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Abstract: The water-lubricated thrust bearings of the marine rim-driven thruster (RDT) are usually composed 

of polymer composites, which are prone to serious wear under harsh working conditions. Ultrasonic is an 

excellent non-destructive monitoring technology, but polymer materials are characterized by viscoelasticity, 

heterogeneity, and large acoustic attenuation, making it challenging to extract ultrasonic echo signals. 

Therefore, this paper proposes a wear monitoring method based on the amplitude spectrum of the ultrasonic 

reflection coefficient. The effects of bearing parameters, objective function, and algorithm parameters on the 

identification results are simulated and analyzed. Taking the correlation coefficient and root mean square error 

as the matching parameters, the thickness, sound velocity, density, and attenuation factor of the bearing are 

inversed simultaneously by utilizing the differential evolution algorithm (DEA), and the wear measurement 

system is constructed. In order to verify the identification accuracy of this method, an accelerated wear test 

under heavy load was executed on a multi-functional vertical water lubrication test rig with poly-ether-ether- 

ketone (PEEK) fixed pad and stainless-steel thrust collar as the object. The thickness of pad was measured 

using the high-precision spiral micrometer and ultrasonic testing system, respectively. Ultimately, the results 

demonstrate that the thickness identification error of this method is approximately 1%, and in-situ monitoring 

ability will be realized in the future, which is of great significance to the life prediction of bearings. 
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1  Introduction 

The marine water-lubricated bearing primarily refers 

to the stern bearing and the thrust bearing of the 

marine propulsion system [1]. The former is generally 

installed in the stern tube or shaft frame to support 

the weight of the propeller and stern shaft, and the 

latter is currently and mainly used to carry the 

thrust force in the marine rim-driven thruster (RDT). 

Their common characteristics include: 1) The bearing 

is usually composed of polymer composites, such 

as rubber, Thordon, and Feroform; 2) the working 

condition is severe. On the one hand, the load is large, 

and the local specific pressure of water-lubricated stern 

bearing is 2–3 times the average specific pressure 

under the cantilever eccentric load of the propeller. 

The specific pressure of the water-lubricated thrust 

bearing of the megawatt level RDT exceeds 0.6 MPa, 
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which is about 4 times the specific pressure of the 

water-lubricated stern bearing. On the other hand, 

the rotational speed is low, and the speed range is 

about 10–300 r/min. More importantly, it will be 

disturbed by the sediment in the water. The low 

viscosity of water causes the bearing capacity to be 

naturally weak. Under the factors of low speed, 

heavy load, impact, and sediment, the marine 

water-lubricated bearing is in a mixed lubrication 

state [2], which is prone to local contact friction [3] 

and wear [4], causing abnormal noise [5, 6] and shaft 

vibration [7, 8]. 

Wear test is a vital research method for designing 

material and bearing tribological performance. Wear 

measurement is divided into non-in-situ and in-situ 

measurements depending on whether the original 

conditions of the system changed or whether the 

measurement object is isolated from the original system. 

Common non-in-situ measurement methods include 

methods for weighing, wear scar measurement, and 

worn surface observation. The weighing method 

uses a high-precision balance to measure the weight 

before and after wear [9]. It is suitable for gauging the 

amount of wear in a small test block, but it is unable 

to generate detailed information on the measured 

object. Qu and Truhan [10] adopted the single-track 

analysis method to quantify the size of bearing wear 

scars, which is beneficial for analyzing the wear 

mechanism. However, the measured object must be 

disassembled. Bhushan and Lowry [11] produced a 

nano-scratch array at the center of the head sample 

surface using a commercial nanoindenter. They 

determined the scratch depths before and after 

running against magnetic tapes as a direct measure 

of wear on the head surface through an atomic 

force microscope. Moreover, this technology had high 

measurement accuracy.  

The in-situ measurement method directly installs 

the test system in the tested object without affecting 

the normal operation of the equipment as much as 

possible, which has higher requirements for installation 

conditions. Radioactive measurement [12] and 

ferrography measurement [13] are two common in-situ 

wear measurement techniques. With the development 

of image processing technology, several new wear 

measurement methods have appeared in recent years 

[14]. Based on digital image processing technology, 

Zhang et al. [15] separated the wear area from the 

worn image captured by the CCD camera under the 

100× optical system. The worn three-dimensional (3D) 

surface was reconstructed using an algorithm, and 

the wear width and the wear loss were extracted. By 

employing the radioisotope tracing technique, the 

innovative research of Warner et al. [16] measured the 

local backside wear on ultrahigh molecular weight 

polyethylene (UHMWPE) tibial inserts in low-contact 

stress (LCS) mobile bearing knee prostheses. Yuan  

et al. [17] put forward morphology to analyze wear 

particle information, such as wear particle contour, 

shape, fractal dimension, and color. In recent years, 

scholars introduced intelligent algorithms like transfer 

learning, support vector machine [18] and belief-rule- 

based expert, and evidential reasoning rule [19] into 

the identification of wear particles and faults. However, 

these methods can only obtain qualitative information 

on the wear. Then, Kang et al. [20] designed a set of 

rolling bearing wear testing systems composed of the 

indicator needle installed on the upper plate of the 

bearing. Meanwhile, the corresponding scale of the 

pointer, which is mounted on the lower plate of the 

bearing, is read at regular intervals to identify the 

distance between the upper and lower plates of the 

bearing and to calculate the amount of wear. However, 

the test accuracy is deemed insufficient due to the 

low accuracy of the scale and the greater influence of 

the installation and operating environment. 

