We then analysed which tracker best fitted the detector chosen, 
comparing different trackers in terms of IoU and FPS.

4.1  Dataset

As explained in Section 3, each client’s product has a 
custom design (Fig. 9). However, different clients may 
order the same type of pallet (number of boxes per layer, 
height, width, depth, etc.). The number of pallet types can, 
therefore, be reduced to seven classes, considering that 
all clients order these types of pallets but with different 
designs. Note that the printed side is not visible from the 
camera when the product is stacked. We annotated each 
class depending on the stack configuration (number of 
boxes per layer) and the pallet type (low, high or long). 
For example, a long pallet with a stack configuration of 
one box was annotated as 1long, as can be seen in Fig. 8. 
Figure 10 shows the stack configuration of the pallets in 
each class.

Fig. 9  Three disassembled 
packages with custom designs. 
The design is printed on the 
back of the package

Fig. 10  Stack configuration of 
each pallet and samples in our 
dataset. (a, b, e) and (f) contain 
one type of packaging, while 
(c, d) and (g) contain more than 
one type of packaging, with dif-
ferent shaped boxes
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In order to create our data collection, almost 6 h of video 
sequences were recorded in one of the Smurfit Kappa Com-
pany’s factories. We captured image samples on different 
days and during different work shifts to obtain sufficient 
samples of each class in different light conditions and work-
loads. We then extracted 315,527 frames from these videos. 
However, we eliminated those frames in which there was 
no pallet or it did not appear entirely in the image. After 
removing these images, our final dataset contained 30,365 
images. The total number of images was distributed in each 
class as follows: (a) 14.358%, (b) 14.355%, (c) 14.355%, (d) 
14.349%, (e) 14.355%, (f) 13.875% and (g) 14.352%. Note 
that the dataset is well-balanced. 

As a common step before training the detectors of 
our system, we divided the dataset into two sets: train-
ing (70%: 21,255 samples) and validation (30%: 9110 
samples). Moreover, apart from the training dataset, we 
recorded other videos only to test the detectors and track-
ers. In the case of the detectors, the test set was made up 

of 100 randomly chosen image samples per class. In that of 
the trackers, the test set was created by grouping consecu-
tive images of the pallet trajectory from its entrance onto 
the turntable to its exit.

Although the same dataset has been used for the three 
detectors selected from the state of the art, YOLOv5, Mask 
R-CNN and YOLOv5OBB calculate the pallet location in 
different ways. It is, therefore, necessary to annotate the 
images with bounding boxes for YOLOv5, pixel masks for 
Mask R-CNN and OBB for YOLOv5OBB. This is because 
the three detectors are NNs of different categories, as com-
mented on previously: two of them are detection NNs and 
the other is a segmentation NN.

A GUI (Fig. 11) was used to speed up the annotation pro-
cess, thus making it semi-automatic. This GUI uses the Hue-
Saturation-Value (HSV) colour space in order to segment 
the cardboard boxes from the background of the image. The 
HSV colour space was chosen because it achieved the best 
results when compared to the other colour spaces available. 

Fig. 11  GUI based on HSV 
colour space used to speed up 
the annotation process
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The HSV filter was set using 3 sliders, each of which had a 
single channel with which to precisely adjust the filter. At the 
beginning of the execution, the GUI automatically sorted the 
images available in the input directory. It was, therefore, nec-
essary only to select the desired class (type of pallet) using 
our keyboard, and establish the minimum and maximum 
HSV values required to annotate the pallet sample.

Once the cardboard box is located, it is annotated for each 
of the three chosen NN as can be seen in Fig. 12. On the one 
hand, for YOLOv5, we label the pallets with a rectangular 
bounding box, extracting the height, width and the coordi-
nates of its centroid. This labelling method is less accurate 
because it contains background pixels, but it is faster than 
the other two labelling methods. For Mask R-CNN, we only 
label the pixels of the pallet, extracting the contour of it. 
This method is more accurate because it does not contain 
background pixels but this labelling method is more time-
consuming. On the other hand, for YOLOv5OBB, we label 
the pallets with an oriented bounding box, extracting the 
coordinates of its corners. This method achieves a better 
trade-off between pixel accuracy and labelling time.

