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Abstract
It has been difficult to achieve a suitable balance between effectiveness and efficiency in lightweight semantic segmentation
networks in recent years. The goal of this work is to present an efficient and reliable semantic segmentation method called
EBUNet, which is aimed at achieving a favorable trade-off between inference speed and prediction accuracy. Initially, we
develop an Efficient Bottleneck Unit (EBU) that employs depth-wise convolution and depth-wise dilated convolution to obtain
adequate features with moderate computation costs. Then, we developed a novel Image Partition Attention Module (IPAM),
which divides feature maps into subregions and generates attention weights based on them. As a third step, we developed a
novel lightweight attention decoder with which to retrieve spatial information effectively. Extensive experiments show that
our EBUNet achieves 73.4% mIou and 152 FPS on the Cityscapes dataset and 72.2% mIoU and 147 FPS on the Camvid
dataset with only 1.57M parameters. The results of the experiment confirm that the proposed model is capable of making
a decent trade-off in terms of accuracy, inference, and model size. The source code of our EBUNet is available at (https://
github.com/Skybird1101/EBUNet).
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Introduction

Semantic segmentation assigns a category to each pixel in
the input image, which is a dense classification task in com-
puter vision. As a result of dense segmentation predictions, it
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has a wide range of applications in the real world, including
autonomous driving [1], virtual reality [2], scene understand-
ing [3] and so on.

Deep learning technology hasmade significant progress in
many fields, including fault diagnosis [4], automation control
[5], and semantic segmentation. Using Convolution Neural
Network (CNNs), some advanced semantic segmentation
methods have achieved a significant progress in terms of
accuracy, including PSPNet [6], RefineNet [7], and DeepLab
[8] in recent years. However, they typically possess a com-
plex structure and hundreds of convolution layers and feature
channels, which consume a large amount of computing
resource and limit the wide application in real world. Con-
sequently, it remains a challenge to design a lightweight
network that achieves real-time performance and a satisfac-
tory accuracy.

At present, many lightweight semantic segmentation
methods have been developed to achieve a good tradoff
between inference speed and prediction accuracy, which can
bebroadly divided into twocategories: 1.Mode compression:
eliminate unnecessary calculations and reduce the amount of
data that needs to be stored by simplifying models, including
pruning networks [9], and knowledge distillation [10, 11]. 2.
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Convolutiondecomposition: build shallownetworks from the
perspective of reducing convolutional computational costs,
such as depth-wise separable convolution and group convo-
lution.

Basedon the ideaof convolutiondecomposition,MobileNet
[12] adopted depth-wise convolution to construct the back-
bone and achieved a fast running speed compared to the
traditional convolution. DABNet [13] introduced a depth-
wise asymmetric bottleneck, which achieved awell-balanced
performance in terms of running speed and segmentation
accuracy.

Furthermore, multi-scale feature fusion is often employed
in the design of lightweight semantic segmentation. For
example, a MAD module was introduced in LMFFNet [14]
to combine the different levels of features into one stage and
generate more accurate attention maps. CFNet [15] imple-
mented a channel attention mechanism and a cross-fusion
module to enhance the fusion effect.

In this paper, we present a novel lightweight network
called EBUNet, which employs an encoder–decoder archi-
tecture, to achieve real-time semantic segmentation. Our
EBUNet ismainly composed of threemodules: Efficient Bot-
tleneck Unit (EBU), Image Partition Attention Mechanism
(IPAM) and a Lightweight Attentional Decoder (LAD).

Using depth-wise separation and dilated convolution
simultaneously, we devise a novel residual-like structure
named EBU, which achieves high accuracy with low com-
putation costs. The IPAMmodule is designed to enhance the
feature. The LAD module is presented to recover the spatial
information and generate the segmentation results. We com-

pare our method with other semantic segmentation methods
in terms of parameters and mIoU. The results can be seen in
Fig. 1.

Our main contributions can be listed as follows:

• A novel Efficient Bottleneck Unit (EBU) module is pro-
posed to gather detailed and semantic information. Based
on the EBU module, we have implemented two EBU
blocks as the main part of our EBUNet.

• We propose a novel Lightweight Attentional Decoder
(LAD) for recover spatial information effectively. In the
proposed LAD module, different attention mechanisms
are employed in the proposed LAD module to refine dif-
ferent levels of feature maps.

• We present a novel Image Partition Attention Module
(IPAM) to refine the feature maps from different EBU
blocks. The proposed IPAMmodule partitions the feature
maps into sub-regions and generates an attention map
based on the partitioned sub-regions.

• Our EBUNet obtains competitive results, it achieves
73.4% and 72.2% mIoU on Cityscapes and Camvid test
sets along with 152 and 147 FPS, respectively.

The structure of this paper is organized as follows:
Section II introduces some previous work about residual
structures, lightweight semantic methods, and feature fusion
methods. Section III presents our method, including the
EBU module, IPAM module, and LAD module. Section IV
discusses the experiment details and results. Section V con-
cludes the whole paper.

