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Abstract
We use material-distribution-based topology optimization to design a three-port frequency dividing multiplexer at micro-
wave frequencies. That is, by placing a good electric conductor inside the design domain, we aim to design a passive device 
that splits the incoming signal’s frequencies into two frequency bands and transmits them to their respective output ports. 
The Helmholtz equation models the time-harmonic wave propagation problem. We solve the governing equation using the 
finite element method. The adjoint variable method provides the required gradients, and we solve the topology optimization 
problem using Svanberg’s MMA algorithm. In this study, we present a technique for modeling the distribution of a good 
electric conductor within the design domain. In addition, we derive a power balance expression, which aids in formulating 
a series of three objective functions. In each successive objective function, we add more information and evaluate its impact 
on the results. The results show that by selecting a suitable objective function, we achieve more than 93.7% transmission 
for both the frequency bands. Moreover, the numerical experiments suggest that the optimization problem is self penalized 
and is sensitive to the initial design.

Keywords  Multiplexer · Electromagnetic · Microwave · Topology optimization · Material-distribution method

1  Introduction

The advent of wireless networks, which was fuelled by 
breakthroughs in microwave engineering, has revolution-
ized telecommunication. In the last two decades, the use of 
wireless and connected home devices, such as cell phones, 
smart speakers, security cameras, and laptops has increased 
significantly, resulting in an exponential increase in wireless 
data traffic. In 2020, global data consumption increased by 
30.4% over the previous year, and it is estimated that there 
will be nearly 30 billion connected devices by 2023 (Cisco 

2020; PwC 2021). To accommodate this increase in data 
traffic, future communication systems and wireless devices 
need more efficient and improved designs.

Frequency dividing multiplexing (FDM) plays a key role 
in data transmission for telecommunication (Sakai 1986; Li 
and Stüber 2006; Snyder et al 2015; Ma et al 2017). It ena-
bles a high level of system miniaturization by integrating 
sub-systems that operate at different frequency bands. On 
one hand, a frequency dividing multiplexer allows multi-
ple signals of different frequencies to share a single com-
munication channel, such as a waveguide or an antenna. 
On the other hand, the device divides the frequencies of 
the communication channel into multiple non-overlapping 
frequency bands and delivers them to their corresponding 
output ports. To prevent signal overlapping, sufficient isola-
tion between neighbouring frequency bands is essential. In 
addition, a sharp roll-off between the adjacent frequency 
bands is needed to avoid wasting parts of the frequency 
spectrum. AM and FM broadcasting methods are the most 
common use of FDM at RF frequencies (Chaparro 2015), 
and communication satellites (Kharchenko et al 2015), mod-
ern radars (Sebt et al 2009), and wireless LAN (Keller and 
Hanzo 1996) are just a few examples of the application of 
FDM at microwave frequencies.
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In the literature, various concepts are used to design FDM 
devices (Snyder et al 2015; Cameron and Yu 2007). Two 
commonly used design concepts of FDM are the cavity-
based and the directional-filters approaches. The cavity-
based approach relies on the modal field distribution inside 
a given cavity. The positions of the FDM output ports are 
properly selected at the boundaries of the cavity to enable 
efficient signals’ coupling (Yassini and Yu 2015). However, 
the field distribution inside a loaded cavity changes based 
on the loading condition, and therefore, the device needs 
to be redesigned to account for the new loads. On the other 
hand, FDM based on directional filters rely on loading a 
transmission line with a series of resonant filters. Each filter 
stage is designed separately and aims to couple a specified 
frequency band to an output port (Cameron and Yu 2007). 
Employing techniques such as adding transmission zeros 
can improve the transition slope between the neighbour-
ing stages (Sorocki et al 2018). However, the final device 
becomes bulky, and the overall insertion losses of the device 
increase significantly.

Topology optimization is an inverse design technique 
(Bendsøe and Sigmund 2004), which was originally intro-
duced to design linear elastic structures (Bendsøe and 
Kikuchi 1988). It has since been successfully applied to other 
disciplines including fluids (Borrvall and Petersson 2002; 
Gersborg-Hansen et al 2005), acoustics (Wadbro and Berg-
gren 2006; Dühring et al 2008; Lee and Kim 2009; Wad-
bro 2014; Bokhari et al 2021), and electromagnetics (Aage 
et al 2010; Hassan et al 2014b, a; Frellsen et al 2016; Wang 
et al 2017; Hassan et al 2018, 2020). Material-distribution-
based topology optimization is the most commonly used 
approach, where a specified design domain is divided into 
small elements, and a design variable is assigned to each 
element to determine presence or absence of material. Typi-
cally, gradient-based optimization methods are employed to 
solve topology optimization problems, where the gradient 
information can be efficiently evaluated by adjoint-field 
methods (Giles and Pierce 2000). In this work, we adopt the 
cavity-based approach to design the FDM. However, here we 
fix the positions of the output ports and employ the material-
distribution-based topology optimization to design a three-
port FDM that operates in the X-band (9.0–10.2  GHz). The 
multiplexing effect is achieved by distributing a metal inside 
the design domain which splits the input signal frequencies 
from port-1 into two frequency bands and transmits them 
to their respective output port (either port-2 or port-3). The 
design objective is to maximize the transmission of each 
frequency to its intended output port, minimize reflection to 
port-1, and limit signal cross-coupling between the adjacent 
output ports. Previous contributions on the FDMs problems 
discussed the use of dielectric materials as design materials 
(Nomura et al 2007; Frellsen et al 2016). In such studies, the 
interpolation between the design material (dielectric) and 

the background (void) is also a lossless dielectric material, 
which entails that the power imposed at the input port would 
either be reflected back to the same port or transmitted to 
the output ports.