The essence of linear wear measurement is a distance 

measurement. As a non-intrusive measurement 

technology, the straight-line propagation characteristics 

of ultrasound retain the advantages of optical methods. 

Its strong penetrating ability compensates for the lack 

of transparency required by optical methods and has 

the potential for in-situ wear measurement. Long and 

Rack [21] adopted the ultrasonic method to measure 

the amount of wear of metal materials. It proved that 

the ultrasonic time-of-flight method can be used for 

the continuous measurement of wear in situ. Then, 

Ahn and Kim [22] evaluated the feasibility of an 

ultrasonic technique through the pulse-echo method 

of normal incident compressional waves to worn 

surface condition and subsurface damage in sliding 

friction progress. Abu-Zahra and Yu [23] utilized 

the discrete wavelet transform (DWT) of ultrasound 

waves to measure the gradual wear of carbide inserts 
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during turning operations. The main feature of this 

research is the introduction of neural networks to 

analyze signals.  

Currently, ultrasonic wear measurement is for 

metal materials with uniform materials. Generally, 

the water-lubricated bearings are made of polymer 

composite materials (polymer base materials, reinforcing 

agents, and impurities), such as nitrile rubber, Feroform, 

or Thordon, where ultrasonic waves undergo complex 

refraction, reflection, scattering, and other propagation 

phenomena. Acoustic characteristic parameters vary 

significantly, and there are numerous influencing 

factors, which are difficult to obtain accurately, resulting 

in low recognition accuracy for the thickness of non- 

uniform material.  

Zhao et al. [24] proposed a method based on the 

ultrasonic reflection coefficient amplitude spectrum 

(URCAS) to inverse the coating thickness and sound 

velocity. Their findings demonstrated that the relative 

error of the identification of homogeneous and 

heterogeneous coatings was less than 10%. Ma et al. [25] 

recommended a method for characterizing the surface 

roughness and thickness of non-uniform coatings 

according to the Ultrasonic Reflection Coefficient Phase 

Spectroscopy (URCPS). The relative error between 

the calculated results of the WC–Ni coating and the 

scanning electron microscope (SEM) observation results 

was less than 11%. Balasubramaniam and Rao [26] 

used genetic algorithm-based inversion technology to 

calculate the stiffness characteristics of fiber- reinforced 

composites based on ultrasonic volume waves. Their 

approach was more robust and global than traditional 

gradient-based methods. At present, the inversion 

technology based on the reflection coefficient spectrum 

has been utilized for the characterization of the physical 

parameters of non-metallic coatings. Whether it can  

be applied to the wear measurement of polymer 

bearings remains inconclusive, and the application of 

intelligent algorithms in ultrasonic parameter inversion 

necessitates further investigation.  

Therefore, this paper establishes the wear identifi-

cation model of polymer bearings based on ultrasonic. 

It also deduced the relationship among the acoustic 

velocity, thickness, density, attenuation factor of 

polymer bearings, and the URCAS. Additionally, the 

correlation coefficient and root mean square error are 

used as the objective function, and four parameters 

are simultaneously inversed by combining the 

differential evolution algorithm (DEA), addressing the 

problem that the acoustic characteristic parameters 

of polymer bearings are difficult to obtain. Then, PEEK 

bearing and stainless-steel thrust collar are selected 

as the objects, and a heavy load accelerated wear test 

is performed on the vertical water-lubricated bearing 

test rig. In order to verify the test accuracy of the 

method, the disassembled pads are measured using the 

ultrasonic probe and high-precision spiral micrometer 

every hour. Finally, the accuracy of different ultrasonic 

calculation methods and intelligent algorithms in 

thickness identification are compared.  

2  Bearing wear monitoring theory 

2.1  Ultrasonic propagation model 

The fundamental idea behind the ultrasonic-based 

bearing wear monitoring method is obtaining linear 

wear amount by identifying the thickness of polymer 

bearings pre- and post-wear. Ultrasonic signals could 

be reflected and transmitted on the surface of the 

layered structure, and materials with distinct properties 

play the role of linear filtering in this process. 

Moreover, the reflection coefficient of the reflected 

signal of the layered structure can be used to describe 

physical and geometric features. Figure 1 shows the 

model of ultrasonic signal propagation in the bearing, 

and this model simplifies the bearing into a homo-

geneous, layered material with a smooth interface. 

The medium I is a delayed block that can better 

couple the acoustic energy into the polymer material. 

Medium II is a layered polymer material, and medium  

 

Fig. 1  Schematic diagram of vertical incidence of ultrasonic to 
a three-layer structure. 
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III is air or water. The acoustic impedance of the three 

is Z1, Z2, and Z3, respectively, where it is numerically 

equal to the medium density multiplied by the sound 

velocity. 

Assuming the sound pressure is 1, the ultrasonic 

pulse wave with frequency f is vertically incident into 

the three-layer medium along the negative direction 

of the z-axis (Fig. 1). The received reflected wave can 

be expressed as [24]: 
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where P1 is the reflection echo of the upper interface of 

the polymer layer; P2 is the sound wave transmitted 

into the polymer layer, reflected once on the lower 

interface, and transmitted out of the upper interface; 

and P3 is the sound wave transmitted into the 

polymer layer, reflected twice on the lower interface, 

and transmitted out of the upper interface. Then, Pn 

is the acoustic wave transmitted into the polymer 

layer, reflected n times on the lower interface, and 

transmitted out of the upper interface. Next, r12 and 

r23 are the acoustic pressure reflection coefficients of 

interfaces 1 and 2, respectively, t12 and t21 are acoustic 

pressure transmission coefficients in different 

directions at interface 1, n is the number of reflected 

echoes, d and c2 are thickness and longitudinal wave 

velocity of the polymer layer, respectively, α is the 

attenuation coefficient of the polymer layer, k2z is the 

wave number along the z-direction in the polymer 

layer, and exp(2ik2zd) is the phase change after the 

sound wave reciprocates through the polymer 

layer once.  

