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Abstract
5G technology is intended to support three promising services with heterogeneous requirements: Ultra-Reliable and Low

Latency Communication (uRLLC), enhanced Mobile Broadband (eMBB), and massive Machine Type Communication

(mMTC). 6G is required to support even more challenging scenarios, including the presence of a large number of uRLLC

devices, under the massive uRLLC (mURLLC) use case scenario. The presence of these services on the same network

creates a challenging task of resource allocation to meet their diverse requirements. Given the critical nature of uRLLC

applications, uRLLC traffic will always have the highest priority which causes a negative impact on the performance of

other services. In this paper, the problem of uRLLC/eMBB resource allocation is investigated. An optimal resource

allocation scheme is proposed with two scenarios including a guaranteed fairness level and minimum data rate among

eMBB users. In addition, a knapsack-inspired punctured resource allocation algorithm is proposed where the users’ channel

qualities of both services are considered at each time slot leading to the most suitable Resource Block (RB) selection for

puncturing in a way that minimizes the negative impact on eMBB performance. The proposed solution was compared with

three puncturing baseline reference algorithms and the performance was evaluated in terms of eMBB Sum throughput and

Fairness level. The simulation results show that the proposed algorithm outperforms the above-mentioned reference

algorithms in all evaluation metrics and is proved to be comparable to the optimal solution given its low complexity.

Keywords 5 G/6 G � uRLLC � eMBB � Resource allocation

1 Introduction

The massive technological development in electronic

devices facilitated the emergence of new applications (e.g.,

Artificial intelligence (AI), Big Data analysis, the Internet

of everything, Virtual Reality (VR), etc.) having a ubiq-

uitous influence on people’s lives. Nonetheless, these

applications produce a huge amount of data traffic in

addition to requiring continuous connectivity, raising one

of the most challenging tasks for today’s cellular

communication technologies to overcome. It is expected

for Smart Phones, Tablets, Routers and Mobile PCs com-

bined data traffic to reach 169 exabytes/month by the end

of 2027 compared to 18 exabytes/month in 2022 [1], which

certainly frames the technical objectives of the future cel-

lular system. In addition, the supported applications like

Virtual reality (VR), Remote surgery, Intelligent Trans-

portation Systems, High Voltage Electricity distribution,

and Industrial Control have different requirements. It is

clear that handling these heterogeneous requirements is a

challenging task and considered one of the reasons the

International Telecommunication Union (ITU) classified

the services 5 G is envisioned to support into different

categories [2, 3]. The first one is enhanced Mobile

Broadband (eMBB) which aims to provide high data rates,

high user mobility, and better connectivity which is

essential for human-centric applications [3, 4]. The second

category is massive Machine Type Communications

(mMTC), designed to provide efficient connectivity to a

massive number of devices and it is considered one of the
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main enablers of the Internet of Things (IoT) [5]. Lastly,

ultra-Reliable and Low Latency Communication (uRLLC),

which is specifically designed for mission-critical appli-

cations targeting 99.999% reliability and as low as 1 ms

latency [6]. Moreover, 6 G is envisioned to support mas-

sive uRLLC (mURLLC) combing the requirements of

mMTC and uRLLC use cases realizing that IoT devices are

expected to reach a massive number of 25 billion in 2025

[7, 8]. This illustrates the size of traffic the BS might

encounter that is likely to belong to mission-critical

applications requiring high priority over others. While

classifying these services into different classes helps in

identifying the applications by which these services are

used and thus assigning suitable priority levels for each in

order to support all applications efficiently, this created a

new obstacle towards achieving the best operational per-

formance. The coexistence of these services with their

heterogeneous requirements within the same network

infrastructure creates a challenging resource allocation

problem given that the operators are tied by a finite

bandwidth (BW) and limited operational cost budget to

satisfy their Quality of Service (QoS) requirements. Thus,

providing the QoS requirements of uRLLC users will

automatically reduce the resources available for the exist-

ing eMBB users. What complicates the situation further is

the fact that uRLLC has a stochastic nature in which it has

unexpected arrival at the BS that needs to consider the size

of the incoming traffic, the availability of the resources,

and the unstable radio channel conditions while being

forced to serve the uRLLC momentarily given its strict

latency and reliability requirements. The 3rd Generation

Partnership Project (3GPP) proposed two scheduling

approaches to handle the uRLLC traffic. The first approach

is known as reservation-based scheduling while the other

one is known as instant scheduling (Preemptive/Puncturing

scheduling) [9–11]. The first approach uses a uRLLC

reservation-based frame to handle any unexpected traffic. It

can either use static or dynamic resource reservation. Static

reservation method tends to send the frame structure that

holds the transmission configurations (e.g., adapted

Numerology) in an intermittent fashion. Unlike the static

reservation method, in dynamic reservation, the frame

structure is sent frequently to the UE. This approach causes

a control signaling overhead and the resources reserved for

the uRLLC might be wasted in the case where there are no

incoming uRLLC data. The second approach (known as

Instant scheduling) aims to serve any incoming uRLLC

traffic instantly using short Transmission Time Intervals

(TTIs) of 2,4,7 OFDM symbols (mini slot-based schedul-

ing) [12, 13]. While this approach might cause an inter-

ruption to ongoing transmissions of other applications and

might cause huge performance degradation of other ser-

vices, it is still considered a more efficient approach as it

can be relied on to support the strict latency requirements

of uRLLC.

Consequently, it is important to investigate joint opti-

mization of resource alloation for both eMBB and uRLLC,

in order to satisfy the stringent requirements of uRLLC

without impacting (or while minimizing the impact on)

eMBB users. Such a joint optimization gains additional

importance in a beyong 5 G/6 G scenario, where an

increased number of uRLLC users in an mURLLC scenario

further impacts eMBB users. In our previous work [14], a

basic attempt was made to investigate joint resource allo-

cation for eMBB and uRLLC, where the problem was

formulated and a single suboptimal algorithm was pro-

posed. In this paper, we provide significant enhancements

by (i) considering both the problem formulation and

deriving the optimal solution, (ii) proposing four subopti-

mal algorithms and comparing their performance, (iii)

implementing additional fairness criteria, and (iv) gener-

ating an extensive set of simulation results.

Hence, in this paper, both optimal and sub-optimal

approaches have been adopted aiming to find the most

suitable RB at every time slot for puncturing according to

different criteria. The main common constraint in both

approaches is satisfying the requirements of the existing

uRLLC traffic at each time slot. The main contributions of

this work are summarized as follows:

1. Formulating the problem of resource allocation as an

optimization problem aiming to maximize the sum

throughput of eMBB users in the presence of uRLLC

traffic with different intensities and outage

probabilities,

2. Deriving the solution of the optimization problem

under two constraints where a pre-defined fairness

level or a guaranteed minimum data rate among eMBB

users is enforced in each scenario,

3. Proposing different practical sub-optimal resource

allocation algorithms that perform efficient resource

allocation in a joint eMBB-uRLLC scenario, while

taking different constraints into consideration, and

4. Comparing the performance of the proposed algo-

rithms in various scenarios and analyzing their perfor-

mance tradeoffs.