In the current work, we present a method to design effi-
cient three-port metallic frequency-dividing multiplexers. 
Here, the design material is a good conductor (copper), 
which can be treated as a lossless material at microwave 
frequencies. However, when interpolating between the good 
conductor (copper) and the void during the optimization 
procedure, the intermediate materials exhibit ohmic losses. 
Previous studies on topology optimization of lossy mate-
rial dealt with one or two port devices, such as antennas 
and waveguide transitions (Hassan et al 2014b, 2018). For 
multiport design problems, ohmic losses make the design 
problem sensitive to the selection of the objective function. 
The current work features a unique setup to study two main 
challenges: 1) handling the ohmic losses and 2) selecting 
a suitable objective function for a multiport design prob-
lem. We resolve the first issue by using a non-linear filtering 
approach coupled with a continuation scheme. In addition, 
we present a technique to model the material distribution 
of metal as a good electric conductor against a dielectric 
background. More precisely, we employ numerical inves-
tigations to select suitable values of the electric conductiv-
ity for the interpolation function. For the second issue, we 
devised the power balance of the setup, which we use to 
formulate a sequence of objective functions. Each objec-
tive function includes more information than the preceding 
one. The results demonstrate that providing useful additional 
information to the optimizer improves the transmission of 
the signal to its intended output port.

2 � Problem description

Consider the two-dimensional three-port setup illustrated in 
Fig. 1 (a,b). Port-1 is the waveguide on the left, and port-2 
and port-3 are the waveguides on the right. Here, �D is our 
design domain. We denote waves travelling towards �D 
as incoming waves and waves travelling away from �D as 
outgoing waves. In addition, �D and the three artificially 
truncated waveguides constitute the computational domain 
� depicted in Fig. 1 (c). The boundary �PEC represents a pre-
fect electric conductor, and �1 , �2 , and �3 are the boundaries 
of the truncated waveguides. We aim to place metallic mate-
rial inside �D to make this setup serve as a FDM. In other 
words, we want to optimize this setup in such a way that: 

(a)	 For frequency band-1, incoming waves from port-1 
only travel to port-2, as illustrated in Fig. 1a.

(b)	 For frequency band-2, incoming waves from port-1 
only travel to port-3, as illustrated in Fig. 1b).
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The dimensions of this setup are lw = 50mm , lD = 100mm , 
hD = 100mm , hw = 20mm , and hs = 30mm , as illustrated 
in Fig. 1c.

The electric field E is governed by Maxwell’s equation

where � is the permeability, � is the electrical conductivity, 
and � is the permittivity. The permittivity is related to rela-
tive permittivity �r by �r = �∕�0 , where �0 is the permittivity 
in free space. Further, we assume that � ≡ �0 , the perme-
ability in free space. We search for time harmonic solutions 
by using the ansatz E(x, t) = ℜ{E(x)ei�t} , where the angular 
frequency � = 2�f  , f is the frequency, i is the imaginary 
unit, and t is the time. This assumption yields that

where k = �∕c is the wavenumber, and c = (�0�0)
−1∕2 

denotes the speed of light.
Inside waveguides, the solution of Maxwell’s equations 

can be decomposed into the transverse electric (TE) and the 
transverse magnetic (TM) polarizations. Moreover, wave-
guides are typically dimensioned and used at frequencies 
where only one mode (namely the dominant mode) is sup-
ported at their ports (Pozar 2011). For such cases, it could 
be numerically more efficient to analyze such waveguide 
problems by employing 2D symmetry.

(1)∇ ×

(
1

�
∇ × E

)
+ �

�2E

�t2
+ �

�E

�t
= 0 in�,

(2)∇ ×

(
∇ × E

)
− k2

(
�r − i

√
�0

�0

�

k

)
E = 0 in�,

We assume that the electric field is polarized normal to 
the plane. That is, E = (0, 0, u) , where u refers to the electric 
field normal to the plane as demonstrated in Fig. 1. Also, we 
choose the frequency band of interest so that our waveguide-
based FDM only supports the dominant TE10 mode (Pozar 
2011). Under these assumptions, Eq. (2) can be reduced to 
the Helmholtz equation,

We assume that the metallic boundaries of device are perfect 
electric conductors. The boundary condition for the perfect 
electric conductor is

Based on the 20mm waveguide width, the waveguide ports 
only support the first propagating mode between 7.50GHz 
and 15.0GHz . In this study, we choose frequencies such that 
all modes except the first are evanescent. The general solu-
tion in waveguide m is thus a combination of incoming and 
outgoing first-mode waves, which can be written as

where Am and Bm are the complex amplitudes of 
incoming and outgoing wave, respectively, at port-m, 
K =

√
k2 − (�∕hw)2 is the reduced wavenumber, and

(3)−�u − k2
(
�r − i

√
�0

�0

�

k

)
u = 0 in�.

(4)u = 0 on�PEC.

(5)u = gm(ym)(Ame
−iKxm + Bme

iKxm ) m = 1, 2, 3,
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Fig. 1   The electric field is polarized normal to the plane. (a) Incom-
ing waves from port–1 should travel to port–2 in frequency band–1 
(b) Incoming waves from port–1 should travel to port–3 in frequency 
band–2. (c) Computational domain for finite element discretization. 

