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Abstract
A non-destructive diagnostic method based on deflection analysis for monitoring the post-elastic response of beams was

developed, and a diagnostic indicator was proposed. The indicator was defined as the second moment of the normalised

curvature function about the mid-span, where the curvature was computed from the normalised deflection function. Elastic

reference values of the indicator were computed for simply supported beams under uniformly distributed load, three-point,

and four-point bending. Development of the indicator under progressive loading was examined with the help of finite

element analyses. The indicator value monotonically decreased with increasing deformation provided that maximum

bending moment was located between 0.41L and 0.59L, where L is the span of the beam. In this interval, the value of the

indicator was unique and enabled the direct monitoring of the post-elastic stress level in the cross-section. The method was

validated with the help of available experiments on simply supported beams. For beams working in the elastic range, a

mean error of 2:1% was obtained between the measured and theoretical indicator values. For quasi-brittle material in the

post-elastic stage, the decreasing value of the indicator signified the development of damage in accordance with experi-

mental results.

Keywords Deflection analysis � Structural health monitoring � Beam � Curvature � Elastoplastic � Damage

1 Introduction

All engineering structures undergo deformations during

their lifetime due to external loads and environmental

conditions. Accidental loads (e.g., earthquakes) and impact

loads may lead to excessive deformation of a structure or

its components, thus causing localised damage, including

cracks in quasi-brittle materials. In beam structures made

of elastoplastic materials, loads larger than the elastic limit

load result in the formation of plastic hinges, which, in

turn, may lead to the failure of structural components if the

deformation is considerably large. Furthermore, many

experiments performed in a controlled environment, such

as the bending test, often involve large deformations and

loading of the structure beyond the elastic range. Deflection

function of the beam can provide useful information on the

state of the structure. Detailed analytical and numerical

evaluation of the post-elastic response of beams is not

trivial [1–3]. In case of bridges, influence lines can be used

to detect damage [4]. Thus, examining the post-elastic state

of the structure undergoing deformations is crucial.

Structural health monitoring (SHM) systems can be

employed to measure displacements in the structure both

in-situ and during laboratory tests. Various techniques are

suitable for direct displacement measurement, i.e., methods

based on a linear variable differential transformer (LVDT)

[5], laser Doppler vibrometer [6], fibre-optic sensors (FOS)

[7–13], digital image correlation (DIC) [14–17], vision-

based monitoring [18–22] and terrestrial laser scanning

(TLS) [23, 24]. Displacements can also be indirectly

determined by the adequate treatment of measured strains

and accelerations [25] and instrumentation of a passing

vehicle [26]. In the case of beam structures, deflection
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analysis can be used for damage detection [19, 27–32],

stress-state estimation [8, 33], and serviceability assess-

ment [34, 35]. However, no study has comprehensively

monitored the elastoplastic response of beam structures.

In this work, the first step is taken towards the devel-

opment of a simple non-destructive diagnostic method for

monitoring post-elastic behaviour of beam structures. This

is done by computing a diagnostic indicator based on the

curvature function and relating its value to the elastic ref-

erence value. Although the presented methodology can be

generalised to arbitrary support and loading conditions, the

analysis in this work was limited to simply supported

beams under uniformly distributed load, as well as those in

three- and four-point bending. Moreover, it was assumed

that structural geometry of the beam allows for its efficient

mathematical modelling according to Euler–Bernoulli

assumptions. The novelty of the proposed method lies in its

simplicity because no additional information apart from

that on the shape of the deflection line is required to

determine whether the beam has entered the post-elastic

range.

The remainder of this paper is structured as follows.

Section 2 presents the general procedure of computing the

diagnostic indicator and reports the elastic reference values

of the indicator. Section 3 describes the finite element

analyses used to study the development of the diagnostic

indicator in elastoplastic range. The method is further

validated with help of available experimental data in

Sect. 4, where real structures working in the elastic range

are studied. The method is also employed to detect the

onset and monitor the development of damage in quasi-

brittle material. In addition, Sect. 4 discusses some prac-

tical aspects and guidelines on efficient implementation.

The paper is concluded in Sect. 5 with some final remarks.

