
OPTIMIZATION

Models and algorithms for U-shaped assembly line balancing problem
with collaborative robots

Zixiang Li1,2 • Mukund Janardhanan3 • Qiuhua Tang1,2 • Zikai Zhang1,2

Accepted: 29 March 2023
� The Author(s) 2023

Abstract
The collaborative robots (cobots) are increasingly being utilized in industries due to the advancement in the field of robotic

technology and also due to the increase in labor costs. The cobots on the assembly line can be utilized to complete the tasks

independently or assist the workers to complete the tasks. This study considers the U-shaped assembly line balancing

problem with cobots, where several cobots with different purchasing costs are selected under the budget constraint. Three

mixed-integer programming models are formulated to optimize the cycle time, and the built models are capable of solving

the small-sized instances optimally. Two algorithms, artificial bee colony algorithm and migrating bird optimization

algorithm, are developed and improved to tackle the large-sized instances, where new encoding scheme and decoding

procedure are developed for this new problem. The computational tests demonstrate that the utilization of collaborative

robots reduces the cycle time effectively in the assembly line. The comparative study on a set of instances shows that the

proposed methodologies obtain competing performance in comparison with other 12 implemented algorithms.

Keywords Assembly line balancing � U-shaped assembly line � Human–robot collaboration � Collaborative robots �
Metaheuristic

Abbreviations
ALBP Assembly line balancing problem

RALBP Robotic assembly line balancing problem

Cobot Collaborative robots

CRALBP Assembly line balancing problem with col-

laborative robots

UALBP U-shaped assembly line balancing problem

RUALBP Robotic U-shaped assembly line balancing

problem

CRUALBP U-shaped assembly line balancing problem

with collaborative robots

MILP Mixed-integer linear programming

ABC Artificial bee colony algorithm

IABC Improved artificial bee colony algorithm

MBO Migrating bird optimization algorithm

IMBO Improved migrating bird optimization

algorithm

1 Introduction

Assembly lines have been widely utilized in modern

industries to assemble products, and such systems help to

improve the productivity in the production floor Battaı̈a

and Dolgui (2013). The traditional assembly line consists

of a set of connected stations and one worker is allocated to

each station to perform the assembly tasks. On the

assembly line, the assembly tasks are divided into several

task sets and the workers on stations operate the corre-

sponding task set from the first station to the last station in

a sequence. The assignment of the tasks determines the line

balance and based on this assembly line balancing problem

& Mukund Janardhanan

mukund.janardhanan@leicester.ac.uk

Zixiang Li

zixiangliwust@gmail.com

Qiuhua Tang

tangqiuhua@wust.edu.cn

Zikai Zhang

zhangzikai0703@gmail.com

1 Key Laboratory of Metallurgical Equipment and Control

Technology of Ministry of Education, Wuhan University of

Science and Technology, Wuhan, Hubei, China

2 Hubei Key Laboratory of Mechanical Transmission and

Manufacturing Engineering, Wuhan University of Science

and Technology, Wuhan, Hubei, China

3 School of Engineering, University of Leicester, Leicester,

UK

123

Soft Computing
https://doi.org/10.1007/s00500-023-08130-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-8170-2738
http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-023-08130-y&domain=pdf
https://doi.org/10.1007/s00500-023-08130-y

(ALBP) is formulated to optimize the task assignment with

one or several optimization criteria. There are two impor-

tant constraints in the ALBP: precedence constraint and

cycle time constraint. Precedence constraint demands that

the predecessors of one task must be completed before

operating this task; cycle time constraint demands that all

the tasks on stations must be completed within the pre-

determined cycle time (CT).

U-shaped assembly line balancing problem (UALBP)

has received increasing attentions since it offers higher

flexibility than a normal assembly line. U-shaped assembly

line could be divided into two sub-lines: the sub-line on the

entrance side and the sub-line on the exit side. On the

traditional U-shaped assembly line, human workers are

allocated to the stations to operate all the tasks. The worker

on one station first operates the tasks on the entrance side

of this station, later moves to the exit side and operates the

tasks on the exit side of this station, finally comes back to

the entrance side. Faced with increased labor cost and

concerns of efficiency, one of the trends that is being

adopted in industries is the replacement of the human

workers with robots. U-shaped assembly line with robots to

complete all the tasks is referred to as robotic U-shaped

assembly line (Li et al. 2019a). This type of line will help

to reduced labor cost, higher accuracy and higher stability.

The robotic U-shaped assembly line might be criticized for

being expensive and lacks flexibility, another trend that is

seen recently is to utilize collaborative robots, referred to

as cobots, to operate some tasks solely or assist the human

workers to operate some tasks (Weckenborg et al. 2020).

The utilization of cobots achieves the human–robot col-

laboration, which combines the advantages of the human

workers and cobots to help and improve the productivity of

the system. Specifically, human–robot collaboration

inherits the higher flexibility, higher adaptability and high

decision-making skills of human workers and the high

strength, endurance and accuracy of cobots (Weckenborg

et al. 2020). When designing the U-shaped assembly line

with cobots, U-shaped assembly line balancing problem

with collaborative robots (CRUALBP) should be studied to

optimize the task assignment and worker and robot

allocation.

Figure 1 depicts the U-shaped assembly line with

workers and cobots. In the U-shaped assembly line with

workers, each station is allocated with one worker. The

worker on one station first operates the tasks on the

entrance side, later operates the tasks on the exit side and

finally comes back to the entrance side to operate the

corresponding tasks. In the U-shaped assembly line with

robots, robots replace the workers completely to assemble

the products and all the tasks are operated by robots. In the

U-shaped assembly line with workers and cobots, one

station might be allocated with one worker, one cobot or a

pair of worker and cobot. On the station with one worker

and one cobot, cobot can operate one task separately or

assist the worker to operate the common tasks

collaboratively.

Although there are some reported literature on robotic

U-shaped assembly line balancing problem (RUALBP),

there is no study tackling the CRUALBP. Hence, this study

presents the first attempt to solve the considered

CRUALBP, where different types of cobots with different

cost should be selected and allocated to the stations within

the maximum budget allowed. This study presents three

main contributions as follows. 1) This study considers the

CRUALBP where several cobots are selected within the

budget constraint and this done for the first time in the

literature. 2) Three mixed-integer linear programming

(MILP) models are formulated to optimize the cycle time

with the given station number. The developed MILP

Fig. 1 U-shaped assembly line with workers and cobots

Z. Li et al.

123

models can solve the small-sized instances optimally uti-

lizing the CPLEX solver. 3) Improved artificial bee colony

algorithm (IABC) and improved migrating bird optimiza-

tion algorithm (IMBO) are developed to solve the large-

sized instances within the acceptable computation time.

The implemented algorithms utilize new encoding

scheme and decoding procedure, and propose several

improvements to achieve the proper balance between

exploitation and exploration. The comprehensive compar-

ative study is carried out to evaluate the performances of

these algorithms, and the proposed algorithms obtain

competing performance in comparison with other 12

implemented algorithms.

The structure of this paper is presented as follows.

Section 2 provides the literature review and Sect. 3 pre-

sents the problem description and formulation. Subse-

quently, Sect. 4 describes the implemented metaheuristic

methodologies and Sect. 5 illustrates a small-sized exam-

ple. Section 6 carries out the comparative study, where the

formulated model and algorithms are evaluated. Finally,

Sect. 7 provides the conclusions and directions for future

research.

2 Literature review

Since the first research paper published in 1955, several

variants of ALBPs have been studied by many researchers

(Battaı̈a and Dolgui 2013; Eghtesadifard et al. 2020).

Based on the assembly layout, the assembly lines can be

divided into straight line, U-shaped line, two-sided line,

multi-manned line and parallel line. Based on the process

alternative, there are three types: human worker, robot (or

cobot) and worker and robot in collaboration. As there is no

study considering all the characteristics of the problem in

this study, this section mainly reviews the recent studies on

the UALBP with human workers, RUALBP and assembly

line balancing problem with collaborative robots

(CRALBP).

In the basic UALBP with human workers, all the

workers are considered to have the same skillset and only

task assignment needs to be optimized. Miltenburg and

Wijngaard (1994) presented the pioneering work on the

UALBP and they develop the dynamic programming pro-

cedure to minimize the station number. Since then, many

exact methods, heuristics and metaheuristics are devel-

oped. Regarding the exact methods, Scholl and Klein

(1999) presented a branch and bound algorithm known as

ULINO. Fattahi and Turkay (2015) formulated a corrected

model to handle the precedence relation, and later Li et al.

(2017) presented a new MILP model to solve the UALBP

optimally. Li et al. (2018b) developed the branch, bound

and remember algorithm to minimize the station number,

which outperforms all the exact methods and is the best

exact method. For the heuristic and metaheuristic

methodologies, they include simulated annealing algorithm

(Erel et al. 2001), genetic algorithm (Hwang et al. 2008),

ant colony algorithms (Baykasoglu and Dereli 2009; Li

et al. 2017; Sabuncuoglu et al. 2009), hybrid improvement

heuristic approach (Özcan and Toklu 2009), critical path

method (Avikal et al. 2013) and others, to cite just a few.

Recently, Li et al. (2020) proposed an enhanced beam

search algorithm, which outperforms the published algo-

rithms and updates the upper bounds for many instance.

Among these methodologies, branch, bound and remember

algorithm is the best exact method (Li et al. 2018b) and the

enhance beam search is state-of-the-art method for the

UALBP (Li et al. 2020). There are also some studies

considering the human workers with different skills, Oksuz

et al. (2017) formulated the U-shaped assembly line worker

assignment and balancing problem and they also develop

the artificial bee colony algorithm and genetic algorithm to

tackle it in short computational time. Afterward, Zhang

et al. (2019a) presented an enhanced migrating birds

optimization algorithm, which outperforms several other

algorithms. Zhang et al. (2020) developed restarted iterated

Pareto greedy algorithm to optimize the ergonomic risk and

cycle time simultaneously, and this algorithm outperforms

several other multi-objective algorithms in the comparative

study.