4.2  Training, validation and testing of pallet 
detectors

Before starting the training phase, we set the model and 
the training hyperparameters for YOLOv5, YOLOv5OBB 

and Mask R-CNN. As can be seen in Table 1, we chose 
the small size model for YOLOv5 and YOLOv5OBB and 
the Resnet50 backbone for Mask R-CNN, seeking a fast 
detection process but also maintaining a reliable detection. 
Models with a larger number of parameters were tested but 
they did not achieve a good trade-off between speed and 
quality of detection.

Moreover, the three NNs were trained following a 
transfer learning strategy with COCO pretrained weights 
[54] because this allows the models to converge faster 
than using other datasets or training from scratch. Finally, 
we applied rotation (± 90°), horizontal and vertical flip 
to the training of YOLOv5 and YOLOv5OBB in order 
to improve their performance, while no transformation 
improved the training results of Mask R-CNN. Other 
transformations, such as zoom or a change of colours were 
discarded to avoid confusing the models of the different 
types of pallets.

Table 2 shows the training hyperparameters, from which 
we chose the optimal batch size values that our GPU can 
hold, an initial learning rate of 0.007 with weight decay of 
0.0005, and an SGD with Momentum (0.94) as the opti-
miser. We tested several learning rates and optimizers, 
with 0.007 and SGD with Momentum being the optimum 
for our task. We used an NVIDIA A100 tensor core GPU 
with 40 GB memory for training and a GTX1070Ti for 
validation and testing, as mentioned in Section 3.3. The 

Fig. 12  Example of differ-
ent annotated outputs. (a) 
YOLOv5. (b) Mask R-CNN. (c) 
YOLOv5OBB

Table 1  General information of 
each NN model

Neural Network Model Backbone Pretrained weights Data augmentation

YOLOv5 Small CSPNet COCO Horizontal and vertical flip, ± 90º rotation
Mask R-CNN - Resnet50 COCO -
YOLOv5OBB Small CSPNet COCO Horizontal and vertical flip, ± 90º rotation

Table 2  Training 
hyperparameters of each model

Neural Network Optimizer Learning rate Batch size Loss

YOLOv5 SGD 0.007 256 Binary Cross Entropy
Mask R-CNN SGD 0.007 8 Binary Cross Entropy 

(masks) and Softmax 
(class)

YOLOv5OBB SGD 0.01 256 Binary Cross Entropy
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A100 capabilities facilitate an exploration of parameters 
that is more effective, whereas GTX1070Ti has a good 
response between inference time and energy consumption.

The models were trained by applying a divide and con-
quer strategy in order to achieve an almost optimal train-
ing and dataset. This strategy consists of first training our 
models with only one type of pallet, and then evaluating the 
performance of the trained model. We then realised that the 
performance values for our model varied depending on the 
spatial location of the pallet in the image, which was caused 
because this first version of our dataset was imbalanced in 
these cases. After balancing our dataset, we repeated the 
training process and the success rate improved. This pro-
cess was iterated by adding more classes and more sample 
variability to each class in the dataset until it was completed 
according to the company’s requirements.

In order to measure the performance of the pallet detec-
tion task, we always used the different APIoU computed as in 
Eq. (1) as a score, in which each IoU was obtained according 
to Eq. (2) by applying a specific threshold of between 0.5 
and 0.95, where 1 is the maximum value. IoU measures the 
similarity between ground-truth and the detected region. The 
threshold determines the tolerance value that is allowed. We 
also calculated an average AP, as in Eq. (3), in which AP50 
denotes an AP using a threshold of 0.5.

where r, p, ř, gt and pd denote levels of recall, precision and 
recall values, ground truth and prediction bounding boxes.

