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Abstract
In this paper a cost and time efficient approach to setup a compliance model for industrial robots is presented. The compli-
ance model is distinctly determined by the gear’s stiffness parameters which are tuned by an optimal design of experiments 
approach. The experimental setup consists of different poses of the robot’s axes together with the applied force at the tool 
center point (TCP). These robot poses represent together with defined forces the experimental setup where the deviation of 
the robot under defined force is measured. Based on measurements of the displacement of the TCP the stiffness parameters 
for the compliance model are estimated and afterwards validated in new experiments. The efficiency of this approach lies 
in the reduced amount of experiments that are needed to identify the stiffness parameters that are parameters inherent to the 
compliance and the less complex experimental setup.
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1 Introduction

Industrial robots have major advantages over machine tools 
in terms of flexibility and workspace. The flexibility of 
industrial robots is expressed both in the accessibility of 
orientations of the TCP in the workspace as well as the abil-
ity to perform a wide variety of manufacturing processes. 
Also the capital costs for industrial robots are up to three 
times lower than the costs of a machine tool [1]. Therefore 
industrial robots are more and more treated as an alternative 
to machine tools.

However industrial robots have lower working accu-
racy compared to machine tools because they are less rigid 
[2]. Compared to a machine tool the absolute accuracy of 
an industrial robot can be between 20 to 50 times lower 

especially under changing process forces [1]. The lower 
accuracy results mainly from geometric erros and a low 
stiffness. Therefore industrial robots are suitable for tasks 
where the expected forces and the expected accuracy are 
low [3]. To compensate or minimize the main geomet-
ric errors that result from manufacturing and assembly 
of the industrial robot a producer specific calibration is 
carried out and deposited in the control of the robot before 
the robot is shipped [4]. Therefore, after compensating 
the geometric erros, the low stiffness of the robot is the 
main reason of the low accuracy. The research on stiff-
ness improvement mainly concentrates on three aspects: 
stiffness compensation, posture optimization and robot 
structure optimization [5]. The low static stiffness, that 
has been identified in several works [6, 7] as the significant 
error influencing the working accuracy of the industrial 
robot especially under process forces, is mainly caused by 
the used gears and their low rigidity. The influence of the 
low rigidity of the gears outweighs the deformation of the 
structure and the tilting rigidity of the bearings [6]. This 
results in a pose dependence of the stiffness of the indus-
trial robot [7]. There are different approaches to compen-
sate this stiffness behavior such as constructive changes 
in the robotic structure that comes with reduced mobility 
and flexibility of the robot. Another approach is to model 
and predict the compliance behavior of the industrial robot 
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under measured or predicted process forces and compen-
sate the deviation with offline or online compensation [1].

The effects of the compliance behavior of the industrial 
robot especially under process forces has been examined and 
modeled for example by [1, 7, 8]. The models are based on the 
forward transformation that is extended with the elastic defor-
mation of the joints [8]. In this modeling approach the elastic 
structures are modeled by rigid bodies connected by virtual 
elastic joints. These virtual joints are then implemented in the 
forward transformation [1]. The level of complexity of these 
models differs depending on whether only the torsional rigidity 
is considerated or also the tilting rigidity of the structure [1].

Since the deviation of the TCP mainly results from the 
limited torsional stiffness of the gears often only the torsional 
rigidity is implemented and the links are considered to be 
almost stiff [4]. For the forward transformation the kinematic 
description of the robot is necessary, to describe the pose-
dependent compliance of the robot the stiffness parameters of 
the gears are necessary. To define the robot specific stiffness 
parameters, mostly complex setups were used for example 
in [1] the stiffness parameters were determined by apply-
ing observable cubes to the robot structure. By determining 
the displacement of the cube while a defined test force was 
applied on the TCP the compliance was calculated. To apply 
the force a cable pull system was used and, to measure the 
determination of the parts of the robot, a laser tracker was 
used. This example shows that the determination of the stiff-
ness parameters is time and resource consuming.

Cordes [6] used a less resource consuming approach by 
measuring the global compliance of the robot structure. In 
twelve different positions a defined force was applied on the 
TCP and the shift of the TCP was measured by cost intensive 
metrology. By combining the measurements and minimizing 
the sum of squared residuals of the over-determined system 
the parameters were determined.

