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Abstract
Various elasto-plastic models for the rate-independent deformation, various elasto-viscoplastic models for the rate-dependent 
deformation and their combinations have been proposed during a long time more than one or more centuries. Firstly, the his-
tory of the development of the elastoplasticiy and the elasto-viscoplasticity is reviewed comprehensively. Unfortunately, each 
of these models possesses their own drawbacks and limitations. The unified constitutive equation of the elasto-plastic and 
the elasto-viscoplastic deformations is provided by incorporating the subloading surface model into the overstress model in 
this article, which is capable of describing the monotonic and the cyclic loadings at the general rate ranging from the quasi-
static to the impact loading. The validity of the unified model is verified by the comparison with various test data of metals 
under various loading conditions. Consequently, the elastoplastic constitutive equation can be disused hereinafter, while it 
is expressed by the cumbersome formulation including the complicated plastic modulus but limited to the description of the 
purely static deformation which is not induced actually.

1  Introduction

The researches on the elastoplasticity for the quasi-static 
deformation behavior and the viscoplasticity for the dynamic 
deformation behavior have the long history in one or more 
centuries. In this context, the main goal of these researches 
would be the formulation to describe them in a unified equa-
tion for the monotonic and the cyclic loadings at the general 
rate of deformation, while the solids and structures in engi-
neering practice are subjected to monotonic and the cyclic 

loadings at variable rate of deformation from the quasi-static 
to the impact loading.

Firstly, the history of the development of the elastoplas-
tic and the elasto-viscoplastic constitutive equations will be 
reviewed comprehensively in the following.

The elasto-plastic and the elasto-viscoplastic deforma-
tions have been often described separately by the elasto-
plastic model for the quasi-static deformation and the creep 
model for the dynamic deformation, respectively, Norton 
[97], Odqvist [98], Robotnov [120], Rice [118, 119], Bod-
ner and Partom [10], Lemaitre and Chaboche [86], Abdel-
Karim and Ohno [1], Saleeb et al. [122], Betten [7], Asaro 
and Lubarda [5], Chaboche [17], Ohno et  al. [101], de 
Sauza Neto et al. [25], Peirce et al. [111, 112], etc. How-
ever, it should be noticed that the creep strain rate in the 
creep model is induced even in any low stress level since 
it is formulated by the stress or the ratio of the stress to the 
yield stress and thus the response of the creep model is not 
reduced to that of the elastoplastic model in a quasi-static 
rate of deformation. Therefore, the deformation behavior 
in the intermediate rate cannot be described pertinently by 
them, because different responses are described by the creep 
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and the elastoplastic constitutive equations. Consequently, 
the combination of the creep model and the elastoplastic 
model cannot be used for deformation analysis at variable 
rate. Besides, various empirical models, Johnson and Cook 
[77], Steinberg et al. [125], Zerilli and Armstrong [144], 
Follansbee and Kocks [34], etc. have been proposed and 
used to the engineering in practice but they are ad. hoc mod-
els for particular phenomena without generality. Further, the 
fundamentally-irrational models, Bailey [6], Garofalo [35], 
etc. involving the time itself in order to describe the creep 
behavior have been proposed, which result in the loss of the 
objectivity as the constitutive relation Oldroyd [104].

On the other hand, the response of the overstress model, 
Bingham [9], Hohenemser and Prager [70], Prager [116], 
Perzyna [114, 115], Duvaut and Lion [28], Krempl et al. 
[82], Chaboche [12, 14], Lubliner [93], Perić [113], Arnold 
and Saleeb [4], Simo [123], Simo and Hughes [124], Kaneko 
and Oyamada [78], Ho and Krempl [69], Lubarda [92], 
Ottosen and Ristinmaa [105], Chaboche [16, 17], Saleeb 
and Arnold [121], Mayama et al. [95], de Sauza Neto et al. 
[25], Ho [68], Chaboche et al. [19], Guo et al. [36], Chen and 
Feng [20], Chen, et al. [21, 22], etc. is reduced to that of the 
elastoplastic constitutive equation in the quasi-static rate of 
deformation. Therefore, the overstress model possesses the 
capability for the description of the deformation at the varia-
ble rate. However, the existing overstress model is incapable 
of describing the cyclic loading behavior under the general 
stress amplitude, since it adopts the conventional elastoplas-
tic constitutive equation with the yield surface enclosing the 
purely-elastic domain, and it is also incapable of describing 
the impact loading behavior since it expresses the elastic 
deformation behavior leading to the infinitely high stress in 
the infinitely high rate of deformation.

The subloading surface model, Hashiguchi [37, 38, 40, 
48, 50] is capable of describing the elastoplastic deformation 
under the monotonic and the cyclic loading behaviors, while 
it does not incorporate a purely-elastic domain so that the 
tangent stiffness modulus changes continuously always sat-
isfying the continuity condition in the large, i.e. the smooth-
ness condition, Hashiguchi [41] and the mechanical ratchet-
ting phenomenon is described for any low stress level. The 
subloading surface model has been tried to describe the rate-
dependent behavior by incorporating the overstress model 
by Hashiguchi [46, 48, 50], Hashiguchi et al. [53], Moranha 
et al. [94], Fincato and Tsutsumi [31, 32] and Anjiki and 
Hashiguchi [2]. However, the peculiar stress vs. strain curve 
exhibiting the softening is described by the formulations by 
Hashiguchi [46, 48, 50], Hashiguchi et al. [53] and Moranha 
et al. [94]. The formulation by Fincato and Tsutsumi [31, 32] 
exhibits the discontinuous tangent stiffness modulus such 
that the inflexion point is induced in the stress–strain curve. 
The formulation by Anjiki and Hashiguchi [2] is quite com-
plex such that the similarity-center of the normal-yield and 

the subloading surfaces moves departing from the elastic-
core and thus the quite cumbersome numerical calculation 
is required.

In this article, the unified constitutive equation for the 
elasto-plastic and the elasto-viscoplastic deformations is 
provided, which is capable of describing the deformation 
behaviors during the monotonic and the cyclic loadings at 
the general rate ranging from the quasi-static to the impact 
loading by incorporating the subloading surface model 
into the overstress model. Further, the isotropic stagnation 
phenomenon is incorporated into the model. Besides, the 
physical interpretations of all the formulations are given 
comprehensively. Then, the explicit functions included in 
the constitutive equation are given for metals. The validity 
of the present model is verified by the simulations of test 
data for metals under the various loadings at several strain 
rates including variable strain rate and the stress relaxations 
at fixed strains, Inoue et al. [72], Abel-Karim and Ohno [1], 
Saleeb and Arnold [121], Lemaitre and Chaboche [86]. Fur-
ther, the test data reported as the rate-independent elasto-
plastic deformations at room temperature, Jiang and Zhang 
[74] and Chaboche et al. [18] are simulated accurately by 
the present model.

2 � Subloading Surface Model 
for Elastoplastic Deformation

The complete formulation of the subloading surface model 
for the elastoplastic deformation modifying the past one, 
Hashiguchi [37, 38, 40, 48, 50] is described concisely in 
this section, while the subloading surface model for metals 
with the simplified evolution rule of the elastic-core limited 
to the nonhardening state and without the isotropic harden-
ing stagnation is installed in the commercial FEM software 
Marc. By combining the subloading surface model and the 
overstress model, the subloading-overstress model will be 
formulated for the description of the monotonic and the 
cyclic loading behaviors in the general rate from the quasi-
static to the impact loading in the next section.

The distinguished feature of the subloading surface 
model, which is not furnished in the other elastoplastic 
models, e.g. the superposed kinematic hardening model, 
Chaboche et al. [18], Ohno and Wang [102], Hassan et al. 
[66], etc., the multi surface model, Mróz [96], Iwan [73] 
and the two surface model, Dafalias and Popov [23], Krieg 
[83], Hashiguchi [39], Yoshida and Uemori [140], etc., is 
the exclusion of the purely elastic domain so that the plastic 
strain rate due to the variation of stress inside the yield sur-
face can be described. Therefore, the continuity condition 
in the large, i.e. the smoothness condition, Hashiguchi [41, 
42, 44] leading to the continuous variation of the tangent 
stiffness modulus tensor is fulfilled always. It is of crucial 
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importance for the description of the cyclic loading behavior 
under the general stress amplitude.

2.1 � Elastic and Plastic Decomposition of Strain 
(Rate)

The infinitesimal strain tensor � is additively decomposed 
into the elastic strain tensor �e and the plastic strain tensor 
�p as follows:

where � and � are the position vector and the displacement 
vector, respectively, of the material particle.