For the studies on the RUALBP, Nilakantan and Pon-

nambalam (2016) formulated this problem to minimize the

cycle time for the first time and develop the particle swarm

optimization to solve this problem. Li et al. (2019a) pre-

sented two new MILP models with the objective of mini-

mizing the cycle time and develop an improved migrating

birds optimization algorithm, which outperforms seven

other implemented algorithms. Zhang et al. (2019b) con-

sidered the energy consumption and the cycle time in the

RUALBP. They build the multi-objective model and

develop the Pareto artificial bee colony algorithm to

achieve a set of non-dominated solutions. Zhang et al.

(2019c) tackled the multi-objective RUALBP to minimize

the carbon emission, noise emission and cycle time. They

formulated this problem with a multi-objective model and

developed the hybrid Pareto grey wolf optimization to

solve this problem. The proposed algorithm outperforms

five multi-objective algorithms in the comparative study.

In the literature, there are several different types of

human–robot collaboration in the assembly lines and they

are summarized as follows. Çil et al. (2018) formulated the

semi-robotic ALBP and present a case study. Weckenborg

and Spengler (2019) formulated the mathematical model to

optimize the cost in the assembly line with collaborative

robots taking into account ergonomics. Samouei and

Ashayeri (2019) considered the semi-automated operations

Models and algorithms for U-shaped assembly line balancing problem with collaborative robots

123

in the mixed-model ALBP and they formulate two math-

ematical models to solve this problem. Dalle Mura and

Dini (2019) presented a genetic algorithm to tackle the

CRALBP. Weckenborg et al. (2020) formulates the

CRALBP to minimize the cycle time, which is capable of

solving the small-size instance optimally. They also

develop a hybrid algorithm to tackle both the small-size

and large-size instances. Yaphiar et al. (2020) presented a

new MILP model for the mixed-model CRALBP. More

recently, Çil et al. (2020) formulated the mixed-model

ALBP with physical human–robot collaboration, which

solves the small-size instance optimally. They also develop

the improved bee algorithm and artificial bee colony

algorithm to tackle the large-size instance efficiently.

Rabbani et al. (2020) considered the human–robot collab-

oration in mixed-model four-sided ALBP. They formulated

the MILP model and developed the particle swarm opti-

mization algorithm to solve the considered problem. More

recently, Li et al. (2021) formulated the model to minimize

the cycle time and cobot cost. They also developed the

Pareto migrating bird optimization algorithm to optimize

two objectives simultaneously. Koltai et al. (2021) ana-

lyzed the task assignment and cycle times when robots are

added with mathematical models. Nourmohammadi et al.

(2022) optimized the cycle time and the number of cobots

and workers in the CRALBP, and they provided the

mathematicl model and simulated annealing algorithm to

solve the CRALBP. Weckenborg et al. (2022) considered

the ergonomic and economic objectives with collaborative

robots and exoskeletons utilizing one mixed-integer pro-

gramming model. The literature on the CRALBP are

summarized in Table 1.

From the literature review presented, the problem set-

ting is different from that in the related and published

studies and there is no study considering the CRUALBP.

To fill this gap, this study formulates this problem for the

first time and proposes two recent algorithms to solve this

problem in reasonable computation time.

3 Problem description and formulation

This section first provides the problem description in

Sect. 3.1 and later presents the MILP model of this prob-

lem in Sect. 3.2.

3.1 Problem description

For the human–robot collaboration, there are five scenarios

in the assembly lines (Hashemi-Petroodi et al. 2020; Krü-

ger et al. 2009) as follows. And all of them have real

applications in the diverse industrial context. 1) Shared

workspace, separate cooperation and sequential operations:

A worker and a cobot are allocated to the same station but

not the common workspace (e.g., the left side and the right

side of one station), and they operate the tasks separately

and they can only operate the tasks in sequence. 2) Shared

workspace, separate cooperation and simultaneous opera-

tions: A worker and a cobot are allocated to the same

station but not the common workspace, and they operate

the tasks separately and they can operate the different tasks

in parallel simultaneously. 3) Shared workspace, collabo-

rative cooperation and sequential operations: A worker and

a cobot are allocated to the same station but not the com-

mon workspace, and they can perform a common task in

Table 1 Summary of literature on the CRALBP

Literature (sorted by year) Line type Product type Solution approaches

Çil et al. (2018) Straight Single Model

Weckenborg and Spengler (2019) Straight Single Model

Samouei and Ashayeri (2019) Straight Mixed Two models

Dalle Mura and Dini (2019) Straight Single Genetic algorithm

Weckenborg et al. (2020) Straight Single Model and genetic algorithm

Yaphiar et al. (2020) Straight Mixed Model

Çil et al. (2020) Straight Mixed Model, bee algorithm and artificial bee colony algorithm

Rabbani et al. (2020) Four-sided Mixed Model and particle swarm optimization algorithm

Li et al. (2021) Straight Single Model and multi-objective migrating bird optimization algorithm

Koltai et al. (2021) Straight Single Models

Nourmohammadi et al. (2022) Straight Single Model and simulated annealing algorithm

Weckenborg et al. (2022) Straight Single Model

This study U-shaped Single Three models and two algorithms

Z. Li et al.

123

collaboration and they can only operate the tasks in

sequence. 4) Shared workspace, collaborative cooperation

and simultaneous operations: A worker and a cobot are

allocated to the same station but not the common work-

space, and they can perform a common task in collabora-

tion and they can operate the different tasks in parallel

simultaneously. 5) Common workspace, collaborative

cooperation and sequential operations: A worker and a

cobot are allocated to the same station and the same

workspace, and they can perform a common task in col-

laboration and they can only operate the tasks in sequence.

For the considered CRUALBP problem, a worker and a

cobot can be allocated to the same station and they can

complete the tasks solely or in collaboration, but they

cannot operate the different tasks in parallel simultane-

ously. Namely, this study takes the first scenario, the third

scenario and the fifth scenario into account. The applica-

tions of second scenario and the fourth scenario might refer

to Weckenborg et al. (2020). In the CRUALBP, one station

might be allocated with a worker, a cobot and a pair of

worker and cobot. If one worker and robot are allocated to

the same station, one task on this station is operated by one

of the three process alternatives: operated by a human

worker, operated by cobot and operated by the worker and

cobot in collaboration. Hence, the CRUALBP consists of

three interrelated sub-problems: 1) task assignment to

station; 3) the allocation of the workers and cobots; 3) the

selection of the process alternative. And there are three

main constraints needed to be considered when solving the

CRUALBP: precedence constraint, cycle time constraint

and budget constraint. Precedence constraint demands that

one task can be assigned when all its predecessors or

successors have been assigned. Cycle time constraint

demands that all the task must be completed within the

cycle time. Budget constraint requires that the costs of

buying cobots must be equal to or less than the maximum

budget provided in advance.

Figure 2 provides an example task assignment and

worker and cobot allocation on U-shaped assembly line. As

you can see, there are four stations utilized and 11 tasks are

allocated to the entrance side and the exit side of this line.

And one worker, one worker and one cobot, one worker

and one worker are allocated to station 1, station 2, station

3 and station 4, respectively. For the task assignment on

station 2, it is observed that task 2 is allocated to the

entrance side and is operated by the worker and cobot in

collaboration, task 3 is allocated to the entrance side and is

operated by the worker and cobot in collaboration, task 7 is

allocated to the exit side and is operated by the worker and

finally task 9 is allocated to the exit side and is operated by

the worker and cobot in collaboration.

Fig. 2 Task assignment and

worker and cobot allocation on

U-shaped assembly line

Models and algorithms for U-shaped assembly line balancing problem with collaborative robots

123

The main assumptions of the considered CRUALBP are

provided at first based on Weckenborg et al. (2020).

(1) One type of product is produced on the U-shaped

assembly line.

(2) The precedence relations between tasks and the

operation times of tasks by process alternatives are

known and fixed.

(3) The operation times of tasks are determined by the

process alternative and one task might need different

time to be completed when being operated by

different process alternatives

(4) Only one type of worker is considered (the workers

are assumed to have the same skills).

(5) There are different types of cobots available and they

might have different skills and different purchasing

cost.

(6) The total cost of cobots must be within the maximum

budget allowed to buy the cobots.

(7) It is not considered that a worker and cobot operate

different tasks at the same time on the same station

(the second scenario and the fourth scenario are not

considered).

(8) The setup times, loading and unloading time and

maintenance operation are not considered.

3.2 Model formulation

Based on Li et al. (2017), this section formulates three

mathematical models: Model 1, Model 2 and Model 3 for

the considered problem. For clarification, the indices,

parameters and decision variables in these models are first

explained as follows. Among the indices and parameters,

the p is utilized to indicate the process alternative. For one

task, there are 2 � nr þ 1 process alternatives available.

Here, this study sets that p ¼ 1 when one human worker

operates one task, p ¼ 1þ r when cobot r operates one

task solely, and p ¼ nrþ 1þ r when a worker and cobot r

operate one task collaboratively.

Indices and parameters:

nt Number of tasks.

ns Number of available stations.

nr Types of available cobots.

i, j Task index; i; j 2 1; 2; . . .; ntf g:
k, l Station index; k; l 2 1; 2; . . .; nsf g.
r Cobot index; r 2 1; 2; . . .; nrf g.
p Process alternative index,

p 2 1; 2; . . .; nr þ 1; nr þ 2; . . .; 2 � nr þ 1f g.
I Set of tasks, I ¼ 1; 2; . . .; ntf g.