�1 , �2 , and �3 indicate the ports of waveguide 1, waveguide 2, and 
waveguide 3, respectively. The boundary �PEC , denoted by the solid 
line, is a perfect electric conductor. (d) Local coordinate systems for 
artificial absorbing boundary conditions
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in which the scaling factor Sm is selected such that

We use a first-order absorbing boundary condition (Engquist 
and Majda 1977) to truncate the domain at �m . That is,

The variational form of governing equation (3) with bound-
ary conditions (4) and (8) reads:

where U = {v ∈ H1(�) ∣ v = 0on�PEC} . Having solved the 
above problem, we compute the complex amplitude of the 
outgoing waves by using

3 � The power balance and the scattering 
parameters

We obtain a power balance expression by choosing v = ū 
(complex conjugate of u) in Eq. (9), which yields

Taking the imaginary part of the above equation and divid-
ing by K, we have

The local coordinate systems, as illustrated in Fig. 1 (d), are 
selected such that xm = 0 on �m ∀m . Thus, by using expres-
sion (5), we find

(6)gm = Sm sin
(
�ym∕h

w
)
,

(7)∫�m

gmgm = 1.

(8)
�u

�n
+ iKu = 2iKgmAm on�m m = 1, 2, 3.

(9)

Find u ∈ U, such that

∫�

∇u ⋅ ∇v − k2 ∫�

(
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√
�0

�0

�

k

)
uv + iK

3∑
m=1

∫�m

uv

= 2iK

3∑
m=1

Am ∫�m

gmv, ∀ v ∈ U.

(10)Bm = ∫�m

gmu − Am, m = 1, 2, 3.
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gmū.

(12)k
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√
𝜇0

𝜖0
𝜎|u|2 +

3∑
m=1

∫𝛤m

ℜ{uū − 2gmAmū} = 0.

Inserting the above expression into Eq. (12) and using that 
∫
�m

gmgm = 1 yields

where the last term represents the normalized ohmic losses. 
According to power balance (14), the power of the incoming 
waves is equal to the sum of the power of outgoing waves 
plus the ohmic losses.

Furthermore, it is common to use scattering parameters, 
Smn , to define reflection, cross-coupling, and transmission, 
where m denotes the port of outgoing waves and n denotes 
the port of incoming waves. The following expression relates 
the incoming and outgoing wave amplitude to the scattering 
parameters

From power balance (14), we know that the power of an 
incoming and an outgoing wave is proportional to the square 
of complex amplitude. That is, we are interested in extrem-
izing Pmn =

||Smn||2 . The following expression computes Pmn 
under the assumption that the device is only excited at port-n 
and that the other ports are matched

We want to place a good electric conductor within �D , so 
that the three-port setup works as two independent two-port 
networks. In frequency band-1, we want port-1 to only com-
municate to port-2, such that

More precisely, if the incoming waves from port-1 belong 
to frequency band-1, they are transmitted to port-2, while 
the incoming waves from port-2 are transmitted to port-1 
due to reciprocity.

Furthermore, in frequency band-2, we want port-1 to only 
communicate to port-3, such that

(13)
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}

= gmgm Re
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}

= gmgm(
||Bm
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||2).
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(17)P =

⎡⎢⎢⎣

0 1 0

1 0 0

0 0 P33

⎤⎥⎥⎦
.



Topology optimization of microwave frequency dividing multiplexers﻿	

1 3

Page 5 of 16    106 

More precisely, if the incoming waves from port-1 belong to 
frequency band-2, they are transmitted to port-3, while the 
incoming waves from port-3 are transmitted to port-1 due to 
reciprocity. Henceforth, we refer to P as the power matrix.

4 � Discretization, design parameterization, 
and topology optimization

4.1 � Finite element discretization

The finite element method is used to discretize the com-
putational domain � into a uniform mesh of square ele-
ments. We use basis functions that are continuous and 
bi-quadratic on each element. These basis functions are 
denoted by �1, �2, … , �N , where N is the number of nodes 
in the finite element approximation. The complex ampli-
tude function u and the test function v are approximated 
by uh ∈ Vh = span{�1, … , �N} and vh ∈ Vh , respectively. 
Further, we approximate the conductivity � by an element-
wise constant function �h . We define the ND × 1 vector 
� =

[
�1, �2, … , �ND

]T that holds the elementwise values 
of �h in the design region, where ND denotes the number of 
elements in �D . Outside the design region, the conductiv-
ity is zero. The discretized version of problem (9) can be 
expressed in matrix form as

where the N × 1 vector u =
[
u1, u2, … , uN

]T . Moreover, the 
N × N matrix A and the N × 1 vector b have entries

and

respectively.
Similarly, Eq. (10) that computes Bm can be written in 

matrix form as

where the N × 1 vector cm has entries

(18)P =

⎡
⎢⎢⎣

0 0 1

0 P22 0

1 0 0

⎤
⎥⎥⎦
.

(19)A(�)u = b,

(20)

Aij = ∫�

∇�i ⋅ ∇�j − k2 ∫�

(
�r − i

√
�0

�0

�h

k

)
�i�j

+ iK

3∑
m=1

∫�m

�i�j

(21)bi = 2iK

3∑
m=1

Am ∫�m

�i�jgm,

(22)Bm = (cm)
Tu − Am,

4.2 � Modeling of a good electric conductor

We set the incoming amplitudes A1 = 1 and A2 = A3 = 0 . 
Using power balance (14) and the definition (16), we have

In the above expression, we have the power output at all 
the ports and the ohmic losses. We aim to design a lossless 
device via material-distribution-based topology optimiza-
tion by placing either a metallic material or free space in 
each element in �D to achieve the multiplexing effect. To 
obtain a well-performing multiplexer, the device should pos-
sess negligible ohmic losses. The perfect electric conductor 
has � = ∞ and contributes zero ohmic losses. Using a very 
large value of � , we can model a perfect electric conductor 
and approximate a zero Dirichlet boundary condition on the 
metallic boundary inside �D . However, choosing a very high 
conductivity value is neither beneficial nor practical. Good 
electrical conductors, such as silver and copper have finite 
conductivity of � = 6.3 × 107 S∕m and � = 5.96 × 107 S∕m , 
respectively, at microwave frequencies. For interpolation of 
material in material-distribution-based topology optimiza-
tion, we need to select values of conductivity for free space 
( �min ) and good electric conductor ( �max ) to model the mate-
rial distribution inside �D . To find suitable values of �max 
and �min , we conducted numerical tests with a disk and trian-
gle-shaped electric conductor inside �D , as shown in Fig. 2.