We designed two types of experiments. First, we studied 
the behaviour of our system using the validation set. Later, 
we used the test set, which is different from the validation 
and training sets, to determine the ability to generalise pal-
let detection from samples never seen before. In addition, 
for each type of experiment, we evaluated the behaviour 
without distinguishing between stack configuration and 
pallet type, e.g. using the full validation set or the full test 
set.

The experimental results show that the three detectors 
obtain significant results for both the validation and the 
test set, as is shown in Tables 3 and 4. YOLOv5 achieves a 
higher AP50:95 value with the validation set, which means 
that it better detects the samples that were used in the 
training phase. Nonetheless, YOLOv5OBB outperforms 
YOLOv5 and Mask R-CNN in the test set with unseen 

(1)APIoU =
∑

i∈r̃

(ri+1 − ri) ⋅ max
r̃∶r̃≥ri+1

�(̃r)

(2)IoU =
area(gt ∩ pd)

area(gt ∪ pd)

(3)AP
50∶95 =

1

10
∗
∑9

k=0
AP

50+5∗k

samples, proving its superior ability to generalise, as shown 
in the last row of Table 4.

Tables 5 and 6 show the AP50:95 values of each detec-
tor with each of the 7 classes from the dataset. Although 
YOLOv5 obtains better results as regards detecting classes 
independently, YOLOv5OBB and Mask R-CNN detect 
with a lower standard deviation than YOLOv5 (Table 4), 
signifying that this last detector produces more variation in 
its detection scores. We are, therefore, of the opinion that 
if new pallet classes or new samples are added in the fac-
tory, the results will not be worse. In addition, YOLOv5 
and YOLOv5OBB run in real time with a very small time 
inference in a basic GPU, while Mask R-CNN is very slow 
(Table 3). We, therefore, decided to discard Mask R-CNN 
owing to the impossibility of achieving an execution in real 
time at high production rates.

Although YOLOv5OBB outperforms YOLOv5 with the 
test set in terms of the ability to generalise, according to total 
 AP50:95 and its standard deviation, its performance is not as 
good as anticipated for some types of pallet but is still very 
close, as shown in Table 6. YOLOv5OBB is, on average, 
11% better for c, e and g, while its performance is similar to 
YOLOv5 for a, d and f, despite being 2.76% lower. Only in 
the case of b is YOLOv5 clearly better than YOLOv5OBB.

For a more exhaustive comparison of both methods, we 
added a new metric that consists of calculating the percent-
age of detections that the detector loses during the trajectory 
of the pallet along the turntable. This percentage is truly 
important because it could cause a change in ID within the 
tracker, thus generating wrong product monitoring statistics, 
which would also cause errors in logistic management. To 
illustrate this metric, we have extracted a fragment from the 
test video. This fragment contains six pallets, each with a 
different class.

In order to obtain the percentage of lost detections, it is 
first necessary to count the total number of frames within 
this video fragment (4600 frames). The elimination of the 
frames in which there is no pallet is important if a fair value 
metric is to be attained, and the final number of frames is, 
therefore, 3070. We then count the number of detections 
generated by YOLOv5OBB and YOLOv5: 3040 and 2816, 
which correspond to a lost detection percentage of 1% and 
8.3%, respectively. Note that this 8.3% of lost detections 
in YOLOv5 forces the tracker employed to change the ID, 
as can be seen on the right-hand side of Fig. 13. The most 
common cases in which YOLOv5 loses detections are when 
the pallets are not completely seen by the camera, at the 
entrances to the turntable or when the turntable is rotat-
ing. However, YOLOv5OBB is able to maintain a good 
performance in these cases. This is because YOLOv5OBB 
has learned to predict oriented bounding boxes that con-
tain more pixels of the pallets and less of the background, 
signifying that when the pallets appear incomplete in the 
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image, YOLOv5OBB is still able to detect them. However, 
YOLOv5 has more difficulties in distinguishing the pallets 
from the background because the rectangular bounding 
boxes contain noise from the background of the image.