K Set of stations, K ¼ 1; 2; . . .; nsf g.
R Set of cobot types, R ¼ 1; 2; . . .; nrf g.
P Set of process alternatives,

P ¼ 1; 2; . . .; nr þ 1; nr þ 2; . . .; 2 � nr þ 1f g.
tip Operation time of task i by processing alternative p.

} Set of pairs of tasks (} ¼ f� � � ; r; � � �g), where r ¼ i; jð Þ is one
pair of tasks in which task i is the immediate predecessor of

task j:

cr Purchasing cost of cobot r.

w A very large positive number.

MB Maximum budget allowed to buy the cobots.

MW Maximum number of available workers.

Decision variables:

CT Cycle time.

aikp 1, if task i is operated by process alternative p on station k; 0,
otherwise. (Only utilized in Model 1)

ui 1, if task i is allocated to the entrance side of one station; 0,

otherwise. (Only utilized in Model 1)

xikp 1, if task i is operated by process alternative p on the entrance

side of station k; 0, otherwise. (Only utilized in Model 2 and

Model 3)

yikp 1, if task i is operated by process alternative p on the exist side

of station k; 0, otherwise. (Only utilized in Model 2 and

Model 3)

wrk 1, if cobot r is allocated to station k; 0, otherwise.

vk 1, if a human worker is assigned to station k; 0, otherwise.

The main difference between the CRALBP and

CRUALBP is the precedence constraint. On the straight

line, one task is assignable when all its predecessors have

been allocated; on the U-shaped line, one task is assignable

to the entrance side when all its predecessors have been

allocated or the exist side when all its successors have been

allocated. On the basis of the model in Fattahi and Turkay

(2015), the first mathematical model, referred to as Model

1, is formulated utilizing expression (1) to expression(11),

where the decision variable aikp is utilized to determine the

allocated station that one task is allocated to and decision

variable ui is proposed to determine the side (entrance side

or exit side) that one task is allocated to.

Expression (1) is objective function to minimize the

cycle time. Constraint (2) is the task occurrence constraint

and it demands that each task must be allocated to one

station and operated by one process alternative available.

Constraint (3) and constraint (4) deal with the precedence

constraint. Constraint (3) indicates that the predecessor i of

task j must be allocated to the former or same station when

both of them are allocated to the entrance side; Constraint

(4) indicates that the predecessor i of task j must be

Z. Li et al.

123

allocated to the latter or same station when both of them

are allocated to the exit side. Constraint (5) deals with the

cycle time constraint and it demands that the total opera-

tion time on one station must be less than or equal to the

cycle time. Constraint (6) and constraint (7) determine the

cobot allocation. Constraint (6) requires that cobot r must

be allocated to station k when there is one task on this

station is operated by cobot r solely and a worker and cobot

r in collaboration. Constraint (7) demands that at most one

cobot is allocated to one station and it is not allowed for

one station to have more than one cobot. Constraint (8) is

the budget constraint, indicating the total cost of buying the

cobots must be less than or equal to the maximum budget.

Constraint (9) determines the worker allocation and it

requires that a worker must be allocated to station k when

there is one task on this station is operated by a worker

solely and a worker and one cobot in collaboration. Con-

straint (10) restricts that the number of workers is less than

or equal to the maximum number of available workers.

Constraint (11) restricts that aikp; ui;wrk and vk are the 0–1

variables.

Min CT ð1Þ
X

k2K

X

p2P
aikp ¼ 1 8i 2 I ð2Þ

X

k2K

X

p2P
k � aikp �

X

l2K

X

p2P
l � ajlp� ns � 1þ ui � 2uj

� �
8 i; jð Þ

2 }

ð3Þ
X

k2K

X

p2P
k � ajkp �

X

l2K

X

p2P
l � ailp� ns � ui 8 i; jð Þ 2 } ð4Þ

X

i2I

X

p2P
tip � aikp�CT 8 k 2 K ð5Þ

w � wrk�
X

i2I
aik;1þr þ aik;nrþ1þr
� �

8 k 2 K; r 2 R ð6Þ

X

r2R
wrk� 1 8 k 2 K ð7Þ

X

r2R
cr �
X

k2K
wrk

 !
�MB ð8Þ

w � vk �
X

i2I
aik;1 þ

X

i2I

X

p2fnrþ2;���;2�nrþ1g
aikp 8 k 2 K ð9Þ

X

k2K
vk�MW ð10Þ

aikp; ui;wrk; vk 2 0; 1f g ð11Þ

The second model, referred to as Model 2, is built based

on Urban and Chiang (2006). Model 2 utilizes the xikp and

yikp to determine the task assignment and is formulated

with expression (12) to expression (22). The objective in

expression (12) optimizes the cycle time. Constraint (13) is

the occurrence constraint, indicating that one task must be

allocated to the entrance side or exit side of one station and

be operated by one process alternative available. Constraint

(14) and constraint (15) tackle the precedence constraint.

Constraint (14) demands that the predecessor i of task j

must be allocated to the former or same station when both

of them are allocated to the entrance side; Constraint (15)

demands that the predecessor i of task j must be allocated

to the latter or same station when both of them are allo-

cated to the exit side. Constraint (16) is the cycle time

constraint. Constraint (17) and constraint (18) deal with

cobot allocation and constraint (19) is the budget con-

straint. Constraint (20) deals with the worker assignment

and constraint (21) restricts the number of human workers.

Min CT ð12Þ
X

k2K

X

p2P
xikp þ yikp
� �

¼ 1 8i 2 I ð13Þ

X

k2K

X

p2P
ns� k þ 1ð Þ � xikp � xjkp

� �
� 0 8 i; jð Þ 2 } ð14Þ

X

k2K

X

p2P
ns� k þ 1ð Þ � yjkp � yikp

� �
� 0 8 i; jð Þ 2 } ð15Þ

X

i2I

X

p2P
tip � xikp þ yikp

� �
�CT 8 k 2 K ð16Þ

w � wrk�
X

i2I
xik;1þr þ yik;1þr þ xik;nrþ1þr þ yik;nrþ1þr
� �

8 k

2 K; r 2 R

ð17Þ
X

r2R
wrk� 1 8 k 2 K ð18Þ

X

r2R
cr �
X

k2K
wrk

 !
�MB ð19Þ

Models and algorithms for U-shaped assembly line balancing problem with collaborative robots

123

w � vk �
X

i2I
xik;1 þ yik;1
� �

þ
X

i2I

X

p2fnrþ2;���;2�nrþ1g
xikp þ yikp
� �

8 k 2 K
ð20Þ

X

k2K
vk�MW ð21Þ

xikp; yikp;wrk; vk 2 0; 1f g ð22Þ

The third model, referred to as Model 3, is formulated

based on Model 2 and Li et al. (2017). Model 3 has the

same decision variables as Model 2, whereas Model 3

utilizes constraint (23) to replace constraint (14) and con-

straint (15). Namely Model 3 consist of expression (12),

constraint (13), constraint (23) and constraints (16–22).

Here, constraint (23) is the precedence constraint and it

demands that, for a pair of task i of task j where task i is the

predecessor of task j, 1) task i must be allocated to the

former or same station when both of them are alloated to

the entrance side, 2) task i must be allocated to the latter or

same station when both of them are allocated to the exit

side, 3) task i must be allocated to the entrance side when

they are allocated to entrance side and exit side,

respectively.
X

k2K

X

p2P
k � xikp � xjkp
� �

þ
X

k2K

X

p2P
2 � ns� kð Þ

� yikp � yjkp
� �

� 0 8 i; jð Þ
2 } ð23Þ

All the three models are MILP models and they are

capable of tackling the small-size instances optimally uti-

lizing the CPLEX solver. This study will further evaluate

and compare these models in Sect. 6.2.

4 Implemented metaheuristic
methodologies

As the considered problem is one NP-hard problem in

nature, the formulated models cannot achieve satisfying

solutions when solving large-size instance. Hence, this

section develops two recent algorithms to tackle the large-

size instances effectively. These algorithms utilize new

encoding scheme and decoding procedure to achieve fea-

sible solutions. The encoding and decoding, applied algo-

rithms and the utilized neighbor structures are presented in

the following subsections in detail.

4.1 Encoding and decoding

As the CRUALBP involves task assignment and the worker

and cobot allocation, this study utilizes two vectors for

encoding: permutation vector and process alternative

selection vector. Task permutation vector determines the

task assignment; process alternative selection vector

determine the worker and cobot allocation. Figure 3 illus-

trates one example solution presentation with 11 tasks, four

stations and four types of cobots. In the decoding scheme,

task permutation is one sequence of all the tasks and the

tasks in the former positions are supposed to have the

higher priorities. For instance, task 1 and task 11 are in the

first two positions and they are allocated to the first station

in the solution presentation. Process alternative selection

vector is one set of process alternatives on stations. If the

code in the k th position is p, it donates that process

alternative p should be allocated to station k. For instance,

one worker with the p of 1 is allocated to the first station

and one worker and cobot 3 with the p of 8 are allocated to

the second station.

As the encoding scheme is not a feasible solution, this

study develops the one decoding procedure in Algorithm 1,

where the CTInit is the initial cycle time. As you can see,

the worker and cobot allocation is first determined utilizing

the process alternative selection vector. Subsequently, the

tasks are assigned to the entrance side and exit side of

stations in sequence. During task assignment, one task is

assignable when it satisfies the precedence constraint and

the cycle time constraint. Precedence constraint demands

that the predecessors or successors have been assigned;

cycle time constraint demands that this task can be com-

pleted within the initial cycle time CTInit by at least one

process alternative when k\ns. It is to be noted that, this

decoding procedure ignores the cycle time for the last

station to obtain the feasible solution for each solution

presentation.

Z. Li et al.

123

How to determine the proper initial cycle time CTInit is

one important factor when solving the type II CRUALBP.