In this paper a more cost and time efficient approach is 
implemented which is based on optimal design of experi-
ments for variance-minimal Bayesian inference of the gear 
stiffness parameters. The experimental setup consists of the 
angular poses of the robot’s axes and the direction as well as 
the magnitude of the force which is applied on the TCP. In 
the experiments the quantity of interest is the deviation of 
the TCP which is measured by laser triangulation sensors. 
Since the measurement process is subject to aleatoric and 
epistemic uncertainty [9, 10] so are the estimated parameters. 
The experimental setup is optimized so that the uncertainty 

of the estimated stiffness parameters which is measured by a 
scalar function of the covariance matrix becomes minimal. 
In the second step measurement data is collected within the 
optimized experiment and infer the compliance parameters 
in a Bayesian setting [11]. The prior is chosen from previous 
estimations in [6] and enters the estimation process.

Optimal design of experiments is a broad field of research 
and describes an experimental design that is optimal regard-
ing statistical criterion [12–16]. In general, the literature can 
be classified into topics concerning optimal sensor place-
ment [15, 17–19] and optimal choice of inputs [16, 20–24]. 
In this case the sensors which observe the movement of 
the TCP are fixed but the angular poses of the axes and the 
applied force can be varied. Then it is refered to these condi-
tions as the inputs from now on.

This paper is structured as follows. In Sect. 2 the compli-
ance model is described in full detail. In Sect. 3 the approach 
to optimal design of experiments for Bayesian inference of 
the gear compliance parameters is presented. The experi-
mental setup is presented in Sect. 4 and the numerical results 
are shown in Sect. 5 before a conclusion is given in Sect. 6.

2  Compliance model

The aim of the compliance model is to calculate the devia-
tion of the industrial robot caused by process forces [6]. To 
describe the translational deviation in the cartesian space the 
elastastic behavior of the gears are combined with the forward 
transformation. The forward tranformation is the foundation 
of the model and describes the position and orientation of the 
TCP in the cartesian space based on the joint angles �

i
 [8]. To 

set up the model, on each joint of the robot a coordinate sys-
tem is equipped as shown in Fig. 1. The relation between the 
coordinate systems and therefore the robot parts are described 
by tranformation matrices according to the Denavit Harten-
berg convention [25]. For the complicance model this tranfor-
mation has to be changed so that the transformation ends with 
the rotation around the Z axis [25]. The transformation from 
one coordinate system to another is based on rotation and 
translation parameters.The rotation parameters are �

i
 which 

describes the rotation around the X axis and 𝜃
i
 which describes 

the rotation around the Z axis. The translation prameters are 
a
i
 which describes the translation in X translation and d

i
 for 

the Z translation [1] which yield the forward transformation
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The rotation 𝜃
i
 includes the joint angle �

i
 [25].

In this approach it is assumed that the links of the robot 
are rigid and the joints are elastic in direction of rotation 
with high radial stiffness behavior. Therefore the deforma-
tion of the gears is modeled with the behavior of linear 
elastic torsional springs [4]. To describe the deviation of 
the robot the linear elastic behaviour of the gears is used 
to extend the forward transformation by an additional 
transformation that is based on the joint stiffness as in [8] 
described.

The rotational part of the matrix describes the deformation 
of the virtual joint due to a measured force at the TCP with 
the angle Δ� that describes the torsion around the Z axis of 
the gear due to the force at the TCP [1]. To calculate Δ� the 
equation for linear torsion springs is used

where M
i
 represents the torque that is caused by the cutting 

forces and k
i
 the stiffness parameters of the joints. The tor-

ques can be calculated by building the cross product of the 
vector processing forces F⃗ and the transformation matrix 
towards the specific coordinates systems of the axis T⃗i . For 

(2)TTCP = Ti ⋅ TR(Δ�i)

(3)Δ�
i
=

M
i

k
i

this the forces engaging at the TCP F⃗TCP have to be trans-
formed into the joint coordinate system with

so that

For the stiffness parameters k
i
 it is assumed that the joint 

behavior is linear and therefore the stiffness parameters are 
assumed to be fixed parameters [6]. With TR(Δ�i) an addi-
tional tranformation matrix with rotation around Z axis is 
implemented in the forward transformation. The conven-
tional forward kinematics provide the unloaded TCP posi-
tion ⃗TCPideal , the extended forward transformation the TCP 
position under process forces ⃗TCPF [25]. The force-induced 
deviation can be calculated with

The advantage of this analytic description of the deviation 
is the fast calculation time compared to simulations [25].