2 Diagnostic Framework

Let us consider a simply supported beam with a span of L,

as shown in Fig. 1. It is assumed that the real deflection

function, w(x), where x ranges from 0 to L, is known either

in its analytical form, or measured data points are avail-

able. In the following, a positive deflection w is considered

upwards in Fig. 1. First, we perform the coordinate sub-

stitution n ¼ x
L, such that the coordinate n ranges from 0 to

1. In the next step, we rescale the deflection values (min-

max normalisation) such that the values of �wðnÞ lie

between 0 and �1, i.e.,

�wðnÞ ¼ wðnÞ �minðjwðnÞjÞ
maxðjwðnÞjÞ �minðjwðnÞjÞ ; ð1Þ

where the absolute values ensure that the rescaling is valid

for both positive and negative deflection values. The nor-

malised deflection function is then used to compute the

curvature, jðnÞ, according to the definition

jðnÞ ¼

d2 �wðnÞ
dn2

�
�
�
�

�
�
�
�

1þ d �wðnÞ
dn

� �2
 !3=2

: ð2Þ

The curvature function is then normalised such that its

value ranges from 0 to 1

�jðnÞ ¼ jðnÞ �minðjðnÞÞ
maxðjðnÞÞ �minðjðnÞÞ ¼

jðnÞ
maxðjðnÞÞ ; ð3Þ

where it was used that the curvature computed from Eq. 2

is non-negative and its minimum is 0. The normalisation

exhibits two notable features of the method. First, as long

as the external load does not exceed the elastic limit load,

�wðnÞ and �jðnÞ will not change. Thus, exact monitoring

whether the beam is in the elastic range, is possible. Sec-

ond, a meaningful comparison between different beams can

be performed because �j will be in the same range for all

cases. It is now possible to introduce the diagnostic indi-

cator, which is chosen as the second moment of �jðnÞ about
the mid-span of the beam, i.e.,

l2 ¼
Z1

0

ðn� 0:5Þ2 �jðnÞ dn: ð4Þ

Fig. 1 Studied load cases of simply supported Euler–Bernoulli beams
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2.1 Uniformly Distributed Load—Elastic Reference
Value

For a simply supported Euler–Bernoulli beam with length

L under a uniformly distributed load q (cf. Fig. 1a), the

deflection function can be expressed as

wðxÞ ¼ � qL4

24EI

x4

L4
� 2

x3

L3
þ x

L

� �

; ð5Þ

where EI denotes the bending stiffness. Given the absolute

value of the maximum elastic deflection is 5qL4

384EI in the mid-

span, the normalised deflection function can be expressed

as:

�wðnÞ ¼ �3:2 n4 � 2n3 þ n
� �

: ð6Þ

With the help of Eq. 2, the curvature can be calculated as

jðnÞ ¼ 38:4 n n� 1ð Þj j

1þ 10:24 4n3 � 6n2 þ 1
� �2

� �3=2
: ð7Þ

Because the maximum curvature can be found at n ¼ 0:5,

jðnÞ can be normalised as

�jðnÞ ¼ jðnÞ
jð0:5Þ ¼

4 n n� 1ð Þj j

1þ 10:24 4n3 � 6n2 þ 1
� �2

� �3=2
: ð8Þ

The resulting normalised curvature function is a bell-

shaped curve, which is plotted along the normalised

deflection function for a quick reference in Fig. 2. Finally,

the elastic reference value of the diagnostic indicator is

computed as

l2;el ¼
Z1

0

ðn� 0:5Þ2 4 n n� 1ð Þj j

1þ 10:24 4n3 � 6n2 þ 1
� �2

� �3=2

dn ¼ 2:477� 10�3:

ð9Þ

2.2 Three-Point Bending—Elastic Reference
Value

For a simply supported Euler–Bernoulli beam with length

L loaded with external force P at distance a1L from the

support (see Fig. 1b), the deflection function can be

expressed as

wðn; a1Þ ¼
�PL3

6EI
ð1� a1Þ 1� ð1� a1Þ2

� �

n� n3
� �

if n� a1;

�PL3

6EI
a1 1� a21
� �

ð1� nÞ � ð1� nÞ3
� �

if n[ a1:

8

>><

>>:

ð10Þ

Restricting to a1 � 0:5 due to symmetry, the absolute value

of the maximum deflection is

wmax ¼ PL3

9EI
a21ð1� a1Þð2� a1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2� a1
3a1

r

; ð11Þ

and the normalised deflection can be expressed as

�wðn; a1Þ ¼

�
3 1� ð1� a1Þ2
� �

n� n3
� �

2a21ð2� a1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� a1
3a1

r if n� a1;

�
3 1� a21
� �

ð1� nÞ � ð1� nÞ3
� �

2a1ð1� a1Þð2� a1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� a1
3a1

r if n[ a1:

8

>>>>>>>>>><

>>>>>>>>>>:

ð12Þ

For brevity, the exact analytical derivation of the curvature,

jðnÞ, and normalised curvature, �jðnÞ, is skipped in the

following. Depending on a1, the elastic reference value of

the diagnostic indicator is computed and presented in

Fig. 3 with exact numerical values reported in Table 2. The

graph is symmetric about the mid-span, as fundamentally

there is no difference on which side of the beam the load is

applied.

2.3 Four-Point Bending—Elastic Reference Value

Next, a simply supported Euler–Bernoulli beam in four-

point bending was examined (Fig. 1c). The beam has a

Fig. 2 Normalised deflection (left) and curvature (right) functions for the case of uniformly distributed load
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length L and is loaded with two external forces of the same

magnitude P at a1L and a2L from the left support. For

simplicity, it is assumed that a1; a2ð Þ 2 0; 1ð Þ � 0; 1ð Þ. As
the four-point bending problem is a superposition of two

independent three-point bending problems, the deflection

function will be a sum of the functions in Eq. 10, i.e.,

wðn; a1; a2Þ ¼

�PL3

6EI
½ 1� a1ð Þ 1� ð1� a1Þ2

� �

n� n3
� �

þ

1� a2ð Þ 1� ð1� a2Þ2
� �

n� n3
� �

� if n� a1;