One possible method is determining the best cycle time

with increments. This method starts testing CTLB as the

initial cycle time CTInit, where CTLB ¼
P

i min
p
tip

� �
=ns.

Fig. 3 Solution presentation

Models and algorithms for U-shaped assembly line balancing problem with collaborative robots

123

Subsequently, CTInit is updated with CTInit CTInit þ 1

until the tasks of the last station can be completed within

CTInit. One possible drawback of this method is that the

decoding procedure is conducted for many times to obtain

the proper initial cycle time for one encoding scheme.

Hence, on the basis of Li et al. (2019a), Li et al. (2019b)

and several others, this study proposes the iterative

mechanism to update the initial cycle time during the

algorithm’ evolution. The proposed iterative mechanism is

presented in Algorithm 2, where CTBest is the best cycle

time during the evolution. It is clear that all the solutions

utilize the same initial cycle time and the cycle time is

reduced gradually utilizing the CTInit CTBest � 1. The

preliminary experiments show that iterative mechanism

produces superior performance and hence it is utilized in

this study.

4.2 Improved artificial bee colony algorithm

The proposed IABC is adopted from that in (Çil et al.

2020), where IABC is the best performer among the 11

compared algorithms. The main procedure of the IABC is

provided in Algorithm 3. Here, parameter PS is the

population size, parameter limit is the number of times

before abandoning the individual remained unchanged, and

parameter r within 0; 1½ � is the probability to conduct the

local search. IABC starts with initializing the swarm, and

afterward conducts the modified employed bee phase,

modified onlooker phase, modified scout phase and local

search until meeting the termination criterion.

IABC has made following modifications on the

employed bee phase, onlooker phase and scout phase, and

also optionally utilizes the local search. In this algorithm,

modified onlooker phase selects the best and non-dupli-

cated PS solutions from the incumbent swam and the new

swam to obtain a high-quality and diverse swarm. Modified

scout phase replaces the abandoned individuals with the

high-quality neighbor solution. Meanwhile, local search

aims at emphasizing the exploitation capacity. In short, the

modifications enhance the exploitation and exploration

capacity of the proposed IABC method. As you will see in

Sect. 6.3, the proposed IABC outperforms the original

artificial bee colony algorithm by a significant margin.

Z. Li et al.

123

4.3 Improved migrating bird optimization
algorithm

The proposed IMBO is adopted from (Janardhanan et al.

2019), where IMBO outperforms five other algorithms. The

main procedure of the IMBO is illustrated in Algorithm 4.

The proposed IMBO include four original parameters and

three new parameters. The four original parameters include

the population size (PS), the consecutive times before the

leader replacement (m), the number of neighbor solutions

for the leader (k) and the number of shared neighbors (x).

The three new parameters include the initial temperature

(T init), the cooling rate (a) and parameter rt where T is re-

initialized with T ¼ T init when the best cycle time has not

been updated for rt times. The proposed IMBO starts with

initializing the population, and afterward conducts the

modified leader improvement, modified block improve-

ment and leader replacement repeatedly until the termina-

tion criterion is met. In the main loop, leader replacement

is conducted after executing the modified leader improve-

ment and modified block improvement for m consecutive

times.

The modified leader improvement and modified block

improvement propose several modifications to enhance the

exploitation and exploration capacity as follows. 1) The

incumbent individual is replaced with the neighbor solution

once the neighbor solution achieves the same or better

performance. This modification speeds up the evolution

process by replacing the poor-quality individual. 2) New

acceptance criterion based on the simulated annealing

algorithm is developed to accept the worse solution with a

certain probability. Especially, if the best cycle time has

Models and algorithms for U-shaped assembly line balancing problem with collaborative robots

123

not been updated for rt times, the temperature is re-ini-

tialized to increase the possibility of accepting the worse

solution. This utilization of new acceptance helps the

algorithm to escape from being trapped into local optima.

3) The neighbor solution of one individual is set to a very

large number when it shares the same fitness value of the

original individual. In other words, the neighbor solutions

with the same fitness value of the original individual cannot

be shared by the individual in the back. This modification

aims at preventing the premature of the algorithm by pre-

serving the diversity of the population. As you will see in

Sect. 6.3, the proposed IMBO outperforms the original

migrating bird optimization algorithm statistically.

4.4 Utilized neighbor structure

The neighbor structures have important effect on the

algorithms’ performance. As this encoding scheme has two

vectors, it is necessary to design effective neighbor oper-

ators to modify the two vectors to obtain high-quality

neighbor solutions. As seen in Fig. 4, this study utilizes the

swap operator and insert operator to modify the task per-

mutation vector. Swap operator selects two tasks in dif-

ferent positions randomly and exchange the positions of the

two selected tasks. Inset operator selects one task randomly

and insert it in a new position different from its original

position. As seen in Fig. 4, to modify the process

Z. Li et al.

123

alternative selection vector, this study utilizes both swap

operator and mutation operator. Swap operator selects two

process alternatives in two different stations randomly and

exchanges the selected two process alternatives. Mutation

operator selects one process alternative on one station

randomly and replaces it with a different process alterna-

tive. As two vectors are involved and each vector has two

neighbor operators, for one individual, this study first

selects one vector randomly to be modified and later selects

one of the two corresponding neighbor operators to modify

the selected vector.

5 An illustrated example

This section provides an example to highlight the features

of the considered problem. This instance has 11 tasks, four

types of cobots (2 � 4þ 1 process alternatives) and four

stations. Table 2 illustrates the precedence relation and the

operation times of task by process alternatives

(P ¼ 1; 2; � � � ; 4þ 1; 4þ 2; � � � ; 2 � 4þ 1f g). The cost of

these four cobots are 10.11, 12.79, 18.55 and 20.83 units.

Table 3 presents the achieved cycle times under differ-

ent budgets on the straight assembly line and U-shaped

assembly line. As you can see, the cycle time could be

reduced when the budget increase. Specifically, on the

U-shaped assembly line, the cycle time is 12 when the

budget is 0.0 (no cobot is utilized). And the cycle time is

Fig. 4 Utilized neighbor

operators

Table 2 Precedence relation between tasks and the operation times of

tasks

Task Successors Operation times of tasks by process alternatives

1 2 3 4 5 6 7 8 9

1 2, 3 4 – 7 – – – 3 – –

2 4 5 – – 8 – – 4 3 3

3 5 5 – – – – – – 3 3

4 6 6 – 11 – – – 4 – –

5 7, 8, 9 3 – – – – – – – 2

6 10 2 4 – 3 – 2 – 2 2

7 11 1 – – – – – – – –

8 11 7 – – – – – 5 5 –

9 11 5 – – – – 4 – 3 –

10 11 2 – – – – 2 – – –

11 - 6 – 11 9 8 – 4 4 4

Table 3 Achieved cycle times under different budgets

Straight assembly line U-shaped assembly line

Maximum budget Cycle time Maximum budgets Cycle time

0.0 12 0.0 12

10.0 12 10.0 12

20.0 11 20.0 10

30.0 10 30.0 10

40.0 10 40.0 9

50.0 9 50.0 9

60.0 9 60.0 9

70.0 9 70.0 8

80.0 9 80.0 8

Models and algorithms for U-shaped assembly line balancing problem with collaborative robots

123

reduced to 8 when the budget increase to 70. Comparing

the cycle times on the straight assembly line and U-shaped

line, it is clear that for some situations U-shaped assembly

line obtains the smaller cycle time. For instance, when the

budget is 20.0, straight assembly line obtains a cycle time

of 11 whereas U-shaped assembly line obtains a cycle time

of 10. Figure 5 depicts the detailed task assignment worker

and robot allocation on straight assembly line (Fig. 5a) and

U-shaped assembly line (Fig. 5b) within the budget of

20.0. As it can be seen, the workers and cobot on the

straight line operate the tasks from the first station to the

last station in sequence. The U-shaped assembly line, on

the contrary, is divided into entrance side and exit side. The

process alternative on station 1 first operates task 1 on the

entrance side and later operates task 11 on the exit side, the

process alternative on station 2 first operates task 2 and task

3 on the entrance side and later operates task 7 and task 9

on the exit side, the process alternative on station 3 oper-

ates the task 4, task 6 and task 10 on the exit side in

sequence, and the process alternative on station 4 first

operates task 5 on the entrance side and later operates task

8 on the exist side. One clear advantage of the U-shaped

assembly line is that it has lager flexibility and it might

have the smaller cycle time than the straight assembly line.

6 Computational study

This section first presents the experimental design in

Sect. 6.1, including the tested instances and running envi-

ronments. Later, Sect. 6.2 evaluates the formulated model,

where the formulated model is tested on the small-size

instances. At last, Sect. 6.3 evaluates the developed algo-

rithms and 12 other implemented algorithms statistically.

6.1 Experimental design

This study utilizes the instances consisting of 93 instances.

These instances have 22 precedence diagrams, and each

precedence diagram corresponds to several station num-

bers. The smallest-size instance has only 7 tasks and the

largest-size instance has 297 tasks. For each instance, there

are four types of cobots available and there are nine pos-

sible process alternatives for each task. For the operation

times of tasks by process alternatives, the operation time by

worker is set as the original operation times in the litera-

ture, the operation time of robots are set to be larger than

that by worker, and the operation times by the collabora-

tion are set to be smaller than that by worker.

To evaluate the performance of the proposed algorithms,

they are compared with 12 algorithms. They include the

late acceptance hill-climbing algorithm (LAHC)(Li et al.

2019b), simulated annealing algorithm (SA) (Li et al.

2019b), genetic algorithm (GA) (Li et al. 2019b), discrete

particle swarm optimization algorithm (DPSO) (Li et al.