Let the Cauchy stress � be given by

where the elastic modulus tensor � for the Hooke’s law is 
given as follows:

where E and � are the Young’s modulus and the Poisson’s 
ratio, respectively. The rate form of Eq. (3) is given for the 
constant elastic modulus tensor, i.e. � = const. by

2.2 � Normal‑Yield and Subloading Surfaces

The normal-yield surface with the isotropic and the kin-
ematic hardening is described as

where

f (�̂) is chosen to be the homogeneous degree-one of the 
variable �̂ . H is the isotropic hardening variable and � is the 
back-stress (kinematic hardening variable). which evolve by 
the equations

(1)� =
1

2

[
��

��
+
(
��

��

)T
]

(2)� = �e + �p, �̇ = �̇e + �̇p

(3)� = � ∶�e = � ∶(�− �p), �e = �
−1∶�, � = �

−1∶� + �p

(4)

⎧⎪⎨⎪⎩

�
ijkl

=
E

1 + �

�
1

2
(�ik�jl+�il�jk) +

�

1 − 2�
�ij�kl

�

�
−1
ijkl

=
1

E

�
1

2
(1 + �)(�ik�jl+�il�jk) − ��ij�kl

�

(5)
∙
� = � ∶�̇e = � ∶(�̇− �̇p), �̇e = �

−1∶
∙
�,

∙
� = �

−1∶
∙
�+ �̇p

(6)f (�̂) = F(H)

(7)�̂ ≡ �−�

(8)

∙

H(�,H;�̇p) = fHn̂(�,H;�̇p∕||�̇p||)||�̇p|| = fHn̂(�,H;�̂)||�̇p||

(9)

∙
� = ck

(
�̇p −

1

bkF
||�̇p||�

)
= �kn̂||�̇p||, �kn̂(�,H;�̂) ≡ ck

(
�̂ −

1

bkF
�

)

where ck is the material constant with the stress dimension 
and bk(< 1) is the non-dimensional material constant. Equa-
tion (9) is the slight modification of the nonlinear kinematic 
hardening rule of Armstrong-Frederick [3] in which bkF is 
defined to be the material constant with the stress dimen-
sion, while it should be noticed that the translational range 
of the yield surface would not be independent of the size of 
the yield surface.

Now, let the subloading surface be incorporated, which 
is similar to the yield surface, renamed as the normal-yield 
surface, with respect to the similarity-center � and thus it 
is described as follows (see Fig. 1).

where R(0 ≤R ≤ 1) is the normal-yield ratio, i.e. the ratio of 
the size of the subloading surface to that of the normal-yield 
surface and

� stands for the conjugate (similar) point in the subloading 
surface to the point � representing the back-stress, i.e. the 
kinematic hardening variable in the normal-yield surface. 
Here, note that the purely-elastic behavior is induced when 
the stress coincides with the similarity-center and thus the 
normal-yield ratio becomes zero (R = 0) . Then, let the simi-
larity-center � be called the elastic-core. Here, the following 
relation holds by virtue of the similarity (see Fig. 1).

which yields
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∕
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Fig. 1   Normal-yield, subloading and elastic-core surfaces
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where

 Besides, �y in Fig. 1 is the conjugate stress on the normal-
yield surface to the current stress � on the normal-yield sur-
face, fulfilling �−� = R(�y−�) . The time-derivative of � is 
described from Eq. (13) as

The subloading surface in Eq.  (11) is rewritten by 
Eq. (15) as follows:

R is calculated by solving Eq. (18)  in the elastic loading 
process �̇e ≠ �, �̇p = � by substituting the updated values 
of �, �, � and F . Equation (18) is expressed by the quadratic 
equation and thus the normal-yield ratio can be expressed 
analytically for the Mises material as will be shown in 
Sect. 2.7.

The evolution rule of the normal-yield ratio R is given by

where the function U(R) of R satisfies the conditions

The material parameter Re is interpreted to be the ratio of 
the fatigue limit stress to the yield stress �y . Note here that 
the incorporation of the material parameter Re does not mean 
the incorporation of the surface enclosing a purely-elastic 
domain as known from the fact: The plastic strain rate is 
predicted for the cyclic loading with a small stress amplitude 
under a high average stress by the subloading surface model 
with the incorporation of Re . Incidentally, the tangent stiff-
ness modulus changes continuously satisfying the continuity 
condition in the large, i.e. the smoothness condition always 
in the monotonic loading process. However, the normal-
yield ratio R must be calculated from Eq. (18) for the elastic 
loading process (�̇p = 0, �̇e ≠ 0) . It can be expressed explic-
itly by Eq. (84) for metals as will be shown in Sect. 2.7.

(14)� = � − R�̂

(15)� =
⌢

�+R�̂

(16)
�̂ ≡ � − �

⌢

� ≡ � − �

}

(17)
∙

� = R
∙
�+(1 − R)

∙
�−

∙

R �̂

(18)f (
⌢

�+R�̂) = RF(H)

(19)
∙

R = U(R)||�̇p|| for �̇p ≠ �

(20)U(R)

⎧
⎪⎪⎨⎪⎪⎩

→ +∞ for 0 ≤ R ≤ Re (elastic state)

> 0 forRe < R < 1 (subyield state)

= 0 forR = 1 (normal-yield state)

< 0 forR > 1 (over normal-yield state)

The explicit equation satisfying Eq. (20) is given by the 
cotangent function

where u is the material parameter and ⟨ ⟩ is the Macaulay’s 
bracket defined by ⟨s⟩ = (s+�s�)∕2 , i.e. s < 0 ∶ ⟨s⟩ = 0 and 
s ≥ 0 ∶ ⟨s⟩ = s ( s : arbitrary scalar variable). Equation (21) 
fulfills the continuity condition in the large, i.e. the smooth-
ness condition (Hashiguchi [42]) since the function U(R) 
decreases continuously from the infinite value U(Re)( → ∞) . 
If u is fixed to be constant, Eqs. (19) with (21) can be inte-
grated analytically as

where 𝜀p ≡ ∫ ||�̇p||dt and �p
0
 is the initial value of �p , whilst 

one must set R0 = Re for R0 < Re.

2.3 � Evolution Rule of Elastic‑Core

The elastic-core � is not allowed to approach the nor-
mal-yield surface closely, because the purely elastic 
deformation is induced when the stress lies on the 
elastic-core but the apparent plastic deformation is 
induced when the stress lies on the normal-yield sur-
face. In addition, it should be noted that a smooth 
elastic–plastic transition leading to the continuous 
variation of the tangent stiffness modulus tensor is 
not described violating the continuity condition in the 
large, i.e. the smoothness condition Hashiguchi [41], 
if the elastic-core lies on the normal-yield surface. 
On the other hand, the other plasticity models, i.e. the 
cylindrical superposed kinematic hardening model, 
Chaboche et al. [18], Ohno and Wang [102], Hassan 
et al. [66], etc., the multi surface model, Mróz [96], 
Iwan [73] and the two surface model, Dafalias and 
Popov [23], Krieg [83], Hashiguchi [39], Yoshida and 
Uemori [140], etc. violate the smoothness condition, 
since the purely-elastic domain contacts to the yield 
surface directly.

Then, it is assumed that the elastic-core surface which 
passes through the elastic-core is similar to the normal-yield 
surface with respect to the back-stress � is smaller than the 
normal-yield surface. Therefore, the following inequality 
holds.
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where ℜc designates the ratio of the size of the elastic-core 
surface to the normal-yield surface (see Fig. 1) and 𝜒 (< 1) 
is the material constant designating the maximum value of 
ℜc.

The material-time derivative of Eq. (23) at the limit state 
that � lies on the limit elastic-core surface f (�̂) = 𝜒F(H) 
yields:

Here, noting

on account of the Euler’s homogeneous function f (�̂) in 
degree-one for the variable �̂ , the substitution of Eq. (25) 
to Eq. (24) leads to

Now, assume the equation

where ce is the material constant and �� is the conjugate 
stress on the limit elastic-core surfaces to the current stress 
� on the subloading surface, i.e.

which is based on the relation

where �y is the conjugate stress on the normal-yield surface. 
Equation (27) means that the elastic-core translates so as to 
approach the conjugate stress �� in the nonhardening state: 
∙

F = 0 and 
∙
� = �.