Finally, this metric makes it possible to select 
YOLOv5OBB as the Pallet Detector because its percent-
age of lost detections is almost negligible, thus helping the 
tracker to maintain the ID for each pallet sample.

4.3  Tracker comparison

Having chosen YOLOv5OBB as the default recommended 
detector for the three algorithms implemented in our sys-
tem, we tested YOLOv5OBB and YOLOv5 in combination 
with the trackers described in Section 3.2. This experimenta-
tion, which consisted of comparing both detectors with each 
tracker, was divided into two kinds of experiments. First, 
a comparison of classical trackers (KCF, MIL, MOOSE) 
and deep learning–based trackers (DeepSORT, StrongSORT 
and ByteTrack) was carried out using YOLOv5 as a detec-
tor. Second, we compared both detectors with deep learn-
ing–based trackers in order to eventually select one of the 

trackers to accompany YOLOv5OBB in the final proposed 
system.

The default parameters of the trackers were obtained from 
experimentation with different benchmarks, as described in 
[41]. They also performed correctly when the detector was 
YOLOv5OBB owing to its small percentage of lost detec-
tions. Nonetheless, if the detector used was YOLOv5, deep 
learning–based trackers would require parameter tuning in 
order to ensure a correct detection following manufactur-
ing (roller conveyor speed) and visual conditions (image 
appearance).

Table 7 shows the results of the parametric tuning for the 
main parameters. We chose a tolerance of 0.2 as the similar-
ity value that we allowed to accept the identification of each 
pallet (MAX_DIST). An IoU threshold of 0.7 was used to 

compare detected bounding boxes in order to create a new 
pallet ID or maintain it (MAX_IOU_DISTANCE). We addi-
tionally used a maximum of 30 frames without detection as 
the default value for a limit to delete an ID from the tracker 
memory (MAX_AGE). Finally, we saved 3 successful detec-
tions (N_INIT) in order to create a new ID and 100 feature 
vectors from previous detections (NN_BUDGET) in order 
to identify a pallet as default values for these parameters. 
This parametric tuning indicated that YOLOv5 needed to 
increase the number of frames without detection in order to 
maintain the ID of the pallet because of the 8.3% of missed 
detections mentioned previously.

The results of both experiments were calculated in 
terms of IoU, as shown in Eq. (2) and its performance in 
FPS. Table 8 shows the results of the first experiment, 
in which deep learning–based trackers outperformed the 
classical methods in IoU with very similar FPS values. In 
the next experiment, it was, therefore, necessary only to 
compare the deep learning–based trackers. YOLOv5 was 
always used as the detector in order to obtain an honest 
comparison. All of the methods based on deep learning 
provided better results than did the classical trackers. 

Table 3  Detection results using full validation set

Detection algorithm AP50 AP75 AP50:95 Inference (ms)

YOLOv5 0.995 0.993 0.959 5.5
Mask R-CNN 0.999 0.995 0.887 274
YOLOv5OBB 0.955 0.960 0.914 8.3

Table 4  Detection results using full test set

Detection algorithm AP50 AP75 AP50:95

YOLOv5 0.986 0.984 0.865 ± 0.068
Mask R-CNN 0.984 0.984 0.853 ± 0.047
YOLOv5OBB 0.955 0.972 0.889 ± 0.049

Table 5  AP50:95 results for each 
type of pallet on validation 
phase

Detection algorithm a b c d e f g

YOLOv5 0.971 0.960 0.916 0.940 0.991 0.960 0.981
Mask R-CNN 0.887 0.902 0.928 0.880 0.850 0.885 0.878
YOLOv5OBB 0.943 0.891 0.982 0.849 0.905 0.954 0.876

Table 6  AP50:95 results for each 
type of pallet on testing phase

Detection algorithm a b c d e f g

YOLOv5 0.893 0.958 0.799 0.840 0.764 0.907 0.896
Mask R-CNN 0.776 0.889 0.879 0.796 0.866 0.885 0.880
YOLOv5OBB 0.867 0.873 0.961 0.812 0.900 0.878 0.934
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More specifically, DeepSORT, StrongSORT and ByteT-
rack accomplished the same precision in the detection 
with a similar tracking time, although if we are rigor-
ous, the last tracker was 3% faster than the SORT-based 
method.