For this work the six-axis heavy duty robot ABB IRB 
6660-205/1.9 is used. It is build for milling processes with 
a closed-loop mechanism in form of a parallelogram which 
can be seen in Fig. 1. This causes a coupling between the 
joint angles �2 and �3 which is described in the model as

(4)F⃗i = R⃗i ⋅ F⃗TCP

(5)M⃗i = T⃗i × F⃗i

(6)� ⃗TCP = ⃗TCPF − ⃗TCPideal

Fig. 1  Kinematic model and 
coordinate systems of the ABB 
IRB 6660/205
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To implement the model for this robot the parameters 
�
i
, a

i
, d

i
 and k

i
 have to be determinded. While the parameter 

�
i
, a

i
, d

i
 can be extracted from the documentation of the robot 

or through measurements of the robot structure [26], the 
stiffness parameters have to be determined in experiments. 
To determine the stiffness parameters an optimal design of 
experiments approach for Bayesian inference is used.

3  Bayesian inference and optimal design 
of experiments

In optimal design of experiments the best experimental setup 
is chosen such that the desired parameters in this setting the 
stiffness parameters can be estimated from data with mini-
mal variance. In this setting, the orientations of the robot 
joint angles � and the direction and magnitude of the force 
f  are optimized such that the uncertainty in the estimated 
stiffness parameters k becomes minimal. The input variables 
u ∶= (� , f ) are introduced and used from now on. First 
the Bayesian framework is described and then the optimal 
design of experiments approach.

The compliance model � ( k , u , � ) maps the parameters 
k , the inputs u and some constants � to the three-dimen-
sional deviation of the TCP. This is the quantity of interest in 
the experiments which are measured via lasers. The compli-
ance model � serves as a computer model which needs to be 
calibrated and validated. From a probabilistic point of view 
the data z is assumed to be a realization of a random variable 
Z with a specified distribution. It is assumed here that the 
data is subject to Gaussian observational noise:

where z ⋆ is the true but unknown quantity of interest. If this 
model is correct than it describes the data well for all inputs 
u from an admissible domain Uad:

where k ⋆ are the true but unknown stiffness parameters. 
The aim is to find a good approximation k  of k ⋆ from a 
Bayesian inference approach. For a given realization z of 
the data Z and for a given realization � of the noise E it is 
required that

Within a Bayesian approach, the estimated parameters 
have a posterior probability distribution �( k ‖ z ) that is 
derived from the data likelihood �( z ‖ k ) and the prior 
probability distribution �0 via the Bayes formula. Let 
�0 ∈ N ( k0 , �0 ∕�) be a Gaussian prior, where 𝛾 > 0 . 

(7)𝜃3 = 𝜃3 − 𝜃2

(8)Z = z ⋆ + E , E ∼ N (0, � ),

(9)Z = � ( k ⋆, u , � ) + E , E ∼ N (0, � ),

(10)z = � ( k , u , � ) + � .

Moreover, let �(⋅) be the density function of the noise ran-
dom variable E . In view of Eq.  (9), the data likelihood 
�( z ‖ k ) has the density function z ↦ �( z − � ( k , u , � )) . 
Then the posterior �( k ‖ z ) is given by

where C is a normalization constant and ‖x‖B ∶=
√
x⊤Bx is 

the weighted norm of a vector x with a compatible matrix B . 
The maximum a posteriori estimator (MAP) is defined to be 
a point k  that maximizes the posterior:

compare [11]. It is evident that the estimated parameters 
depend on the inputs u and the data z , i.e., k = k (u , z ).