It follows for Eqs. (26) with (27) that

as far as the normal-yield surface satisfies the convexity con-
dition (cf. Hashiguchi [48]), noting that 𝜕f (�̂)∕𝜕� which is 
the outward-normal of the elastic-core surface at the current 
elastic-core � and ��−� makes an obtuse angle with 𝜕f (�̂)∕𝜕� 

(23)ℜc = f (�̂)∕F(H) ≤ 𝜒 , i.e. f (�̂) ≤ 𝜒F(H)

(24)
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∶(

∙
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∙
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𝜕𝐜̂
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𝜕�̂
∶

(
∙
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∙
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∙

F

F
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)
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(27)∙
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∙
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∙

F

F
𝐜̂ = ce||𝛆̇p||(𝛔𝜒−𝐜) = ce||𝛆̇p||

(
𝜒
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R
−𝐜̂

)

(28)�𝜒 ≡
𝜒

R
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𝜒

R
�−�̂
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R
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‖‖‖‖𝐧̂c∶(𝛔𝜒 − 𝐜) ≤ 0 for ℜc = 𝜒

when � lies on the limit elastic-core surface, while �� lies on 
the limit elastic-core surface. �̂c is the normalized outward-
normal of the elastic-core surface (see Fig. 1), i.e.

Therefore, Eq. (27) satisfies the enclosing condition of 
the elastic-core so that the elastic-core can never go out 
from the limit elastic-core surface.

Then, the evolution rule of the elastic-core is given 
from Eq. (27) with Eqs. (8) and (9) by

The translation of the elastic-core would have to be 
influenced by the variation of the expansion/contraction 
(isotropic hardening) and the translation (kinematic hard-
ening) of the normal-yield surface in general, since its 
movement is limited to the interior of the normal-yield 
surface which expands and translates with the plastic 
deformation. This aspect is different from the evolution 
rule of the kinematic hardening which causes the transla-
tion of the normal-yield surface.

2.4 � Plastic Strain Rate

Adopt the associated flow rule for the subloading surface:

where

The rates of the isotropic hardening in Eq.  (8) and 
the rate of kinematic hardening in Eq. (9) for the state in 
which the current stress lies on the normal-yield surface 
are extended to

for the state in which the current stress lies on the subload-
ing surface.

Equation (32) with Eqs. (35) and (36) leads to
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where

The material-time derivative of Eq. (11) leads to the 
consistency condition of the subloading surface as follows:

Here, one has

based on the homogeneous function f (�) of � in degree-one 
by the Euler’s theorem. Then, it follows that

The substitution of Eqs. (41) into (39) leads to

The substitution of Eqs. (17) into (42) leads to

Noting the relation

it follows from Eq. (43) that

The substitutions of Eq. (33) with Eqs. (19), (35), (36) 
and (37) into Eq. (45) leads to 

from which the plastic multiplier 
∙

� and the plastic strain rate 
�̇p are given as follows:
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bkF
�

)
+

F
�

fHn

F
�̂

(39)
�f (�)

��
∶

∙
�−

�f (�)

��
∶

∙

�−
∙

RF − R
∙

F = 0

(40)
�f (𝛔)

�𝛔
∶ 𝛔 = f (𝛔) = RF

(41)𝐧 ∶ 𝛔 =

�f (𝛔)

�𝛔
∶ 𝛔

|| �f (𝛔)
�𝛔

||
=

RF

|| �f (𝛔)
�𝛔

||
, i.e.

1

|| �f (𝛔)
�𝛔

||
=

n ∶ 𝛔

RF

(42)� ∶
∙
�−� ∶

[( ∙

F

F
+

∙

R

R

)
� +

∙

�

]
= 0

(43)� ∶
∙
�−� ∶

[ ∙

F

F
� + R

∙
�+(1 − R)

∙
�+

∙

R

R
(� − R�̂)

]
= 0

(44)� − R�̂ = � − � − (� − �) =
⌢

�

(45)� ∶
∙
�−� ∶

[ ∙

F

F
� + R

∙
�+(1 − R)

∙
�+

∙

R

R

⌢

�

]
= 0

(46)

� ∶
∙

�−� ∶

[
F

�

F

∙

� fHn� + R

∙

� �kn + (1 − R)

∙

� �cn +
U

R

∙

�
⌢

�

]
= 0

(47)
∙

𝜆 =
� ∶

∙
�

M
p , �̇p =

� ∶
∙
�

M
p �

where

The plastic modulus in Eq.  (48) is reduced to 
M̂p = 𝐧̂ ∶[(F

�

∕F)fHn̂𝛔̂ + 𝐟kn̂] for the conventional model in 
the normal-yield state by setting R = 1 leading to U = 0.

The strain rate is given by substituting Eqs. (5) and 
(47)2 into Eq. (2) as follows:

from which the magnitude of plastic strain rate described in 

terms of the strain rate, denoted by ∙

�
 instead of 

∙

� , in the 
flow rule of Eq. (33) is given as follows:

The stress rate is given from Eq. (5) with Eq. (50) as follows:

The loading criterion is given as follows (Hashiguchi 
[43, 45, 47]):

where the judgment whether or not the stress reaches the 
yield surface is not required since the plastic strain rate is 
induced continuously as the stress approaches the normal-
yield surface. Equation (52) is applicable not only to the 
hardening state but also to the perfectly-plastic and soften-
ing state.

2.5 � Improvement of Inverse and Reloading 
Behavior

The unique relation �p − �
p

0
= f (R−R0) holds as shown in 

Eq. (22) under the initial condition �p = �
p

0
∶R = R0 in the 

monotonic loading process if U in Eq. (19) is the function 
of only the normal-yield ratio R . Therefore, �p induced dur-
ing a certain change of R in the monotonic loading process is 
identical irrespective of the difference of loading processes, 
e.g. the initial loading, the reloading and the inverse load-
ing and of the proportional and non-proportional loadings. 
This property causes the description that the returning of the 
reloading stress–strain curve to the previous loading curve 

(48)M
p
= � ∶

[
F

�

F
fHn� + R�kn + (1 − R)�cn +

U

R

⌢

�

]

(49)
∙
� = �

−1∶
∙
�+

� ∶
∙
�

M
p � =

(
�
−1+

�⊗ �

M
p

)
∶

∙
�

(50)
∙

� =
� ∶ � ∶

∙
�

M
p
+ � ∶ � ∶ �

,
∙
� =

� ∶ � ∶
∙
�

M
p
+ � ∶ � ∶ �

�

(51)

∙

𝛔 = � ∶
∙

𝛆−
𝐧̄ ∶ � ∶

∙

𝛆

M̄p + 𝐧̄ ∶ � ∶ 𝐧̄
� ∶ 𝐧̄ =

(
� −

� ∶ 𝐧̄⊗ 𝐧̄ ∶ �

M̄p + 𝐧̄ ∶ � ∶ 𝐧̄

)
∶

∙

𝛆

(52)

⎧⎪⎨⎪⎩
�̇p ≠ � forR > Re and

∙

𝛬 > 0 or � ∶ � ∶
∙
� > 0

�̇p = � for others
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is unrealistically gentle. Therefore, it engenders the imperti-
nent prediction of cyclic loading behavior, i.e. the prediction 
of the unrealistically large plastic strain accumulation during 
the cyclic loading process in the extended subloading surface 
model.

As the fact observed in test data, the plastic strain rate is 
suppressed in the loading direction in which the elastic-core 
exists observing from the center of the normal-yield surface, 
i.e. the back stress and inversely the large plastic strain rate is 
induced in its opposite direction leading to the Masing effect. 
This tendency is more remarkable when the elastic-core is 
closer to the normal-yield surface leading to the larger value 
of ℜc in Eq. (23). The degree of the loading/unloading is 
expressed by the scalar variable �̂c∶ � where �̂c is the normal-
ized outward-normal of the elastic-core surface as defined in 
Eq. (31) and � is the normalized outward-normal of the sub-
loading surface, i.e. the direction of the plastic strain rate in 
Eq. (34). The magnitude of the plastic strain rate is controlled 
by the material parameter u in the function U(R) in Eq. (21) 
for the evolution rule of the normal-yield ratio R in Eq. (19).

Then, let the material parameter u be extended to the fol-
lowing equation for the extended subloading surface model in 
which the elastic-core, i.e. the similarity-center � moves with 
the plastic deformation, introducing the variables ℜc and Cn.

leading to the replacement

where uc is the material constant and

Then, the plastic positive proportionality factor 
∙

� is 
replaced to the following equation by Eq.  (54), noting 
Eq. (19) with Eq. (21).