The rest of the paper is structured as follows. In Sect. 2, we

review some of the related works in the literature. In

Sect. 3, we introduce the system model and formulate the

problem. In Sect. 4 we provide and discuss the numerical

simulation results. Finally, we present the conclusion in

Sect. 5.
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2 Related work

Several references have investigated resource allocation in

5 G and beyond networks. For example, in [15], joint

scheduling of guaranteed bit rate (GBR) and non-GBR

services in 5 G was studied, although eMBB users only

were considered for both cases (GBR and non-GBR).

Resource allocation for 5 G and beyond was studied

in [16], where heterogeneous networks with macrocells,

small cells, and femtocells were considered. However,

uRLLC was not considered except in the discussion of

network slicing, but joint eMBB-uRLLC scheduling was

not investigated. Similarly, uRLLC slices were mentioned

in [17, 18], where the focus is on 5 G vehicular scenarios

(V2X), whereas [19] investigated 5 G IoT scenarios.

In this section, we discuss the most relevant related

works that highlight the problem of resource allocation of

eMBB and uRLLC traffic. Different techniques are studied

in this section that involves both instant and reservation-

based scheduling. In [20], the authors propose an online

joint scheduling framework algorithm of eMBB and

uRLLC, formalizing and solving the problem of resource

puncturing on eMBB traffic. The authors used different

models to tackle this problem. The linear model is used

when the degradation in eMBB data rates is directly pro-

portional to the amount of punctured resources in which an

optimal resource scheduling algorithm is introduced. The

scheduler targets the stochastic nature of uRLLC traffic and

aims to place it in a uniform random fashion in each slot

while scheduling the eMBB UE via an iterative greedy

method that considers the expected degradation in eMBB

data rates. The Convex model is used when the uRLLC

traffic can be modeled as a convex function. The decom-

position of this model is not as efficient as the linear model

making an optimal allocation more difficult. This led the

authors to adopt a simpler uRLLC traffic placement model

which is fixed across the whole time slot (across all mini-

slots). In [21], the authors propose a downlink scheduling

algorithm that aims to satisfy a minimum achievable

eMBB data rate with an optimal resource allocation for

uRLLC traffic. They address eMBB and uRLLC users with

pending retransmissions with uRLLC having the highest

priority in order to satisfy the reliability constraint. Maxi-

mizing the minimum eMBB data rate is based on two

preferences in which the first one is the expected eMBB

data rate till time slot t. The second preference is based on

the uRLLC placement strategy which is derived according

to historical uRLLC latency and reliability demands. The

resource allocation decision is based on these two metrics

and the results show a noticeable improvement in this

approach over random resource allocation schemes. In

[22], the authors formulated the resource allocation

problem in terms of the eMBB data rate and uRLLC

interrupt probability requirement. The proposed approach

includes a resource block allocation scheme that satisfies

the reliability requirements of uRLLC. This reliability is

evaluated by measuring the transmission power of uRLLC

users and the users’ outage probability. The proposed

scheme is based on the allocation of RBs where uRLLC

users experience the best channel conditions and the sim-

ulation results indicated that both maximizing the eMBB

data rate and satisfying the reliability requirements of

uRLLC can be achieved using the proposed algorithm. In

[23], resource allocation was formulated as an optimization

problem. The authors’ approach was based on superposi-

tion and puncturing schemes governed by the preference

profiles of eMBB and uRLLC users. The preference profile

is based on the ability of uRLLC users to tolerate the

degradation of their QoS. The solution includes the clas-

sification of uRLLC users depending on their geographical

location which helps in predicting the willingness of

uRLLC users to opt for superposition instead of resource

puncturing in a contract-based framework. In [24], the

authors adopted the network slicing approach in which the

resource allocation problem was formulated as a risk-sen-

sitive form that aims to enhance the reliability of eMBB

and uRLLC traffic. A deep reinforcement learning

approach has been adopted for maximizing the average

data rate of eMBB UE and minimization of eMBB data rate

variance. The results indicated that the proposed work

could satisfy the requirements of uRLLC while preserving

the desired reliability level of eMBB users. In [25], the

authors proposed a non-orthogonal multiple access

(NOMA) based solution for the problem of resource allo-

cation of eMBB and uRLLC. The solution depends on

matching theory by finding the optimal pairs of users upon

performing superposition, in order to satisfy the QoS

requirements of uRLLC and maintain fairness among

eMBB UE. Numerical results showed that the authors

proposed work can provide a high minimum expected

achieved data rate (MEAR) for eMBB UEs while pre-

serving fairness using different 5 G NR numerologies. In

[26], the authors proposed dynamic joint scheduling for

eMBB and uRLLC traffic. The uRLLC latency requirement

has been satisfied based on a queuing methodology, eval-

uated in terms of outage probability and throughput. The

eMBB data rate was also maximized by deriving and

solving an outage-constrained stochastic optimization

problem where resource puncturing is adopted in the

solution. The simulation results indicated that the proposed

solution outperforms a non-queuing approach. In [27], the

authors proposed a superposition-based approach in which

one-to-one pairing of eMBB and uRLLC users is adopted

aiming to overcome the high complexity of the original

optimization problem. The solution has been evaluated in
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terms of eMBB data rate loss, uRLLC packet segmentation

loss, and admission rate taking into consideration different

loss thresholds for each case. The main pairing criteria is

avoiding segmentation where a single uRLLC packet can

only be paired with one eMBB user. The optimal pairing is

based on power and resource allocation that minimizes

eMBB data rate loss. In [28], the authors formulated an

integer programming problem and solved it using two

methods, convex relaxation, and a fairness-aware greedy

algorithm. The resource allocation for uRLLC depends on

the decisions of the eMBB scheduler. The objective is to

select a suitable user satisfying the latency and reliability

requirements represented by an end-to-end delay budget

and probability of failure. The greedy approach is based on

calculating the proportional fairness weight that depends

on the previously achieved eMBB data rate and the priority

is given to the RBs requested by the uRLLC user. In [29],

the authors reformulated the problem of maximizing

eMBB throughput into a conflict minimization problem

between eMBB and uRLLC services. The solution lever-

ages the free selection of multi-numerology offered in 5 G

NR and the conflict minimization is considered a case of

bin packing optimization. The eMBB throughput maxi-

mization is linked to the minimization of aggregated con-

flict upon the selection of each RB for uRLLC placement.

The results show that high resource efficiency can be

achieved using the proposed approach with linear com-

plexity. In [30], the authors proposed a hybrid approach

that maximizes the average throughput of eMBB users and

the uRLLC admission rate. Their approach is based on

superposition and puncturing for eMBB and uRLLC

downlink transmission where they derive a sub-optimal

solution to the problem using sequential convex program-

ming. Maximizing the average data rate is used as a

method to preserve fairness among eMBB users aiming to

provide better spectral efficiency and a stationary eMBB

QoS.