Due to the interfacial reflection and transmission 

loss of the polymer layer, as well as the absorption 

and diffusion attenuation inside the material, the 

signal attenuation is severe during the propagation 

of the ultrasonic wave. Only the first echoes on the 

upper and lower surfaces of the polymer layer can be 

received. Therefore, the reflection coefficient R of the 

polymer layer is  
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The acoustic pressure reflection coefficient R is a 

complex number, and its module is a function of 

frequency, called the URCAS. The expression is 
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The attenuation coefficient of the polymer layer is 
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where A1( f ) and A2( f ) are amplitude spectrums of 

reflection echo at the upper and lower interfaces of the 

polymer layer, respectively. The attenuation factor w is 

introduced to facilitate subsequent calculations. 

At certain frequencies, the echoes of the upper and 

lower interfaces P1 and P2 could interfere, which is 

reflected in the amplitude spectrum as the maximum 

or minimum point with the same frequency interval. 

The thickness of the polymer layer can be expressed 

by the frequency interval ∆f and the acoustic velocity, 

which is known as the spectral resonance (SR) method: 


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2

2

c
d

f
                 (5) 

When the acoustic attenuation of polymer bearings 

is large and the echo signal-to-noise ratio is low, it 

is difficult to derive an accurate acoustic velocity  

or thickness according to the characteristics of the 

frequency domain’s extreme points. Figure 2, in which 

v is the linear velocity of the thrust collar and W is 

the axial load, illustrates that during the production 

process, other components are added to enhance the 

performance. The temperature distribution during the 

operation is not uniform, and the propagation speed of 

sound waves is challenging to determine. At the same 
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Fig. 2  Complex propagation phenomenon of ultrasonic waves 
in the non-uniform polymer bearing. 

time, the bearing has thermoelastic deformation, and 

the geometric parameters and physical parameters are 

variable. Therefore, it is necessary to develop a method 

that can simultaneously solve multiple parameters of 

polymer bearings to meet the requirements of wear 

monitoring.  

Equation (3) shows that the URCAS is a function of 

the sound velocity, thickness, density, attenuation 

coefficient, and other parameters of the polymer 

layer. The propagation process of ultrasonic waves in 

polymer bearing is assumed to be a black box system. 

Using this formula, a series of mapping matrices 

between medium parameters and URCAS are con-

structed. The appropriate objective function is selected 

to characterize the similarity between the measured 

echo information and the theoretical calculation. 

Subsequently, the parameter inversion problem is 

transformed into an extremum optimization problem.  

This paper selects the correlation coefficient and 

root mean square error as the objective functions to 

measure the similarity between the theoretical and 

measured URCAS. The Pearson correlation coefficient 

(Pcc) matching method has been applied in other fields, 

such as parameter inversion, reflecting the similarity 

of the variation trend of the two data sets. The Pcc 

expression can be obtained by substituting the 

theoretical URCAS and the measured URCAS in Eq. (3): 
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where N is the number of data points in the 

frequency domain after the fast Fourier transform (FFT) 

transform of the time domain signal, the subscript i is 

the i-th frequency value. Then, 
2
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
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URCAS in the effective frequency band, respectively. 

In addition, 
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the arithmetic means of the measured and theoretical 

URCAS in the effective frequency band, respectively. 

Since only the Pcc is used as the objective function 

without considering the difference in amplitude, falling 

into the minimum point in the calculation process is 

highly probable. Thus, the root mean square error 

(RMSE) is introduced as the second constraint, which 

reflects the numerical consistency of the two data sets. 

By substituting the measured value 
2
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RMSE expression is generated as 

2

2 21

1
RMSE ( ; , , , ) ( ; , , , )

N

i
R f c d p w R f c d p w

N



     

                                     (7) 

When the Pcc is the largest and the RMSE is the 

smallest, the similarity between the theoretical and 

measured URCAS is the largest. Additionally, the 

independent variable corresponding to the objective 

function is the parameter value of the polymer bearing.  

2.2  Differential evolutionary algorithm 

DEA is an algorithm based on population evolution 

[27]. Its advantages include having a simple structure, 

few adjustment parameters, and strong robustness. 

Essentially, it is a greedy genetic algorithm with the 

idea of preserving superiority based on real number 

coding. Firstly, DEA randomly generates a population 

{X1,g, X2,g, ···, XNP,g} containing NP feasible solutions. 

The individual    
,g 1,g 2,g ,g

, , ,j j j

j D
X x x x  is used to des-

cribe the problem solution, where D is the dimensio-

nality of the optimization variable, and g is the evolutio-

nary epoch. Each individual is uniformly and randomly 

determined within the range [Xmin, Xmax], where 
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where rand (0,1) is a real number uniformly randomly 

determined between 0 and 1. 

The DEA realizes individual mutation through 

differential strategy, which is an important sign that 

distinguishes it from the genetic algorithm. The classic 

mutation strategy is randomly selecting two different 

individuals in the population and then scaling their 

vector difference to perform vector synthesis with the 

individual to be mutated. The generated mutation 

vector Vi,g is  

      ,g ,g ,g ,g( ),i a b cV X F X X a b c i      (9) 

where Xa,g, Xb,g, and Xc,g are three randomly selected 

individuals in the population, and F is the scaling 

factor. 