�PL3

6EI
½a1 1� a21

� �

ð1� nÞ � ð1� nÞ3
� �

þ

1� a2ð Þ 1� ð1� a2Þ2
� �

n� n3
� �

� if a1\n� a2;

�PL3

6EI
½a1 1� a21

� �

ð1� nÞ � ð1� nÞ3
� �

þ

a2 1� a22
� �

ð1� nÞ � ð1� nÞ3
� �

� if n[ a2;

8

>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

ð13Þ

For brevity, the analytical details of curvature computation

are omitted. The elastic reference values of the diagnostic

indicator, l2;el are presented in Fig. 4, with the exact

numerical values of l2;el reported in Table 3. By examining

contour and surface plots, it can be seen that the graph from

Fig. 3 is a slice of the surface along the diagonal as well as

along the horizontal and vertical axes. This is expected, as

in these cases the problem effectively reduces to three-

point bending.

3 Diagnostic Indicator Development
in the Elastoplasic Range

To study the devised diagnostic scheme in the elastoplastic

range, finite element analysis was utilised. To this end,

simply supported beams were modelled in the commercial

finite element code Abaqus. Beams had the length L ¼ 3m

and a square cross-section with a side length of 0:1m; thus,

the span-to-depth ratio justified using the Euler–Bernoulli

model. A perfect elastoplastic material with Young’s

modulus E ¼ 200GPa and a yield stress of 350MPa was

considered. Each beam was modelled with le ¼ 0:005m

long Euler–Bernoulli beam elements (a total of 600 ele-

ments along the beam). The beams were then progressively

loaded, and vertical displacements were extracted for all

nodes. At each loading step, the deflection function was

reconstructed, and the diagnostic indicator was computed.

In addition, the bending moment ratio, M=Mel, and the

deflection ratio, d=del, relating current and elastic values

were computed. The elastic bending moment, Mel, refers to

the maximum bending moment under the elastic limit load,

i.e., when stresses at the outermost cross-section fibres

reach the yield stress. Similarly, the elastic deflection, del,
refers to the deflection at the location of the maximum

moment when the beam is loaded with the elastic limit

load. The natural logarithm of the indicator ratio, ln
l2;el
l2
,

relates the elastic reference value of the diagnostic indi-

cator to its current value.

3.1 Uniformly Distributed Load

In the first study, the beam was loaded with a uniformly

distributed load. The analysis was run in arc-length

control, increasing the distributed load until the mid-

span displacement reached a preset value. The devel-

opment of the diagnostic indicator and the indicator ratio

under load is presented in Fig. 5, with both Mel and del
computed at the mid-span. The normalised deflection

and curvature profiles at selected load steps are presented

in Fig. 6.

The response can be divided into three separate regions.

First, the elastic range can be identified by the horizontal part

of the left curve, where the value of the indicator is equal to

its elastic reference value, i.e., l2 ¼ l2;el ¼ 2:477� 10�3.

Until del (orMel), this value is constant, and the logarithm of

the indicator ratio is 0 (indicating that the ratio is 1). In this

region, the normalised deflection and curvature functions do

not change. As soon as the yield stress is reached at the

outermost fibres of the cross-section, the interior of the bell-

shaped curvature function becomes slightly thinner, partic-

ularly around inflection points, and the value of the indicator

starts decreasing. After the mid-span section has fully plas-

ticised, the curvature profile starts to form a sharp peak in the

middle. This causes a significant decrease in the indicator

value, and a rapid increase in the indicator ratio. Themoment

ratio remains constant at 1.5 (as expected for a square cross-

section) as the plastic limit load is reached. In this case, as

plastic hinge formed in the mid-span and in the limit, the

indicator value tends to 0.

Fig. 3 Elastic reference value of the diagnostic indicator, l2;el, as a

function of load location, a1, for the case of three-point bending
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Fig. 4 Contour (left) and the surface (right) of the elastic reference value of the diagnostic indicator, l2;el as a function of point load locations, a1
and a2, for the case of four-point bending

Fig. 5 Development of the diagnostic indicator (left) and bending moment (right) as a function of displacement and indicator ratios for the case

of uniformly distributed load

Fig. 6 Normalised deflection, �wðnÞ, and curvature, �jðnÞ, functions at selected load steps for the case of uniformly distributed load
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The effect of the cross-section shape on the development

of the diagnostic indicator is presented in Fig. 7, where a

circular cross-section (radius of 0:06m), and a thin-walled

circular tube (radius of 0:06m and wall thickness of

0:001m) were added. Differences can be noticed only after

the elastic stage, with plastic-to-elastic bending moment

ratios being consistent with theory (1.5 for a square, 1.698

for a circle, and 1.273 for a thin-walled tube). Because the

tube is also circular, the two curves develop in the same

way directly after the elastic stage.

3.2 Three-Point Bending

In the second study, the previously used square cross-sec-

tion was considered for a beam loaded with a point force at

a1 ¼ 0:2, cf. Fig. 1b. The analysis was performed under

displacement control, with the displacement under the

force being the control parameter. The behaviour of the

diagnostic indicator and the indicator ratio under increasing

load is presented in Fig. 8, with both Mel and del computed

at n ¼ 0:2. Normalised deflection and curvature profiles at

selected load steps are presented in Fig. 9.