The main motivation behind this work is the fact that a

lot of the reviewed papers in the literature are based on

some assumptions that might limit their practicality in the

case of uRLLC, especially when it deals with mission-

critical applications. Some of the papers assume a higher

delay budget for the uRLLC traffic or a certain level of

processing power. Reinforcement learning for instance that

is based on benefiting from previous experience when

making decisions (learning via trial and error) might not

necessarily work with uRLLC, e.g., when considering

remote surgery that cannot tolerate even a small margin of

error. Contract-based approaches between eMBB and

uRLLC users do not consider the amount of uncertainty the

BS has to deal with when assigning resources. This

includes the uRLLC traffic density, arrival rate, QoS

requirements, and channel quality of the uRLLC users.

Moreover, Superposition based approaches, which are

based on the idea of simultaneous transmissions by the BS

to both eMBB and uRLLC users, are also found in the

literature. Although this approach lowers the impact on

eMBB users, it assumes the ability of the uRLLC end

device to perform Successive Interference Cancelation

(SIC). IoT is one example of devices with low processing

power where SIC might be difficult to implement. Thus,

this work addresses these limitations in the literature by

adopting the resource puncturing approach. Four different

algorithms are investigated: the first one achieves uRLLC

requirements regardless of their impact on eMBB users.

The second algorithm focuses on protecting the cell-edge

eMBB users suffering from low data rates, whereas the

third one aims to maximize the eMBB sum-throughput

while achieving uRLLC requirements. Finally, the main

novelty is in the fourth algorithm that strikes a delicate

balance between maximizing eMBB sum-throughput and

maintaining fairness among eMBB UEs, while meeting the

QoS requirements of uRLLC UEs.

2.1 Heuristic scheduling algorithms

One of the key features of the current generation of com-

munication networks is the Radio Resource Management

(RRM) techniques that are utilized to improve system

performance. One of the important parameters to achieve

this desired improvement are Packet scheduling algorithms

which play an important role in allocating resources rep-

resented by frequency and time to the connected users.

These algorithms consider channel quality condition and

the QoS requirements of these users when making the

resource allocation decision aiming to provide an optimal

tradeoff between system throughput, spectral efficiency,

and fairness. These algorithms work at the base station and

are responsible for allocating fractions of the spectrum to

the connected users.

2.1.1 Proportional fairness in time and frequency (PFTF)

The main objective of this scheduler is to balance between

maximizing the data rate and fairness among the users. It is

considered a channel-aware and QoS-unaware scheduler.

The utility function of this scheduler is written below

[31, 32]:

U ¼ max
i

riðk; tÞ
RiðtÞ þ

Pm
j¼1 riðj; tÞ

" #

ð1Þ

where
Pm

j¼1 riðj; tÞ is the total data rate of user i along all

the resource blocks j ¼ 1 to m which are allocated to it at

TTI t. The notation riðk; tÞ is used to describe the instan-

taneous throughput of user i at time t (The amount of data
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the BS can transmit to user i at time t using RB k) which is

directly dependent on the channel condition of user i.

Equation (2) expresses the well-known Shannon capacity

which is the data rate at which the data can be transmitted

reliably (i.e., small error probability).

riðk; tÞ ¼BWk log2 1þ SNRiðk; tÞ½ � ð2Þ

riðtÞ ¼
Xm

j¼1

riðj; tÞ ð3Þ

where BW is the available bandwidth allocated to RB k and

SNRiðk; tÞ is the achieved Signal to Noise ratio of user i at

RB k at time slot t assuming that user i is experiencing

equal SNR in all subcarriers of RB k. riðtÞ is the total data

rate of user i over all its allocated RBs at time slot t. RiðtÞ is
the average throughput of user i during a fixed size time

window tc [33] as shown in Eq. (4).

RiðtÞ ¼ 1� 1

tc

� �

� Riðt � 1Þ þ 1

tc
� riðtÞ ð4Þ

2.1.2 Maximum-largest weighted delay first (M-LWDF)

This scheduler is designed to serve real-time users, and

unlike PFTF, it considers the QoS requirements of these

users including their Delay budget DQoS and the lifetime

expiration of their packets (Packet Loss Rate) PLRQoS [34].

Its utility function is written below:

U ¼max
i

Qi � Diðt � 1Þ riðk; tÞ
RiðtÞ

� �

ð5Þ

Qi ¼
� log DQoSð Þ
PLRQoS

ð6Þ

where Qi is the parameter that considers the QoS require-

ments of user i and parameter Diðt � 1Þ is the Head of the

Line packet delay addressed to user i. In addition to those

two algorithms, we considered the BestCQI allocation

algorithm which aims to provide resources for the users

with the highest Channel Quality Indicator (CQI).

2.2 Frame structure

6 G is expected to inherit one of the unique features of 5 G

which is the flexible frame structure it offers. The frame

structure is a grid of time and frequency in which the

frequency domain is divided into a number of Resource

Blocks (RBs) depending on the available Bandwidth. Each

resource block includes 12 subcarriers. Moreover, different

numerologies are supported where each numerology has a

different value of subcarrier spacing (SCS). SCS equals to

15 � 2M KHz (M can take a value between 0 and 4) and

ranges between 15 and 240 kHz. Higher Subcarrier spacing

values are used for higher frequencies in order to reduce

the Inter-Carrier Interference (ICI). The time domain

consists of subframes where each subframe might contain

one or more time slots. The duration of each subframe is 1

ms while the duration of the time slots is scalable. The

scalability of the time slot duration is subject to the size of

the subframe and size of the SCS where these slots must

not cross the boundary of the subframe and can range from

0.125 to 1 ms. The time slot usually consists of 14 OFDM

symbols and the Cyclic prefix (CP) is used with different

lengths (depending on the SCS) in order to mitigate the

effect of Inter-Symbol Interference (ISI). Another impor-

tant feature is the scalable TTI as the number of OFDM

symbols per TTI can vary according to the network pref-

erence. This feature enables the scheduling of UE on Slot

(14 OFDM symbols) and Mini-Slot (1–13 OFDM symbols)

basis. TTI length can be adjusted by either reducing the

number of OFDM symbols per TTI or by increasing the

SCS and thus reducing the OFDM symbol duration. For

instance, if the TTI is 0.125 ms, the UE can be scheduled in

a slot-based fashion with an SCS of 120 kHz or they can be

scheduled in a Mini-Slot based fashion by using an SCS of

15 kHz and mini-slot size of 3 OFDM symbols [6, 11–13].

Mini-Slot-based scheduling plays a crucial role in enabling

uRLLC as the short TTI means a shorter processing time in

addition to avoiding unnecessary delay, waiting to the next

time slot for transmission.