To improve the diversity of the population, the 

DEA introduces a crossover operation, so that at least 

one component in the test vector comes from the 

mutation vector: 


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where randj(0,1) is the uniform random number 

calculated for the j-th time between 0 and 1. The 

CR is the crossover probability within the range of 

[0,1]. Index jrand is a randomly selected dimension. 

It ensures that the test vector Ui,g+1 gets at least one 

element from Vi,g, known as the binomial uniform 

crossover.  

The individuals generated through mutation and 

crossover operations are compared with their parent 

individuals, and the better-performing ones enter the 

next-generation population: 
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After mutation, crossover, and selection operations, 

new individuals can be generated in that form and 

the same number for the next-generation population. 

The previous-generation population will continue to 

circulate until the termination condition is met.  

In summary, Fig. 3 presents the flowchart of the 

bearings wear monitoring method based on URCAS 

combined with DEA. The difference between the 

Fig. 3  Flow chart of polymer bearing wear monitoring method. 
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real-time thickness dt at the measuring point of the 

ultrasonic probe and the thickness d0 before wear is 

the value of wear amount t.  

3  Simulation 

3.1  Influence of bearing parameters on URCAS 

According to Eqs. (3) and (4), URCAS is a function of 

the acoustic parameters and geometric characteristics 

of each medium layer. When the acoustic parameters 

of the medium other than the polymer layer are 

known, URCAS is solely related to the acoustic 

velocity, thickness, density, and attenuation factor of 

the polymer. As a result, the influence of the change 

of polymer parameters on URCAS in the effective 

frequency band can be discussed, where the acoustic 

velocity and density satisfy the coupling relationship 

expressed as  

 
  




 2

1

(1 )(1 2 )

E
c           (13) 

where E is the elastic modulus of the medium, μ is the 

Poisson’s ratio of the medium, and ρ is the density 

of the medium. When the change of acoustic velocity 

is discussed separately, the density will also change 

according to this formula, and vice versa. 

As shown in Fig. 4, the change of acoustic velocity 

near the frequency of 2.75 MHz fundamentally does 

not cause a change in amplitude. When the frequency 

 

Fig. 4  Effect of acoustic velocity fluctuation ± 10% on URCAS. 

is lower than 2.75 MHz, the increase of acoustic 

velocity will make the position of amplitude spectrum 

resonance point shift to low frequency, and a decrease 

in acoustic velocity will make it to high frequency. 

When the frequency is higher than 2.75 MHz, the 

deviation of the amplitude spectrum is completely the 

opposite. At the same time, the correlation coefficient 

(rp) between the amplitude spectrum and theoretical 

true value will decrease to 0.834, and RMSE will rise 

to 0.931 because of the 10% increase in acoustic 

velocity. The correlation coefficient will decrease to 

0.819, and RMSE will increase to 0.975 because of the 

10% decrease in the acoustic velocity. The spectrum 

offset caused by the decrease of acoustic velocity is 

slightly larger than that caused by the increase of 

acoustic velocity. Moreover, the correlation coefficient 

must exceed 0.834, and RMSE must be less than 0.931 

to maintain the inversion error of acoustic velocity at 

less than 10%. 

Figure 5 portrays that the change of thickness near 

the frequency of 2.45 MHz essentially does not cause 

the change in amplitude. On the one hand, when the 

frequency is lower than 2.45 MHz, the increase of 

thickness will make the position of the amplitude 

spectrum resonance point shift to high frequency, 

and a decrease in the thickness will make it shift to low 

frequency. On the other hand, when the frequency is 

larger than 2.45 MHz, the deviation of the amplitude 

spectrum is completely the opposite. Meanwhile, 

the correlation coefficient will decrease to 0.795, 

and RMSE will increase to 1.037 because of the 10%  

 

Fig. 5  Effect of thickness fluctuation ± 10% on URCAS. 
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increase in thickness. In contrast, the correlation 

coefficient will decrease to 0.853, and RMSE will increase 

to 0.876 because of the 10% decrease in thickness. 

Overall, the spectrum offset caused by the increase 

in thickness is slightly larger than that caused by the 

decrease.  

As shown in Fig. 6, the increase in density shifts 

the amplitude spectrum to low frequency in the 

effective frequency band. The decrease of density 

near the frequency of 2.6 MHz does not cause a 

change in the amplitude. When the frequency is lower 

than 2.6 MHz, the resonance point of the amplitude 

spectrum shifts to low frequency, and it shifts to 

high frequency when the frequency is higher than 

2.6 MHz. At the same time, the correlation coefficient 

will decrease to 0.725, and RMSE will increase to 1.193 

because of the 10% increase in density. The correlation 

coefficient will decrease to 0.968, and RMSE will 

increase to 0.411 because of the 10% decrease in the 

density. The spectrum deviation caused by the 

increase in density is significantly larger than that 

caused by the decrease in density, indicating that the 

sensitivity of identifying the amplitude spectrum 

lower than the true value of the density is relatively 

low. In this case, the correlation coefficient must be 

more than 0.968, and RMSE should be less than 0.411 

to maintain the inversion error of density at a value 

less than 10%.  

As shown in Fig. 7, the increase or decrease in the 

attenuation factor will result in the overall upward or 

downward migration of the amplitude spectrum.  

 
Fig. 6  Effect of density fluctuation ± 10% on URCAS. 