Fig. 1 Comparisons with other
methods in terms of parameters
and accuracy. Our EBUNet
achieved a competitive result
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Related works

In this section, we will review some related works, including
residual structure, lightweight semantic networks, andmulti-
scale feature fusion methods.

Residual structure

Residual structure, which has been proven to be an effective
way to overcome gradient explosion or vanishing problems.
It was originally proposed inResNet [16], andmany residual-
like structures have been proposed for various computer
vision tasks since then. As an example, ShuffleNet [17,
18] developed lightweight backbone networks with depth-
wise convolutions. LEDNet [19] introduced SS-nbt modules
that combine factorized and dilated convolution for feature
extraction. FBSNet [20] employed BRU modules to capture
rich contextual information. DABNet [13] utilized dilated
convolution in DAB modules to enlarge the receptive field,
which helped to promote the detailed segmentation effect.
MSCFNet [21] applied EAR modules to retrieve contextual
and detailed information.

Lightweight semantic networks

In recent years, rapid-growing applications have required
semantic segmentation approaches to run efficiently in real-
world scenarios. The key concept of lightweight semantic
segmentation is to maximize accuracy while minimizing
feed-forward inference time.

A lot of attention has been paid to the design of lightweight
semantic segmentation since ENet [22] was proposed. For
example, Bisenet [23] introduced a dual-path structure. The
context path was used for extracting contextual information,
whereas the spatial path was used for extracting spatial infor-
mation. A number of other approaches have been developed
based on BiseNet, including STDCNet [24] and BiseNet-v2
[25], which produce more efficient and accurate results than
the original BiseNet. Many lightweight networks have been
developed in recent years to improve efficiency and effec-
tiveness. For example, JPANet [26] presented a joint feature
pyramid module for learning multi-stage features. FPANet
[27] employed a feature pyramid fusion module to fuse fea-
tures from different stages. RELAXNet [28] applied EBR
and EABRmodules to acquire context and detailed informa-
tion.

Feature fusion

In different fields, feature fusion has different meanings. In
signal processing, feature fusion is used to achieve high
robustness by combining time and frequency information

[29]. In deep learning technology, the feature fusionmethods
aim to fuse the feature maps from different stages.

There are two types of feature fusion methods that
are commonly applied: channel-wise concatenation and
element-wise addition. For example, in ContextNet [30] and
Fast-SCNN [31], high-level feature maps are upsampled
and then concatenated with low-level ones to achieve multi-
scale feature fusion. The FBSNet [20] utilized element-wise
addition for feature fusion, which combines features from
the different branches. Since the attention mechanism was
proposed, many attentional methods devoted to promoting
the effect of multi-scale feature fusion. For example, The
LMFFNet [14] introduced a FFMmodule for fusing different
levels of feature maps, which employs an attention mecha-
nism as well as depth-wise separable convolutions, ABCNet
[32] utilized self-attention to fuse the feature maps from dif-
ferent stages.

Methodology

In this section, we fisrt examine the computation costs and
parameters of the convolution operation. Then, we will
introduce the components of our EBUNet, including EBU
module, IPAM module, and LAD module. The architecture
design of our EBUNet will be discussed at the end of this
section.

Computation complexity analysis

The Convolutional Neural Networks (CNNs) are composed
of convolutional layers and fully connected layers. In this sec-
tion, wewill discuss te computation complexity of theCNNs.

Before we start our discussion, we make some definitions
to simplify our discussion. Defining a transformation func-
tion� to take Cin feature maps with a spatial size of d×d as
inputs, and output Cout feature maps with the same size. Cin

and Cout stand for the number of input and output channels,
respectively. The convolutional kernel size is k × k and the
stride is set to 1. Here, we use square feature maps and con-
volutional kernels for simplifying our discussion. We omit
the bias and Batch normalization terms in the convolutional
operation, which are often used in modern CNNs.

In this case, the number of parameters in the convolution
is k × k × Cin × Cout and the computational complexity in
terms of FLOPs is k × k × Cin × Cout × d × d.

Based on the above conclusions, it is necessary to reduce
the multiplication cost between k × k and Cin ×Cout, which
is an effective way to cut down the size and the computation
burden of convolutions. The depth-wise convolution applies
this approach to explore compact models.

Compared to the standard convolution, the depth-wise
separable convolution utilizes a single convolutional kernel
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independently for each input feature map, thus generating
the same number of output channels. Following that is a
1×1 convolution layer to merge the information of all output
channels. The depth-wise separable decomposes the standard
convolution into a depth-wise convolution and a point-wise
convolution. By applying depth-wise separable convolution,
the number of parameters becomes:

k × k × Cin + Cin × Cout (1)

and the computation complexity becomes:

k × k × Cin × d × d + Cin × Cout × d × d (2)

Based on the above equations, the amount of the param-
eters and computations are reduced by depth-wise separable
convolution.

Efficient bottleneck unit

The EBU module is designed to extract semantic informa-
tion more efficiently and effectively. Previous residual-like
works, including bottleneck [22], SS-nbt [19], and EAR
modules [21], have proven to be effective in the design of
lightweight semantic segmentation.