(53)

u → u exp(ucℜcCn) =

⎧⎪⎪⎨⎪⎪⎩

u exp(uc�) (largest) forℜc = � and Cn = 1

u (average) forℜc = 0 or Cn = 0

u exp(−uc�) (smallest) forℜc = � and Cn = −1

(54)
U(R) = u cot

�
�

2

⟨R − Re⟩
1 − Re

�

→ U(R,ℜc,Cn) = u exp(ucℜcCn) cot

�
�

2

⟨R − Re⟩
1 − Re

�

(55)Cn ≡ �̂c ∶ � (−1 ≤ Cn ≤ 1)

(56)

∙

𝜆 = ���̇p�� = ∙

R
1

u
tan

�
𝜋

2

⟨R − Re⟩
1 − Re

�

→

∙

𝜆 =
∙

R
1

u exp(ucℜcCn)
tan

�
𝜋

2

⟨R − Re⟩
1 − Re

�

2.6 � Cyclic Stagnation of Isotropic Hardening

As a plastic deformation induced by the mutual slips of 
solid particles proceeds, the isotropic hardening proceeds 
with the loss of the dislocation mobility caused by the 
piling-up of obstacles or the formation of various net-
works. However, when a load reversal occurs, the iso-
tropic hardening ceases temporarily by the recovery of 
the dislocation mobility. This phenomenon considerably 
affects the cyclic loading behavior in which the reverse 
loading is repeated. To describe this phenomenon, the 
concept of the cyclic stagnation of isotropic hardening, 
i.e. the existence of nonhardening region was proposed 
by Chaboche et al. [18] (see also Chaboche [13, 14]). The 
concept insists that the isotropic hardening does not pro-
ceed when the plastic strain given by the time-integration 
of plastic strain rate lies inside a certain region, called 
the nonhardening region, in the plastic strain space.

Assuming that the isotropic hardening stagnates when 
the plastic strain �p lies inside a certain region, let the 
following surface, called the normal-isotropic hardening 
surface, be introduced.

where

g(�̃p) is chosen to be the homogeneous degree-one of the 
variable �̃p . The variables K̃ and � designate the size and 
the center, respectively, of the normal-isotropic hardening 
surface, the evolution rules of which will be formulated 
later. Furthermore, we introduce the surface, called the 
sub-isotropic hardening surface, which always passes 
through the current plastic strain �p and which has a simi-
lar shape and a same orientation to the normal-isotropic 
hardening surface (see Fig. 2). Here, the plastic strain �p is 

(57)g(�̃p) = K̃

(58)�̃
p ≡ �p − �

ρ

Normal-isotropic
hardening surface 

Sub-isotropic 
hardening surface 

( ) =
pg Kε

( =)
pg RKε

p•ε

•ρ

n

pε
pε

0 p
ijσ

Fig. 2   Normal- and sub-isotropic hardening surfaces
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regarded to be the internal variable as 
∙
� = ck�̇

p is used in 
the Prager’s linear kinematic hardening rule. On the other 
hand, the kinematic hardening variable, i.e. back-stress � 
is used instead of �p by Yoshida and Uemori [140]. How-
ever, � would not be relevant but �p would be relevant as 
the isotropic stagnation variable, since the mechanism of 
the isotropic hardening would be different from that of the 
kinematic hardening.

The subloading-isotropic stagnation surface is expressed by 
the following equation.

where R̃(0 ≤ R̃ ≤ 1) is the ratio of the size of sub-isotropic 
hardening surface to that of the normal-isotropic hardening 
surface. It plays the role as the measure for the approaching 
degree of the plastic strain to the normal-isotropic hardening 
surface. Then, R̃ is referred to as the normal-isotropic hard-
ening ratio. It is calculable from the equation R̃ = g(�̃p)∕K̃ 
in terms of the known values of �p , � and K̃.

The consistency condition of the subloading isotropic hard-
ening surface is given by

Equation (60) is reduced to the following relation which 
must be fulfilled when the plastic strain just lies on the normal-
isotropic hardening surface.

i.e.

Then, we assume the following equations so as to fulfill 
Eq. (61).

where 0 ≤ C ≤ 1 and �( ≥ 1) are the material constants and

Substituting Eqs. (62) and (63) for the evolution rules 
of K̃ and � into Eq. (60), the rate of the normal-isotropic 
hardening ratio is given by

(59)g(�̃p) =R̃K̃

(60)
𝜕g(�̃p)

𝜕�̃p
∶�̇p−

𝜕g(�̃p)

𝜕�̃p
∶

∙
� = R̃

∙

K̃ +
∙

R̃ K̃

𝜕g(�̃p)

𝜕�̃p
∶�̇p−

𝜕g(�̃p)

𝜕�̃p
∶

∙
� =

∙

K̃ for R̃ = 1

(61)𝐧̃ ∶𝛆̇p−𝐧̃ ∶
∙
𝛒 =

∙

K̃ ∕||𝜕g(𝛆̃
p)

𝜕𝛆̃p
|| for R̃ = 1

(62)
∙

K̃ = CR̃𝜍⟨𝐧̃ ∶𝛆̇p⟩����
𝜕g(𝛆̃p)

𝜕𝛆̃p
���� = CR̃𝜍

�
𝜕g(𝛆̃p)

𝜕𝛆̃p
∶𝛆̇p

�

(63)
∙
𝛒= (1−C)R̃𝜍⟨𝐧̃ ∶𝛆̇p⟩𝐧̃

(64)�̃ ≡
𝜕g(�̃p)

𝜕�̃p
∕||𝜕g(�̃

p)

𝜕�̃p
||

which is the monotonically-decreasing function of R̃ 
fulfilling

Therefore, the normal-isotropic hardening ratio R̃ 
increases when the plastic strain moves to the outward 
of the sub-isotropic hardening surface but it decreases 
such that the normal-isotropic hardening surface encloses 
the plastic strain when the plastic strain tends to go out 
from the normal-isotropic hardening surface by virtue 
of the inequality 

∙

R̃ < 0 for R̃ > 1 as shown in Eq. (66). 
Furthermore, needless to say, the judgment of whether 
the plastic strain reaches the normal-isotropic hardening 
surface is not necessary in the present formulation con-
sistently based on the subloading concept in all aspects. 
In contrast, the judgment whether the plastic strain or the 
back-stress reaches the isotropic hardening (stagnation) 
surface is required and the input loading increments must 
be infinitesimal such that the isotropic stagnation surface 
encloses the plastic strain in the other models, Chabo-
che et al. [18], Chaboche [13–15], Ohno [99], Ohno and 
Kachi, [100], Ohno et. al. [101], Yoshida and Uemori 
[140, 141].

Eventually, let the evolution rule of isotropic hardening 
be assumed as follows:

where � ( ≥ 1) is the material constant and

Employing the extended isotropic hardening rule in 
Eq. (67) instead of Eq. (35) into Eq. (48), the plastic modu-
lus is modified as follows:

The function g(�̃p) is given in the simplest form as 
follows:

(65)

∙

R̃ =
1

K̃

�
𝜕g(�̃p)

𝜕�̃p
∶�̇p −

𝜕g(�̃p)

𝜕�̃p
∶

∙
�−R̃

∙

K̃

�

=
1

K̃
⟨𝜕g(�̃

p)

𝜕�̃p
∶�̇p⟩[1 − R̃𝜍 + CR̃𝜍(1 − R̃)]

(66)
∙

R̃

⎧⎪⎪⎪⎨⎪⎪⎪⎩

=
1

K̃
⟨𝜕g(�̃

p)

𝜕�̃p
∶�̇p⟩ (> 0) for R̃ = 0

<
1

K̃
⟨𝜕g(�̃

p)

𝜕�̃p
∶�̇p⟩ (> 0) for R̃< 1

= 0 for R̃ = 1

< 0 for R̃> 1

(67)∙

H = R̃𝜐⟨𝐧̃ ∶ 𝐧⟩fHn��𝛆̇p�� =
∙

𝜆 f̃Hn

(68)f̃Hn ≡ R̃𝜐⟨𝐧̃ ∶ 𝐧⟩fHn

(69)M
p
≡ � ∶

[
F�

F
f̃Hn� + R�kn + (1 − R)�cn +

U

R

⌢

�

]
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In the subloading surface model, the stress is pulled-back 
to the normal-yield surface and the isotropic hardening sur-
face translates so as to involve the plastic strain automati-
cally, while these mechanical functions are not furnished in 
the other plasticity and the viscoplasticity models. There-
fore, the rather large incremental steps can be input even in 
the Euler forward method in the numerical calculation by 
the subloading surface model.