 

Fig. 7  Effect of attenuation factor fluctuation ± 10% on URCAS. 

Meanwhile, the change in the attenuation factor 

principally does not alter the correlation coefficient 

between the amplitude spectrum and the theoretical 

true value, which is greater than 0.99. The increase 

and decrease in the attenuation factor will increase 

RMSE to 0.684 and 0.690, respectively. In this event, 

the correlation coefficient as the objective function 

cannot identify the change of attenuation factor and 

could result in a large error. So, RMSE is introduced 

as a constraint.  

In summary, to ensure that the inversion error of 

the four parameters are less than 10%, the correlation 

coefficient between the calculation result and the 

theoretical value needs to be greater than 0.991, and 

RMSE is less than 0.411. 

3.2  Influence of objective function on identification 

results 

The objective function is used to characterize the 

matching degree between the observed value and the 

calculated value. Also, it is the fitness function in the 

intelligent optimization algorithm that is one of the 

most important indicators of whether the model 

represents the actual system. Pcc has been widely 

adopted as an objective function in inversion problems. 

Moreover, RMSE is introduced to explore the influence 

of different objective functions on the inversion results. 

The effects of the single objective function and the 

dual objective function on the results are discussed, 

respectively. The evaluation indexes include the mean 
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(M) and standard deviation (SD) of 10 calculations 

and the similarity between the calculated amplitude 

spectrum and the measured spectrum.  

As shown in Fig. 8, the M of the inversion sound 

velocity of the Pcc significantly deviates from the 

true value, with a relative error of 1.50%, followed by 

RMSE. The dual objective function has the smallest 

relative errors, which is 0.75%. The SD of RMSE has 

the smallest value at 25.92 m·s–1, followed by the dual 

objective function at 30.39 m·s–1. The SD of Pcc is the 

largest at 34.02 m·s–1. 

As depicted in Fig. 9, the M of the inversion 

thickness of Pcc is closest to the true value, with an 

absolute error of 15 m. The mean thickness of the 

dual objective function has an absolute error of 24 m. 

Meanwhile, the mean thickness of RMSE deviates 

from the true value at a relatively large value, with  

 

Fig. 8  Effect of different objective functions on the inversion 
results of acoustic velocity. 

 

Fig. 9  Effect of different objective functions on the inversion 
results of thickness. 

an absolute error of 54 m. The SD of Pcc has the 

smallest value at 44.89 m, followed by the dual 

objective function at 55.85 m. Then, the SD of RMSE 

is the largest at 68.78 m.  

As illustrated in Fig. 10, the M inversion density 

of Pcc considerably deviates from the true value, and 

the relative error is 1.81%. The M density of the dual 

objective function is slightly larger than the true 

value, and the relative error is 0.47%. Given these 

findings, the RMSE results are fundamentally consistent 

with the true value. Moreover, the SD of Pcc has the 

smallest value at 0.006 g·cm-3, followed by the dual 

objective function at 0.014 g·cm-3. The SD of RMSE is 

the largest, which was 0.019 g·cm-3.  

As shown in Fig. 11, the M of inversion attenuation 

factor of the RMSE and the Pcc are respectively larger 

and smaller than the true value, with relative errors  

 

Fig. 10  Effect of different objective functions on the inversion 
results of density. 

 

Fig. 11  Effect of different objective functions on the inversion 
results of the attenuation factor. 



694 Friction 11(5): 685–703 (2023) 

 | https://mc03.manuscriptcentral.com/friction 

 

of 18.18% and 9.09%. The inversion results of the 

dual objective function are almost consistent with the 

true value. The SD of Pcc is the smallest, which is 0.001, 

and the SDs of dual objective function and RMSE are 

both 0.002.  

Figure 12 demonstrates the calculation differences 

among the various objective functions. The correlation 

coefficients in the three cases can reach 0.998, but the 

RMSE is larger when the Pcc is the objective function. 

The curve shows a slight upward shift, which is 

because there is no constraint on the calculation value, 

and it is easy to fall into the minimum value near the 

optimal solution. Moreover, RMSE is consistent with 

the identification results of the dual objective function, 

and the matching degree is the highest.  

In summary, Pcc, as the objective function, has the 

smallest SD of the inversion result. However, the M 

inversion parameters, other than the thickness, have 

larger relative errors. As the objective function, RMSE 

has the largest SD of the inversion result, but the 

error of the inversion mean is less than that of the 

correlation coefficient. When the two objective functions 

are combined, the M inversion results are closer to 

the true value, and the SD is smaller than that of the 

single RMSE as the objective function. Simultaneously, 

the calculation time is slightly reduced. Therefore, 

Pcc and RMSE are utilized as the objective functions 

of the optimization algorithm, and the 3D image of 

the sound velocity and thickness solution space is 

simulated (Fig. 13).  

 

Fig. 12  Effect of different objective functions on URCAS. 

 

Fig. 13  Solution space of the dual objective function with respect 
to sound velocity and thickness. 

3.3  Influence of algorithm parameters on identifi-

cation results 

The five settable parameters in DEA are evolution 

epochs, population size, weight factor, crossover 

rate, and mutation strategy. Usually, the latter three 

use the default parameters of the algorithm, and the 

evolution epochs and population size are the main 

adjustment parameters. Therefore, this paper solely 

discusses the influences of different evolution epochs 

and population sizes on the calculation time and 

identification results. The criterion is that the mean 

thickness is, as much as possible, close to the true value, 

the SD is as small as possible, and the calculation time 

is as short as possible.  