As shown in Fig. 2d, we employ a 3 × 3 standard convo-
lution to generate features and reduce the channels by half at
the beginning of each EBU module. The output of the con-
volutional operation is then split into two branches, where
each branch has 1/4 channels of the original input.

A convolutional kernel of 3×3 is used in the EBUmodule
to preserve adequate spatial information for accurate segmen-
tation. In order to improve computation efficiency, a 3 × 3
depth-wise convolution is employed in the left branch to
acquire local information.

The right branch is developed to obtain adequate contex-
tual information. For the purpose of enlarging the receptive
field, we use a depth-wise dilated convolutionwithout adding
any additional parameters in the right branch.

For the sake of sharing information between two branches,
we put the feature interaction operations through an element-
wise addition between two branches. So as to the two
branches can complement each other.

At the end of the EBU module, another 3×3 regular con-
volution is employed to integrate themulti-scale features and
finally restore the number of channels as same as the number
of input channels. The whole procedure can be expressed as
follows:

F = f3×3(X) (3)

F1, F2 = Split(X) (4)

F1 = f DW3×3(F1) (5)

F2 = f DDW3×3 (F2) (6)

F2 = F2 + F1

F1 = F1 + F2 (7)

Fout = Concat(F1, F2) (8)

Fout = X + Fout, (9)

where, X is the input feature maps. F1 and F2 are the results
of splitting operation. f3×3 represents standard 3 × 3 con-
volution. f DW3×3 and f DDW3×3 stand for depth-wise convolution
and depth-wise dilated convolution. Concat means feature
concatenation along with the channel dimension.

Image partition attentionmodule

The Attention mechanism has been widely used in various
segmentationmethods, such asBiseNet [23],MSCFNet [21],
DFANet [33], etc.We introduce an Image Partition Attention
Module (IPAM) in this paper.

As Fig. 3 shows, the input features are partitioned into four
regions through an average pooling operation. Then, global
average pooling operations are applied to each partitioned
sub-region in parallel.

Each partitioned sub-region Si is then subjected to global
average pooling simultaneously. The global average pooling
operation is calculated as follows:

Favg = 1

H × W

H∑

i=1

W∑

j=1

XH (i, j). (10)

Additionally, global average pooling is applied to the
original input feature to acquire the global information. Fol-
lowing that, we use an element-wise addition to fuse the
results from sub-region pooled features and global pooled
features. This procedure is computed as follows:

T =
∑

i

Si + Fglobal, i ⊂ 1, 2, 3, 4, (11)

where, Si represents the pooled results of sub-region. Fglobal
indicates the result from the pooled result from the original
input.

The results from addition operation is then send into a
projection layer by 1×1 convolution to generating attention
weigh vector w.

To be specific, the addition results are compressed across
the channel dimension, then the ReLU function is applied to
introduced non-linearity. After that, the channel increasing
layer is employed to recover the channel to the number of
original input. A sigmoid function is used to generate the
attention weight vector w. The operation of the projection
layer can be expressed as follows:
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Fig. 2 Comparisons with several residual-like structures. a bottleneck [22] b SSn-bt [19] c BRU [20]. D means dilated convolution, DW stands for
depth-wise convolution

Fig. 3 Illustration of the proposed IPAM module

w = σ(π2(ReLU(π1(T ))))), (12)

where, π1 and π2 represent the channel reduction and
expansion function implemented by the two regular 1×1 con-
volution, respectively. ReLU indicates the Rectified Linear
Unit function.

At the end of the IPAM module, we can obtain the final
output Fout as follows:

Fout = Fin ⊗ w, (13)

where, Fout and Fin represents the input and output respec-
tively, w means attention weights generated from IPAM
module.

Lightweight attentional decoder

There are different roles assigned to encoders and decoders
in encoder–decoder segmentation frameworks. The encoder
is responsible for producing dense feature maps, whereas
the decoder is responsible for upsampling the resolution of
feature maps to match the original input size. It is possible
to improve the accuracy of prediction with the use of well-
designed decoders.

In our paper, we present a novel lightweight attentional
decoder (LAD). It consists of two blocks and can fuse
different-level features effectively. A channel attention mod-
ule is proposed for the refinement of high-level feature maps,
while a spatial attention module is proposed for the refine-
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Fig. 4 Illustration of our LAD module

ment of low-level ones. The structure of our proposed LAD
is shown in Fig. 4.