The indicator starts at the elastic reference value

(l2;el ¼ 3:297� 10�3 for a1 ¼ 0:2) and decreases towards

the end. However, the behaviour is non-monotonic as it

also grows in the intermediate stage. This is caused by the

plastic hinge being formed at n ¼ 0:2, far from the peak of

the initial bell-shaped curvature profile (which is located at

n ¼ 0:4278). The peak shifts from the initial elastic posi-

tion to the final position determined by the largest bending

moment. As presented in Fig. 9, the part of the curvature

caused by the formation of the plastic hinge grows sepa-

rately from the main portion of the bell-shaped curve, thus

increasing the value of l2. Once the normalised curvature

at the hinge reaches 1, the value of the indicator starts

decreasing rapidly. Although the value tends to 0 in the

limit theoretically, due to finite size of the mesh the

numerical result will tend to ð0:5� a1Þ2le, where le is the

size of the mesh.

3.3 Four-Point Bending

For the next case, the beam with a square cross-section was

loaded with point forces at a1 ¼ 0:15 and a2 ¼ 0:7, cf.

Fig. 1c. Equal forces were exerted on the beam by mod-

elling a rigid body in contact with the beam at a1L and a2L.
The analysis was performed under displacement control,

with the displacement under the rigid body being the

control parameter. The behaviour of the diagnostic indi-

cator and the indicator ratio under increasing load is pre-

sented in Fig. 10, with both Mel and del computed at the

location of the largest bending moment, i.e., at n ¼ 0:7 in

this case. Normalised deflection and curvature profiles at

selected load steps are presented in Fig. 11.

Depending on a1 and a2, the function of the diagnostic

indicator under increasing load will not, in general, be

monotonic. As before, it will start at the elastic reference

value, which is now different (l2;el ¼ 2:951� 10�3 for

a1 ¼ 0:15 and a2 ¼ 0:7). The plastic hinge will form at

either a1L or a2L, depending on where the bending moment

is larger. It is noteworthy that when a1 þ a2 ¼ 1, the

bending moment is constant in the region a1; a2½ �. The

plastic hinge can therefore form at an arbitrary section

within the range. In reality, the location of the plastic hinge

will be predefined by local defects and structural details.

The general behaviour of the indicator under load is similar

to three-point bending.

Fig. 7 Development of the diagnostic indicator (left) and bending moment (right) as a function of displacement and indicator ratios for different

cross-sectional shapes — uniformly distributed load
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Fig. 8 Development of the diagnostic indicator (left) and bending moment (right) as a function of displacement and indicator ratios for the case

of three-point bending with the force at a1 ¼ 0:2

Fig. 9 Normalised deflection, �wðnÞ, and curvature, �jðnÞ, functions at selected load steps for the case of three-point bending with the force at

a1 ¼ 0:2
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Fig. 10 Development of the diagnostic indicator (left) and bending moment (right) as a function of displacement and indicator ratios for the case

of four-point bending with the forces at a1 ¼ 0:15 and a2 ¼ 0:7

Fig. 11 Normalised deflection, �wðnÞ, and curvature, �jðnÞ, functions at selected load steps for the case of four-point bending with the forces at

a1 ¼ 0:15 and a2 ¼ 0:7

Fig. 12 Deflection profiles at different load levels in the three-point bending test. Data extracted from [38]
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Fig. 13 Normalised curvature, �j (left), and the computed values of diagnostic indicator, l2 together with elastic reference values. Three-point

bending test carried out by Farsi et al. [38]

Fig. 14 Deflection profiles at different load levels in the three-point bending test. Data extracted from [39]

Fig. 15 Normalised curvature, �j (left), and the computed values of diagnostic indicator, l2. Three-point bending test carried out by Yoneyama

et al. [39]
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3.4 Summary and Discussion

The behaviour of the diagnostic indicator in the elasto-

plastic range follows similar steps for all studied load cases

and different cross-section shapes. In all cases, the constant

elastic reference value is observed until the elastic limit

load was reached. Then, the indicator rapidly decreases as

soon as the plastic limit load is reached. The exact shape of

the interim region between the limit loads depends on the

relative location of the maximum bending moment with

respect to the maximum elastic deflection.

In the general three- and four-point bending cases, the

diagnostic indicator does not monotonically decrease with

growing load, as observed for uniformly distributed load.

Thus, l2 can be larger than its elastic reference value.

However, even in three- and four-point bending, a mono-

tonic decrease in the l2 value can be observed provided

that the maximum bending moment is located close enough

to the mid-span. From numerical simulations, this was the

case when the maximum bending moment was located at

n 2 ð0:41; 0:59Þ, which is consistent with the range of the

curvature peak locations. In these cases, the diagnostic

indicator monotonically decreases with the load and l2;el
cannot be higher than the elastic reference value. A value

lower than the reference indicates that the beam is not in

the elastic range.

When l2 is monotonically decreasing, it is possible to

uniquely identify a plastic reference value, l2;pl\l2;el,
which signifies a fully developed plastic hinge and an

impending mechanism action upon further increase of the

load. As presented in Fig. 7, a different l2;pl can be found

for different cross-sections.