The compliance model � is nonlinear in k . Thus, the 
posterior is not Gaussian. However, the model is linearized 
at the MAP point k  to obtain Gaussian posterior prob-
ability distributions. In the linearized case the posterior 
covariance matrix is computed [15]:

where J( k , u ) is the sensitivity matrix of the model with 
respect to the parameters:

Let 1 − � , where � ∈ (0, 1) , be a confidence level. Then the 
confidence region G( k , Cpost , �) around the MAP point k  
is an nk-dimensional ellipsoid:

where �2
nk
(1 − �) is the quantile of the chi-squared distribu-

tion with nk degrees of freedom, see [12, 16].
Optimal design of experiments aims at minimizing the 

posterior covariance matrix Cpost . In order to avoid ill-
posed optimization problems [12], one minimizes a scalar 
design function Ψ(⋅) of the covariance instead. The follow-
ing design criteria are frequently used [13]:

In this paper, Ψ(⋅) = ΨA(⋅) is chosen, i.e., the trace of the 
posterior covariance matrix is computed. In order to reduce 

(11)
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= Cexp
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,
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2
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2
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(13)Cpost

(
k , u

)
=

(
J( k , u )⊤ � −1

J( k , u ) + 𝛾 �0
−1

)−1
,

(14)J( k , u ) =
�� ( k , u , � )

�k

‖‖‖‖ k= k

.

(15)
G
(
k , Cpost , 𝛼

)
∶

=

{
k ∈ ℝ

nk ∶ ( k − k )⊤ C
−1

post
( k − k ) ≤ 𝜒2

nk
(1 − 𝛼)
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,

(16)

ΨA(Cpost ) = trace(Cpost ),

ΨD(Cpost ) = det(Cpost ),

ΨE(Cpost ) = �max(Cpost ).
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the complexity of the problem and since the measurement 
data z is not available at this point k (u , z ) ≈ k0 is fixed. 
Thus, to minimize the trace of the covariance matrix

The following constrained optimization problem arrises:

In our setting the set of admissible inputs Uad is determined 
in the following way:

The first condition states that the joint angles and the com-
ponents of the force vector have to lie within a minimum 
u min and a maximum u max range. The ranges are defined in 
Sect. 4. The second condition states that the orientation of 
the TCP is within a range that can be reached by the robot 
and is suitable for milling processes. Note, that the functions 
g and h are nonlinear.

Thus the problem (18) is restated more explicitly:

This optimization problem is solved with a standard Sequen-
tial Quadratic Programming (SQP) solver with BFGS 
updates, see [27].

4  Experimental set up for stiffness 
parameter identification

Based on the compliance model which was developed in 
Sect. 2 and the in Sect. 3 introduced aproach the experi-
mental setup for the stiffness parameter identification has 
been implemented. The experiments are carried out on 
the six-axis heavy duty robot with a spindle as an effector. 
The robot cell that includes the heavy duty robot is built to 
carry out the hybrid manufacturing chain including addi-
tive and subtractive processes. Also included into the cell 
is the force sensor Omega 160 IP65 from ATI that is placed 
between the process effector and the sixth joint. The robot 
cell also includes a work table, an effector docking system to 
change the spindle for the additive manufacturing head and 
measurement equiment to define the position of the tool and 
machining parts. The robot cell is shown in Fig. 2.

(17)
Cpost

(
k0 , u

)
=
(
J( k0 , u )

⊤ � −1
J( k0 , u ) + 𝛾 �0

−1
)−1

.

(18)
min
u

ΨA[Cpost ( k0 , u )]

s.t. u ∈ Uad .

(19)
Uad ∶=

{
u ∶ u min ≤ u ≤ u max, g( u ) ≤ 0, h(u ) = 0

}
.

(20)

min
u

ΨA[Cpost ( k0 , u )]

s.t. u min ≤ u ≤ u max,

g( u ) ≤ 0,

h(u ) = 0.

The setup to identify the deviation of the TCP under force 
contains the application of a defined force and the measure-
ment of the deviation. To apply the force a pneumatic cylin-
der is used. It contains a force sensor to measure the applied 
force on the TCP so that the applied force can be adjusted. 
As in Sect. 3 described the force vectors are represented in 
the first condition of the inputs. The input u min is defined 
as −300N and the u max as +300N due to the experimen-
tal setup. To measure the deviation of the TCP under the 
defined force, three laser triangulation sensors of the type 
Keyence LK-G32 are used. The sensors have a measuring 
range ±5mm and an accuracy of 1 μm . They are applied 
around the TCP and measure the three directions X,Y and Z. 
To measure the force that is applied in the robot coordinate 
system also the integrated force sensor of the robot is used. 
With this the vectors of the applied force can be defined in 
the robot system. The experimental setup can be seen in 
Fig. 3.