We present a spatial attention module (SAM) to make the
low-level features paymore attention to informative features.
Let XL denote the input low-level feature maps, fconv repre-
sents the regular convolution operation, fmean and fmax are
the mean operation and maximum in the channel dimension,
respectively. The spatial attention map S is computed as fol-
lows:

S = σ( fconv fcat( fmean, fmax)), (14)

where, σ(.) represents the sigmoid function. After the trans-
formation, the shape of low-level features changes from
C×H×W to 1×H×W . Finally, we element-wise multiply
the input low-level feature XL and the spatial weights map
S to get our refined feature XS

L :

XS
L = XL ⊗ S, (15)

where, ⊗ denotes the element-wise multiplication.
Our channel attention module (CAM) uses global average

pooling to obtain global contextual informative and generates
an channel attentionmap to refine the high-level features. Let
XH (i, j) denotes values of XH at pixel location (i, j). XH

represents input high-level feature maps. The global average
pooling can be expressed as follows:

Favg = 1

H × W

H∑

i=1

W∑

j=1

XH (i, j). (16)

Consequently, the shape of the high-level features changes
from C × H × W to 1 × 1 × C . Following that, Favg is fed
into a convolution layer, and then passed through a sigmoid
to generate channel attention map C :

C = σ( f 1×1
conv Favg). (17)

The final weighted high-level feature are acquired bymul-
tiplying feature map and the attention map:

XC
H = XH ⊗ C . (18)

As a result of the abstracted spatial attentionmapproduced
from low-level features, we are able to identify the impor-
tance of each pixel, which focuses on locating objects and
refining the corresponding shapes and boundaries with spa-
tial details. On the other hand, the squeezed channel attention
map generated from upsampled high-level features focuses
on the global context to provide context information.

After that, the refined low-level features and high-level
features are concatenated along with channel dimension.
Finally, another upsampling operation is utilized to restore
the feature map to its original size.

Architecture design of EBUNet

The overall architecture of the proposed EBUNet is shown
in Fig. 5 and is listed in Table 1.

Initial Unit is employed at the beginning of EBUNet to
adjust the resolution of the input images and eliminate the
redundant information. Initial Unit is composed of three
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Fig. 5 Overall architecture of our EBUNet

Table 1 Overall architecture of EBUNet

Module Operation Channel number Output Size

3×3Conv 32 256×512

Initial unit 3×3Conv 32 256×512

3×3Conv 32 256×512

Feature Fusion Feature concatenation 32+3 256× 512

Downsampling Downsampling 64 128× 256

ERU-Block 1 ERU module×3 64 128× 256

Feature fusion Feature concatenation 128+3 128× 256

Downsampling Downsampling 128 64× 128

ERU-Block 2 ERU module×10 128 64× 128

Feature Fusion Feature concatenation 256+3 64× 128

LAD LAD Number_classes 512× 1024

consecutive standard convolutions. To be specific, the first
convolution is used to reduce the image resolution by half.
In the meanwhile, the channel number of the feature map
is adjusted to 32. Afterwards, two 3 × 3 convolutions are
utilized to obtain abundant contextual information.

Besides, downsampling operation is used to enlarge the
receptive field. The downsampling operation is composed of
two parallel branches: a standard 3 × 3 convolution with a
stride of 2 and a 2× 2maximum pooling operation. Then the
outputs of above the two parallel branches are concatenated
along with the channel dimension.

After that, the feature map obtained by downsampling the
output of the initial unit is input into the first EBU Block for
dense feature extraction. The first EBU block contains three
EBU modules with a dilated rate of 2. The input feature map
of second EBU Block is 1/8 of the input, which contains
10 consecutive EBU modules with a gradually increasing

dilated rates {2,2,4,4,6,6,8,8,16,16}. The IPAM is employed
to refine the features from EBU block 1 and EBU block 2.
Consequently, in the decoder phase, the LAD employs differ-
ent kinds of attention mechanism for different-level feature
maps and produces more accurate outputs.

Experiments

In this section, we first illustrate brief information about
Cityscapes [34] and CamVid [35] datasets, following that,
we introduce the training protocols for our experiments. Sub-
sequently, ablation studies about several components of our
EBUNet will be discussed. At the end of this section, we
will discuss the performance of our method in the metric of
prediction accuracy and running efficiency.
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Datasets

We utilize Cityscapes and CamVid datasets in our training
and testing experiments.

The Cityscapes dataset is a well-known dataset for seman-
tic segmentation of urban scenes. There are 5000 fine-
annotated images in the Cityscapes dataset: 2975 images for
networks training, 500 images for networks validation, and
1525 images for networks testing. The original image reso-
lution of Cityscapes is 2048×1024. For fair comparisons, we
use the full resolution for performance evaluation in the vali-
dation and testing phases. In the training phase, the resolution
is resized to 512×1024.

The CamVid dataset, derived from car-view videos,
is another well-known urban scene dataset. The CamVid
dataset consists of 701 images total: 367 images for the
training phase, 101 images for the validation phase, and
233 images for the testing phase. The original resolution of
CamVid dataset images is 720×960.

Training protocols

All the experiments are performed with one NVIDIA RTX
3090GPU, CUDA11.6, and cuDNNv8 on pytorch platform,
Ubuntu 20.04 operating system with 32GB Memory.

We employ Mini-Batch Stochastic Gradient Descent [36]
(SGD) in our optimization strategy, where we set the batch
size to 8, the weight decay to 1 × 10−4, the momentum to
0.9, and the initial learning rate to 4.5× 10−2 in the training
procedure of the Cityscapes dataset.