The reason for using different shapes is to experiment 
with structures that might contribute different amount of 
losses. The disk and the triangle are simple geometries that 
possess smooth boundaries and sharp corners, respectively. 
For both geometries, we vary the conductivity between two 
extreme values. The graphs in Fig. 2 show that for intermedi-
ate values of the conductivity, both geometries exhibit losses 
and that the amount of losses vary with frequency. That is, 
the ohmic losses are both frequency and geometry depend-
ent. However, for both geometries, the ohmic losses are neg-
ligible for � ≤ 10−4 and � ≥ 105 . This suggests that all the 
values of � ≤ 10−4 and � ≥ 105 can model free space and a 
good electric conductor, respectively, with negligible ohmic 
losses. Hence, we choose to simulate a good electric conduc-
tor using �max = 105 and free space using �min = 10−4 . Thus, 
for � ≤ 10−4 and � ≥ 105,

We tightly choose this range for � since values outside 
of it make the problem insensitive during the optimiza-
tion. Furthermore, numerical tests reveal that the values 

(23)cmi
= ∫�m

gm�i.

(24)P11 + P21 + P31 + Ohmic losses = 1.

(25)P11 + P21 + P31 ≈ 1.
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outside of this range have a negligible impact on the device 
performance.

4.3 � Design definition and filtering

We employ a non-linear filtering approach to relax the 
problem’s self-penalization issue and impose size control 
on the design. More precisely, we apply the fW-mean-based 
filtering framework (Wadbro and Hägg 2015), and harmonic 
mean-based filters (Svanberg and Svärd 2013) to approxi-
mate morphological operators (erode and dilate). Here, we 
use an extended domain, �F = �D ∪�M ∪�W , illustrated 
in Fig. 3, to filter the design variables where �M is occupied 
by material and �W is occupied by free space. The material 
distribution inside �F is defined by NF × 1 vector � in which 
elements are sorted such that the elements in �D come first, 

the elements in �M comes second, and the elements in �W 
come last.

In the discrete setting, the harmonic erode and dilate 
operators act on � and are defined as follows:

and

where r is the filter radius, 𝛽 > 0 is a parameter that controls 
the non-linearity, f �� and fD�

 have entries

and

respectively, and NF × NF weight matrix Wr implic-
itly defines neighborhood of element i. More precisely, 
Wr = D−1Gr . In NF × NF matrix Gr , the entry gij = 1 if the 
distance between xi (centroid of element i) and xj (centroid 
of element j) is less than or equal to r, else gij = 0 . In addi-
tion, the diagonal matrix D = diag(Gr1NF) , in which all the 
entries of NF × 1 vector 1NF are equal to 1.

(26)��,�(�) = f−�
��

[
�� fD�

(�)
]

(27)D�,�(�) = f−�
D�

[
�� fD�

(�)
]

(28)f�� (�) =
(
�i + �

)−1
, i = 1, 2, ..., NF

(29)fD�

(
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= f��

(
1 − �i

)
, i = 1, 2, ..., NF
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Fig. 2   Left column: For the disk-shaped electric conductor inside 
�D , the electrical conductivity � in the range [10−6, 1010] is plotted 
in log10-scale against the sum of scattering parameters. Right col-

umn: For the triangle-shaped electric conductor inside �D , the elec-
trical conductivity � in the range [10−6, 1010] is plotted in log10-scale 
against the sum of scattering parameters
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Fig. 3   The filtering domain �F = �D ∪�M ∪�W
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Note that the material distribution inside �M and �W 
remains fixed during optimization, while only the material 
distribution inside �D changes. We define a ND × 1 design 
vector � for material distribution in �D . Moreover, we form 
a harmonic close operator by combining the erode and dilate 
operators in a series, providing us a size control of radius r 
on free space. The harmonic close operator, which acts on 
� , is defined as

where IND×ND is an identity matrix, 0ND×(NW+NM) is a matrix of 
all zeros, 0N

M

 is a 1 × NM vector of all zeros, 1N
W is a 1 × NW 

vector of all ones, and Cr,�(�) provides a filtered version 
of the design vector � . The element values of conductivity 
have components

where Cr,�(�)E = 1 corresponds to �E = 10−4 (free space) 
and Cr,�(�)E = 0 corresponds to �E = 105 (good electric 
conductor).

4.4 � Objective function

The aim of this study is to design a frequency dividing mul-
tiplexer with properties as discussed in Sect. 3. The essential 
requirement is that the three-port setup should work as two 
independent two-port networks. That is, in frequency band-
1, we want maximal transmission between port-1 and port-2, 
and in frequency band-2, we want maximal transmission 
between port-1 and port-3. To this end, we investigate three 
objective function formulations. Each consecutive objective 
function includes more information obtained by adding addi-
tional terms from power balance expression (24).

In addition, to writing the objective functions in a form 
inspired by the power balance expression, we also write 
them in the exact form that we use in the numerical experi-
ments. In the numerical experiments, we use the method of 
moving asymptotes (MMA) by Svanberg (1987) to solve the 
optimization problem. MMA provides multiple alternatives 
for solving an optimization problem, including standard 
minimization and least square problems. The reason that we 
provide the exact formulation of the optimization problem 
that enters the optimizer is that this may significantly affect 
the performance—both in terms of number of iterations 
required to find a minimizer, but also in terms of the perfor-
mance for the optimized design. Henceforth, we denote the 
formulation we use in MMA as the “MMA formulation” of 
the optimization problem.