2.7 � Mises Metals

The material functions for metals are given in this section, 
while the subloading surface model has been applied to vari-
ous materials other than metals, i.e. soils, Hashiguchi and 
Mase [51], Hashiguchi and Tsutsumi [57−60], Hashiguchi 
et al. [52, 56], Bin et al. [8], Farias et al. [30], Khojastehpour 
and Hashiguchi [79, 80], Maranha et al. [94], Pedroso [110], 
Ren et al. [117], Tsutsumi and Hashiguchi [128], Xiong et al. 
[134], Yadav et al. [135], Yamakawa et al. [136, 137], Ye 
et al. [139], Yuanming et al. [142, 143], Zhang et al. [145], 
etc., rocks, Xiong et al. [133], Zhu et al. [146], etc., asphalt 
Darabi et al. [24], etc. and further the friction phenomenon 
[54, 55, 62, 63, 106–108].

The yield function for the Mises yield condition is 
extended to incorporate the kinematic hardening by replac-
ing �′ to �̂

′

 (()′: deviatoric part) in Eq. (6) as follows:

for which the subloading function f (�) for Eq. (72) is given 
by

Further, the elastic-core function in Eq. (23) for Eq. (72) 
is given by

It follows from Eqs. (23) and (31) for Eq. (74) that

(70)g(�̃p) = ||�̃p||

(71)
𝜕g(�̃p)

𝜕�̃p
=

�̃p

||�̃p|| = �̃

(72)f (�̂) =

√
3

2
||�̂� ||

(73)f (�) =

√
3

2
||�� ||,� = �

�

=
�

�

||�� ||
, �̇p = �̇p�

(74)f (�̂) =

√
3

2
||�̂� ||, �̂c = �̂

�

||�̂� ||

The isotropic hardening function is given by

 where sr and cH are the material constants.
The rates of the kinematic hardening variable and the 

elastic-core are given by Eqs. (36) and (37) as

The plastic modulus is given by substituting Eqs. (73), 
(74), (78), (79) and (80) into Eq. (48) as follows:

Substituting Eq. (73) with Eq. (15) into Eq. (18), the 
extended subloading surface is described as follows:

i.e.

The normal-yield ratio R is derived from the quadratic 
Eq. (83) as follows:

(75)ℜc =

√
3

2

||�̂� ||
F

(76)F(H) = F0{1+sr[1 − exp(−cHH)]}

(77)F
�

= sr cHF0 exp(−cHH)

(78)
∙

H =

√
2

3
||�̇p|| =

∙

𝜆 �Hn, �Hn =

√
2

3

(79)
∙
� =

∙

� �kn, �kn ≡ ck

(
�

�

||�� ||
−

1

bkF
�

)

(80)

∙

� =

∙

𝜆 �cn, �cn = ce

(𝜒
R
�−�̂

)
+ ck

(
�

�

||�� ||
−

1

bkF
�

)
+

√
2

3

F
�

F
�̂

(81)

M
p
≡

�
�

���� ��
∶

��
2

3

F�

F
� + ckR

�
�

�

���� ��
−

1

bkF
�

�

+(1 − R)

�
ce

�𝜒
R
�−�̂

�
+ ck

�
�

�

���� ��
−

1

bkF
�

�
+

√
2∕3F

�

F
�̂

�
+

U

R

⌢

�

�

(82)
√

3

2
||�̂�

+ R�̂
� || = RF(H)

(83)tr(�̂
�

+ R�̂
�

)2 =
2

3
R2F2

(84)R =

𝛔̂
�

∶ 𝐜̂� +

√
(𝛔̂

�

∶ 𝐜̂�)2 +
(

2

3
F2 − ||𝐜̂�||2

)
||𝛔̂� ||2

2

3
F2 − ||𝐜̂�||2



2636	 K. Hashiguchi et al.

1 3

3 � Subloading‑Overstress Model: Extension 
to Description of Elasto‑Viscoplastic 
Deformation in General Rate

The subloading surface model will be extended to the 
subloading-overstress model which is capable of describ-
ing the monotonic and the cyclic deformations in general 
rate from quasi-static (elastoplastic) to the impact load-
ing. The strain � is additively decomposed into the elastic 
strain �e and the viscoplastic strain �vp instead of Eq. (2) 
as follows:

3.1 � Creep Model and Overstress Model 
for Viscoplastic Deformation

The viscoplastic models are classified into the creep 
model (Norton [97] and the overstress model whose rhe-
ology models are shown in Fig. 3. The creep model is 
regarded as the nonlinearization of the Maxwell model for 
the viscoelastic deformation so that the creep strain rate 
is induced in any low stress level. On the other hand, the 
overstress model, Bingham [9] is the incorporation of the 
slider exhibiting the yield condition into the dashpot in 
parallel extending the creep model such that there exists 
the threshold value for the generation of the viscoplastic 
deformation. Therefore, the viscoplastic deformation is 
induced by the overstress from the yield stress but it is not 
induced for the stress lower than the yield stress. Therefore, 
the response of the creep model is not reduced to that of the 

(85)� = �e+�vp,
∙
� = �̇e+�̇vp

elastoplastic constitutive equation but that of the overstress 
model is reduced to the elastoplastic constitutive equation 
for the quasi-static deformation process. Therefore, the 
creep model is not acceptable, although it is used widely 
(e.g. Lemaitre and Chaboche [86], Abdel-Karim and Ohno 
[1], Betten [7], Chaboche [17], Ohno et al. [103], de Sauza 
Neto et al. [25]) without regard to this serious defect but 
the overstress model is acceptable for the description of 
the viscoplastic deformation. Consequently, the overstress 
model should be adopted for the description of the visco-
plastic deformation.

3.2 � Static and Limit Subloading Surfaces

The static subloading and the limit subloading surfaces (see 
Fig. 4) are incorporated in addition to the subloading, the 
normal-yield, the elastic-core and the limit elastic-core sur-
faces in the subloading surface model for the rate-independ-
ent elastoplastic deformation. Here, the subloading surface 
on which the current stress lies may become larger than the 
normal-yield surface in general. The normal-yield ratio R 
which may become larger than unity in general is calculated 
by the identical equation for the rate-independent elastoplas-
tic deformation, i.e. Equation (18) in general and by Eq. (92) 
for metals.

The viscoplastic strain rate is induced by the overstress 
from the static subloading surface expressed in the follow-
ing equation which is given by replacing the current stress 
� , the center � and the normal-yield ratio R to their conju-
gate points �s , �s and the static normal-yield ratio Rs( ≤ 1) , 
respectively, in the subloading surface in Eq. (11) for the 
elastoplastic deformation.

with

where Rs evolves by the following equation which is identi-
cal to Eq. (19) with Eq. (21) for the extended subloading 
surface model with the replacement of the plastic strain rate 
vp to the viscoplastic strain rate �̇vp.

with

(86)f (�s) = RsF(H)

(87)
�s = �s−�s =

Rs

R
�

(
�s−�s

Rs

=
�−�

R
,�s−� = Rs(�y−�) =Rs

�−�

R

)

(88)

⎧⎪⎨⎪⎩

Ṙs = Us���̇vp�� for �̇vp ≠ �

Rs = R for R ≥ Re

Rs = Re for other

�
for other

(89)Us(Rs,ℜc,Cn) =u exp(ucℜcCn) cot

�
�

2

⟨Rs − Re⟩
1 − Re

�

Fig. 3   Rheology models for creep model and overstress model
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Rs( ≤ 1) is called the static normal-yield ratio because the 
quasi-static deformation proceeds in the state R = Rs . It can 
be analytically calculated by Eq. (22) with the replacement 
of the plastic strain rate to the viscoplastic strain rate for 
ℜcCn = const. as follows:

under the initial condition Rs = Rs0 for �vp = �
vp

0
 , where 

𝜀vp = ∫ ||�̇vp||dt.
3.3 � Viscoplastic Strain Rate

Now, let the flow rule of the viscoplastic strain rate be given 
by incorporating the crucially important variable in the sub-
loading surface model, i.e. the normal-yield ratio R into the 
overstress model as follows:

where �  is the positive viscoplastic multiplier given by

�v (viscoplastic coefficient) and n( > 1) are the material 
constants. The smooth elastic-viscoplastic transition is 
described by adopting the overstress due to R−Rs instead 
of R−1 , because Rs increases gradually up to 1 with the 

(90)

Rs =
2

�
(1 − Re)cos

−1

[
cos

(
�

2

Rs0 − Re

1 − Re

)

exp

(
−
�

2
exp(ucℜcCn)

�vp − �
vp

0

1 − Re

)]
+ Re for Rs0 ≥ Re

(91)�̇vp = 𝛤�

(92)� ≡
1

�v

⟨R−Rs⟩n

viscoplastic deformation, while Rs was fixed as Rs = 1 in 
the past overstress model.