As portrayed in Fig. 14, by changing the evolutionary 

epochs to discuss its influence on the convergence of 

the fitness function, the population size defaults to 50. 

The fitness function (line chart) does not converge to 

the minimum after the 50th and the 100th generations 

of evolution. Starting from the 150th generation, 

the fitness function can converge to the minimum. 

Essentially, with the increase of evolutionary epochs, 

the calculation time (bar chart) increases linearly. 

When the inversion results of other medium 

parameters are accurate, the focus is on the thickness 

accuracy. As shown in Fig. 15, the thickness results 

obtained by different evolutionary epochs fluctuate 

above and below the true value, and the relative error 

of the mean thickness is less than 1%. No evident 

linear relationship exists between the increase in the 
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Fig. 14  Effect of different evolution epochs on the convergence 
of fitness function. 

 

Fig. 15  Effect of different evolution epochs on thickness inversion 
results. 

evolutionary epochs and the calculation accuracy. 

Considering the SD of the inversion thickness, the SD of 

250 generations is the smallest, which is 47 m, and the 

inversion thickness results are the most concentrated. 

Therefore, 250 generations are selected as the optimal 

algorithm parameters.  

As shown in Fig. 16, the evolutionary epoch selects 

250 generations and changes the population size to 

explore its impact on the convergence of the fitness 

function. Differences in the population size primarily 

affect the decline rate of the fitness function, but it 

does not show observable regularity. When the 

population size is 60, the function value at the early 

stage of evolution declines at the fastest rate, and it 

converges to the minimum at the 94th generation. 

Meanwhile, the fitness functions of other population 

sizes converge around the 100th generation. At the  

 

Fig. 16  Effect of different population sizes on the convergence 
of the fitness function. 

same time, the increase in the population size will 

lead to a linear increase in the calculation time. As 

illustrated in Fig. 17, the relative errors of the mean 

thickness for different population sizes are all less 

than 1%. When a population size increases to 30, 

the SD of the inversion thickness has a significantly 

decreasing trend, and the SD is the smallest, which 

is 49 m. However, the relative error of the mean 

thickness is slightly larger than in other cases. When 

the population size is 40, the mean thickness is closer to 

the true value, with a SD of 69 m, and the repeated 

calculation stability is higher. As the population 

size increases, the SD also increases and ultimately 

fluctuates around 90 m. Therefore, considering the 

mean thickness, SD, calculation time, and calculation 

stability, the population size of 40 is selected as the 

optimal algorithm parameter.  

 
Fig. 17  Effect of different population sizes on thickness inversion 
results. 
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4  Experimental apparatus 

4.1  Wear measuring system 

As shown in Fig. 18, the wear test system of this 

experiment consisted of a delay block probe, a pulse 

generator, a digital oscilloscope, and a high precision 

spiral micrometer. The delay block probe is 

manufactured by BIGPROBE, which uses a 13 mm 

diameter composite chip with a center frequency of 

2.25 MHz. The delay block material is polymethyl 

methacrylate (PMMA) with a thickness of 15 mm 

and an acoustic impedance of 3.29·105 g·cm–2·s–1. 

Additionally, the pulse generator model is Olympus 

5072PR, which can generate negative spike pulses with 

a bandwidth of 35 MHz (–3 dB) and a maximum 

repetition frequency of 5 kHz. It has both the ultrasonic 

echo mode and ultrasonic transmission mode and 

can perform 1 MHz high-pass filtering and 10 MHz 

low-pass filtering. Also, the digital oscilloscope is 

used to receive pulse-echo RF signals, and the model 

is RIGOL DS2102A with dual-channel input display, 

a bandwidth of 100 MHz, and a maximum sampling 

frequency of 2 GSa·s–1. The acquired initial time- 

domain waveform of the probe is presented in Fig. 19. 

Its –6 dB effective bandwidth of frequency-domain is 

1.87–3.01 MHz. The high-precision spiral micrometer is 

employed for thickness calibration with a resolution of 

1 m and an accuracy of ± 2 m. Currently, the resolution 

of the entire measuring system is 50–100 m. 

4.2  Test bench and objects 

As shown in Fig. 20, the test bench is composed of an 

inverter motor, a torque meter, a test chamber, a loading 

module, and a lubrication module. Moreover, the  

 

Fig. 18  Wear measuring system. 

 

Fig. 19  Initial waveform of 2.25 MHz probe.  

 

Fig. 20  Vertical bearing test bench. 
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rated power of the motor is 37 kW, with a speed range 

of 10–1,500 r·min–1, and the rated torque is 220 Nm. 

The test bearing is installed in the test chamber, and 

the modular installation scheme is adopted, which 

can perform radial bearings, thrust bearings, and 

radial-thrust bearing experiments. The test bench can 

install thrust bearings with a maximum outer diameter 

of 450 mm or radial bearings with a maximum inner 

diameter of 200 mm. Subsequently, the loading module 

utilizes a hydraulic loading scheme, which can achieve 

the static axial load of 30 kN, the dynamic axial load of 

6 kN, the static radial load of 20 kN, and the dynamic 

radial load of 4 kN. The water tank of the lubrication 

module has a heating function, which can simulate 

seawater and sediment water, and the flow range of 

the circulating water pump is 0–60 Lmin-1. 
Figure 21 shows the test bearing and thrust collar. 