(30)
Cr,�(�) =

[
IND×ND 0ND×(NW+NM)

]

Er,�

(
Dr,�

([
�T

0
NM

1
NW]T))

,

(31)�E = 105−9 Cr,� (�)E ,

Finally, before stating our three objective functions, we 
remark that all of these objectives push the power matrix for 
the optimized design towards form (17) in frequency band-1 
and form (18) in frequency band-2. This is further expanded 
in Remark 2 below.

4.4.1 � First optimization problem

For the first objective function, we only optimize with infor-
mation on transmission. More precisely, the objective is to 
maximize P21 for frequency band-1 and P31 for frequency 
band-2. Due to reciprocity, we also implicitly maximize P12 
for frequency band-1 and P13 for frequency band-2. For the 
first study, we formulate the following objective function to 
be minimized:

where Q1 and Q2 denote the number of frequencies in fre-
quency band-1 and frequency band-2, respectively.

Remark 1  The reason that we use 1 − P21 and 1 − P31 is that 
the ideal (maximum possible) value for these normalized 
powers is 1. So each term in the sums above is positive, 
which paves the way for a straightforward transition to the 
MMA formulation.

In each iteration of topology optimization, we take the 
following steps to determine power Pm1 for each wavenumber 

1.	 For filtered design vector Cr,�(�) , wavenumber kq , and 
incoming wave amplitude A1 , solve finite element prob-
lem (19) to compute u.

2.	 Compute the amplitude of outgoing waves Bm using 
Eq. (22).

3.	 Use expression (16) to compute power Pm1 , m = 1, 2, 3.

Here, we aim to minimize J1 and hence solve the following 
optimization problem

where A = {� ∈ ℝ
ND

∣ 0 ≤ �E ≤ 1∀E} is the set of admis-
sible designs.

Remark 2  An ideal design for the FDM with objective 
J1 has P21 = 1 in frequency band-1 and P31 = 1 in fre-
quency band-2. For frequency band-1, P21 = 1 together 
with the power balance implies that P11 = P31 = 0 , 

(32)

J1(Cr,�(�)) =

Q1∑
q=1

(
1 − P21(Cr,�(�), kq)

)

+

Q1+Q2∑
q=Q1+1

(
1 − P31(Cr,�(�), kq)

)
,

(33)min
�∈A

J1(Cr,�(�)),
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this together with reciprocity implies that P13 = 0 and 
P12 = 1 , which (again by a power balance law) implies that 
P22 = P23 = 0 , which by reciprocity implies that P32 = 0 . 
An analogous argument yields that P31 = P13 = 1 and 
P11 = P21 = P12 = P32 = P33 = 0 in frequency band-2. 
Thus, an ideal design that perfectly minimizes J1 has a power 
matrix of form (17) in frequency band-1 and of form (18) in 
frequency band-2.

The standard minimization formulation in MMA is suitable 
for solving problem (33) where we minimize the difference to 
maximize P21 and P31 . Hence, we do not use the quadratic term 
provided in the MMA formulation. To solve our optimization 
problem, we use the following MMA formulation

where Q = Q1 + Q2 denotes total number of frequencies,

and the Q × 1 vector y represent artificial optimization vari-
able that aids in the formulation of optimization problem. 
We provide a separate function hi to the MMA algorithm for 
each wavenumber.

4.4.2 � Second optimization problem

Only information on transmission is provided to the optimizer 
in J1 . A possible aid to the objective function would be to 
provide information on cross-coupling or reflection, which is 
not present in J1 . After optimizing with J1 , we noticed that 
the values of cross-coupling are higher than that of reflection. 
Therefore, we include information on cross-coupling in the 
second objective function. More precisely, in addition to maxi-
mizing transmission, we minimize P31 for frequency band-1 
and P21 for frequency band-2. This allows us to control another 
parameter while also providing the optimizer with additional 
sensitivities to minimize the cross-coupling. To do so, we for-
mulate the following objective function

(34)

min
�,y

Q∑
i=1

yi

subject to hi(Cr,�(�)) − yi ≤ 0, i = 1, … , Q,

� ∈ A, y ≥ 0,

(35)
hi(Cr,�(�)) = 1 − P21(Cr,�(�), ki) i = 1, … ,Q1,

hi(Cr,�(�)) = 1 − P31(Cr,�(�), ki) i = Q1 + 1, … ,Q,

(36)

J2(Cr,�(�)) =

Q1∑
q=1

(
P31(Cr,�(�), kq)

)

+

Q1+Q2∑
q=Q1+1

(
P21(Cr,�(�), kq)

)
.

Similarly, due to reciprocity, we implicitly minimize P13 
for frequency band-1 as well as P12 for frequency band-2. 
Hence, we solve the following optimization problem

To solve optimization problem (37), we obtain the MMA 
formulation shown below

where the vector y is 2Q × 1 , which is twice the size of 
problem formulation (34). Thus, for each wavenumber, we 
provide the MMA algorithm two hi , one for maximizing 
transmission and the other for minimizing cross-coupling. 
More precisely, we provide hi as defined in Eq. (35) for 
i = 1, … , Q and

4.4.3 � Third optimization problem

According to Eq. (24), we can also add information about 
reflection to the objective function, which was not included in 
the second objective function. Therefore, in the third objective, 
we also provide information on reflection to the optimizer. 
More precisely, in addition to maximizing transmission and 
minimizing cross-coupling, we also minimize P11 for both the 
frequency bands. To do so, we define the following objective 
function

Hence, we solve the following optimization problem

To solve the above optimization problem, we obtain the fol-
lowing MMA formulation

(37)min
�∈A

J1(Cr,�(�)) + J2(Cr,�(�)).