3 System model and problem formulation

The system model is shown in Fig. 1. This figure provides

an overview of the joint eMBB/uRLLC resource allocation

scenario with puncturing, where the resources allocated to

two eMBB UEs are punctured in order to serve a uRLLC

UE that joins the network. In this section, we introduce the

ideas of optimal and sub-optimal resource allocation,

highlighting the qualities of each solution and explaining

the reasons why one can be preferred over the other under

specific scenarios.

3.1 Optimal resource allocation of eMBB/uRLLC
traffic

In this part, we address the resource allocation problem of

uRLLC and eMBB while considering the optimal solution

to the problem. The aim is to highlight the importance of

considering stochastic optimization and how the resource

allocation problem is dealt with under uncertainty, which is

caused by the mobility of the users, continuously changing

propagation environments in addition to the availability of

the resources themselves. We use a problem formulation

adapted from [35–37] with an added constraint that
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guarantees a minimum data rate among eMBB UEs. The

optimal allocation problem takes into consideration eMBB

and uRLLC UEs in which the optimization variables are

the fractions of BW each service acquires from the BS. The

uRLLC payload is treated as a random variable derived

from a random distribution with different rate parameters

which form a chance (probability) constraint optimization

problem. The probability constraint found in the opti-

mization problem representing the uRLLC payload can be

transformed into a deterministic form using the Cumulative

distribution function (CDF) that corresponds to the random

distribution used to represent the uRLLC flow (i.e., cal-

culating the probability that the uRLLC payload will take a

value equal or less than a specific size). We considered the

desired outage probability, which uRLLC must not exceed,

in the formulation. The problem formulation of our pro-

posed work is shown below (we drop the time variable t to

avoid overcrowding the equations, whenever no confusion

can occur):

max
j

Xn

i¼1

Bi � BiuðjÞð Þ log2 1þ SNRið Þ ð7Þ

s.t.

P
Xm

j¼1

BiuðjÞ log2 1þ SNRuðjÞð Þ\Lu

" #

� c ð7aÞ

Xm

j¼1

BiuðjÞ�BW ð7bÞ

Bi � BiuðjÞð Þ log2 1þ SNRið Þ� r 8i 2 E ð7cÞ

where Bi and Biu represent the amount of resources allo-

cated and punctured to/from eMBB user i. SNRi is the

Signal to Noise ratio of eMBB user i. n is the number of

eMBB UEs and m is the total number of mini-slots

assigned to uRLLC UE. Lu is the size of uRLLC payload

and c represents the required reliability level of uRLLC

traffic or it can be described as the confidence level for

uRLLC users in which their data is transmitted within their

latency budget (i.e., 1 ms). BW is the available bandwidth.

The term E represents the set of eMBB users with RBs

Fig. 1 System model: a eMBB UEs only; b eMBB UEs with one uRLLC UE; punctured resources from two eMBB UEs are shown (to serve the

URLLC UE)
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allocated to them at time slot t and r is the minimum data

rate, pre-specified for each of those eMBB UEs. Constraint

(7c) ensures a minimum data rate of r for each eMBB UE

at time slot t.

In this approach, we are assuming that the bandwidth is

fully used by the eMBB UEs and a uRLLC traffic arrives at

each time slot with different payload sizes. The puncturing

of resources is based on the size of the mini-slots or the TTI

of the uRLLC while the initial allocation of the resources is

a slot based with a length of 1 ms. A number of error

probability thresholds were considered for the sake of

comparing our work to [36].

It is important to mention that providing a reasonable

fairness level among eMBB users cannot always be feasi-

ble because of the variation in these users’ channel con-

ditions. In other words, eMBB users with bad channel

conditions might not be able to achieve a data rate close to

those with better channel conditions, and forcing a certain

fairness level on the optimization algorithm would lead to

serious degradation in the sum throughput of the eMBB

users in addition to the spectral efficiency. This is caused

by forcing the optimizer to lower the data rates (i.e., pro-

vide fewer resources) to eMBB users with good channel

condition in order to satisfy the desired fairness level which

has a massive negative impact on the overall sum

throughput of eMBB users. This is the main reason why we

opt for considering a minimum data rate for eMBB users

instead of forcing a fairness level. This idea can protect

eMBB UEs at the cell edge from starvation and provide

them with acceptable data rates. Moreover, this method

would also elevate the sum throughput by not limiting the

achievable data rates of eMBB UEs with good channel

conditions.

Constraint (7a) can be transformed into a deterministic

form using CDF which helps in avoiding the complexity

that comes along with any stochastic variable. This method

can be quite inefficient as the deterministic form can

sometimes be very complex depending on the random

distribution from which the random variable is derived and

the CDF of this distribution. In our case, a Pareto distri-

bution is used to produce the uRLLC load. This would

enable us to work with a relatively simple CDF outcome

that can be easily relaxed in our optimization process. The

idea is that if X is a Pareto random variable, we can cal-

culate the probability that X is greater than a value x. The

CDF of the Pareto distribution is given as follows:

FXðxÞ ¼
1� xm

x

� �a
x� xm

0 x\xm

(

ð8Þ

where xm is the minimum positive value of x and represents

the scale parameter of the Pareto distribution. a is a posi-

tive value that represents the shape parameter of the Pareto

distribution. We can apply (8) on the constraint (7a) as

shown below: let us assume that the term u represents the

outage probability of the uRLLC users.

u ¼ P
Xm

j¼1

BiuðjÞ log2 1þ SNRuðjÞð Þ\Lu

" #

� c ð8aÞ

Then, we apply (8) to u as shown below.

P u\Lu½ � � c , 1� FXðuÞ� c ð8bÞ

, FXðuÞ� ð1� cÞ ð8cÞ

, u�F�1
X ð1� cÞ ð8dÞ

, ua � xam
c

ð8eÞ

Here, F�1
X ð1� cÞ is the inverse CDF of uRLLC load

which is evaluated using the reliability level defined earlier

that simply ensures the delivery of the uRLLC load with its

latency budget regardless of the payload size. Equation (8a)

shows how the uRLLC random payload size is transformed

into a deterministic form based on a predefined reliability

level c. As a result, the constraint in (7a) can be redefined

as follows:

Xm

j¼1

BiuðjÞ log2 1þ SNRuðjÞð Þ
 !a

� xm
c

� �a

ð9Þ

where xm and a are the scale and the shape of the Pareto

distribution respectively. The formulation is now following

a convex form and thus a global maximum can be

achieved.