To compare them with the traditional ultrasonic 

method, the homogeneous polymer material PEEK is 

selected to create two fixed pad bearings, with an inner 

diameter of 124 mm, an outer diameter of 196 mm, 

and a cover angle of 30°. Regarding the thickness of 

the pads, #1 is 10,309 m, and #2 is 10,299 m. Both 

the front and back sides are polished, and the surface 

roughness is approximately 1 m. The density of PEEK 

is measured according to the mass and volume of the 

pad, and the acoustic velocity is calculated according to 

Eq. (13). The stainless-steel thrust collar has an inner 

diameter of 124 mm and an outer diameter of 200 mm. 

Its surface is polished with 2,000 grit sandpaper. Upon 

installation and calibration, the working surface has 

a rotation runout error of 0.05 mm. Table 1 itemizes 

the physical parameters of the two. 

Table 1  Physical parameters of PEEK and stainless-steel. 

Parameter PEEK Stainless-steel

Density (kg·m–3) 1,270 7,900 

Elastic modulus (GPa) 3.8  194 

Poisson’s ratio 0.4 0.29 

Longitudinal wave velocity (m·s–1) 2,532  5,640 

Acoustic impedance (g·cm–2·s–1) 3.22×105  4.46×106  

4.3  Test conditions and methods 

As shown in Fig. 22, to verify the accuracy of the 

ultrasonic wear test method, the thrust bearing heavy 

load accelerated wear test was carried out for a total 

of 10 h with a constant speed of 500 r·min-1. Before 

the test, two pads were immersed in water for 48 h 

at room temperature, and the thickness change was 

less than 2 m. The first two hours were the com-

missioning and running-in stage. Then, the load was 

set to 0.5 MPa to start the formal test for six hours. For 

the last two hours, the load was gradually reduced. In 

order to avoid the influence of pressure, temperature, 

and other factors on the thickness of the pads, which 

were disassembled every hour for thickness calibration, 

and the thickness at the center of the bearing was 

measured and recorded by the ultrasonic measuring 

system and the high-precision spiral micrometer, 

respectively. Next, the test signal was imported into 

the inversion calculation program. Subsequently, the 

Fourier transform of the time-domain echo signal 

was executed to obtain the effective frequency band 

amplitude spectrum, and then the measured URCAS 

was derived. According to the theoretical URCAS, the 

objective function was constructed and substituted 

 

Fig. 21  Test bearings and thrust collar.  
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into the DEA for global optimization. Ultimately, the 

most matching thickness parameter was identified.  

5  Results and discussion 

The surface morphology of the bearing after wear is 

presented in Fig. 23. On the surface of the #1 pad, 

obvious furrow-like wear marks caused by abrasive 

wear can be seen, and the surface roughness increases 

by 0.106 m. In addition to furrow wear marks, there  

are many small pits caused by adhesive wear and 

some oblique scratches on the surface of the #2 pad, 

which may be caused by generated abrasive particles 

or impurities, and the surface roughness increases by 

0.118 m. 

5.1  Identification results for different ultrasonic 

methods 

Figure 24(a) shows the identification results of the 

thickness and relative error (Er) of the #1 pad. After 

 

Fig. 22  Test scheme for wear measurement of the bearings. 

 

Fig. 23  Surface morphology of the bearings after wear.  

 

Fig. 24  Identification results of different ultrasonic methods of the #1 pad. 
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10 h of wear, the thickness of the pad is reduced by 

2,071 m. The identification result of DEA method 

is the closest to the true value, and the maximum 

relative errors is 1.23%. The relative error of the SR 

method is relatively large in the previous calculation, 

and the maximum is 1.76%. The SR methods rely on 

accurate prior knowledge of acoustic velocity, which is 

calculated from the precise density, elastic modulus, 

and Poisson’s ratio. However, DEA method’s advantage 

is that it does not require prior knowledge of acoustic 

velocity and can dynamically identify the parameter 

changes of the medium. During the operation process, 

the acoustic velocity of PEEK will decrease along with 

the increase in temperature, which the traditional 

method is unable to measure accurately. As shown in 

Fig. 24(b), the wear amount of the bearing increases 

gradually with time until the load is reduced to 0.4 

and 0.3 MPa in the last two hours, respectively, and 

the increasing trend of the wear amount is slowed 

down. The maximum wear amount is 475 m at 9 h. 

The difference between the wear amount identified 

through the DEA method and the true value is small 

in the 0–7 h. Eventually, the error becomes larger, 

which may be related to the surface morphology of 

the bearing after wear. Overall, the SR method is 

relatively inaccurate.  

Figure 25(a) is the identification results of the 

thickness and relative error of the #2 pad. After the 

test, the thickness of the pad is reduced by 1,557 m, 

which is 514 m less than the overall wear of the #1 

pad, indicating that the thrust collar is tilted towards 

the direction of the #1 during the operation process.  

The identification result of DEA method is the closest 

to the true value, and the overall relative errors are 

both less than 1%, of which the maximum errors is 

0.66%. The overall relative error of the SR method is 

large, floating above and below 1%, and the maximum 

is 1.78%. The thickness SD of the two pads using the 

DEA method is less than 100 m. As presented in  

Fig. 25(b), the wear amount of the bearing increases 

gradually with time. At the 9th h, the load is reduced to 

0.4 MPa, and the wear amount remains significantly 

increased to the maximum at 430 m. Then, the load 

is reduced to 0.3 MPa at the final hour, and the wear 

amount is reduced to 369 m. The health state of 

the bearing is gradually deteriorating during the 

test. Among them, the DEA method is more accurate, 

while the fluctuation of the SR method is relatively 

large.  