(38)

min
�,y

2Q∑
i=1

yi

subject to hi(Cr,�(�)) − yi ≤ 0, i = 1, … , 2Q,

� ∈ A, y ≥ 0,

(39)
hQ+i(Cr,�(�)) = P31(Cr,�(�), ki) i = 1, … ,Q1,

hQ+i(Cr,�(�)) = P21(Cr,�(�), ki) i = Q1 + 1, … , Q.

(40)

J3(Cr,�(�)) =

Q1∑
q=1

(
P11(Cr,�(�), kq)

)

+

Q1+Q2∑
q=Q1+1

(
P11(Cr,�(�), kq)

)
.

(41)min
�∈A

J1(Cr,�(�)) + J2(Cr,�(�)) + J3(Cr,�(�)).
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where the vector y is 3Q × 1 , which is three-times the size 
of the problem formulation  (34). To solve optimization 
problem (42), we provide hi as in Eq. (35) and Eq. (39) for 
i = 1, … , 2Q , and

In this case, we provide the MMA algorithm three hi for 
each wavenumber, first for maximizing transmission, sec-
ond and third for minimizing cross-coupling and reflection, 
respectively.

4.4.4 � On some relations between the objective functions

Also for the second and third objective, one can make the 
same argument as that in Remark 2. So, the ideal design 
for any of the objective functions in this section has a 
power matrix of form  (17) in frequency band-1 and of 
form (18) in frequency band-2. The key in this argument 
for all objective functions is that P21 = 1 in frequency 
band-1 and P31 = 1 in frequency band-2. On the other 
hand, having P11 = 0 = P31 = 0 in frequency band-1 and 
P11 = 0 = P21 = 0 in frequency band-2 does not imply that 
the design is ideal—it is, for example, possible that all the 
incoming energy gets burned due to the ohmic losses.

Another, possibly interesting relation between the partial 
objectives can be found by rearranging power balance (24). 
It holds that

Thus, for lossless design the third objective function is a fac-
tor 2 times the first objective function. However, for design 
that exhibit losses, the partial objectives are not perfectly 
aligned.

4.5 � Sensitivity analysis

This study aims to maximize or minimize Pmn , which 
depends upon the complex amplitudes, Am and Bm , of the 
incoming and the outgoing waves, respectively, at �m . The 
values of Am are fixed, therefore we can only influence Bm 
to optimize Pmn . We employ the adjoint-based method for 
computing the gradient of Bm with respect to electrical con-
ductivity, �E.

(42)

min
�,y

3Q∑
i=1

yi

subject to hi(Cr,�(�)) − yi ≤ 0, i = 1, … , 3Q,

� ∈ A, y ≥ 0,

(43)
h2Q+i(Cr,�(�)) = P11(Cr,�(�), ki) i = 1, … ,Q1,

h2Q+i(Cr,�(�)) = P11(Cr,�(�), ki) i = Q1 + 1, … , Q.

(44)J1 = J2 + J3 +
∑
q

ohmic losses.

Let �� be a perturbation of the conductivity. The corre-
sponding first-order perturbation of the outgoing complex 
amplitude Bm (22) is

where �u is the first-order perturbation of u.
Similarly, since the system matrix A is linear in � , the 

perturbed Eq. (19) yields

We obtain the following expression by multiplying Eq. (46) 
by N × 1 vector zm,

Let zm be the solution to the adjoint equation given by

Recall that A is symmetric which implies that 
(zm)

TA = (cm)
T . Substituting this into Eq. (45) provides us

From expression (49), we identify the derivative of Bm with 
respect to �E

where ME is a mass matrix of element �E in �D and has 
entries

uE and (zm)E are sub-vectors of u and zm , respectively, which 
correspond to nodal values in element �E.

By differentiating Eq. (31) and using the chain rule, we 
obtain the gradient of Bm with respect to design variable �E , 
as presented by Hägg and Wadbro Hägg and Wadbro (2017).

4.6 � Continuation approach

Previous studies by Hassan et al (2014b, 2015) have shown 
that the problem of designing a metallic antenna to maxi-
mize transmission is self-penalized. Based on power matri-
ces of form (17) and (18), we choose to maximize trans-
missions P21 for frequency band-1 and P31 for frequency 
band-2, respectively. Maximizing the transmission implicitly 
minimizes the ohmic losses, which makes the optimization 
problem self penalized. Thus, no explicit penalty is required 
to suppress the intermediate values of design variables. As 
stated earlier, to solve this issue, we employ a continuation 
approach for the filtering of the design variables. That is, 

(45)�Bm = (cm)
T�u,

(46)A(��)u + A(�)�u = 0.

(47)(zm)
TA(��)u + (zm)

TA(�)�u = 0.

(48)A zm = cm.

(49)�Bm = (zm)
TA(�) �u = −(zm)

TA(��)u.

(50)
�Bm

��E
= −(zm)

T
E

(
ik

√
�0

�0
ME

)
uE,

(51)mij = ∫�E

�i�j,
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we solve a sequence of optimization problems, each starting 
with the previously optimized solution as initial guess. At 
each continuation step, we decrease the non-linearity param-
eter � when the residual norm of the KKT (or the first-order 
optimality) condition is smaller than 10−3 . More specifically, 
we use � = 102−

n

2 where n = 0, 1, … , 12 . As we decrease 
� , the filter’s non-linearity increases. The blurring caused 
by the filtering implicitly imposes losses. The non-linearity 
of the filter increases with each successive step, which is 
associated with and negatively correlated to the amount of 
induced losses. Thus, in this case, the non-linearity of filter 
reduces blurring in the design in addition to providing size 
control and mesh-independent design.