3.2 Sub-optimal resource allocation of eMBB/
uRLLC traffic

The optimal allocation has been addressed intensively in

the literature where most of the time the solution is with

high complexity. The uRLLC traffic as indicated earlier

has a stochastic nature and strict requirements and needs to

be served instantaneously. This is one of the reasons why

low-complexity solutions are considered more practical

even with their lower efficiency when compared to the

optimal approaches. At the BS, the resource allocation

decision must be taken immediately, and the need for

complex calculations makes it difficult to cope with the

traffic density and satisfy the diverse requirements of dif-

ferent services. In this part, we address eMBB-aware

scheduling algorithms for uRLLC with each having a dif-

ferent objective. All these algorithms are based on the

resource puncturing approach in which the uRLLC is

instantly served upon arrival. The main idea is to test dif-

ferent resource puncturing algorithms that would provide

the best performance possible for both eMBB and uRLLC.
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The puncturing process is vital in determining the level of

impact on every user. Moreover, the decision of RB

selection has a crucial role in elevating the efficiency of the

puncturing algorithm. Different parameters are considered

in making the puncturing decision upon uRLLC traffic

arrival. The channel conditions of both eMBB and uRLLC

users represent the most important factor in the decision as

it affects the users’ data rates directly since each user might

experience different channel quality at each RB. These

channel conditions are estimated by the BS through chan-

nel state information feedback, that is sent regularly by the

UEs to the BS. It is important to consider the state of the

user at these RBs before puncturing in order to preserve

fairness among eMBB users, provide better reliability for

uRLLC, and to maximize the data rate of each eMBB user.

3.2.1 Best resource block for uRLLC (Algorithm 1)

The objective of the first algorithm is to provide the best

possible reliability level for uRLLC traffic considering the

channel condition of the selected uRLLC UE. This is done

by allocating RBs with the best channel condition of the

selected uRLLC UE. This algorithm not only provides

uRLLC UE with better reliability levels, but also prevents

the puncturing of extra resources in order to satisfy the

latency requirements of the uRLLC traffic. In fact, better

channel conditions mean a higher Modulation and Coding

scheme value can be assigned to the uRLLC UE and thus

more data can be transmitted using fewer resources. Slot

boundary is taken into account and the algorithm is updated

once the RB is entirely consumed, moving to another RB

where the uRLLC UE channel condition is the best com-

pared to the other available RBs.

3.2.2 Protecting eMBB UE at the cell edge (Algorithm 2)

The second algorithm aims to protect the eMBB UE at the

edge level in order to prevent their starvation. Users at the

cell edge most likely suffer from bad channel conditions

and cannot generally tolerate the effect of puncturing their

resources. The CQI of each user is an important indicator

that would help the BS to distinguish and apply protection

policies that would lower the impact on these users. Pro-

tecting those users can be achieved by allowing the

resource puncturing of eMBB UE with the best channel

conditions as these users can be less affected by low

uRLLC traffic density and their QoS level can be main-

tained even with the presence of uRLLC.

3.2.3 Maximization of eMBB sum-throughput (Algorithm 3)

The third algorithm aims to maximize the sum throughput

of eMBB UEs while satisfying the requirements of uRLLC

UEs. This can be achieved by targeting the resources of

eMBB UE with lower channel conditions in order to pro-

tect the eMBB users with higher contributions to the

overall sum throughput. It can be noticed that the previous

two algorithms might target the same eMBB UE in the case

of having a large uRLLC payload size or having multiple

uRLLC transmissions at the same time slot.

For Algorithms 1 and 2, the data rate of this eMBB UE

at the punctured RB is updated according to Eq. (2). The

channel quality is based on the SNR level of the UE over its

assigned subcarrier. In this paper, we used the approach

proposed in [37, 38] to calculate the CQI value of UE as a

function of the SNR values of the selected user over all its

assigned sub-carriers. It is important to mention that the

CQI reporting by UE is assumed to occur every 1 ms (1

Time Slot) which is vital for the algorithms to operate

efficiently.

The time complexity is the same for all three algorithms

which is in the order of Oðn2Þ where n is the number of

uRLLC UEs in the case of Algorithm 1 or the number of

eMBB UEs in the case of Algorithms 2 and 3. Here we are

performing a linear search for a maximum or minimum

CQI value with 2ðn� 1Þ comparisons at each time slot,

assuming a worst-case scenario with continuous incoming

uRLLC traffic.

Given a number of resource blocks RBs depending on

the used numerology and a time slot size of 7 minislots

each consisting of 2 symbols, a summary of the above

reference algorithms is shown below (Table 1).

Table 1 Algorithms 1, 2 and 3 parameters

Parameter Meaning

E eMBB UE with allocated RBs at TTI t

U uRLLC UE demanding immediate service

CQIE Array of eMBB UE CQI values in each RB at TTI t

CQIU Array of uRLLC UE CQI values in each RB at TTI t

Dsize Payload size of uRLLC UEs

Ruk Data rate of uRLLC user u at RB k

NTTI Number of TTIs

ORB Algorithm Output = Selected RB for puncturing

NRB Number of available RBs

Nmini Number of mini-slots
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Algorithm 1, 2 and 3
Inputs: E, U , CQIE, CQIU , Dsize, NRB

Outputs: ORB ,
1: for TTI = 1 to NTTI do
2: Schedule eMBB UE using PFTF, BCQI, or M-LWDF for all RBs
3: Nmini = 0
4: while (any (Dsize > 0) && NRB > 0) do
5: Select a uRLLC UE to serve on a first come first served basis
6: switch Algorithm do
7: case Algorithm 1
8: Select RBk = argmax (CQIU)
9: case Algorithm 2

10: Select RBk = argmax (CQIE)
11: case Algorithm 3
12: Select RBk = argmin (CQIE)
13: Nmini = Nmini + 1
14: if Nmini == 7 then
15: NRB = NRB - 1
16: Nmini = 0
17: end if
18: Allow Puncturing
19: Update Dsize using Eq. (2) → Dsize= Dsize - Ruk

20: end while
21: end for

3.2.4 Knapsack-inspired uRLLC fair punctured scheduling
(Algorithm 4)

The fourth algorithm is a knapsack-inspired scheduling

algorithm which aims to maximize the sum throughput of

the eMBB UEs while satisfying the requirements of the

uRLLC traffic, and preserving a fairness level among the

eMBB UEs in terms of the amount of punctured resources

from each of these users. This algorithm includes a number

of objects representing the RBs in which each object has a

profit and a weight associated with it. In each RB, the

weight represents the data rate of the eMBB UE occupying

it, and the profit is the channel condition of the uRLLC UE

at this RB. Better channel condition means that more data

are being sent using this RB and thus more profit is gained.

The channel condition is measured using the SNR of the

selected uRLLC UE. The weight reflects the amount of

impact on the sum throughput of eMBB UE upon punc-

turing this RB. The knapsack is the constraint that needs to

be considered when solving the problem and it represents

the payload size of the uRLLC UE that needs to be

transmitted within the current time slot. The objective is to

fill the knapsack in a way that maximizes the profit while

considering the constraint. The solution is given in a form

of a set where each element shows if the RB has been

selected for puncturing or not. The element value is

between 0 and 1 which means that the RB can be partially

punctured depending on the number of mini-slots given to

uRLLC UE. In order to select the most suitable RB that

leads to the best profit while considering its weight, we

need to take the profit-by-weight ratio. To do that, channel

conditions of uRLLC UE and the achieved data rates of

eMBB are rescaled in the range of 1–100 (this is to avoid

any issues as the two parameters have different ranges).