2019b), original cuckoo search algorithm (OCS), discrete

cuckoo search algorithm (DCS)(Li et al. 2018a), original

artificial bee colony algorithm(OABC), two improved

artificial bee colony algorithms(ABC1 and ABC2) (Li et al.

2019b), original bee algorithm (OBA), improved bee

algorithm (Çil et al. 2020) and original migrating bird

optimization algorithm (OMBO).

All the implemented algorithms utilize the same

encoding and decoding in Sect. 4.1 and neighbor structures

presented in Sect. 4.4. And they terminate when the com-

putation time reaches nt � nt � s milliseconds (ms). And in

this study the value of s is set to 10, 20, 30, 40, 50 and 60,

respectively, to observe the algorithms’ performance under

different running times. To have enough data for statistical

Fig. 5 Task assignment worker

and robot allocation on straight

assembly line and U-shaped

assembly line

Z. Li et al.

123

Table 4 Results by the formulated models

Instance ns LB-All Model 1 Model 2 Model 3 Algorithms

UB LB Time UB LB Time UB LB Time IABC IMBO Time

P7 2 12 12 12 0.12 12 12 0.08 12 12 0.08 12 12 2.94

P7 3 9 9 9 0.11 9 9 0.20 9 9 0.11 9 9 2.94

P7 4 7 7 7 0.11 7 7 0.09 7 7 0.12 7 7 2.94

P8 3 21 21 21 0.27 21 21 0.14 21 21 0.25 21 21 3.84

P8 4 17 17 17 0.47 17 17 0.31 17 17 0.45 17 17 3.84

P8 5 16 16 16 0.84 16 16 0.44 16 16 0.45 16 16 3.84

P9 3 11 11 11 0.48 11 11 0.28 11 11 0.30 11 11 4.86

P9 4 9 9 9 0.37 9 9 0.58 9 9 0.22 9 9 4.86

P9 5 8 8 8 0.90 8 8 2.20 8 8 1.50 8 8 4.86

P9 6 7 7 7 1.48 7 7 2.61 7 7 1.54 7 7 4.86

P11 3 14 14 14 0.16 14 14 0.41 14 14 0.20 14 14 7.26

P11 4 10 10 10 0.17 10 10 0.39 10 10 0.36 10 10 7.26

P11 5 9 9 9 0.25 9 9 1.34 9 9 1.31 9 9 7.26

P11 6 8 8 8 2.90 8 8 1.65 8 8 2.39 8 8 7.26

P11 7 7 7 7 0.51 7 7 0.94 7 7 0.94 7 7 7.26

P21 3 31 31 31 1.42 31 31 1.61 31 31 1.05 31 31 26.46

P21 4 24 24 24 3.32 24 24 2.57 24 24 2.50 24 24 26.46

P21 5 19 19 19 8.24 19 19 3.99 19 19 4.62 19 19 26.46

P21 6 16 16 16 7.89 16 16 7.00 16 16 4.96 16 16 26.46

P21 7 14 14 14 4.77 14 14 8.92 14 14 16.99 14 14 26.46

P21 8 13 13 13 13.40 13 13 578.70 13 13 42.04 13 13 26.46

P25 3 36 36 36 1.06 36 36 1.26 36 36 0.98 36 36 37.50

P25 4 28 28 28 20.07 28 28 5.96 28 28 8.42 28 28 37.50

P25 5 23 23 23 49.87 23 23 15.72 23 23 193.05 23 23 37.50

P25 6 19 19 19 376.79 19 19 77.70 19 19 26.86 19 19 37.50

P25 7 17 17 17 958.72 17 17 148.14 17 17 135.42 17 17 37.50

P25 8 15 15 15 174.31 15 15 204.91 15 15 387.55 15 15 37.50

P28 3 281 281 281 1.26 281 281 5.16 281 281 4.74 281 281 47.04

P28 4 221 221 221 3.81 221 221 6.88 221 221 1.56 221 221 47.04

P28 5 182 182 182 6.43 182 182 38.63 182 182 10.20 182 182 47.04

P28 6 154 154 154 15.77 154 154 12.12 154 154 16.02 154 154 47.04

P28 7 133 133 133 26.80 133 133 21.67 133 133 25.04 133 134 47.04

P28 8 117 117 117 182.18 117 117 145.08 117 117 335.35 118 118 47.04

P29 8 37 38 37 3600.00 37 37 898.00 38 37 3600.02 37 37 50.46

P29 10 31 31 31 1421.83 31 31 2057.22 31 31 1039.96 31 31 50.46

P29 12 26 26 26 1291.23 28 23 3600.02 27 24 3600.07 26 26 50.46

P29 14 23 23 23 2999.15 24 23 3600.03 24 23 3600.03 24 24 50.46

P30 7 42 42 42 42.43 42 42 235.75 42 42 177.75 42 42 54.00

P30 9 34 34 34 259.91 34 34 708.63 34 34 190.73 34 34 54.00

P30 11 27 29 26 3600.02 28 26 3600.02 29 27 3600.02 28 28 54.00

P30 13 24 24 24 375.52 24 24 776.57 24 24 335.68 24 24 54.00

P32 9 1435 1493 1337 3600.07 1486 1435 3600.02 1514 1311 3600.02 1466 1466 61.44

P32 10 1356 1400 1326 3600.02 1402 1356 3385.21 1400 1326 3600.02 1390 1390 61.44

P32 11 1193 1257 1193 3600.03 1219 1193 3600.02 1248 1193 3600.02 1210 1212 61.44

P32 12 1117 1186 1012 3600.02 1164 1117 3600.05 1182 943 3600.11 1150 1150 61.44

P35 6 72 72 72 2044.70 72 72 436.96 72 72 278.55 72 72 73.50

P35 9 50 51 50 3600.02 51 50 3600.02 51 50 3600.02 51 51 73.50

Models and algorithms for U-shaped assembly line balancing problem with collaborative robots

123

analysis, all the algorithms solve the tested instances in ten

repetitions and the achieved cycle times are recorded. After

completing all the experiments, this study utilizes the rel-

ative percentage deviation (RPD) to transfer the achieved

results with RPD ¼ 100 � CTsome � CTBestð Þ=CTBest, where

CTsome is the cycle time by one algorithm in one run and

CTBest is the best cycle by all algorithms in ten runs. Here,

the smaller value of RPD indicates the better performance.

The mathematical model is solved utilizing the CPLEX

solver on the platform of the General Algebraic Modeling

System 23.0. As the model cannot solve the large-size

instance in acceptable time, only the instances with less

than or equal to 70 tasks are solved by the model. And the

model terminates once the optimal solution is obtained and

the optimality of the achieved solution is proved or the

computational time reaches 3600 s (s). The implemented

algorithms are programmed with the C ? ? programming

language of the Microsoft Visual Studio 2015. And the

algorithms terminate when the given termination criterion

of an elapsed computation time is satisfied. The real

experiments are conducted on a set of virtual computers of

a tower type of server. Each virtual computer has one

virtual processor and 2 GB RAM memory and the tower

type of server is equipped with two Intel Xeon E5-2680 v2

processors and 64 GB RAM memory.

6.2 Evaluating the model

This section evaluates the model by solving the small-size

instances with budget of 20.0 in Table 4. In this table, LB-

All in the third column is the maximum value of the lower

bound or the optimal solution by the three models. UB, LB

Table 4 (continued)