We train our EBUNet by usingAdam optimizer when run-
ning experiments on the CamVid dataset. The initial learning
is set to 1 × 10−3 and the weight decay is set to 2 × 10−4.

Besides, polynomial policy is employed to adjust the
learning rate in the training phase. The polynomial policy
is expressed as the follow formula:

lrcur = lrinit ∗
(
1 − cur_epoch

max _epoch

)0.9

, (19)

where, lrcur represents the learning rate in the current epoch,
cur_epoch stands for the current epoch, max _epoch is the
total epoch.

The max _epoch was set to 1000 during the training pro-
cess for both theCityscapes andCamVid datasets. During the
training phase, data augmentation techniques, such as ran-
dom scale, mean subtraction, and horizontal flipping are also
applied. A variety of random parameters were set to trans-
form training samples to different scales, including 0.75, 1.0,
1.25, 1.5, 1.75, and 2.0. We randomly cropped the training
images and labels in the cityscapes dataset from the resolu-
tion of 2048×1024 to 512×1024.

Ablation studies

In this part, we design a series of ablation experiments to val-
idate the effectiveness of some proposed components of our
EBUNet. We conduct ablation studies on the EBU module
and LAD module. Additionally, we investigate the influence
of depth within the EBU block. We perform all the ablation
experiments on the Camvid dataset.

Ablation on EBUmodule

The main part of our EBUNet is constructed using the EBU
module. We devise two kinds of ablation study strategies to
verify the effectiveness of our EBUNet. In the first step, we
design a series of experiments to investigate the influence
of different dilated rates. The second is that we compare
our EBUmodule to some other residual structures, including
DABNet [13] and ERFNet [37]. The ablation study results
can be seen in Tables 2 and 3.

To study the effects of dilated rates, we devised five
sequenceswith varying dilated rates and compared themwith
baseline. From Table 2, we can learn that when we set all the
dialted rates in EBUmodules to 2, the accuracy is 1.8% lower
than the baseline. In addition, when we set a larger dialted
rates sequence in EBUmodules, the accuracy is 1.6% higher
than R=2 but 0.2% lower than baseline.

Additionally, we designed experiments to test network
performance using excessive dilated rates (32 and 48). As
shown in Table 2, when the dilated rate was set to 32, the
mIoU was decreased 69.8% and the FPS was also decreased
from 147 to 140. Besides, both accuracy and speed decreased
when all dilated rates were set to 48. We can concluded that
the larger dilated rates would cause heavy computation cost.
Furthermore, dilated convolution results are convolved from
mutually independent subsets, which lose local information.

From Table 3, we can observe that when EBU modules
are substituted with non-bottleneck, the forward inference is
higher than EBUmodules are used. However, the accuracy of
our EBUNet is 1% higher than it. As a result, our EBU mod-
ule strikes a good balance between accuracy and efficiency.
Additionally, a visual comparison was also conducted and
the results can be seen in Fig. 6.

Ablation on LADmodule

LAD is used to recover the spatial information to the original
input resolution. The ablation design of LAD is based on two
strategies. In the first step, we compare our LAD with DAB-
Net’s decoder. We then discuss how our LAD is affected by
the attentionmechanism. Specifically,we performed ablation
studies on the different attention mechanisms in our LAD.
Results of ablation studies are presented in Tables 4 and 5.
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Table 2 The experiment results
about the dilated rates

Method FPS (↑) mIoU (%) ↑
EBUNet (R = 2) 144.84 70.4

EBUNet (R = {3,3,5,5,7,7,9,9,11,11}) 145.06 71.9

EBUNet (R = {4,4,6,6,8,8,16,16,32,32}) 143.75 72.0

EBUNet-baseline (R = {2,2,4,4,6,6,8,8,16,16}) 146.55 72.2

EBUNet (R = {32,32,32,32,32,32,32,32,32,32}) 140.91 71.3

EBUNet (R = {48,48,48,48,48,48,48,48,48,48}) 141.53 70.0

Table 3 Experiment results on
residual structures

Method mIoU (%) ↑ Parameters (M) ↓ FPS ↑ FLOPS (G) ↓
EBUNet-baseline 72.26 1.57 152 24.13

EBUNet-non-bottleneck 71.2 2.40 160 34

EBUNet-DABModule 71.4 1.18 150 18.91

Fig. 6 Visual results about ablation study on EBUmodule. From the left column to the right column is: input, ground-truth, baseline, EBUNet with
DABmodule, and EBUNet with non-bottleneck

Table 4 Experiment results on
LAD

Method Decoders Parameters (M)↓ FLOPS (G) ↓ mIoU (%) ↑
LAD DABNet

EBUNet � 1.572983 24.13 72.26

EBUNet � 1.566011 23.94 70.93

Table 5 Experiment results on
the attention mechanism used in
LAD

Method LAD Parameters (M)↓ Flops (G)↓ mIoU (%)↑
SAM CAM

EBUNet � � 1.572983 24.13 72.26

EBUNet � 1.572980 24.13 71.95

EBUNet � 1.572965 24.13 71.76

EBUNet 1.572962 24.13 71.25
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Fig. 7 Visual results about ablation study on EBU module. From the left column to right column is: input, ground-truth, baseline, and decoder in
DABNet

Fig. 8 Visual comparisons about LAD. From the left-most to right-most are a input b ground-truth c baseline of LAD d only use CAM in LAD e
only use SAM in LAD f no attention used in LAD

As shown in 4, the accuracy of LAD increased by 1.33%
when compared to the DABNet decoder, but there was only
an increase in parameters of 0.01M, meaning the cost is neg-
ligible.