The RB with the highest profit by weight ratio is selected

where a fraction of this RB is punctured and added to the

solution set. The fraction of the RB represents the TTI

duration of the uRLLC or the size of the mini slot (2, 4, 7

OFDM symbols). After each selection of RBs, the payload

size (knapsack) is updated based on the amount of data that

we were able to transmit using this RB. This depends on

the channel condition of the selected uRLLC UE at this

RB. It can be noticed that one resource block can be

entirely targeted throughout the whole process and star-

vation of certain eMBB UE is expected once their RB has a

higher profit/weight ratio. To prevent this and to provide a

sense of fairness, we included a second constraint to the

problem in which the resource block cannot be punctured

two times in a row and the algorithm will move to another

RB representing the second highest profit/weight ratio until

the entire uRLLC payload is transmitted.

At time slot t, each algorithm analyzes all RBs in order

to find the most suitable one according to its criteria. All

uRLLC UEs are considered to be using the same type of
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application where the latency requirement is 1 ms and all

have the same priority.

The time complexity of the proposed knapsack problem

is in the order Oðn log nÞ which is acceptable in practical

implementation. The time complexity was analyzed for

each TTI with respect to the resource block assignment

process in addition to the UE selection which is based on a

standard sorting algorithm. The knapsack-inspired algo-

rithm is summarized as Algorithm 4, shown next, with its

parameters listed in Table 2.

4 Simulation results

In this section, all the results of our simulations are pre-

sented in addition to a detailed analysis of the performance

of our proposed algorithm. All simulations were done using

MATLABr with Intel(R) Core(TM) i7-4700MQ CPU @

2.40 GHz and 16 GB RAM. To evaluate the performance,

we induced a set of simulations that involved a varying

number of eMBB UEs randomly distributed around the

base station and scheduled according to several schedulers

defined in Sect. 2. It is assumed that all the resources have

been previously allocated to eMBB UEs. All simulations

included a minimum uRLLC load size of 1 Mbps assuming

a minimum uRLLC packet size of 32 bytes [31]. eMBB

traffic represents a real-time video streaming application

with an average delay threshold of 100 ms and a packet

loss ratio threshold of 10%. Resource puncturing is

restricted to slot boundary and cannot exceed the following

slot. The algorithms are applied in each TTI and evaluated

in terms of Throughput, Fairness, and Spectral Efficiency.

The evaluation metrics can be calculated using the below

equations. Note that the data rate can be calculated using

Eq. (2). The first evaluation metric is the fairness of the

scheduler which can be measured using the well-known,

Jain’s fairness index [39] that can be used to determine if

each user is receiving an equal share of resources compared

to others.

Fairness Index ¼ ri½ �2

N
PN

i¼1 r
2
i

ð10Þ

where N is the number of eMBB users and ri is the data rate

of eMBB user i. In our simulations, we are adopting a full

buffer model in which the eMBB users will always have

data to transmit resulting in full resource usage. Never-

theless, the amount of resources allocated to each user will

differ according to each scheduler, thus resulting in dif-

ferent amounts of bits transmitted, because of their

Algorithm 4 Knapsack inspired resource allocation scheme for eMBB and
uRLLC traffic
Inputs: E, U , SNRU , SNRE , Dsize

Outputs: ORB ,
1: idx=1;
2: for TTI = 1 to NTTI do
3: while (any (Dsize > 0) && any (P < Nmini)) do
4: Select uRLLC UE (U)
5: Calculate Rek in each RB using Eq. (2) then store in Rinst

6: Calculate the ratio of SNRU & R in each RB then store in Ra
7: Sort Ra in descending order
8: if P < Nmini then
9: Puncture RB at Ra(idx)

10: P=P+2
11: idx=idx+1;
12: end if
13: Update Dsize using Eq. (2) → Dsize= Dsize - Ruk

14: if idx > NRB then
15: idx=1;
16: end if
17: end while
18: end for
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different objectives and the channel condition each user is

experiencing. This is why the second metric is important to

measure how efficiently the bandwidth is used. Spectral

efficiency [40] is used to measure the data rate that can be

transmitted in a specific bandwidth through a cellular net-

work and can be calculated using the following equation:

Spectral Efficiency ¼ Sum throughput

Total BW
ð11Þ

The simulation parameters are listed in Table 3. The first

evaluation is done on Algorithm 1, in which the RB where

uRLLC UE experiences the best channel condition is

selected for puncturing with the main goal of providing a

high-reliability level for uRLLC and avoiding the need for

re-transmissions in case of lost packets. This algorithm has

a big advantage in that the better uRLLC channel condition

would result in more data being sent at this resource block

and thus, fewer resources are needed by the uRLLC traffic

to satisfy its requirements which lowers the negative

impact on the performance of eMBB. Nevertheless, this

approach does not consider fairness among eMBB UEs and

can be considered as an eMBB unaware approach because

it is possible that certain RBs will be entirely consumed by

the uRLLC UE and those eMBB UEs occupying these RBs

will be impacted more than others. When comparing the

proposed algorithms, we investigate the level of degrada-

tion in each of the evaluation metrics when allowing

uRLLC traffic with different densities to puncture the

resources of eMBB UEs. The simulation of the two sce-

narios (with and without uRLLC traffic) has been per-

formed at the same time which is important to make sure

that the channel conditions are the same in both scenarios.

The number of uRLLC UEs increases after every simula-

tion run.

Figure 2, shows the sum throughput of eMBB UEs

when impacted by uRLLC traffic. We can notice the huge

drop in the performance of Best CQI and M-LWDF as

these algorithms consider the QoS of the served users

which is (in the simulation settings) related to the channel

quality of the user over all of the user’s assigned resource

blocks. QoS requirements are often linked to the channel

condition of the user and the distance from the BS, and we

can observe that those users were targeted by the punc-

turing algorithm leading to a larger degradation in the

overall sum throughput of eMBB. It can be noticed that the

fair resource allocation by PFTF lowered the impact on

eMBB users at some level, given that most of those users

had a similar amount of resources allocated to them and the

algorithm was not biased by a single metric during the

resource assignment. Figure 3 shows the same effect of

uRLLC resource puncturing in terms of spectral efficiency

which is directly related to the amount of achieved data

rate and we can notice that all three algorithms recorded

about 40% decline with the increase of uRLLC traffic

density (i.e., increase in the number of users and thus

increase in the total traffic size).

Algorithm 2 targets eMBB users with the highest

achieved data rate across all RBs in time slot t. Themain goal

is to protect eMBB UEs at the cell edge who most likely

suffer from bad channel conditions and thus cannot tolerate

the puncturing of their resources. Figure 4 shows the per-

formance of Algorithm 2 on the sum throughput of eMBB.