The function U for the evolution rule of the normal-yield 
ratio R and the positive proportionality factor (plastic mul-

tiplier) 
∙

� are modified to Eqs. (54) and (56), respectively, by 
incorporating the variables ℜc( ≡ f (�̂)∕F) and Cn (≡ �̂c∶ �) 
in the extended subloading surface model for the rate-inde-
pendent elastoplastic deformation. Analogously, for the rate-
dependent deformation, the function Us and the viscoplastic 
multiplier Γ be modified to Eq. (89) and

where uc is the material constant. Thus, the rising and the 
lowering of the stress due to the decrease and the increase of 
strain rate are enforced in the state ℜcCn > 0 and ℜcCn < 0 , 
respectively. It leads to the description of the global Masing 
effect in the viscoplastic deformation process.

Further, let Eq. (93) be extended such that the infinite 
viscoplastic strain rate is induced for R → cmRs ( cm( ≫ 1) : 
material constant) leading to � → ∞ in the impact loading 
process as follows:

The variable cmRs(R < cmRs ≤ cm) is called the limit 
normal-yield ratio. Here, the surface to which the stress can 
reach at most is given by setting R = cmRs in the subloading 
surface in Eq. (11) is called the limit subloading surface. 

(93)� ≡
1

�v exp(ucℜcCn)
⟨R−Rs⟩n

(94)� ≡
1

�v exp(ucℜcCn)

⟨R−Rs⟩n
1 − R∕(cmRs)

Fig. 4   Limit subloading, 
subloading, normal-yield, static-
subloading, limit elastic-core, 
elastic-core and static-subload-
ing surfaces in subloading-
overstress model
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On the other hand, the elastic response is described unreal-
istically for the impact loading in the past overstress mod-
els, Perzyna [114, 115], Chaboche [14, 17], de Souza Neto 
et al. [25], Lemaitre and Chaboche [86], etc. The rational 
description of deformation in the general rate ranging from 
the quasi-static to the impact loading is attained by the 
above-mentioned subloading-overstress model in which the 
crucially-important variables, i.e. the normal-yield ratio R , 
the static normal-yield ratio Rs , ℜc , Cn and the limit normal-
yield ratio cmRs are incorporated.

The rates of the internal variables H , � and � are given 
from Eqs. (35), (36) and (37) with the replacement of �̇p to 
�̇vp(= 𝛤�) as follows:

The isotropic hardening stagnation can be incorporated 
by the identical equations formulated in Sect. 2.6 with the 
replacement of the plastic strain rate �̇p to the viscoplastic 
strain rate �̇vp.

3.4 � Strain Rate vs. Stress Rate Relation

The strain rate vs. stress rate relations are given from 
Eq. (85) with Eqs. (3) and (91) as follows:

which is represented in the incremental form as follows:

Then, it follows from Eqs. (99) with (92) in the quasi-
static deformation that so that the stress changes along 
the static subloading surface given by Eq.  (86). Conse-
quently, the response of the subloading−overstress mode 
is reduced to that of the original subloading surface model 
for the rate−independent elastoplastic deformation behavior 
described in Sect. 2. The subloading−overstress model is 
no more than the generalization of the subloading surface 
model to the description of the elastoplastic deformation 

(95)
∙

H = � fHn

(96)
∙
� = � �kn

(97)
∙
� = � �cn

(98)

⎧⎪⎨⎪⎩

∙
� = �

−1∶
∙
�+��

∙
� = � ∶

∙
�−�� ∶ �

(99)

{
d� = �

−1∶d� + ��dt

d� = � ∶d� − �� ∶ �dt

in the general strain rate. Irreversible deformations in any 
rate from the static to the impact loading can be described 
by the subloading−overstress model. Eventually, the elasto-
plastic constitutive equation with the plastic modulus for the 
rate−independent elastoplastic deformation which is derived 
by consistency condition of the yield condition (subloading 
surface for the subloading surface model) can be disused by 
adopting only the subloading−overstress model.

In the overstress model, we do not need to calculate the 
plastic modulus which possesses often a complex form as seen 
in Eq. (48) but instead we have only to perform the update 
calculation of the viscoplastic internal variables involved in the 
positive viscoplastic multiplier �  in Eq. (91) and �.

The stress–strain curve described by the subloading-
overstress model is illustrated in Fig. 5 The smooth elastic-
viscoplastic transition and the cyclic loading behavior can be 
described appropriately by the unified equation.

4 � Verification of Subloading‑Overstress 
Model by Simulations of Test Data

The validity of the subloading-overstress model will be veri-
fied by the comparisons with the test data of metals under 
various loading conditions in this section.

4.1 � Material Parameters

The following 18 material constants and 5 initial values of 
the internal variables at most are involved in the subloading-
overstress model.

Material constants:

σ

ε0

increases

Quasi-static loading

Impact loading 

|| ||
• ∞→ε

|| || 0
• ≅εOverstress

|| ||
•ε

Fig. 5   Stress–strain curve predicted by subloading-overstress model
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Initial values:

The determinations of these material parameters are 
explained below in brief.

(1)	 Young’s modulus E and Poisson’s ratio � are deter-
mined from the slope and the ratio of lateral to axial 
strains in the initial part of stress–strain curve.

(2)	 sr , cH and F0 for the isotropic hardening and ck , bk and 
�0 for the kinematic hardening are determined from the 
stress–strain curves in the initial and the inverse load-
ing process.

(3)	 u , uc and Re( < 1) for the evolution of the normal-yield 
ratio are determined from the stress–strain curve in the 
subyield state, i.e. the elastic–plastic transitional state.

(4)	 ce , � and �0 for the elastic-core are determined from the 
stress–strain curves in cyclic loading.

(5)	 C , � , � , K̃0 and �0 for the isotropic hardening stagnation 
are determined from the stress–strain curves in load-
ing–unloading process.

(6)	 𝜇v, uc, n( > 1) and cm( ≫ 1) are determined by the vis-
coplastic deformation characteristics.

All of these material parameters can be determined 
only by the stress–strain curves in the uniaxial loading for 
initial isotropic materials. One can put �0 = �0 = �0 = � 
for the initial isotropy, which is assumed in all the subse-
quent simulations. We calculate K̃0 by K̃0 = ||�̃p

0
|| leading 

to R̃0 = 1 by inputting infinitesimal values of �p
0
 and �0 in 

order that the isotropic hardening rule in Eq. (78) with-
out the isotropic hardening stagnation holds in the initial 
loading process for all the present simulations. Besides, 
the three material constants C(0 ≤ C ≤ 1), �( ≥ 1) and 

Elastic moduli: E(Young�s modulus), 𝜈(Poisson�s ratio)

Hardening

{
isotropic: sr(limit isotropic hardening ratio), cH

kinematic: ck, bk(limit kinematic hardening ratio) ( < 1)

Evolution of normal - yield ratio ∶ u, uc, Re(fatigue limit normal - yield ratio)( < 1)

Translationon of elastic - core: ce,𝜒(elastic - core limit normal - yield ratio)(< 1)

Stagnation of isotropic hardening:C(0 ≤ C ≤ 1), 𝜍( ≥ 1), 𝜐( ≥ 1)

Viscoplastic deformation: 𝜇v(viscoplastic viscous coefficient),

uc, n( > 1), cm(limit normal - yield ratio)(≫ 1)

Normal - yield surface

{
size: F0

center: �0

Elastic - core ∶�0

Normal - isotropic hardening surface

{
size: K̃0

center: �0

�( ≥ 1) for the isotropic hardening stagnation can be fixed 
as C = 0.5 , � = 3 and � = 3 in all the simulations shown 
later in this section. Consequently, the number of material 
constants which must be determined in each test datum can 
be reduced to be 15 as a total.

The automatic determination function of the material 
parameters for the simplified version of the subloading 
surface model for the elastoplastic deformation of metals 
with the evolution rule of the elastic-core limited to the 
nonhardening state and without the isotropic hardening 
stagnation is installed in the commercial software Marc 
which can be used by all the Marc users. The efficient and 
accurate determinations of the material parameters for the 
simplified version can be referred to Liu et al. [91] adopt-
ing the artificial neural network.
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Fig. 6   Uniaxial loading behavior of 21/4Cr–1Mo steel (SA 387, 
Gr.22) under various axial strain rates at 600 °C (test data after Inoue 
et al. [72])
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4.2 � Dynamic Loading Process Inducing 
Elasto‑Viscoplastic Deformation

The uniaxial monotonic loading behavior at various constant 
strain rates at 600 °C in the test data for 21/4Cr-1Mo steel 
(SA 387, Gr.22) after Inoue et al. [72] is shown in Fig. 6, 
where the material parameters are chosen as follows:

Material constants:

Initial values:

The close simulations are shown in Fig. 6, while the sim-
ulated stress for the strain rate 0.000001∕s  is slightly lower 
than the stress in the test data.