Instance ns LB-All Model 1 Model 2 Model 3 Algorithms

UB LB Time UB LB Time UB LB Time IABC IMBO Time

P35 12 40 40 40 59.47 40 40 182.11 40 40 175.64 40 40 73.50

P35 15 40 40 40 16.75 40 40 93.77 40 40 5.19 40 40 73.50

P45 4 119 119 119 54.44 119 119 62.52 119 119 26.24 120 119 121.50

P45 6 83 83 83 228.09 83 83 314.96 83 83 309.68 83 83 121.50

P45 8 63 63 63 2066.05 64 57 3600.02 63 63 2030.97 63 63 121.50

P45 10 55 55 55 12.64 55 55 16.75 55 55 7.99 55 55 121.50

P53 4 3150 3150 3150 402.56 3150 3150 1042.35 3150 3150 94.60 3150 3150 168.54

P53 6 2115 2116 2105 3600.02 2115 2115 3095.83 2115 2115 2021.67 2119 2119 168.54

P53 8 1775 1775 1775 253.34 1775 1775 54.02 1775 1775 30.97 1775 1775 168.54

P53 10 1556 1556 1556 564.14 1556 1556 1893.05 1556 1556 341.56 1556 1556 168.54

P58 6 228 229 228 3600.03 229 228 3600.02 229 228 3600.07 229 230 201.84

P58 12 105 129 105 3600.05 126 97 3600.03 127 98 3600.07 123 123 201.84

P58 18 75 88 75 3600.03 89 72 3600.10 90 70 3600.07 85 85 201.84

P58 24 46 68 46 3600.08 73 45 3600.10 78 45 3600.10 65 65 201.84

P70 8 406 409 371 3600.02 408 373 3600.08 409 406 3600.03 406 406 294.00

P70 13 206 269 206 3600.05 267 189 3600.07 265 175 3600.07 255 256 294.00

P70 18 154 194 154 3600.07 197 143 3600.10 218 143 3600.10 191 191 294.00

P70 23 110 164 110 3600.08 162 108 3600.11 160 108 3600.13 152 153 294.00

Table 5 Summarized results by models

Tested Models #OPT RPD-Avg Time-Avg

Model 1 49 3.47 1100.89

Model 2 48 3.63 1140.80

Model 3 48 4.11 1069.16

IABC 48 2.76 74.51

IMBO 48 2.79 74.51

Table 6 Model statistics when solving the illustrated example in

Sect. 5

Model statistics Model 1 Model 2 Model 3

Blocks of equations 8 8 7

Single equations 66 66 53

Blocks of variables 5 5 5

Single variables 428 813 813

Nonzero elements 3,331 4,656 4,656

Discrete variables 427 812 812

Z. Li et al.

123

Table 7 Average RPD values by implemented algorithms when s ¼ 40; 60

Instance Num LAHC SA GA DPSO OCS DCS OABC ABC1 ABC2 OBA IBA OMBO IABC IMBO

s = 40

P7 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

P8 3 1.30 0.00 0.00 0.00 1.04 0.00 0.00 0.00 0.00 0.42 0.00 0.00 0.00 0.00

P9 4 2.27 0.00 1.14 0.00 0.45 0.45 1.14 1.82 0.68 0.68 2.27 1.14 2.05 0.23

P11 5 1.80 0.00 0.40 0.00 0.40 0.00 0.00 0.20 0.00 0.80 1.40 0.00 0.00 0.00

P21 6 1.83 0.61 1.56 0.00 2.28 0.31 0.10 1.16 0.90 2.33 1.13 0.49 0.09 0.00

P25 6 1.70 0.98 1.56 0.18 2.07 0.69 0.44 1.18 1.09 1.48 1.57 0.58 0.56 0.09

P28 6 1.31 0.52 0.92 0.77 1.37 0.44 0.65 0.62 0.52 1.34 1.04 0.47 0.29 0.40

P29 4 2.06 2.12 3.31 2.44 4.84 2.19 2.62 2.19 2.36 5.35 2.28 2.52 1.33 1.09

P30 4 0.80 0.43 2.30 1.50 3.65 0.10 1.63 0.62 0.34 3.68 0.76 1.42 0.00 0.00

P32 4 1.39 1.21 1.76 1.07 2.07 0.69 1.21 1.03 0.82 2.08 1.08 0.93 0.27 0.32

P35 4 0.56 0.10 0.65 0.17 1.09 0.08 0.07 0.29 0.20 5.73 0.21 0.08 0.00 0.00

P45 4 0.78 0.48 1.09 0.87 1.32 0.62 0.79 0.80 0.62 0.98 1.08 0.91 0.42 0.36

P53 4 0.80 0.35 0.39 0.04 0.54 0.31 0.06 0.37 0.29 1.74 0.92 0.30 0.28 0.04

P58 4 0.90 0.88 2.51 2.47 3.48 1.10 2.77 1.10 1.00 3.33 1.02 1.72 0.65 1.38

P70 4 0.74 0.77 1.83 1.53 3.13 0.87 1.80 0.94 0.86 2.50 0.77 1.40 0.44 0.58

P75 4 0.30 0.24 1.47 1.31 1.89 0.28 1.59 0.30 0.43 1.84 0.20 0.83 0.00 0.43

P83 4 0.64 0.52 1.74 1.15 2.25 0.75 1.53 0.45 0.70 1.92 0.75 0.59 0.17 0.34

P89 4 0.00 0.00 1.52 0.75 2.23 0.00 1.25 0.00 0.00 1.88 0.00 0.00 0.00 0.00

P94 4 0.66 0.37 2.13 1.84 2.81 0.87 1.87 0.79 0.81 2.24 0.82 0.99 0.59 0.91

P111 4 0.55 0.53 2.11 1.66 3.51 0.76 2.12 0.72 0.58 2.74 0.41 1.70 0.56 0.52

P148 4 0.73 0.71 1.21 0.66 1.42 0.51 0.86 0.64 0.50 0.77 0.62 0.20 0.23 0.31

P297 4 0.23 0.22 1.77 1.87 2.22 0.49 1.95 0.40 0.41 1.86 0.24 1.05 0.29 0.68

Avg 1.03 0.52 1.44 0.89 2.01 0.53 1.08 0.74 0.62 2.08 0.89 0.78 0.37 0.34

s = 60

P7 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

P8 3 1.30 0.00 0.00 0.00 0.63 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00

P9 4 2.27 0.00 1.14 0.00 0.23 0.00 0.68 1.36 0.23 0.68 2.27 1.14 2.05 0.23

P11 5 1.80 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.80 1.40 0.00 0.00 0.00

P21 6 1.83 0.61 1.35 0.00 1.79 0.31 0.00 1.16 0.71 2.33 1.13 0.49 0.09 0.00

P25 6 1.70 0.98 1.51 0.00 1.79 0.60 0.18 1.03 1.09 1.38 1.57 0.49 0.32 0.00

P28 6 1.26 0.51 0.87 0.74 1.25 0.44 0.55 0.54 0.47 1.29 1.03 0.45 0.19 0.37

P29 4 1.87 2.02 3.31 2.44 4.76 2.19 2.44 2.19 2.30 5.35 2.28 2.52 1.02 1.09

P30 4 0.80 0.36 2.24 1.04 3.65 0.10 1.44 0.44 0.34 3.68 0.57 1.42 0.00 0.00

P32 4 1.39 1.18 1.57 1.03 2.03 0.59 1.16 0.92 0.77 2.08 1.03 0.90 0.24 0.23

P35 4 0.56 0.10 0.60 0.10 1.06 0.08 0.03 0.29 0.20 5.73 0.21 0.08 0.00 0.00

P45 4 0.78 0.48 1.09 0.83 1.28 0.62 0.79 0.80 0.62 0.98 1.08 0.91 0.42 0.31

P53 4 0.80 0.35 0.38 0.03 0.47 0.30 0.06 0.32 0.29 1.72 0.92 0.30 0.28 0.00

P58 4 0.85 0.84 2.40 2.25 3.33 1.02 2.72 1.10 0.92 3.33 0.94 1.68 0.59 1.30

P70 4 0.61 0.68 1.75 1.45 2.94 0.76 1.70 0.89 0.77 2.50 0.71 1.40 0.37 0.55

P75 4 0.28 0.24 1.47 1.21 1.79 0.25 1.49 0.30 0.38 1.84 0.20 0.73 0.00 0.42

P83 4 0.64 0.51 1.65 1.00 2.20 0.66 1.45 0.44 0.66 1.92 0.74 0.55 0.14 0.33

P89 4 0.00 0.00 1.42 0.38 2.13 0.00 1.13 0.00 0.00 1.88 0.00 0.00 0.00 0.00

P94 4 0.60 0.30 2.02 1.78 2.70 0.79 1.78 0.69 0.77 2.24 0.74 0.94 0.55 0.89

P111 4 0.45 0.43 1.99 1.56 3.26 0.64 2.05 0.61 0.52 2.74 0.36 1.70 0.46 0.43

P148 4 0.73 0.70 1.14 0.61 1.34 0.48 0.79 0.63 0.50 0.76 0.61 0.20 0.23 0.25

P297 4 0.18 0.15 1.73 1.77 2.14 0.42 1.88 0.33 0.37 1.83 0.20 1.02 0.23 0.66

Avg 1.00 0.49 1.35 0.80 1.87 0.47 0.97 0.66 0.56 2.06 0.87 0.76 0.32 0.31

Models and algorithms for U-shaped assembly line balancing problem with collaborative robots

123

and Time are the upper bound of the cycle time, the lower

bound of the cycle time and the consumed computation

time, respectively. The last three columns present the best

results by IABC, the results by IMBO in ten repetitions and

the utilized computation time (nt � nt � 60 ms). Here, one

model is capable of solving one instance optimally within

the given computation time when UB is equal to the LB.

As you can see, the models can solve the small-size

instances optimally with less than or equal to 28 tasks,

whereas they might not obtain the optimal solution for the

remained instances. The proposed algorithms are also

achieving the optimal solutions for the small-size instances

with less than or equal to 28 tasks, and they might achieve

clear superiority over the mathematical models when

solving the large-size instances. For instances, IABC and

IMBO outperform Model 1, Model 2 and Model 3 when

solving the P70 with 13, 18 and 23 stations.

To have a better observation of the models’ perfor-

mance, Table 5 presents the numbers the instances which

are solved optimally (#OPT), the average value of the RPD

values (RPD-Avg), the average computation time of all the

instances (Time-Avg). As the lower bounds can be

achieved by the models, here RPD is calculated with

RPD ¼ 100 � CTsome � CTLBð Þ=CTLB, where CTsome is the

cycle time by one method and CTLB is the maximum value

of the lower bounds by three models. As you can see,

among the three models, Model 1 is the best performer in

terms of the #OPT and RPD-Avg; Model 3 is the best

performer in terms of the Time-Avg. For the comparison

between the models and algorithms, it is clear that IABC

and IMBO obtains the smaller values of RPD-Avg within

the short computation time, demonstrating that the algo-

rithms outperform the MILP models when solving the

large-size instances in term of the solution quality.

To further analyze the reasons leading to the different

performances of the models, Table 6 provides the model

statistics when solving the illustrated example in Sect. 5 as

an example. As you can see, Model 1 has the smallest

number of single variables, the smallest number of nonzero

elements and the smallest number of discrete variables, and

hence Model 1 achieves the best performance in terms of

the #OPT and RPD-Avg. Model 3 has the smallest number

of blocks of equations and the smallest number of single

equations, and hence Model 3 achieves the best perfor-

mance in terms of the Time-Avg.