The degradation is severe, and the performance is much

worse compared to Algorithm 1 discussed earlier, as it tends

to target eMBB UEs with high data rates (i.e., best channel

conditions). This directly affects the sum throughput as these

users have more contribution to the sum throughput than

others. The main advantage is the prevention of starvation

Table 2 Algorithm 4

parameters
Parameter Meaning

E eMBB UE with allocated RBs at TTI t

U uRLLC UE demanding immediate service

SNRU Array of SNR values of uRLLC UE over all RBs

SNRE Array of SNR values of eMBB UE over all RBs

Dsize Payload size of uRLLC UEs

Rinst Array of eMBB UE instantaneous data rates at TTI t

Ruk Data rate of uRLLC user u at RB k

Rek Data rate of eMBB user e at RB k

Ra Array of eMBB data rates and uRLLC SNR ratios

P Record of the amount of punctured resources from each eMBB UE

idx Index of the last user with punctured resources

NTTI Number of TTIs

ORB Algorithm Output = Selected RB for puncturing

NRB Number of available RBs

Nmini Number of mini-slots
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and although the data rate of eMBB declined, those users still

have connectivity and can transmit data via their remaining

resources where they experience good channel condition. In

other words, those users are more likely to experience good

channel conditions on their remaining RBs and thus can

transmit a good amount of data because of this advantage.

Table 3 Simulation parameters
Parameter Value

BS max power/UE 21 dBm

Cell radius 1 km

Total bandwidth 10 MHz

MIMO 2� 2

Propagation model �128:1þ 37:6 � log10ðdÞ ! d: UE Distance from BS in km

Channel Rayleigh distributed fading

Number of eMBB users 50

UE distribution Randomly distributed

eMBB traffic model Full buffer

CQI reporting Every 1 ms

UE noise figure 7 dB

Number of slots 1000

Sub-carrier spacing 15 kHz

Time slot size/duration 14 symbols/1 ms

Slot format 0 [13]

Fig. 2 eMBB sum throughput

versus No. of uRLLC UE

(Algorithm 1)

Fig. 3 eMBB spectral Eff.

versus No. of uRLLC UE

(Algorithm 1)
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Figure 5, shows the effectiveness of this algorithm in

protecting eMBB UEs with bad channel conditions. As the

figure shows, the percentage of punctured resources from

those users is much less than those with better channel

conditions.

Algorithm 3 aims to maximize the data rate of eMBB

UEs without considering the reliability level given to

uRLLC and the fairness among eMBB UEs. The behavior

of this algorithm tends to target eMBB UEs with low

channel conditions (i.e., have a low contribution to the

overall sum throughput) aiming to protect eMBB UEs with

high data rates. This would not only raise the sum

throughput but also the spectral efficiency. Nevertheless,

the algorithm does not take into account the possibility that

these uRLLC UEs might be experiencing bad channel

conditions on the allocated RB, and thus the need for more

resources increases in order to satisfy the latency require-

ments of uRLLC traffic.

Figure 6 shows the sum throughput of eMBB UEs and

we can notice that the degradation is less when compared

to the previous two algorithms. This is expected given the

main objectives of the algorithm. Nevertheless, the effi-

ciency of this algorithm can be considered acceptable when

the evaluation is on the system level and the aim is to

improve the overall performance without considering the

state of the users and how they are affected individually.

Figure 7, shows the percentage of punctured resources

of 10 eMBB UEs where we can notice that the behavior of

each of the heuristic scheduling algorithms is reflected in

the result. The BestCQI and M-LWDF algorithms have

almost a uniform percentage of punctured resources among

all 10 users. This is explained by the fact that these algo-

rithms provide more resources for users with good channel

conditions and thus those users are not being targeted

directly by the puncturing algorithm.

For our proposed algorithm, the main objective of

knapsack inspired algorithm is to find the best resource

block for puncturing by which we maintain an accept-

able level of fairness in addition to achieving the best

possible sum throughput of eMBB UEs. This algorithm

considers the channel conditions of both eMBB and

uRLLC UEs which gives it the privilege over the

Fig. 4 eMBB sum throughput

versus No. of uRLLC UE

(Algorithm 2)

Fig. 5 eMBB SNRs versus % of

punctured resources (Algorithm

2)
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previously discussed algorithms. It simply tackles the

limitations found in the discussion of our results above,

trying to balance the trade-offs between fairness level and

sum throughput. Figure 8 shows the performance of this

algorithm as it achieves the lowest degradation level in

eMBB sum throughput when punctured by an increasing

number of uRLLC UEs, compared to the previous algo-

rithms. This is done by utilizing the knowledge of channel

conditions of eMBB and uRLLC UEs in a way that leads to

the selection of the most suitable RB for puncturing that

Fig. 6 eMBB sum throughput

versus No. of uRLLC UE

(Algorithm 3)

Fig. 7 Percentage of punctured

resources among eMBB UEs

(Algorithm 3)

Fig. 8 eMBB sum throughput

versus No. of uRLLC UE

(Algorithm 4)
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would benefit both eMBB (does not degrade the sum

throughput) and uRLLC (provides an acceptable level of

reliability).

Figure 9 shows the puncturing of eMBB users by dif-

ferent numbers of uRLLC users. This graph is a strong

indicator of the effectiveness of our proposed algorithm

(Algorithm 4), in terms of forcing a fairness level among

affected eMBB UEs. This can be noticed in the sudden

change in the behavior of M-LWDF and BestCQI. The

figure shows that their fairness level is almost similar to

that of the PFTF algorithm. The fairness index is measured

based on the individual data rate compared to others. This

can be clarified by pointing out that the algorithm considers

the achieved data rate of eMBB users in every RB, and

after each puncturing process which takes 2 OFDM sym-

bols, this RB is also a potential target for puncturing in the

next uRLLC allocation. Nevertheless, the algorithm forces

the transition to another RB with the highest profit/weight

ratio to enforce a level of fairness in terms of the amount of

punctured resources. Also, the data rate of the last punc-

tured eMBB user is updated which lowers the profit in this

RB and decreases the possibility of selecting it in future

uRLLC allocations. This led to a fair percentage of punc-

tured resources from each eMBB user depending on the

user’s situation at the time of puncturing.

Figure 10 Shows the percentage of punctured resources

and reflects the level of fairness even more clearly as it

illustrates an almost fixed percentage of punctured

resources among 10 eMBB UEs. The simulation included

10 eMBB UEs and 20 uRLLC UEs in order to reflect a

6 G-like scenario where the BS might encounter a large

amount of uRLLLC traffic, even double the size of eMBB

traffic. The enforced fairness level provides a stable service

to these users which is an important factor in evaluating the

performance of every algorithm.