The monotonic loading behavior at various constant strain 
rates at 550◦C in the test data for Modified 9Cr-1 Mo steel 
after Abel-Karim and Ohno [1] is shown in Fig. 7, where the 
material parameters are chosen as follows:

Material constants:

Elastic moduli: E = 200, 000 MPa, � = 0.3,

Hardening

{
isotropic: sr = 0.25, cH = 200,

kinematic: ck = 600 MPa, bk = 0.5,

Evolution of normal - yield ratio ∶ u = 1, 000, uc = 6, Re = 0.2,

Translationon of elastic - core: ce = 5, � = 0.7,

Viscoplastic deformation: �v = 40, 000, uc = 2, n = 2, cm = 2.3

Isotropic hardening function: F0 = 96 MPa.

Initial values:

The quite close simulations are also seen in Fig. 7. The 
accuracy of the present simulations are same levels of the 
simulations by the experimenters Abdel-Karim and Ohno 
[1] based the creep model, who have provided the test data, 
while the creep model is physically irrational lacking the 
generality, i.e. incapable of describing the rate-independ-
ent elastoplastic deformation behavior as explained in 
Introduction.

The stress relaxation behavior with same prior strain rate 
0.0005∕s but the three levels of fixed strain, i.e. 0.139, 0.400 
and 0.602%  in the test data of TIMETAL21S at 650 °C after 
Saleeb and Arnold [121] is shown in Fig. 8, where the material 
parameters are chosen as follows:

Material constants:

Elastic moduli: E = 150, 000 MPa, � = 0.3,

Hardening

{
isotropic: sr = 0.23, cH = 200,

kinematic: ck = 10 MPa, bk = 0.1,

Evolution of normal - yield ratio ∶ u = 1, 000, uc = 6, Re = 0.2,

Translationon of elastic - core: ce = 5, � = 0.7,

Viscoplastic deformation: �v = 2, 000, uc = 5, n = 4, cm = 1.9

Isotropic hardening function: F0 = 230 MPa.
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Fig. 7   Uniaxial loading behavior of Modified 9Cr–1Mo steel under 
various axial strain rates at 550 °C (test data after Abdel-Karim and 
Ohno [1])
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Fig. 8   Stress relaxation behavior with same prior strain rates but vari-
ous peak stresses of TIMETAL21S at 650 °C (Test data after Saleeb 
and Arnold [121])
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Initial values:

The quite close simulations are shown in Fig. 8 for the 
three fixed strain levels.

The deformation behavior at the variable strain rate 
between  0.001/s and 0.000001/s  for 304 stainless steel at 
room temperature 20 °C in the test data after Krempl, cf. 
Lemaitre and Chaboche [86] is shown in Fig. 9, where the 
material parameters are chosen as follows:

Material constants:

Initial values:

Elastic moduli: E = 150, 000 MPa,� = 0.3,

Hardening

{
isotropic: sr = 0.3, cH = 400,

kinematic:ck = 10 MPa, bk = 0.5,

Evolution of normal - yield ratio ∶ u = 3,000, uc = 6, Re = 0.2,

Translationon of elastic - core: ce = 50, � = 0.7,

Viscoplastic deformation: �v = 22, 000, uc = 22, n = 2, cm= 10

Isotropic hardening function: F0 = 40 MPa.

Elastic moduli: E = 200, 000 MPa, � = 0.3,

Hardening

{
isotropic: sr = 0.2,cH = 100,

kinematic:ck= 500 MPa, bk=0.5,

Evolution of normal - yield ratio ∶ u= 1,000, uc=6,Re= 0.2,

Translationon of elastic - core: ce= 200,�=0.7,

Viscoplastic deformation: �v= 5, uc= 10, n= 4, cm= 2

The quite close simulations are shown in Fig. 9a. The 
accuracies of the simulations hardly decrease by ignoring 
the isotropic hardening stagnation as seen in Fig. 9b.

4.3 � Quasi‑static Loading Process Inducing 
Elastoplastic Deformation Behaviors

It was verified in the previous section that the subloading-
overstress model is capable of describing the elasto-visco-
plastic deformations. Further, it will be verified below that 
the subloading-overstress model is capable of describing 
the elastoplastic deformations by the simulations of test 
data for the quasi-static rate of deformation at the room 
temperature.

The cyclic loading behavior under the stress amplitude 
to both positive and negative sides can be predicted to 
some extent by any models, including even the conven-
tional plasticity model Drucker [27] with the yield surface 
enclosing the purely elastic domain, e.g. Chaboche model, 
Chaboche et al. [18], Chaboche [13, 14], Ohno and Wang 
[102], etc. On the other hand, the prediction of the cyclic 
loading behavior under the stress amplitude in positive 
or negative one side, i.e. the pulsating loading inducing 
the so-called mechanical ratcheting effect requires a high 
ability for the description of plastic strain rate induced by 
the rate of stress inside the yield surface. Furthermore, 
it is noteworthy that we often encounter the pulsating 

Isotropic hardening function: F0 = 160 MPa.
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Fig. 9   Uniaxial loading behavior under variable axial strain rate between 0.1 and 0.001 (%/s) of 304 stainless steel at room temperature 20 °C 
(test data after Krempl (cf. Lemaitre and Chaboche [86]): (a) Isotropic hardening stagnation is considered, (b) Isotropic hardening stagnation is 
ignored
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loading phenomena in the boundary-value problems in 
engineering practice, e.g. railways and gears. The com-
parison with the test data for the 1070 steel under the 
cyclic loading of axial stress between 0 and +830MPa at 
room temperature after Jiang and Zhang [74] is depicted 
in Fig. 10a, where the material parameters and the strain 

rate are selected as shown in the following, while the 
axial strain rate is chosen to be quite low, i.e. �̇a = 10−7∕s , 
although the strain rate is not written in the paper of Jiang 
and Zhang [74].

Material constants:

0

100

200

300

400

500

600

700

800

900

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

100

200

300

400

500

600

700

800

900

0.0 0.5 1.0 1.5 2.0 2.5 3.0

(a) With isotropic hardening stagnation

Axial Strain (%)

(b) Without isotropic hardening stagnation

A
x
ia

l 
S

tr
es

s 
(M

P
a)

Test data

Simulation

Test data

Simulation 512th 512th 128th128th256th 256th

Axial Strain (%)

A
x
ia

l 
S

tr
es

s 
(M

P
a)

Fig. 10   Mechanical ratcheting during pulsating loading between 0 and +830MPa of 1070 steel at room temperature (Test data after Jiang and 
Zhang [74]): (a) Isotropic hardening stagnation is considered, (b) Isotropic hardening stagnation is ignored. The stress–strain curves are shown 
continuously up to the 10th cycle and then at the 16th, 32nd, 64th, 128th, 256th and 512th cycles for clarity
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Isotropic hardening stagnation is considered, (b) Isotropic hardening stagnation is ignored
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Initial values:

The accuracy of simulation hardly decreases by ignoring 
the isotropic hardening stagnation as seen in Fig. 12b.

Furthermore, examine the uniaxial cyclic loading behav-
ior under the constant symmetric strain amplitudes to both 
positive and negative sides. Comparison with the test data 
of the 316 steel under the cyclic loading with the increasing 
axial strain amplitudes ±1.0, ±1.5, ± 2.0, ± 2.5, ± 3.0% 
after Chaboche et al. [18] is depicted in Fig. 11 where the 
material parameters and the strain rate are selected as shown 
in the following, while the axial strain rate is chosen to be 
quite low, i.e. �̇a = 10−8∕s , although the strain rate is not 
written in the paper of Chaboche et al. [18].

Material constants:

Initial values:

The quite close simulation is shown in Fig. 11a. However, 
the accuracy of simulation decreases seriously by ignoring 
the isotropic hardening stagnation as shown in Fig. 11b, dif-
fering from the simulations of the test data shown in Figs. 9 
and 10. It can be inferred from these simulation results that 
the influence of the isotropic hardening stagnation is induced 
in the loading process in which the full inverse loading is 
repeated many times.