5 � Numerical results

We use a set of 11 frequencies in each band for the 
topology optimization of the three port setup. More pre-
cisely, in frequency band-1, we use the frequencies 
9.0, 9.02, … , 9.2GHz , while in frequency band-2, we use 
the frequencies 10.0, 10.02, … , 10.2GHz . Using the defini-
tion of wavenumber k and angular frequency w, we compute 
kq for each frequency in both bands. The design domain �D 
is discretized into 320 × 320 elements. The wave propaga-
tion here is well resolved, with �∕�x ≈ 106 elements per 
wavelength at the lowest frequency 9.0GHz and �∕�x ≈ 94 
elements per wavelength at the highest frequency 10.2GHz , 
where � is the wavelength and �x is the element size of finite 
element discretization. The mesh resolution in this case is 
determined by the desired design resolution in �D and not 
by the wave propagation.

For all experiments, the final optimized designs are 
evaluated using a real electric conductor copper with 
� = 5.96 × 107S∕m over the frequency range 8.8–10.4GHz 
with an increment of 0.01GHz . Recall that the first objec-
tive function measures the transmission for both the fre-
quency bands. Therefore, we evaluate J1 to compare all 

the optimized designs. As a reference value, J1 = 12.2225 
for the free space (empty cavity) initial design. That is, 
Cr,�(�)E = 1 , ∀E in �D.

5.1 � Maximizing transmission

For the first study, we employ our basic objective function 
J1 formulated in Eq. (32). This objective function maxi-
mizes the transmission P21 for frequency band-1 and P31 
for frequency band-2. The optimized design and frequency 
response are shown in Fig. 4. Within frequency band-1, 
more than 93.5% of the power is transmitted to port-2, with 
an average transmission of more than 95.1% . In addition, 
the reflection and the cross-coupling are less than 3.2% and 
4.4% , respectively, for all frequencies in the range 9.0−
9.2GHz . Similarly, within frequency band-2, more than 
92.5% of the power is transmitted to port-3, with the average 
transmission to port-3 is more than 93.9% . In addition, the 
reflection and the cross-coupling are less than 0.7% and 7% , 
respectively, for all frequencies in the range 10.0−10.2GHz . 
Furthermore, J1 = 1.1987 at the end of optimization implies 
that the transmission can further be improved by minimizing 
the cross-coupling and the reflection terms. At the comple-
tion of optimization, the element entries of filtered design 
vector Cr,�(�) are nearly binary. More precisely, we employ 
the measure of non-discreteness ( Mnd ) proposed by Sigmund 
(2007), which is

For this measure, Mnd = 0% means that the element val-
ues of the filtered design vector are binary (either 0 or 1), 
whereas Mnd = 100% means that the design is totally gray 
and all the element values are 0.5. Mnd = 0.0213% for the 
design presented in Fig. 4, which indicates that the opti-
mized design is essentially lossless. Power balance states 
that sum of power is always equal to 1. Here, we verify that 
the design is essentially lossless by summing the outgoing 

(52)Mnd = 400 (Cr,�(�)
T
(
Cr,�(�) − 1

)
∕ND) %.
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Fig. 4   The optimized design (left) along with the frequency response (right) for the first objective function
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powers P11 + P21 + P31 . This holds for all the numerical 
results presented in this work.

5.2 � Maximizing transmission and minimizing 
cross‑coupling

As stated previously, the coupling values are higher than 
that of reflection in the first study. Therefore, in the sec-
ond study, we maximize transmission as well as minimize 
cross-coupling by employing the second objective function 
defined in expression (37). The optimized design along 
with its frequency response is shown in Fig. 5. Within fre-
quency band-1, more than 93.7% of the power is transmit-
ted to port-2, with an average transmission of more than 
96.1% . Furthermore, the reflection and the cross-coupling 
is less than 1.7% and 4.1% , respectively, for all frequen-
cies in the range 9.0−9.2 GHz . Similarly, within frequency 
band-2, more than 94.4% of the power is transmitted to 
port-3, with an average transmission of more than 95.2% . 
Furthermore, the reflection and the cross-coupling are less 
than 0.9% and 2.3% , respectively, for all frequencies in 
the range 10.0−10.2 GHz . As compared to the first study, 
the transmission is higher and the cross-coupling is lower 
for both the frequency bands. In addition, the optimized 
design exhibits a value J1 = 0.9583 , which indicates that 

the second objective function is better than the first objec-
tive function, and hence the design provides a better mul-
tiplexing effect. Furthermore, as shown in the frequency 
response (Fig. 5), the multiplexing effect extends well 
beyond the target frequency bands, with more than 90% of 
power transmission to port-2 for frequencies in the range 
8.9−9.4 GHz and more than 88% of power transmission to 
port-3 for frequencies in the range 9.9−10.3 GHz.

5.3 � Maximizing transmission, minimizing 
cross‑coupling, and minimizing reflection

Along with optimizing transmission and cross-coupling, 
the third objective function formulated in expression (41) 
also aims to minimize the reflection term P11 for both fre-
quency bands. The optimized design along with its fre-
quency response is shown in Fig. 6. The optimized design 
obtained from the second and third objective function 
are almost identical. Similarly, the frequency responses 
are quantitatively similar. In addition, J1 = 0.9524 for the 
third study. This is comparable to the second study, imply-
ing that adding the reflection term to the objective does 
not provide a significant benefit in this case. However, 
previous studies have shown that including the reflection 
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Fig. 5   The optimized design (left) along with the frequency response (right) for the second objective function
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Fig. 6   The optimized design (left) along with the frequency response (right) for the third objective function
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information to the objective function can be beneficial in 
some cases (Hassan et al 2018).