A value l2 2 ðl2;el; l2;plÞ indicates that the plastic hinge
has not yet fully formed. In this range, the load or stress

level can be determined on the basis of the specific value of

the diagnostic indicator (upon proper calibration against

different cross-section shapes). For the estimation of stress

levels below the elastic limit load, other methods have been

developed, e.g., Park et al. [33] use a similar deflection

analysis to estimate stress levels in the elastic range.

The diagnostic indicator provides a unique description

of elastoplastic behaviour of beams as long as the largest

bending moment is close enough to the mid-span (or as

long as the plastic hinge forms close to the maximum

elastic curvature). If that is not the case, the value of

diagnostic indicator function is not unique, but it is always

possible to monitor whether the beam is working in a post-

elastic range.

4 Experimental Validation for Elastic
and Post-elastic Range

In this section, the proposed diagnostic framework was

implemented and employed in the analysis of a few

experiments. All the experiments treated here were found

in the existing literature, and involved the monitoring of

beam deflection using a digital image correlation (DIC)

system. Digital image correlation is a non-contact optical

measurement technique that accurately tracks changes in

2D and 3D images. A DIC system uses cross-correlation to

measure the similarity between pixel intensity in two or

more images captured using digital cameras, enabling the

measurement of displacement and strain fields.

Various applications are covered because the studied

tests involved three-point bending of short and large steel

beams working in the elastic range, as well as the identi-

fication of post-elastic damage in a three-point bending test

of a gypsum board. First, some implementation guidelines

and some details regarding the treatment of noisy experi-

mental data are provided.

Fig. 16 Deflection profiles for different image frames (left). Data extracted from [40]. Normalised curvature for selected deflection profiles, �j
(right)
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4.1 Implementation Guidelines

Although computed numerically, the elastic reference

values, l2;el, were derived from analytical expressions

readily available for beams modelled using Euler–Ber-

noulli assumptions. To calculate the diagnostic indicator,

l2, it is necessary to compute the second derivative of the

deflection function. In practice, analytical expressions are

not readily available from measurements. Moreover, once a

plastic hinge is formed or a significant amount of damage

has occurred, the deflection function cannot be well

described with a single polynomial function, as was the

case in the elastic range.

From DIC measurements, a set of data points defining

the deflection line can be easily extracted. It is then pos-

sible to fit a curve describing the observed deflection

function. For the best performance, an approach based on

spline fitting is suitable. First, by treating the data points as

knots, we fit an interpolating basis spline function. As

spline interpolation is readily available in most computa-

tional packages, it is straightforward to compute deriva-

tives at selected points. Before computation of the

curvature function (Eq. 2), a cubic smoothing spline

[36, 37] is used to regularise the computed first and second

derivatives. For a given data set (xj, yj), such smoothing

spline f minimises

p
Xn

j¼1

wj yj � f ðxjÞ
�
�

�
�2þð1� pÞ

Z

kðtÞ d
2f ðtÞ
dt2

�
�
�
�

�
�
�
�

2

dt; ð14Þ

where wj denote the error weights, and kðtÞ is a weight

function for the roughness measure. The first term in

Equation 14 measures the error and the second term mea-

sures the roughness of the spline. The smoothing

parameter, p, can be fine-tuned, so that the risk of over-

fitting to the data set is mitigated. Setting p ¼ 0 results in a

least-squares fit to the data. Similarly, setting p ¼ 1 results

in the natural cubic spline interpolant. This reduces the

noise and ensures that the resulting curvature functions are

smooth.

4.2 Treatment of Experimental Data

Regions close to supports are particularly sensitive because

deformation in these regions is much smaller than in the

mid-span. Thus, the data from regions closest to the sup-

ports, especially at the initial loading stages, can be noisy.

Computing the normalised curvature, �jðnÞ, can result in

functions, which tails exhibit a considerable amount of

noise. However, as the values of the l2;el in Section 2 were

integrated from n ¼ 0 to n ¼ 1, the comparison with the

computed values might not prove meaningful. Thus, it

omitting the tails of �jðnÞ when integrating l2 can be

practical. These tail-truncated values of the diagnostic

indicator, integrated between n1 and n2 are denoted ltt;n1;n22 .

For a convenient reference, the elastic reference tail-trun-

cated values ltt;0:1;0:92;el and ltt;0:2;0:82;el are reported in Tables 4

and 5, respectively.

4.3 Three-Point Bending of Short Aluminium
Rods—Elastic Range

For validation, the test performed in [38] by Farsi et al. was

used. In the research presented, a number of three-point

bending tests were carried out on short aluminium rods

with different porosities. These tests were conducted to

accurately determine the mechanical properties of the

material (Young’s modulus) with the use of DIC analysis.

Fig. 17 Diagnostic indicator values, l2 for the deflection profiles w1–w15
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The three-point bending tests were performed on 20mm

long aluminium bars with a square cross-section (mean

side length of 4:63mm). Given that the span-to-depth ratio

of the beam was approximately 4.32, the Euler–Bernoulli

beam model should yield reasonable results, However, a

framework based on the Timoshenko beam model could

possibly provide better results. The force was applied in the

middle of the span, and DIC was used to reconstruct

deflection profiles for the bars at different load levels. For

this study, data points were extracted from available graphs

at different load levels (Fig. 12). After obtaining the

deflection functions in the form of data points, the descri-

bed framework was used to compute the pertinent nor-

malised curvatures (Fig. 13 on the left) and diagnostic

indicators (Fig. 13 on the right)

It is noteworthy that the material in the test was reported

to behave almost as a perfectly elastic material and

exhibited brittle failure—no plastic response was recorded.