6.3 Evaluating the implemented algorithms

As the parameter values have great impact on the algo-

rithms’ performance, the parameters of each algorithm are

calibrated before running the final experiments utilizing the

Table 8 Overall average RPD values under different computation

times

Algorithm s = 10 s = 20 s = 30 s = 40 s = 50 s = 60

LAHC 1.130 1.078 1.045 1.028 1.009 0.998

SA 0.606 0.548 0.533 0.520 0.506 0.494

GA 1.780 1.589 1.489 1.440 1.392 1.354

DPSO 1.269 1.069 0.964 0.893 0.846 0.799

OCS 2.477 2.216 2.111 2.012 1.918 1.872

DCS 0.778 0.648 0.565 0.527 0.497 0.471

OABC 1.480 1.248 1.128 1.077 1.008 0.975

ABC1 1.022 0.873 0.797 0.738 0.712 0.664

ABC2 0.857 0.713 0.648 0.618 0.586 0.561

OBA 2.156 2.129 2.085 2.079 2.071 2.060

IBA 1.001 0.959 0.914 0.895 0.880 0.870

OMBO 0.953 0.826 0.795 0.778 0.768 0.758

IABC 0.567 0.438 0.399 0.373 0.331 0.322

IMBO 0.580 0.432 0.363 0.340 0.319 0.311

Algorithm
LAHC SA GA DPSO OCS DCS OABC ABC1 ABC2 OBA IBA OMBO IABC IMBO

A
ve

ra
ge

 R
PD

0.0

0.5

1.0

1.5

2.0

2.5

3.0
20
40
60

Fig. 6 Means plot and 95%

Tukey HSD confidence

intervals for the interactions

between algorithms and

termination criteria

Z. Li et al.

123

Design of Experiments approach and multi-factor analysis

of variance (ANOVA) technique. Firstly, two or three

values are selected for each parameter with other parameter

fixed. Secondly, all the combinations of the parameter

values solve a set of 10 instances with different sizes for 10

times with an elapsed computation time of nt � nt � 60 ms.

Finally, ANOVA test is conducted to select the best

parameter values where the parameters are selected as

controlled factors and the average RPD of all the instances

in one run is selected as response variable. This parameter

calibration method has been widely in literature (see (Li

et al. 2019b), (Çil et al. 2020) and many others) and hence

the detailed information are not provided here for space

reasons. After parameter calibration, the selected parameter

values of the IABC are as follows: population size is 5,

parameter limit is 500, and parameter r is 0.1. And in the

modified scout phase, this algorithm obtains 10 neighbor

solutions of one abandoned solution by conducting the

neighbor operators for two times. The selected parameter

values of the IMBO are as follows: population size is 5,

parameter k is 11, parameter x is 5, parameter m is 20,

parameter T init is 0.5, parameter a is 0.95 and parameter rt

is 500.

After conducting all the experiments, the achieved cycle

times are transferred into RPD values. As 10 runs and six

computation times are conducted, there are a number of

93 � 10 � 6 data to evaluate one algorithm statistically.

Table 7 provides the average RPD by implemented algo-

rithms when s is equal to 40 and 60. In this table, Instance

donates the size of the instances, where the number is the

number of tasks. Num. presents the number of cases with

different station numbers. The detailed results of the cycle

times in each run are not exhibited due to space limit, and

they are available upon request. As you can see, under

s ¼ 40, IMBO is the best performer with the overall

average RPD of 0.34, IABC is the second-best performer

with the overall average RPD of 0.37, and SA is the third-

best performer with the overall average RPD of 0.52. When

s ¼ 60, IMBO is also the best performer, IABC is the

second-best performer and SA is the third-best performer

again.

To have a direct observation of the algorithms’ perfor-

mance under different computation times, Table 8 provides

the overall average RPD values under s = 10, 20, 30, 40,

50 and 60, respectively. It is observed that all the algo-

rithms produce improvements when the computation time

increases. Meanwhile, the proposed IMBO and IABC are

the two best performers under all the termination criteria,

demonstrating the superiority of the IMBO and IABC over

the remained algorithms.

This study also conducts the statistical analysis to make

sure that the observed differences are statistically signifi-

cant. The ANOVA test is again utilized to analyze the

results here, where algorithms and termination criteria are

the controlled factors and the average RPD in one run is the

response variable. However, the initial ANOVA test shows

that normality of the residuals is not satisfied. In fact, this

situation lies behind that algorithms have quite different

performances, and the normality of the residuals can be

satisfied if we only consider the best three algorithms.

Meanwhile, the nonparametric Friedman test is also

applied to ascertain the findings by the ANOVA test. As

the Friedman test can only consider one controlled factor,

the Friedman test is conducted for six times utilizing the

different results under six termination criteria. The

ANOVA test shows that there is statistically significant

difference between the algorithms, the termination criteria

and the interactions of the two controlled factors. Friedman

test shows that there is statistically significant difference

between the algorithms under all the computation times.

Figure 6 illustrates the Means plot and 95% Tukey HSD

confidence intervals for the interactions. Clearly, IABC and

IMBO are the two best performers under all the compu-

tation time and they outperform the remained algorithms

statistically. All in all, the comparative study and the sta-

tistical analysis verify the superiority of the IMBO and

IABC over the compared algorithms, and, as a conse-

quence, they could be regarded as the effective and pow-

erful methods in solving the considered problem.

7 Conclusions and future research

Usage of collaborative robot (cobot) gains more and more

applications in recent days to assist the human workers in

the assembly line. This research studies the U-shaped

assembly line balancing problem with cobots to minimize

the cycle time, where several cobots of different types are

selected under the budget constraint. Three mixed-integer

linear programming (MILP) models are developed to for-

mulate this new problem, and these models are capable of

solving the small-size instance optimally. In addition, this

study develops two algorithms, improved artificial bee

colony algorithm and improved migrating bird optimiza-

tion algorithm to tackle the large-size instance effectively.

The two algorithms utilize the new encoding scheme and

decoding procedure to obtain feasible solution and propose

several improvements to enhance the exploitation and

exploration capacity.

A set of experiments are conducted to evaluate the

formulated models and developed algorithms. The experi-

mental results demonstrate that the utilization of collabo-

rative robots helps reduce the cycle time. And the

comparative study between the models shows that the

models can solve the small-size instances optimally,

whereas they cannot obtain satisfying solutions for the

Models and algorithms for U-shaped assembly line balancing problem with collaborative robots

123

large-size instances within the acceptable computation

time. The statistical analysis between the algorithms

demonstrates that proposed algorithms are the two best

performers and they outperform the other 12 implemented

methodologies.

The findings of this study can be utilized in the

U-shaped assembly line to obtain the smaller cycle time

and the developed algorithm might be integrated into the

decision support system to achieve high-quality solution to

assist the line manager to design the U-shaped assembly

lines. Future research stems from developing the branch,

bound and remember algorithm to solve the large-size

instance optimally to extending the considered problems.

This considered problem might be extended by considering

the cobot breakdown, the mixed-model U-shaped assembly

line, and the multiple objectives utilizing the multi-objec-

tive algorithms.

Acknowledgements This project is partially supported by National

Natural Science Foundation of China under grants 62173260 and

61803287 and China Postdoctoral Science Foundation under grant

2018M642928. The authors are grateful for the valuable comments by

the anonymous referees to improve this paper.

Funding The authors have not disclosed any funding. National Nat-

ural Science Foundation of China, 61803287, 51875421, Postdoctoral

Research Foundation of China, 2018M642928, Zixiang Li.

Data availability The data may be available from the authors upon

request.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Human and animal rights The authors did not use any humans and

animals in this research work.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Avikal S, Jain R, Mishra PK, Yadav HC (2013) A heuristic approach

for U-shaped assembly line balancing to improve labor produc-

tivity. Comput Ind Eng 64(4):895–901. https://doi.org/10.1016/j.

cie.2013.01.001

Battaı̈a O, Dolgui A (2013) A taxonomy of line balancing problems

and their solution approaches. Int J Prod Econ 142(2):259–277

Baykasoglu A, Dereli T (2009) Simple and U-type assembly line

balancing by using an ant colony based algorithm. Math Comput

Appl 14(1):1–12

Çil ZA, Li Z, Mete S, Özceylan E (2020) Mathematical model and

bee algorithms for mixed-model assembly line balancing prob-

lem with physical human–robot collaboration. Appl Soft Comput

93:106394. https://doi.org/10.1016/j.asoc.2020.106394

Çil ZA, Mete S, Özceylan E (2018) A mathematical model for semi-

robotic assembly line balancing problem: a case study. Int J Lean

Think 9(1):70–76

Dalle Mura M, Dini G (2019) Designing assembly lines with humans

and collaborative robots: a genetic approach. CIRP Ann

68(1):1–4. https://doi.org/10.1016/j.cirp.2019.04.006

Eghtesadifard M, Khalifeh M, Khorram M (2020) A systematic

review of research themes and hot topics in assembly line

balancing through the web of science within 1990–2017.

Computers Industr Eng 139:106182. https://doi.org/10.1016/j.

cie.2019.106182

Erel E, Sabuncuoglu I, Aksu BA (2001) Balancing of U-type

assembly systems using simulated annealing. Int J Prod Res

39(13):3003–3015. https://doi.org/10.1080/00207540110051905

Fattahi A, Turkay M (2015) On the MILP model for the U-shaped

assembly line balancing problems. Eur J Oper Res

242(1):343–346. https://doi.org/10.1016/j.ejor.2014.10.036

Hashemi-Petroodi SE, Thevenin S, Kovalev S, Dolgui A (2020)

Operations management issues in design and control of hybrid

human-robot collaborative manufacturing systems: a survey.

Annu Rev Control 49:264–276. https://doi.org/10.1016/j.arcon

trol.2020.04.009

Hwang RK, Katayama H, Gen M (2008) U-shaped assembly line

balancing problem with genetic algorithm. Int J Prod Res

46(16):4637–4649. https://doi.org/10.1080/00207540701247906

Janardhanan MN, Li Z, Bocewicz G, Banaszak Z, Nielsen P (2019)

Metaheuristic algorithms for balancing robotic assembly lines

with sequence-dependent robot setup times. Appl Math Model

65:256–270. https://doi.org/10.1016/j.apm.2018.08.016

Koltai T, Dimény I, Gallina V, Gaal A, Sepe C (2021) An analysis of

task assignment and cycle times when robots are added to

human-operated assembly lines, using mathematical program-

ming models. Int J Prod Econ 242:108292. https://doi.org/10.