A visual comparison of the ablation results for the LAD
module is also performed. The visual results can be seen in

Figs. 7 and 8. The difference is highlighted by the yellow
dashed line.

From Table 5, LAD achieves the highest mIoU when both
SAM and CAM are used to refine different-level feature
maps. The accuracy performance (mIoU) of LAD is 0.5%
lower when only CAM is used to refine high-level features.
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When SAM is only used to refine low-level features, mIoU is
also 0.3% lower than the baseline of LAD. SAM and CAM
canceling in the LAD leads to a 1% reduction in accuracy. As
a result, we can conclude that the attention mechanism has
the potential to effectively improve segmentation accuracy
while consuming negligible computation resources.

Ablation on the depth of EBU Block

There are twoparametersMandN that indicate the number of
EBUmodules contained within EBU block 1 and EBU block
2. In order to investigate the model performance in terms
of segmentation accuracy (mIoU) and feed forward speed
(FPS), we devised a series of experiments using different
values for M and N. The experiment settings and results are
listed in Table 6.

According to Table 6, accuracy tends to get better as the
depth inside the EBU blocks increases. However, accuracy
can only be slightly improved if we increase the depth inside
the EBU blocks. Even when we continue to deepen the depth
of the EBU blocks, performance drops.

In general, increasing the depth of the network at the
beginning will improve network performance to a certain
degree,with amoderate increase in computational cost.How-
ever, when we make the network deeper, the accuracy and
efficiency of the network fall instead.

Comparisons with other works

We compare the performance of our EBUNet with some
other state-of-art semantic segmentation methods on the
Cityscapes and CamVid datasets in this subsection. Simi-
lar to other lightweight semantic segmentation models, we
perform down-sampling operations on the input images on
Cityscapes. The resolution is decreased to 512×1024 (for
Cityscapes). For the CamVid dataset, we use origin resolu-
tion 720×960 to perform our experiments. In addition, the
speed of our EBUNet is measured on three different GPUs:
RTX3090, RTX2080Ti, and TiTan XP.

Table 6 The ablation results on the influence of the depth

M N Parameters (M) FPS Miou (%)

3 1 0.49 198 62.91

3 6 1.09 153 71.61

3 8 1.33 135 71.27

3 10 1.57 147 72.26

3 12 1.81 120 71.84

4 8 1.36 129 71.71

4 12 1.84 111 71.89

8 12 1.96 90 72.15

Comparisons on cityscapes

A number of semantic segmentation methods are selected
in recent years to demonstrate the effectiveness of our
EBUNet, including ENet [22], ESPNet [38], CGNet [39],
ContextNet [30], EDANet [40], ERFNet [37], Fast-SCNN
[31], BiseNetV1 [23], ICNet [41], DABNet [13], LedNet
[19], FBSNet [20], JPANet [26], MSCFNet [21], EDGENet
[42], and FPANet [27]. Moreover, we also choose non-
real-time semantic segmentation, including SegNet [43],
DeepLabV2 [8], and RefineNet [7] to demonstrate the
advance of our EBUNet.

As a means of providing a comprehensive comparison,
we have counted the input size, the parameters, the compu-
tational complexity (FLOPS), the forward inference speed
(FPS), the GPU platform, and the accuracy (mIoU) for each
model. The quantitative result is shown in Table 7. Our
EBUNet achieves 73.4% mIoU at a speed of 152 FPS on
a single RTX3090 GPU card. A speed evaluation of EBUNet
on both Titan XP and RTX2080Ti was also conducted and
reported in Table 7.

As shown in Table 7, the performance of our EBUNet
can even outperform certain non-real-time approaches. It is
worth noting that the speed of our EBUNet is 98 frames per
second, which is much faster than the speed of DeepLabV2
[8] with RTX 2080Ti. Moreover, the accuracy of EBUNet
is 3% higher than that of DeepLabV2. When compared
to RefineNet, although the proposed EBUNet achieves
a slightly accuracy lower (0.3%) than it. However, our
EBUNet produces a much smaller amount of parameters
than RefineNet, approximately 20× fewer parameters than
RefineNet.