Finally, we tested the best trackers but using 
YOLOv5OBB as the detector, since it provides more 
robust solutions, as shown in the previous section. As 
justified in the results shown in Table 9, any deep learn-
ing–based tracker of this nature would be adequate for 
our task, in which it is necessary only to track one object 
moving at the same time at a relatively slow speed, which 
was 0.08 m/s. However, DeepSORT was chosen because 
it achieved a higher FPS value when compared with the 
others when YOLOV5OBB was used as detector. Our 
system by default, therefore, recommends YOLOv5OBB 
as the Pallet Detector and DeepSORT as the Pallet 
Tracker. Note that our system loses 5.1% of speed as 
regards detection and tracking, considering that the cam-
era captures 15 FPS. The proposal consequently ensures 
that if the roller conveyor speed is increased for pro-
duction reasons, and more tracking speed is, therefore, 
required, the selected tracker will continue to provide a 
good performance. Since the camera can capture up to 
30 FPS, if we consider the aforementioned loss then the 
speed of the tracker should be higher than 27 FPS in this 
assumption.

5  Conclusions

We propose a visual monitoring system with which to rec-
ognise and track different types of palletised packaging 
throughout the production line of a company pertaining to 
the corrugated cardboard industry. It is composed princi-
pally of two modules, a Pallet detector and a Pallet tracker. 
We have evaluated different algorithms to be used as back-
bones of our system, which is configurable, and our pro-
posal comprises the combination YOLOv5OBB-DeepSORT 
because this provides the best results. Our system provides 
a GUI which allows human operators to manage the pallet 
monitoring process in the roller conveyor network of the fac-
tory. The operators do not, therefore, waste time on manual 

Fig. 13  Detections of YOLOv5OBB (left) and YOLOv5 (right) with the six pallets in a video fragment

Table 7  Parametric tuning of the main parameters in deep learn-
ing-based trackers depending on the detector selected. Note that 
YOLOv5OBB-DeepSORT uses default values from the original 
DeepSORT paper

Parameters YOLOv5OBB YOLOv5

MAX_AGE 30 150
N_INIT 3 7
NN_BUDGET 100 10
MAX_IOU_DISTANCE 0.7 0.7
MAX_DIST 0.2 0.2
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tasks such as picking up the top box of the pallet in order to 
discover the pallet type or counting the number of pallets of 
each type. The statistic production values guide the opera-
tors to anticipate situations in which the conveyors next to 
the storage areas may collapse. A demo of our system can 
be seen from the link to electronic supplementary material.

Moreover, in this paper, we solve the problem of ID 
changes, which are produced by missed detections of 
YOLOv5, by training and deploying a YOLOv5OBB model. 
This model is able to generate OBB, which does not lose 
any detections at crucial moments such as when the pal-
lets disappear from the image but are still on the turntable. 
Nevertheless, we are aware that our system may have some 
limitations, the main one being the necessity to annotate new 
data and re-train our models when clients order new types of 
pallets (new stack configuration) or when the camera type or 
position is changed. However, this issue is very common in 
deep learning research. Furthermore, as we do not contem-
plate occlusions or night shifts in our dataset, the hit rate of 
our system would probably drop significantly. This might, 
for example, occur when a human operator is manipulating 
the palletised packages or when the light conditions are very 
different because the pipeline is working at night, since we 
have assumed working hours from morning to evening.

Future research lines include collecting statistical feed-
back in order to evaluate our system during a longer period 
of time, implementing a closed loop training process so as to 
automate the re-training of our models and obtaining indus-
trial cameras that are more robust in industrial environments.
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