The advantages of this experimental setup are that it is 
a simple and fast setup, no changes of the robot system are 
necessary and the experiment does not influence any existing 

Fig. 2  Robot cell including the ABB IRB 6660-205/1.9 and the effec-
tors

Fig. 3  Experimental setup containing laser sensors and the pneumatic 
cylinder
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compensation or calibration. The measurements are executed 
for one position that is elected considering the workspace the 
robot operates in. To be able to represent the static force con-
ditions of the peripheral milling processes, the experiments 
are examined with forces applied in X and Y direction. For the 
measurements only the orientation of the effector has to be 
changed and the direction of the applied force, the position in 
the cartesian coordinate system is not changed. The orientations 
of the effector and the applied force are calculated with the in 
Sect. 3 developed model. One measurement consists of one 
orientation of the effector and an applied force in one direction. 
To ensure that the orientation of the effector calculated in the 
model is reachable, the solution space of the model is limited. 
The orientation of the TCP is only allowed to be within the 
angle � of ±80◦ between the direction of the vector of the joint 
six to the TCP and the direction vector between the robot base 
and the TCP regarding the Z plane. � is here defined as:

The in Sect. 3 developed model needs initial values for the 
stiffness parameters to calculate the optimal joint angles �

i
 . 

Therefore the stiffness parameters from [6] are used as can 
be seen in Table 1.

The calculated design of experiments contains one posi-
tion in the cartesian coordinate system, four orientations of 
the effector to reach this position and a total of five meas-
urements. Three measurements are to be carried out with 
applied force in Y direction and two in X direction of the 
robot base coordinate system. The data of all sensors are col-
lected via matlab and synchronised. Afterwards they serve 
as input variables for the model created in Sect. 3.

5  Parameter identification and validation

For the identification of the stiffness parameters different 
sets of data were used to analyse the influence of the num-
ber of experiments. The data of one measurement in one 

(21)

𝜙 = arccos

(
1 −

(
(|r⃗

new
− r⃗

TCP
|)2

|(r⃗
TCP

− ⃗r
new

|)2 + (| ⃗r
TCP

− ⃗r
new

)|2
))

direction, of three measurements in the same direction and 
the data of all measurments were used to calculate differents 
sets of stiffness parameters. The results were then validated 
through comparison with the measured deviation in valida-
tion measurements. Also the set of stiffness parameters from 
the literature shown in Table 1 was compared to the calcu-
lated sets of stiffness parameters. An extract of the calculated 
sets of stiffness parameters from different measurements are 
shown in Table 2.

It can be seen that some sets of stiffness parameters dif-
fer enormus from the initial parameters from [6] shown in 
Table 2 while others correspond with the initial parameters. 
This can be explained by the direction of the applied force. 
For example during the measurements in the X direction 
the joint six was not loaded so that no information about 
this joint is contained in the data of this measurement. To 
validate the parameters and indentify the best set of stiffness 
parameters the deviation of the TCP in various positions 
and orientations of the main workspace of the robot was 
measured. Figure 4 shows the measured deviation and the 
with different stiffness parameter sets calculated deviation 
for one validation position. The results of the other carried 
out validation experiments for different positions are similar 
to the results shown in Fig. 4. It can be seen that overall the 
deviation of different positions and orientations can be pre-
dicted. The accuracy regarding the deviation in Y direction 
is higher than in X direction which can be explained by the 
facts that in Y direction more measurements were executed 
to identify the set of stiffness parameters, the deviation is 
higher and more gears were loaded during the experiments. 
The figure also shows that the results of the calculated devia-
tion based on the calculated stiffness parameters are closer 
to the real deviation than the calculated deviation based on 
the set of stiffness parameters from literature. It can be seen 
that the stiffness parameters from measurements in Y direc-
tion and the stiffness parameters from all measurements have 
the highest accuracy while the stiffness parameters from the 
literature lead to the lowest accuracy. Overall the parameters 
from measurements in Y direction match the most if the out-
liners are disregarded.