It is found that the parameter of our EBUNet is in the
same order of magnitude when compared to the lightweight
and real-time semantic segmentation methods, but EBUNet
achieves a certain improvement in mIoU. Compared with
ESNet [46], the mIoU increased 2.7%, and the EBUNet has
fewer parameters, which is more lightweight than ESNet.
Compared to the MSCFNet [21], the parameter of our
EBUNet only increased 0.42M, while the mIoU increased
1.5%. Meanwhile, the FPS of EBUNet on Titan XP is
63, which is faster than MSCFNet. In comparison to the
AGLNet, our parameters increased by 0.45M, but the mIoU
has increased by 2.1%. Moreover, we are able to reach 98
FPS on the same GPU with RTX2080Ti, which is faster than
AGLNet (46 FPS faster). When compared to FPANet [27],
our EBUNet achieves the same accuracy performance, but
with faster speed. Moreover, the number of parameters in
our EBUNet is only 1/10 of FANet’s parameter.

The speed of ourmethod has decreased somewhat to some
extent when compared to fast semantic segmentation meth-
ods on RTX3090, including ContexNet [30], EDANet [45],
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Table 7 Comparison with
state-of-art semantic
segmentation methods on
Cityscapes test set

Method Input size Parameters (M) FLOPS (G) FPS Platform mIoU (%)

SegNet [43] 360× 640 29.5 286 53 RTX3090 56.1

ENet [22] 512×1024 0.36 4.4 100.2 RTX3090 58.3

ESPNet [38] 512×1024 0.36 3.5 320 RTX3090 60.3

CGNet [39] 1024×2048 0.49 28 110 RTX3090 64.8

ContextNet [30] 1024×2048 0.85 7.2 121 RTX3090 66.1

SQNet [44] 1024×2048 16.3 576.4 6.1 RTX3090 59.8

EDANet [45] 512×1024 0.68 9 189 RTX3090 67.3

ERFNet [37] 512×1024 2.1 26.9 62.7 RTX3090 68.0

Fast-SCNN [31] 1024×2048 1.1 7 – RTX3090 68.0

BiseNetV1 [44] 768×1536 5.8 14.8 105 TitanXP 68.4

DABNet [13] 512×1024 0.76 27.7 191 RTX3090 70.1

DeeLabV2 [8] 512×1024 4 457 1 RTX2080Ti 70.4

ICNet [41] 1024×2048 26.5 28.3 15.4 RTX3090 70.6

LedNet [19] 512×1024 0.94 – 87 RTX3090 70.6

ESNet [46] 512×1024 1.66 24.4 53 RTX3090 70.7

FBSNet [20] 512×1024 0.62 9.7 24 RTX3090 70.9

EDGENet [42] 512×1024 – – 36 Titan XP 71.0

AGLNet [47] 512×1024 1.12 13.88 52 TitanXP 71.3

JPANet [26] 512×1024 3.49 10.9 110 GTX1080Ti 71.6

FRRN [48] 512×1024 24.8 – 2.1 RTX2080Ti 71.8

MSCFNet [21] 512× 1024 1.15 – 50 TitanXP 71.9

FPANet [27] 512×1024 15.45 – 63 RTX2080Ti 73.4

RefineNet [7] 512×1024 118.1 428.3 9 RTX2080Ti 73.6

Ours 512×1024 1.57 24.13 152 RTX 3090 73.4

98 RTX2080Ti

63 TitanXP

The best performance are highlighted in bold

and DABNet [13], but the accuracy has improved signifi-
cantly, which are 7.3%, 6.1%, and 3.3%, respectively.

Additionally, we compare the performance of the different
semantic classes in the cityscapes test set. The comparison
results are shown in Table 8. We can learn from Table 8 that
our EBUNet is able to achieve state-of-the-art results in 12
out of 19 semantic classeswithout requiring any pre-training.
In addition, EBUNet achieves significant improvements in
the three categories of trucks, sidewalks, and riders,which are
7%, 1.8%, and 1% higher than the second place, respectively.
A visual comparison is also presented on the Cityscapes val-
idation set, which can be seen in Fig. 9.

According to the discussion above, our EBUNet achieves
a good balance between segmentation accuracy and running
efficiency on Cityscapes dataset.

Comparisons on CamVid

Wealso evaluate the performanceof the proposedEBUNet on
CamVid to further investigate its robustness, Table 9 reports
the performance of our EBUNet and other methods (Fig. 10).

We can learn from Table 9 that our EBUNet achieves
outstanding results. It achieves 72.2 mIoU at a speed of
147 FPS. A number of segmentation methods are selected
and compared on a comprehensive basis: pre-training, FPS,
parameters, and accuracy (mIoU). As shown in Table 9,
among these methods, the proposed EBUNet achieves the
best performance in terms of speed and accuracy. The
EBUNet parameter has only increased 0.42M compared to
the AGLNet, but the accuracy has increased 2.8%. EBUNet
achieves fast speed (27FPS faster) and higher accuracy (3.1
mIoU higher) in comparison to LMFFNet.