The calculated results for the axial strain rates 
(a) 10−10∕s,(b) 10−9∕s, (c) 10−7∕s , (d) 10−6∕s and (e)10–5/s 
are shown in Fig. 12. It is observed from this figures that the 
calculated results are identical for the strain rates slower than 
10−7∕s but the stress increases with the increase of the strain 
rate faster than 10−7∕s . In other words, the quasi-static defor-
mation leading to the elastoplastic deformation is induced 
for the strain rate slower than 10−7∕s . Consequently, the 

Elastic moduli: E=160, 000 MPa, �= 0.3,

Hardening

{
isotropic: sr = 0.61, cH = 155,

kinematic:ck = 3, 000 MPa, bk = 0.5,

Evolution of normal - yield ratio ∶ u = 90, uc=6,Re= 0.5,

Translationon of elastic - core: ce= 7, 000,�=0.7,

Viscoplastic deformation: �v= 5, 000, uc= 6, n= 3, cm= 5

Isotropic hardening function: F0=471 MPa.

Elastic moduli: E=170, 000 MPa, �= 0.3,

Hardening

{
isotropic: sr=1.2, cH= 8,

kinematic:ck= 2, 000 MPa, bk=0.4,

Evolution of normal - yield ratio ∶ u= 20, uc=3,Re= 0.5,

Translationon of elastic - core: ce= 283,�=0.7,

Viscoplastic deformation: �v= 5, 000, uc= 3, n= 2, cm= 10

Isotropic hardening function: F0=290 MPa.

deformation behavior of the 316 steel at room temperature 
under the strain rate faster than the quite slow strain rate 
10−7∕s may not be calculated accurately by the elastoplastic 
constitutive equation but must be calculated by the subload-
ing-overstress model.

The accuracies of simulations of the test data in Figs. 10 
and 11 by Hashiguchi et al. [64] and Hashiguchi and Ueno 
[61] using the rate-independent subloading surface model 
for the elastoplastic deformation are improved to the simu-
lations depicted in these figures by using the subloading-
overstress model.

5 � Concluding Remarks and Future Works

The subloading-overstress model is provided and it is veri-
fied that the model is capable of describing not only the 
dynamic but also the quasi-static deformation behaviors by 
the comparison with various test data of metals under the 
monotonic and the cyclic loading processes at the various 
strain rates.

The elastoplastic deformation behaviors has been simu-
lated by using the elastoplastic constitutive equation. How-
ever, it should be noticed that the elastoplastic constitutive 
equation holds only in the purely quasi-static deformation 
which does not occur actually. Therefore, an infinitely long 
time is required in order to perform a purely quasi-static 
deformation test and thus test data reported as the elasto-
plastic deformation behaviors should not be regarded as test 
data for a quasi-static deformation. In facts, the test data 
reported as the elastoplastic deformation behaviors can be 
closely simulated at the low strain rate by the subloading-
overstress model as verified in Sect. 4.3. Incidentally, it 
should be noted that the purely quasi-static deformation is 
hardly induced actually in test data and engineering prac-
tice. Therefore, the subloading-overstress model should be 
used for the deformation analyses in any rate of deforma-
tion including the quasi-static deformation, disusing the 
elastoplastic constitutive equation involving the plastic 
modulus M

p
 which is rather complex as shown in Eq. (81). 

Besides, it is revealed that the isotropic hardening stagna-
tion can be ignored in the deformation behavior as far as 
the full inverse loadings are not repeated many times.

The distinguished advantages of the subloading-over-
stress model are summarized as follows:

	 i.	 The plastic/viscoplastic strain rate can be described in 
any low stress level, while it cannot be described in 
all the other plastic/viscoplastic models because they 
assume the purely-elastic domain inside which the 
stress lies always. Incidentally, the incorporation of 
the subloading-overstress model would be inevita-
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Fig. 12   Variation of simulations with variation of strain rate by using values of material parameters identical to those used in Fig. 11
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ble for the analysis of fatigue phenomenon without 
resorting to use of the unnatural method by the two-
scale damage model premised on the plasticity model 
assuming the purely-elastic domain, Lemaitre [84, 
85], Lemaitre and Doghri [87], Lemaitre et al. [88], 
Lemaitre and Desmorat [89], etc. based on the law 
of micromechanics, Eshelby [29], in which the inclu-
sion of the microscopic voids or cracks is incorpo-
rated in a mesoscale representative volume element.

	 ii.	 The continuity condition in the large, i.e. the smoothness 
condition, Hashiguchi [41, 42, 44] is fulfilled always 
leading to the continuous variations of the tangent stiff-
ness tensor and the isotropic hardening by virtue of the 
subloading concept, while it is violated leading to the 
discontinuous variations of the tangent stiffness modu-

lus tensor and the isotropic hardening in all the other 
plasticity and the viscoplasticity models because of the 
incorporation of the purely-elastic domain.

	 iii.	 The elastoplastic and the elasto-viscoplastic deforma-
tions under the monotonic and the cyclic loading at the 
general deformation rate ranging from the quasi-static 
to the impact loading can be described in the unified 
formulation. Therefore, the elastoplastic constitutive 
equation can be disused.

It should be emphasized that these distinguished advan-
tages in the subloading-overstress model is provided by the 
incorporation of the basic variable incorporated uniquely in 
the subloading surface variable, i.e. the normal-yield ratio R.
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The following extensions of the subloading-overstress 
model are desirable to describe a more general deformation 
behavior, while the formulations and the verifications with 
test data will have to be performed in future works.

(1)	 The elastoplastic deformation behavior is influenced by 
the temperature. However, the dependence of material 
functions and constants in the elastoplastic constitutive 
equation on the temperature would be complex so that 
they are specified for each temperature resulting in the 
piecewise-linear relation in the deformation analysis as 
seen in the research papers, Kou [81], Li et al. [90], Ohno 
et al. [103], Pandya et al. [109], Yang et al. [138], etc. 
and the commercial software (e.g. Marc and Abaqus). 
Such method for incorporation of the piecewise-linear 
relation is easy-going way but requires the large compu-
tational load. Therefore, it is desirable to formulate mate-
rial functions and constants as functions of temperature.

(2)	 It is desirable to perform the simulation of test data in 
an impact loading behavior. However, it would be diffi-
cult to obtain an accurate test data of stress–strain rela-
tion since an intense vibrational deformation is induced 
in test specimen at an impact loading so that it would 
have to be analyzed as the dynamic boundary-value 
problem. It will be executed in the future work.

(3)	 The present formulation will have to be extended to 
the multiplicative hyperelastic-based viscoplasticity for 
the description of the monotonic and the cyclic loading 
behaviors by improving the past formulations, Hashigu-
chi [48–50], Hashiguchi and Yamakawa [65], Fincato 
and Tsutsumi [33] which are incapable of describing 
the viscoplastic deformation pertinently predicting the 
peculiar stress–strain curve with an inflection point 
even in the monotonic loading process as delineated 
in the introduction. Here, it should be noticed that the 
unconventional elastoplasticity models, i.e. the multi 
surface model, Mróz [96], Iwan [73] and the two sur-
face model, Dafalias and Popov [23], Krieg [83] other 
than the subloading surface model cannot be extended 
to the hyperelastic-based plasticity model. In fact, only 
the conventional elastoplasticity model with the yield 
surface enclosing the purely-elastic domain is adopted 
to the formulation of the multiplicative hyperelastic-
based plastic constitutive equations, Wallin et al. [131, 
132], Dettmer and Reese [26], Wallin and Ristinmaa 
[131], Vladimirov et al. [129, 130], etc. which are capa-
ble of describing the finite elastoplastic deformation 
only during the monotonic loading process. Besides, 
it should be noted that the hypoelastic-based formula-
tions, Truesdell [126], Truesdell and Noll [127], Hill 
[67], etc. are capable of describing the finite plastic 
deformation but they are limited to the description of 

the infinitesimal elastic deformation as explained in 
detail by Hashiguchi [48, 50] and shown by the numeri-
cal examples by Brepopols et al. [11] and Jiao and Fish 
[75, 76] and required the cumbersome time-integra-
tion of stress rate in numerical calculation (cf. Hughes 
and Winget [71], de Souza Neto et al. [25], etc.). In 
addition, it should be noticed that the multiplicative 
hyperelastic-based plastic constitutive equation is irrel-
evant to the hypoelastic-based plastic and viscoplastic 
constitutive equations but it can be derived from the 
infinitesimal hyperelastic-based plastic and viscoplas-
tic constitutive equations formulated in this article (cf. 
Hashiguchi [48–50]) by the additive to the multiplica-
tive transformation of the deformation measures.
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