1016/j.ijpe.2021.108292

Krüger J, Lien TK, Verl A (2009) Cooperation of human and

machines in assembly lines. CIRP Ann 58(2):628–646. https://

doi.org/10.1016/j.cirp.2009.09.009

Li Z, Dey N, Ashour AS, Tang Q (2018a) Discrete cuckoo search

algorithms for two-sided robotic assembly line balancing

problem. Neural Comput Appl 30(9):2685–2696. https://doi.

org/10.1007/s00521-017-2855-5

Li Z, Janardhanan MN, Ashour AS, Dey N (2019) Mathematical

models and migrating birds optimization for robotic U-shaped

assembly line balancing problem. Neural Comput Appl

31(12):9095–9111. https://doi.org/10.1007/s00521-018-3957-4

Li Z, Janardhanan MN, Rahman HF (2020) Enhanced beam search

heuristic for U-shaped assembly line balancing problems. Eng

Optim. https://doi.org/10.1080/0305215X.2020.1741569

Li Z, Janardhanan MN, Tang Q (2021) Multi-objective migrating bird

optimization algorithm for cost-oriented assembly line balancing

problem with collaborative robots. Neural Comput Appl

33(14):8575–8596. https://doi.org/10.1007/s00521-020-05610-2

Li Z, Janardhanan MN, Tang Q, Ponnambalam SG (2019) Model and

metaheuristics for robotic two-sided assembly line balancing

problems with setup times. Swarm Evolutionary Comput

50:100567. https://doi.org/10.1016/j.swevo.2019.100567

Z. Li et al.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cie.2013.01.001
https://doi.org/10.1016/j.cie.2013.01.001
https://doi.org/10.1016/j.asoc.2020.106394
https://doi.org/10.1016/j.cirp.2019.04.006
https://doi.org/10.1016/j.cie.2019.106182
https://doi.org/10.1016/j.cie.2019.106182
https://doi.org/10.1080/00207540110051905
https://doi.org/10.1016/j.ejor.2014.10.036
https://doi.org/10.1016/j.arcontrol.2020.04.009
https://doi.org/10.1016/j.arcontrol.2020.04.009
https://doi.org/10.1080/00207540701247906
https://doi.org/10.1016/j.apm.2018.08.016
https://doi.org/10.1016/j.ijpe.2021.108292
https://doi.org/10.1016/j.ijpe.2021.108292
https://doi.org/10.1016/j.cirp.2009.09.009
https://doi.org/10.1016/j.cirp.2009.09.009
https://doi.org/10.1007/s00521-017-2855-5
https://doi.org/10.1007/s00521-017-2855-5
https://doi.org/10.1007/s00521-018-3957-4
https://doi.org/10.1080/0305215X.2020.1741569
https://doi.org/10.1007/s00521-020-05610-2
https://doi.org/10.1016/j.swevo.2019.100567

Li Z, Kucukkoc I, Tang Q (2017) New MILP model and station-

oriented ant colony optimization algorithm for balancing U-type

assembly lines. Comput Ind Eng 112:107–121. https://doi.org/

10.1016/j.cie.2017.07.005

Li Z, Kucukkoc I, Zhang Z (2018b) Branch, bound and remember

algorithm for U-shaped assembly line balancing problem.

Comput Ind Eng 124:24–35. https://doi.org/10.1016/j.cie.2018.

06.037

Miltenburg GJ, Wijngaard J (1994) The U-line line balancing

problem. Manage Sci 40(10):1378–1388

Nilakantan JM, Ponnambalam S (2016) Robotic U-shaped assembly

line balancing using particle swarm optimization. Eng Optim

48(2):231–252

Nourmohammadi A, Fathi M, Ng AHC (2022) Balancing and

scheduling assembly lines with human-robot collaboration tasks.

Computers Op Res 140:105674. https://doi.org/10.1016/j.cor.

2021.105674

Oksuz MK, Buyukozkan K, Satoglu SI (2017) U-shaped assembly

line worker assignment and balancing problem: a mathematical

model and two meta-heuristics. Comput Ind Eng 112:246–263.

https://doi.org/10.1016/j.cie.2017.08.030

Özcan U, Toklu B (2009) A new hybrid improvement heuristic

approach to simple straight and U-type assembly line balancing

problems. J Intell Manuf 20(1):123–136. https://doi.org/10.1007/

s10845-008-0108-2

Rabbani M, Behbahan SZB, Farrokhi-Asl H (2020) The collaboration

of human-robot in mixed-model four-sided assembly line

balancing problem. J Intell Rob Syst 100(1):71–81. https://doi.

org/10.1007/s10846-020-01177-1

Sabuncuoglu I, Erel E, Alp A (2009) Ant colony optimization for the

single model U-type assembly line balancing problem. Int J Prod

Econ 120(2):287–300. https://doi.org/10.1016/j.ijpe.2008.11.017

Samouei P, Ashayeri J (2019) Developing optimization and robust

models for a mixed-model assembly line balancing problem with

semi-automated operations. Appl Math Model 72:259–275.

https://doi.org/10.1016/j.apm.2019.02.019

Scholl A, Klein R (1999) ULINO: Optimally balancing U-shaped JIT

assembly lines. Int J Prod Res 37(4):721–736. https://doi.org/10.

1080/002075499191481

Urban TL, Chiang W-C (2006) An optimal piecewise-linear program

for the U-line balancing problem with stochastic task times. Eur

J Op Res 168(3):771–782. https://doi.org/10.1016/j.ejor.2004.07.

027

Weckenborg C, Kieckhäfer K, Müller C, Grunewald M, Spengler TS

(2020) Balancing of assembly lines with collaborative robots.

Bus Res 13:93–132. https://doi.org/10.1007/s40685-019-0101-y

Weckenborg C, Spengler TS (2019) Assembly line balancing with

collaborative robots under consideration of ergonomics: a cost-

oriented approach. IFAC-PapersOnLine 52(13):1860–1865.

https://doi.org/10.1016/j.ifacol.2019.11.473

Weckenborg C, Thies C, Spengler TS (2022) Harmonizing ergo-

nomics and economics of assembly lines using collaborative

robots and exoskeletons. J Manuf Syst 62:681–702. https://doi.

org/10.1016/j.jmsy.2022.02.005

Yaphiar S, Nugraha C, and Ma’ruf A (2020). Mixed Model Assembly

Line Balancing for Human-Robot Shared Tasks. Paper presented

at the International Manufacturing Engineering Conference and

The Asia Pacific Conference on Manufacturing Systems 2019,

Singapore.

Zhang Z, Tang Q, Han D, Li Z (2019) Enhanced migrating birds

optimization algorithm for U-shaped assembly line balancing

problems with workers assignment. Neural Comput Appl

31(11):7501–7515. https://doi.org/10.1007/s00521-018-3596-9

Zhang Z, Tang Q, Li Z, Zhang L (2019b) Modelling and optimisation

of energy-efficient U-shaped robotic assembly line balancing

problems. Int J Prod Res 57(17):5520–5537. https://doi.org/10.

1080/00207543.2018.1530479

Zhang Z, Tang Q, Ruiz R, Zhang L (2020) Ergonomic risk and cycle

time minimization for the U-shaped worker assignment assembly

line balancing problem: a multi-objective approach. Computers

Op Res 118:104905. https://doi.org/10.1016/j.cor.2020.104905

Zhang Z, Tang Q, Zhang L (2019c) Mathematical model and grey

wolf optimization for low-carbon and low-noise U-shaped

robotic assembly line balancing problem. J Clean Prod

215:744–756. https://doi.org/10.1016/j.jclepro.2019.01.030

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Models and algorithms for U-shaped assembly line balancing problem with collaborative robots

123

https://doi.org/10.1016/j.cie.2017.07.005
https://doi.org/10.1016/j.cie.2017.07.005
https://doi.org/10.1016/j.cie.2018.06.037
https://doi.org/10.1016/j.cie.2018.06.037
https://doi.org/10.1016/j.cor.2021.105674
https://doi.org/10.1016/j.cor.2021.105674
https://doi.org/10.1016/j.cie.2017.08.030
https://doi.org/10.1007/s10845-008-0108-2
https://doi.org/10.1007/s10845-008-0108-2
https://doi.org/10.1007/s10846-020-01177-1
https://doi.org/10.1007/s10846-020-01177-1
https://doi.org/10.1016/j.ijpe.2008.11.017
https://doi.org/10.1016/j.apm.2019.02.019
https://doi.org/10.1080/002075499191481
https://doi.org/10.1080/002075499191481
https://doi.org/10.1016/j.ejor.2004.07.027
https://doi.org/10.1016/j.ejor.2004.07.027
https://doi.org/10.1007/s40685-019-0101-y
https://doi.org/10.1016/j.ifacol.2019.11.473
https://doi.org/10.1016/j.jmsy.2022.02.005
https://doi.org/10.1016/j.jmsy.2022.02.005
https://doi.org/10.1007/s00521-018-3596-9
https://doi.org/10.1080/00207543.2018.1530479
https://doi.org/10.1080/00207543.2018.1530479
https://doi.org/10.1016/j.cor.2020.104905
https://doi.org/10.1016/j.jclepro.2019.01.030

	Models and algorithms for U-shaped assembly line balancing problem with collaborative robots
	Abstract
	Introduction
	Literature review
	Problem description and formulation
	Problem description
	Model formulation

	Implemented metaheuristic methodologies
	Encoding and decoding
	Improved artificial bee colony algorithm
	Improved migrating bird optimization algorithm
	Utilized neighbor structure

	An illustrated example
	Computational study
	Experimental design
	Evaluating the model
	Evaluating the implemented algorithms

	Conclusions and future research
	Data availability
	References