Conclusion

In this paper, we proposed an EBUNet for fast and accu-
rate semantic segmentation tasks. Our EBUNet consists of
three main components: EBU blocks, IPAM, and LAD. The
EBU module adopted depth-wise convolution and depth-
wise dilated convolution simultaneously to acquire much
useful contextual information with a lower computation cost.
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Table 8 The individual class
accuracy performance on
cityscapes test set

Methods Roa Sky Car Veg Bui Sid Ped Bus Tsi Bic

SegNet 96.4 91.8 89.3 87.0 84.0 73.2 62.8 43.1 45.1 51.9

Enet 96.3 90.6 90.6 88.6 75.0 74.2 65.5 50.5 44.0 55.4

ESPNet 97.0 92.6 92.3 90.8 76.2 77.5 67.0 52.5 46.3 57.2

CGNet 95.5 92.9 90.2 89.6 88.1 78.7 74.9 59.5 63.9 60.2

EDANet 97.8 93.6 92.4 91.4 895.5 80.6 75.7 58.7 65.0 64.0

ERFNet 97.7 94.2 92.8 91.4 89.8 81.0 76.8 60.1 65.3 61.7

ICNet 97.1 93.5 92.6 91.5 89.7 79.2 74.6 72.7 63.4 70.5

FSBNet 98.0 94.4 93.9 92.7 91.5 83.2 82.5 56.0 71.5 70.1

MSCFNet 97.7 94.3 94.1 92.3 91.0 82.8 82.7 66.1 71.4 70.2

Ours 98.2 94.6 94.7 92.5 92.4 84.6 82.3 71.6 72.1 70.9

Methods Ter TLi Rid Pol Tra Mot Wal Fen Tru mIoU (%)

SegNet 63.8 39.8 42.8 35.7 44.1 35.8 28.4 29.0 38.1 57.0

Enet 61.4 34.1 38.4 43.4 48.1 38.8 32.2 33.2 36.9 58.3

ESPNet 63.2 35.6 40.9 45.0 50.1 41.8 35.0 36.1 38.1 60.3

CGNet 67.6 59.8 54.9 54.1 25.2 47.3 40.0 43.0 44.1 64.8

EDANet 68.7 59.8 54.3 52.3 56.0 50.4 42.0 46.0 40.9 67.3

ERFNet 68.2 59.8 57.1 56.3 51.8 47.3 42.5 48.0 50.8 68.0

ICNet 68.3 60.4 56.1 61.5 51.3 53.6 43.2 48.9 51.3 69.5

FSBNet 70.5 67.6 63.8 62.5 37.6 56.2 50.9 53.5 50.5 70.9

MSCFNet 70.2 67.1 62.7 61.2 51.9 57.6 49.0 52.5 50.9 71.9

Ours 70.9 67.2 64.8 62.1 56.4 56.9 49.0 54.9 57.9 73.4

The best accuracy performance are highlighted in bold

Fig. 9 Visual results on cityscapes. From lest column to right column is: input, ground-truth, DABNet, CGNet and our EBUNet
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Table 9 Comparisons results on
Camvid dataset with state-of-art
works

Method Pretrained FPS Platform Parameter (M) mIoU (%)

ENet No 60 RTX3090 0.36 51.3

SegNet ImageNet 68 RTX3090 29.5 55.6

DFANet ImageNet 120 RTX3090 7.8 64.7

LMFFNet No 120 RTX3090 1.4 69.1

AGLNet No 90.1 RTX3090 1.1 69.4

Ours No 147 RTX3090 1.57 72.2

The best performance in each dimension are highlighted in bold

Fig. 10 Visual results with several lightweight semantic segmentation works on Camvid test set. From left-most to right-most are: input, ground-
truth, our EBUNet, DABNet [13] and CGNet [39]

The IPAM module was mainly used for refining the feature
maps, which promotes segmentation accuracy with negligi-
ble parameters and costs. The LADmodule was employed to
recover the spatial information to the origin resolution. We
designed a series of ablation studies to demonstrate the effec-
tiveness of the EBU module and LAD in our EBUNet. We
also make extensive comprehensive comparisons with oth-
ers methods on both Cityscapes and CamVid datasets. To be
specific, our EBUNet achieved a 73.4% and 72.26% mIoU
on the above datasets. The FPS on the two datasets is 152
and 147 on a NVIDIA RTX 3090 platform, which is a com-
petitive result. In conclusion, our EBUNet strikes a better
trade-off between segmentation accuracy and efficiency.

However, our EBUNet has the following problems when
applied in practical applications: First of all, the memories of
the real applications are usually limited. Although we have
adopted some lightweight techniques to reduce the computa-
tional complexity, our EBUNet still needs amount ofmemory

resources, which is a huge burden for the equipment of the
real applications.Besides, the storage space limited is another
problemwhen deploys theEBUNet in real applications. Even
we have adopted depth-wise separable convolution to reduce
the amount of parameter and computational complexity in
our EBUNet, it also requires about 6MB space to storage,
which is consumption for the storage resources. Therefore,
we dedicate to explore a novel architecture for semantic
segmentation to gain a better tradeoff among running effi-
ciency, segmentation accuracy, and memory consumption in
the future.
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