In the rest of this section, we consider an optimal allo-

cation of resources conditioned by obtaining the desired

level of fairness among eMBB UEs. This was done by

adding Jain’s fairness index as a constraint in the opti-

mization problem formulation in order to push the opti-

mizer to provide fair allocation by a predefined level. The

simulation included an equal number of eMBB and uRLLC

UEs (20 users) which is a more realistic scenario for a 6 G

environment and the performance was measured on a slot

basis. Figure 11 shows the impact of different fairness

index values forced on the optimizer and how it affects the

sum throughput of the eMBB UEs while being punctured

by uRLLC traffic. It can be noticed that the higher the

fairness level required, the larger the impact is on the sum

throughput of eMBB UEs. This is because the optimization

algorithm can no longer select eMBB UEs with bad

channel conditions (i.e., less contribution to the overall sum

throughput) for puncturing, and it is forced on fair treat-

ment of connected UEs according to the set fairness index

value. The fairness index compares the achieved through-

put of each eMBB UE with the other users in order to

verify the fairness of the system by observing the differ-

ence between each user’s data rate.

The next part of the simulation results is used to eval-

uate the effect of specified uRLLC outage probability on

the eMBB sum throughput. Figure 12 shows how the sum

rate declines with the decrease in the outage probability. A

low outage probability provides a higher reliability level

for uRLLC UE in a way that enforces the optimization

algorithm to assign better resources for those uRLLC users.

It can be seen that the increase in the tolerated outage

probability improves the performance in terms of eMBB

sum throughput. This can be justified by the fact that the

BS is no longer forced to allocate the best RB for the

uRLLC in order to maintain the required reliability level.

This might enhance the performance of eMBB users in the

case where the RB of the uRLLC (with better channel

conditions) is the same RB used by an eMBB UE with a

large contribution to the sum throughput.

Fig. 9 Fairness index versus

No. of uRLLC UE. (Algorithm

4)
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Figure 13 shows how the proposed optimal resource

allocation scheme is affected by different uRLLC traffic

densities. The degradation of the eMBB throughput is

sharp but the overall achieved sum throughput is much

larger than the sub-optimal approach.

Figures 14 and 15 show the results of the optimal allo-

cation while adding the condition of the eMBB user’s

minimum data rate. Figure 14 shows the sum throughput of

eMBB UEs when different outage probability values are

tolerated by uRLLC. We can notice that the result is better

than the result in Fig. 12, where a fairness level among all

Fig. 10 Punctured resources %

among eMBB UE (Algorithm 4)

Fig. 11 eMBB throughput

versus fairness levels

Fig. 12 eMBB throughput

versus outage probability (with

0.5 fairness level condition)
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users was required. This is due to the fact that the eMBB

UEs with bad channel condition might have a huge gap in

terms of data rate when compared to eMBB users with

good channel condition. Adding a constraint that aims to

narrow this gap will result in allocating resources to those

UEs with bad channel conditions in order to try to achieve

the ultimate fairness of equal rate, resulting in a higher

drop of eMBB sum-throughput.

Figure 15 shows the impact of different numbers of

uRLLC UEs on the sum throughput of eMBB UEs. The

result includes the condition of maintaining a minimum

data rate of 11 Mbps for each eMBB UE. This shows the

Fig. 13 eMBB throughput

versus No. uRLLC UE (with 0.5

fairness level condition)

Fig. 14 Outage probability

versus eMBB sum throughput

(with 11 Mbps/eMBB UE

minimum data rate condition)

Fig. 15 eMBB sum throughput

versus No. of uRLLC UE (with

11 Mbps/eMBB UE minimum

data rate condition)
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advantage of adding this constraint instead of the fairness

index as shown in Fig. 13. The minimum data rate condi-

tion is more realistic and feasible in most scenarios that

could include low, medium, or high uRLLC user densities.

The degradation is acceptable given that the maximum

achieved sum throughput is higher than the one in Fig. 13.

Finally, we compare the four sub-optimal allocation

algorithms to the optimal allocation algorithms in order to

observe the gap between these two types of allocations.

The sub-optimal allocation included the reference algo-

rithms, Algorithm 1, which aims to provide the best

resource block for uRLLC users, Algorithm 2, which aims

to protect eMBB users at the cell edge, Algorithm 3, which

aims to maximize eMBB sum throughput without consid-

ering any other metrics and lastly, our proposed solution,

Algorithm 4 which is a knapsack inspired algorithm that

aims to maximize eMBB sum throughput while maintain-

ing a level of fairness. The Optimal allocation included two

parts where the first aims to maintain a predetermined

fairness level and the second one aims to guarantee a

minimum data rate for eMBB users.

Figure 16 shows a performance comparison among all

proposed algorithms. It is clear that the optimal allocation

methods reach a higher level of performance compared to

the sub-optimal ones but the fact that these solutions

require intensive processing capability by the BS, due to

their high computational complexity, reduces their practi-

cality compared to sub-optimal solutions. It can be noticed

that the knapsack-inspired algorithm provides accept-

able performance with a key feature of low complexity

which demonstrates its effectiveness and feasibility for

real-life implementation. It outperforms all the reference

sub-optimal allocation algorithms in terms of eMBB sum

throughput. Algorithm 1 provided a better performance

with low user density compared to Algorithm 3. Algorithm

2 achieved the worse performance given that it targets

eMBB users with the highest contribution to the sum

throughput. The optimal allocation with guaranteed mini-

mum throughput provided the best results compared to all

others.

5 Conclusion

In this paper, we addressed the eMBB and uRLLC resource

allocation problem in a 6 G-like Scenario. Two approaches

have been proposed. The first one includes an optimal

resource allocation between eMBB and uRLLC services in

addition to addressing the optimization under uncertainty.

The formulation is based on transforming the stochastic

uRLLC traffic into its deterministic form aiming to maxi-

mize the eMBB data rate while not exceeding a pre-de-

termined outage probability threshold. The approach also

aims to satisfy the desired fairness level among eMBB UEs

in terms of the percentage of punctured resources which is

vital in protecting users with bad channel conditions. The

second approach includes a sub-optimal solution to the

problem that features low complexity and acceptable per-

formance in terms of achieved eMBB sum throughput and

fairness level. The approach consists of a puncturing

method that aims to use the knowledge of the users’

channel conditions in order to make an optimal selection of

RBs prior puncturing phase. The problem formulation is a

knapsack-inspired formulation in which the ratio of eMBB

achieved data rates at each RB and the CQI of the uRLLC

UE at each RB is used as a decision parameter to maximize

the eMBB sum throughput while satisfying the requirement

of uRLLC and providing the best possible reliability level

at each time slot. A set of simulations have been conducted

with uRLLC traffic of different intensities arriving

stochastically. The other sets of simulations included

uRLLC traffics with a minimum data rate of 1 Mbps. The

latency and reliability requirements of uRLLC have been

considered and strongly enforced when served by the BS.

Fig. 16 Sub-optimal versus

optimal resource allocation
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We showed that the proposed algorithm can minimize the

impact of uRLLC traffic on the schedulers’ performance in

terms of Sum throughput, Fairness, and Spectral efficiency.
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