This indicates that the values of the computed diagnostic

indicators, l2 should be close to the elastic reference values
l2;el (Fig. 13). Moreover, the tail-truncated values of the

diagnostic indicator matched the elastic reference values

better due to less tail noise. The computed values were

close to theoretical reference values, with a mean error of

approximately 1:3% in the case of the tail-truncated indi-

cator ltt;0:2;0:82 . This confirms that the behaviour of the beam

was elastic.

4.4 Three-Point Bending of Long Steel Beams—
Elastic Range

To illustrate the feasibility of using the proposed frame-

work for longer structural elements, three-point bending

tests performed by Yoneyama et al. [39] were used. The

tests were performed on a 5m long steel beam with an H-

shaped cross-section, loaded in the middle of the span. The

height of the cross-section was 200mm, which resulted in a

span-to-depth ratio of 25, justifying the use of the Euler–

Bernoulli beam model. In the tests, DIC was used to

reconstruct deflection profiles at five different load levels.

Although the SS4000 steel used in the test exhibited

elastoplastic behaviour, all the tests were conducted only in

the elastic regime. The registered deflection profiles

reported in the work and used for data point extraction are

presented in Fig. 14. The data points were used in the

proposed framework to compute normalised curvatures and

the values of the diagnostic indicator, l2, presented in

Fig. 15.

The curvature profiles mostly coincided, especially in

the interior of the graph. Noticeable discrepancies were

observed between curvature profiles in the exterior regions

(close to tails), which are caused by the accuracy of data

extraction. The computed values of the indicator, l2, fol-
lowed the same trend, with all values being close to the

theoretical reference elastic value, l2;el. Due to imperfect

tails of the curvature profiles, full values of the indicator

show some bias, but the tail-truncated values provide a

much better match, with a mean error of 2:8% for the tail-

truncated reference value ltt;0:2;0:82 . The analysis indicated

that the beam was working in the elastic range at all load

levels.

4.5 Three-Point Bending of Gypsum Boards—
Elastic and Post-elastic Range

For the last case, three-point flexure tests performed by

Hild et al. [40] on gypsum boards were considered.

Although the material does not exhibit elastoplastic prop-

erties, the proposed diagnostic method can easily detect the

onset of damage. Because the studied material was quasi-

brittle, any deviation from the elastic state can be consid-

ered as damage. In the mentioned work, the authors utilised

DIC techniques to detect defects and quantify damage

directly in the volume of the material. However, a separate

DIC analysis is also applied to a one-dimensional medium

described by the Euler–Bernoulli model, and rich experi-

mental data in terms of deflection profiles both before and

after the onset of damage was provided by the authors.

Deflection profiles, reconstructed from the extracted data

are presented in Figure 16 together with computed nor-

malised curvatures. In total, 15 deflection curves were

provided for the sample. For clarity and to illustrate the

significance of damage, the normalised curvature, �j, is

plotted only for five specific cases, schematically marked in

the figure.

The values of the full and tail-truncated diagnostic

indicators, l2, were computed for all deflection curves, w1

through w15, and are presented in Fig. 17. Starting from the

left, for the first four deflection curves, the indicators were

close to the elastic reference values. The tail-truncated

values tended to be closer to the reference elastic value,

with a mean error of 2:3% for the tail-truncated reference

value ltt;0:2;0:82 .

Starting from w5 and beyond, the values of the full and

tail-truncated indicators began to monotonically decrease,

indicating the onset and development of damage in the

beam. This finding agrees with the results in [40], where

the authors report a damage parameter equal to 0 for the

first four deflection profiles, which then progressively grew

for the rest. The decrease in the indicator value can also be

concluded from the curvature profiles in Fig. 16, where the

curves become thinner as the damage develops, thus

reducing the value of l2. Moreover, as the damage devel-

ops, the variance between the full and tail-truncated
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indicator values becomes smaller. Thus, all three values are

much closer to each other for w15, than they are for w5. For

this experimental case, the performance of the diagnostic

framework was illustrated both in the elastic and post-

elastic range, where the post-elastic range for this specific

quasi-brittle material indicated the onset and development

of the damage.

5 Conclusions

In this study, a simple diagnostic method based on

deflection analysis for monitoring the post-elastic response

of beams was developed. The proposed indicator was

defined as the second moment of the normalised curvature

function about the mid-span, with the curvature computed

from a normalised deflection profile. The application of the

method was illustrated by means of finite element simu-

lations and suitable experiments on simply supported

beams. In experimental tests, a mean error of 2:1% was

obtained between the measured and theoretical values of

the diagnostic indicator.