5.2  Identification results of different intelligent 

algorithms 

In order to discuss the difference of various intelligent 

algorithms in the thickness identification of polymer 

bearings, the widely used genetic algorithm (GA) 

and particle swarm optimization (PSO) algorithm are 

selected for comparison. The evolution epochs and 

population size are kept consistent with DEA in the 

algorithm parameters. Figure 26(a) is the thickness 

identification results of the #1 pad. The errors of the 

three algorithms are relatively close, and there is a 

gradually increasing trend with the test, which may 

be related to the change in the bearing surface 

morphology. Among them, the error fluctuation of  

 

Fig. 25  Identification results of different ultrasonic methods of the #2 pad. 
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PSO is larger, and the maximum error is 1.8%. The 

relative error of the GA is less than 1%. Combined 

with the local amplification diagram, the error band 

of GA and PSO is larger, and the maximum is 224 m. 

In addition, the relative error of DEA is similar to GA, 

and the error band is less than 100 m, indicating that 

the stability of DEA is better, since it is essentially an 

improved GA that ensures the calculation error and 

improves the stability. As shown in Fig. 26(b), DEA is 

the most accurate to identify the wear amount in 0–7 h, 

and the latter three algorithms cannot accurately reflect 

the trend of wear amount. The analysis highlights 

that the change of roughness at the bearing measuring 

point leads to an increase in the algorithm identification 

error.  

Figure 27(a) shows the thickness identification 

results of the #2 pad. The calculation error of DEA is 

the smallest, amounting to about 0.5% as a whole. 

At the 6th h, the error of GA only exceeds 1%–1.5%. 

Then, from the 7th h, the error of PSO increases, 

and the maximum is 2.2%. Combined with the local 

amplification diagram, it can also be found that the 

error band fluctuation of GA and PSO is larger than 

that of DEA, and the maximum is 219 m. At the 

same time, the error band of DEA is less than 100 m. 

This conclusion is consistent with that of the #1 pad. 

As illustrated in Fig. 27(b), DEA is more accurate in 

the identification of wear. Compared with GA and 

PSO, the three algorithms have larger errors in the 

7th h. The analysis finds that it may be the error 

caused by the change in the surface morphology of the 

measuring point. Therefore, based on the identification 

results of two pads and three algorithms, DEA is 

superior to the widely used GA and PSO with smaller 

error and higher stability.  

In order to validate the test accuracy of the proposed 

method, this paper adopts an off-line non-in-situ 

measurement and compares the thickness calibration 

 

Fig. 26  Identification results of different intelligent algorithms of the #1 pad. 

 

Fig. 27  Identification results of different intelligent algorithms of the #2 pad. 
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results of the high-precision spiral micrometer. The 

error of PEEK thickness identification is fundamentally 

1% without prior knowledge, but the deficiency is 

that a complete in-situ on-line monitoring system has 

not been formed at present, which requires further 

research. 

6  Conclusions 

1) A wear monitoring method of polymer bearing 

based on ultrasonic reflection coefficient amplitude 

spectrum (URCAS) is proposed, which combines 

the intelligent algorithm to transform the parameter 

inversion problem into an extremum optimization 

problem. Then, it simultaneously solves the four 

parameters of the bearing’s sound velocity, density, 

thickness, and attenuation factor. It addresses the 

problem caused by the difficulty involved in accurately 

obtaining the physical and geometric parameters 

of polymer materials, which have values that are 

variable. 

2) The influence of bearing parameters, objective 

function, and algorithm parameters on the identification 

results is simulated and analyzed. The 10% increase 

or decrease of acoustic velocity and thickness will 

result in a large degree of deviation of the URCAS. 

The correlation coefficient decreases to 0.75–0.85, and 

the root mean square error increases to 0.88–1.04. The 

10% increase in density has a greater influence than 

that of the 10% decrease in density. Equally important, 

the increase or decrease in attenuation factor will 

only lead to the increase in root mean square error. 

In short, to ensure that the inversion errors of the 

bearing parameters are less than 10%, the correlation 

coefficient needs to be greater than 0.991, and the root 

mean square error is less than 0.411. The correlation 

coefficient, root mean square error, and the combination 

of the two are selected as the objective functions of the 

intelligent algorithm. It is found that the identification 

results using the dual objective functions have higher 

accuracy than those using the correlation coefficient 

alone and have a higher concentration than those solely 

using the root mean square error. Upon the selection 

of different evolutionary epochs and population size, 

particularly when the evolutionary epochs are 250 

and the population size is 40, the calculation accuracy 

and time can be considered when the fitness function 

converges.  

3) In order to verify the accuracy of this method with 

precision measuring tools and traditional ultrasonic 

methods, the homogeneous polymer material poly- 

ether-ether-ketone (PEEK) was selected to make 

bearings, and the accelerated wear test for a total of 

10 h was carried out. The results highlight that, without 

prior knowledge, the proposed method can achieve the 

high-accuracy in thickness and wear loss identification, 

which is better than the spectral resonance (SR) method. 

Through the comparison of various algorithms, this 

study found that differential evolution algorithm 

(DEA) has a smaller error and higher stability than 

genetic algorithm (GA) and is superior to particle 

swarm optimization (PSO). In this case, the overall 

error can be maintained at about 1%. 

4) The wear amount is the most direct parameter 

to characterize the bearing life. This paper proposes 

and verifies the bearing wear identification accuracy 

of this method under static and offline conditions. 

Subsequently, an online monitoring system can be 

built to realize the real-time monitoring of the bearing 

wear on the test bench, as well as predict the residual 

life of the bearing. At the same time, the error 

mechanism and influencing factors of this method 

are analyzed to augment the test accuracy. 
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