Table 1  Initial values for 
stiffness parameters from [6]

Joint number 1 2 3 4 5 6

Stiffness k
i
⋅ 10

6 [Nm/rad] 2.03 6.02 1.91 0.45 0.22 0.07

Table 2  Calculated stiffness 
parameters k

i
 in 106 [Nm/rad]

Joint number 1 2 3 4 5 6

All measurements 0.96 6.023 1.569 2.965 0.271 0.041
Measurements in force direction Y 0.312 6.017 0.596 1.761 0.313 1.297
Measurements in force direction X 1.998 6.038 2.473 0.418 0.195 0.07
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This can also be seen in the covariant matrices that 
were calculated together with the stiffness parameters see 
Sect. 3. The covariant matrix of the measurements with 
the force direction X have the highest values while the 
covariant matrices of the measurements in force direc-
tion Y and of all measurements are close. They are by the 
factor 10 lower than the values in the covariant matrix of 
the measurements with the force direction X. The covari-
ant matrix of the measurements in force direction Y are a 
little lower than the one of all measurements. The results 
of the covariant matrices are reflected in the results of the 
calculated deviations in Fig. 4 compared with the meas-
ured deviations. The stiffness parameter sets with the low-
est covariant matrices results calculated are closest to the 
measured deviations.

Overall the data show that the measurements produce 
stiffness parameters with which the deviation can be esti-
mated more accurate than with the stiffness parameters from 
the literature of the same robot model. Also the results show 
that the in Sect. 3 implemented approach is valid and with 
the calculated covariant matrices an estimation of the quality 
of the results can be made. Compared to [6] the amount of 
measurements are reduced up to 75 % and the used experi-
mental set up is less cost intensive and les complex com-
pared to [1, 6]. Therefore this approach helps to identify 
the stiffness parameters by using a simple and cost efficient 
experimental setup.

6  Conclusion and outlook

The deviation of the TCP under process forces is the main 
influence on the working accuracy of the robotbased mill-
ing process. It limits the fields of applications of these sys-
tems. To extend the application possibilities the deviation 
of the TCP under static process force has to be detected 
and predicted. This paper shows an aproach to predict the 
deviation of an industrial robot under static process forces 
by identifying the stiffness parameters of the joints based 
on the bayes approach. Based on this approach an optimal 
design of experiments for the measurement of the deviation 
under a specific force is calculated. With this approach the 
uncertainties of the results are reduced and the level of infor-
mation a measurment contains is increased. This approach 
leads to less measurements of the deviation for the iden-
tification of the stiffness parameters of an industrial robot 
which is more time efficient as other approaches. Also the 
experiments itself are less complex due to a simple setup 
and therefore more cost efficient than other approaches. The 
results show that the identified stiffness parameters lead to 
a sufficient accurate prediction of the deviation and thus the 
identified stiffness parameters are more accurate than the 
stiffness parameters from the literatur for the same robot 
model. The advantages of this experimental setup are that 
it is a simple and fast setup, no changes of the robot system 
were necessary and the experiment did not influence any 
existing compensation or calibration. Also the quality of the 
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calculated stiffness parameters can be estimated through the 
calculated covariant matrices through this approach.

The experimental setup only allowed the application of 
force in one direction during a measurement. To increase 
the accuracy of this approach it is assumed that in an ideal 
experimental setup forces in two or three directions can be 
applied and with that the amount of measurements will be 
further reduced. Therefore the accuracy of the estimated set 
of stiffness parameters could be increased.

Nevertheless the results show that even with a less com-
plex design of experiments the stiffness parameters are suf-
ficient for the use for online or offline compensation. With 
the deviation model and the identified stiffness parameters 
an offline compensation will be implemented. Based on 
the forces of previous milling processes the deviation will 
be predicted and the new trajectory can be calculated. The 
paper shows that with this approach only a simple design of 
experiments is needed to identify sufficient accurate stiffness 
parameters to predict the deviation of the TCP. With this 
approach the influence of the process forces on the deviation 
during the milling process can be predicted and in a second 
step reduced so that the quality of the produced parts will 
be increased.
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