Obtaining indicator values smaller than the reference

value indicates that the beam is not working in the elastic

range. For quasi-brittle materials, the deviation from the

elastic range can usually signify the onset of damage. For

elastoplastic materials, the proposed framework allows for

the direct monitoring of the post-elastic stress level in the

cross-section as long as the value of the indicator is

monotonically decreasing with progressive loading. This

occurs when the maximum bending moment is located

close to the mid-span, i.e., at n 2 ð0:41; 0:59Þ for the

studied load cases.

The main benefit of the proposed diagnostic method is

its simplicity because only the shape of the deflection curve

is needed. No additional information on the cross-section

and material is necessary to compute the indicator. Upon

further assumptions, information on the bending stiffness

of the cross-section or the load case can be obtained.

Furthermore, because the indicator often provides a unique

one-number representation of the elastoplastic response,

this value can be used as a post-elastic ‘state identifier’ in

experimental investigations.

Appendix A: Elastic Reference Values
of the Diagnostic Indicator

The elastic reference values of the full (integrated between

n1 ¼ 0 and n2 ¼ 1, denoted l2;el) and tail-truncated (inte-

grated between n1 ¼ 0:1 and n2 ¼ 0:9, as well as between

n1 ¼ 0:2 and n2 ¼ 0:8, denoted ltt;0:1;0:92;el and ltt;0:2;0:82;el ,

respectively) diagnostic indicator are reported in Table 1

for uniformly distributed load, in Table 2 for three-point

bending, and in Tables 3, 4 and 5 for four-point bending.

Table 1 The elastic reference values of the full (l2;el) and tail-trun-

cated (ltt;0:1;0:92;el , ltt;0:2;0:82;el ) diagnostic indicator, uniformly distributed

load

l2;el 2:477� 10�3

ltt;0:1;0:92;el
2:276� 10�3

ltt;0:2;0:82;el
1:808� 10�3
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Table 2 The elastic reference values of the full (l2;el) and tail-truncated (ltt;0:1;0:92;el , ltt;0:2;0:82;el ) diagnostic indicator, three-point bending

a1 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

l2;el (�10�3) 4.072 3.875 3.612 3.297 2.953 2.602 2.269 1.980 1.757 1.618

ltt;0:1;0:92;el (�10�3) 3.718 3.610 3.403 3.114 2.785 2.444 2.121 1.839 1.624 1.493

ltt;0:2;0:82;el (�10�3) 2.994 2.912 2.777 2.595 2.346 2.051 1.759 1.502 1.308 1.196

Table 3 The elastic reference values of the full diagnostic indicator, l2;el (�10�3), four-point bending

a1

a2 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.00 n.a. 4.072 3.875 3.612 3.297 2.953 2.602 2.269 1.980 1.757 1.618

0.05 4.072 4.072 3.942 3.730 3.457 3.145 2.815 2.495 2.210 1.982 1.879

0.10 3.875 3.942 3.875 3.718 3.491 3.216 2.915 2.614 2.338 2.114 2.046

0.15 3.612 3.730 3.718 3.612 3.432 3.197 2.930 2.653 2.394 2.178 2.136

0.20 3.297 3.457 3.491 3.432 3.297 3.105 2.873 2.626 2.389 2.186 2.160

0.25 2.953 3.145 3.216 3.197 3.105 2.953 2.759 2.544 2.332 2.147 2.127

0.30 2.602 2.815 2.915 2.930 2.873 2.759 2.602 2.420 2.235 2.070 2.050

0.35 2.269 2.495 2.614 2.653 2.626 2.544 2.420 2.269 2.112 1.969 1.943

0.40 1.980 2.210 2.338 2.394 2.389 2.332 2.235 2.112 1.980 1.859 1.824

0.45 1.757 1.982 2.114 2.178 2.186 2.147 2.070 1.969 1.859 1.757 1.711

0.50 1.618 1.879 2.046 2.136 2.160 2.127 2.050 1.943 1.824 1.711 1.618

0.55 1.757 2.028 2.190 2.271 2.286 2.243 2.157 2.043 1.920 1.805 1.711

0.60 1.980 2.249 2.397 2.463 2.460 2.401 2.300 2.174 2.041 1.920 1.824

0.65 2.269 2.528 2.655 2.696 2.669 2.587 2.465 2.321 2.174 2.043 1.943

0.70 2.602 2.845 2.942 2.951 2.893 2.781 2.632 2.465 2.300 2.157 2.050

0.75 2.953 3.175 3.234 3.205 3.109 2.961 2.781 2.587 2.401 2.243 2.127

0.80 3.297 3.495 3.509 3.435 3.296 3.109 2.893 2.669 2.460 2.286 2.160

0.85 3.612 3.783 3.745 3.621 3.435 3.205 2.951 2.696 2.463 2.271 2.136

0.90 3.875 4.019 3.922 3.745 3.509 3.234 2.942 2.655 2.397 2.190 2.046

0.95 4.072 4.184 4.019 3.783 3.495 3.175 2.845 2.528 2.249 2.028 1.879

1.00 n.a. 4.072 3.875 3.612 3.297 2.953 2.602 2.269 1.980 1.757 1.618
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Table 4 The elastic reference values of the tail-truncated diagnostic indicator, ltt;0:1;0:92;el (�10�3), four-point bending

a1

a2 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.00 n.a. 3.718 3.610 3.403 3.114 2.785 2.444 2.121 1.839 1.624 1.493

0.05 3.718 3.718 3.646 3.480 3.230 2.931 2.611 2.297 2.018 1.797 1.695

0.10 3.610 3.646 3.610 3.485 3.276 3.011 2.718 2.423 2.153 1.933 1.864

0.15 3.403 3.480 3.485 3.403 3.237 3.011 2.750 2.478 2.225 2.014 1.969

0.20 3.114 3.230 3.276 3.237 3.114 2.929 2.704 2.461 2.229 2.031 2.001

0.25 2.785 2.931 3.011 3.011 2.929 2.785 2.596 2.386 2.178 1.998 1.975

0.30 2.444 2.611 2.718 2.750 2.704 2.596 2.444 2.267 2.086 1.926 1.903

0.35 2.121 2.297 2.423 2.478 2.461 2.386 2.267 2.121 1.967 1.829 1.801

0.40 1.839 2.018 2.153 2.225 2.229 2.178 2.086 1.967 1.839 1.722 1.688

0.45 1.624 1.797 1.933 2.014 2.031 1.998 1.926 1.829 1.722 1.624 1.580

0.50 1.493 1.695 1.864 1.969 2.001 1.975 1.903 1.801 1.688 1.580 1.493

0.55 1.624 1.827 1.992 2.091 2.116 2.082 2.002 1.894 1.776 1.667 1.580

0.60 1.839 2.031 2.184 2.270 2.280 2.230 2.137 2.017 1.891 1.776 1.688

0.65 2.121 2.291 2.425 2.491 2.479 2.407 2.293 2.157 2.017 1.894 1.801

0.70 2.444 2.585 2.693 2.731 2.690 2.591 2.451 2.293 2.137 2.002 1.903

0.75 2.785 2.888 2.964 2.968 2.892 2.760 2.591 2.407 2.230 2.082 1.975

0.80 3.114 3.172 3.210 3.177 3.062 2.892 2.690 2.479 2.280 2.116 2.001

0.85 3.403 3.406 3.406 3.333 3.177 2.968 2.731 2.491 2.270 2.091 1.969

0.90 3.610 3.549 3.516 3.406 3.210 2.964 2.693 2.425 2.184 1.992 1.864

0.95 3.718 3.590 3.549 3.406 3.172 2.888 2.585 2.291 2.031 1.827 1.695

1.00 n.a. 3.718 3.610 3.403 3.114 2.785 2.444 2.121 1.839 1.624 1.493

Table 5 The elastic reference values of the tail-truncated diagnostic indicator, ltt;0:2;0:82;el (�10�3), four-point bending

a1

a2 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.00 n.a. 2.994 2.912 2.777 2.595 2.346 2.051 1.759 1.502 1.308 1.196

0.05 2.994 2.994 2.939 2.831 2.672 2.446 2.170 1.886 1.630 1.429 1.335

0.10 2.912 2.939 2.912 2.831 2.698 2.499 2.245 1.978 1.729 1.529 1.458

0.15 2.777 2.831 2.831 2.777 2.672 2.501 2.275 2.029 1.794 1.600 1.549

0.20 2.595 2.672 2.698 2.672 2.595 2.454 2.258 2.037 1.821 1.639 1.601

0.25 2.346 2.446 2.499 2.501 2.454 2.346 2.182 1.990 1.797 1.631 1.600

0.30 2.051 2.170 2.245 2.275 2.258 2.182 2.051 1.890 1.723 1.576 1.547

0.35 1.759 1.886 1.978 2.029 2.037 1.990 1.890 1.759 1.618 1.492 1.461

0.40 1.502 1.630 1.729 1.794 1.821 1.797 1.723 1.618 1.502 1.396 1.362

0.45 1.308 1.429 1.529 1.600 1.639 1.631 1.576 1.492 1.396 1.308 1.268

0.50 1.196 1.335 1.458 1.549 1.601 1.600 1.547 1.461 1.362 1.268 1.196

0.55 1.308 1.441 1.556 1.641 1.689 1.683 1.625 1.535 1.434 1.340 1.268

0.60 1.502 1.614 1.714 1.786 1.824 1.807 1.739 1.640 1.531 1.434 1.362

0.65 1.759 1.839 1.915 1.969 1.989 1.957 1.872 1.759 1.640 1.535 1.461

0.70 2.051 2.088 2.134 2.163 2.163 2.109 2.003 1.872 1.739 1.625 1.547

0.75 2.346 2.329 2.339 2.341 2.316 2.238 2.109 1.957 1.807 1.683 1.600

0.80 2.595 2.513 2.489 2.467 2.419 2.316 2.163 1.989 1.824 1.689 1.601

0.85 2.777 2.620 2.571 2.533 2.467 2.341 2.163 1.969 1.786 1.641 1.549

0.90 2.912 2.665 2.615 2.571 2.489 2.339 2.134 1.915 1.714 1.556 1.458

0.95 2.994 2.665 2.665 2.620 2.513 2.329 2.088 1.839 1.614 1.441 1.335

1.00 n.a. 2.994 2.912 2.777 2.595 2.346 2.051 1.759 1.502 1.308 1.196
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