5.4 � Validation of results

We use COMSOL Multiphysics to validate the results 
of our numerical experiments. For the validation, we 
select the final design from the second objective func-
tion depicted in Fig. 5. A MATLAB code that generates 
the coordinates was used to trace the boundaries of opti-
mized design. Using these coordinates, the optimized 
design was created in COMSOL Multiphysics. We use 
triangular elements with a maximum side length of 1mm 
for the discretization in COMSOL Multiphysics. The fre-
quency response computed by our algorithm in MAT-
LAB is compared to the frequency response computed in 
COMSOL Multiphysics. The two computations exhibit a 
perfect match over the simulated frequency band and thus 
validate our results, as shown in Fig. 7(c). In addition, we 
show in Fig. 7(a,b) the electric field distribution Re(u) at 

9.0 and 10.0GHz to demonstrate the multiplexing effect 
of the optimized device.

5.5 � Sensitivity to initial design

For the designs presented in Figs. 4, 5, and 6, we initiate 
the optimization process with free space inside �D , and the 
optimizer only places material close to the boundary walls, 
with no material in the center of �D . Therefore, it is reason-
able to investigate the optimization problem with different 
initial designs. To study this further, we perform two more 
numerical experiments with different initial distribution of 
material inside �D . In the first experiment, we use a circle-
shaped initial design, and in the second, we use a triangle-
shaped, as illustrated in Fig. 8. We use both the second and 
third objective functions in these numerical experiments. 
However, the value of J1 is comparable for both the objective 
functions, which indicates that for this problem setup, add-
ing information on reflection does not significantly improve 
the multiplexing effect. Therefore, in this section, we only 
present the results with the second objective function.
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Fig. 7   Electric field distribution Re(u) is plotted: (a) at 9.0 GHz 
where the incoming waves from port-1 travel to port-2 and (b) at 
10  GHz where the incoming waves from port-1 travels to port-3. 

Design validation: (c) Frequency response computed by our algo-
rithm implemented using MATLAB compared to frequency response 
computed using COMSOL Multiphysics
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Figure 8 shows the optimization results using free space, 
circle-shaped and triangle-shaped initial designs. For the 
case with free space initial design, the optimization algo-
rithm initially places gray material close to the boundaries 
of �D but not in the middle. Moreover, the final design 
we acquire has no material in the middle of �D . For cases 
with circle-shaped and triangle-shaped initial designs, we 
obtain gray material close to the boundaries and the center 
of �D . The material in the middle changes shape but does 

not disappear during the optimization process in both cases. 
This investigation highlights how the problem is affected by 
the initial design. Within frequency band-1, we obtain more 
than 90% transmission to port-2 for all three initial designs, 
with the circle-shaped initial design providing a flat response 
and nearly 100% transmission to port-2. Moreover, the dif-
ference between J1 = 0.5370 for circle-shaped initial design 
and J1 = 1.5570 for triangle-shaped initial design suggests 
that the former provides a much better multiplexing effect. 
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Fig. 8   Left column: Objective function versus the number of itera-
tions together with some snapshots showing the development of the 
design when using free space, circle-shaped, triangle-shaped initial 

designs. Right column: The performance of the corresponding final 
optimized designs, shown on the left
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However, for some frequencies in frequency band-2, the 
transmission to port-3 falls below 90% for circle-shaped and 
triangle-shaped initial designs.

6 � Discussion

In section 4.4, we present three MMA formulations for 
our optimization problems, and explain how we increase 
the number of functions hi for each objective function. We 
can, however, decrease the number of functions provided 
to the algorithm, which affects the design and its perfor-
mance. We decreased the number of functions by using 
the same problem formulation as in (34), where instead 
of providing one hi for each term to the algorithm, we just 
provide two, one for each frequency band. More precisely, 
for the first objective function, we use the following MMA 
formulation

Similarly, we provide only two hi for the second and third 
objective function as well. With only two hi provided to the 
MMA, J1 = 1.3952 , 1.0545, and 1.0235 for the first, second, 
and third objective function, respectively, with free space 
initial design. Providing information on cross-coupling and 
reflection also improves multiplexing in this case. Moreover, 
with the second objective function, J1 = 7.9185 and 3.0855 
for the circle and triangle-shaped initial designs, respec-
tively, by supplying only two hi to the MMA. These designs 
are inferior compared to the designs presented in section 5. 
In short, we want to highlight two key points from these 
numerical experiments. First, the results suggest that in this 
case, providing more information (cross coupling and reflec-
tion terms, as well as their gradients) aids the optimizer in 
finding a better solution, resulting in an improved multiplex-
ing effect. Second, providing information to the optimizer 
as separate functions—as is the standard practice for least 
squares problems, where specialized algorithms, such as 
Gauss–Newton and Levenberg–Marquardt, make use of this 
information—yields better performing optimized designs.

In all three objective functions, we use an explicit term 
to maximize the transmission because the minimization 

(53)

min
�,y

y1 + y2

subject to

Q1∑
q=1

(
1 − P21(Cr,�(�), kq)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
h1(Cr,� (�))

−y1 ≤ 0,

Q1+Q2∑
q=Q1+1

(
1 − P31(Cr,�(�), kq)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
h2(Cr,� (�))

−y2 ≤ 0,

� ∈ A, y ≥ 0.

of the reflection and cross-coupling terms does not imply 
the maximization of the transmission term. This is due to 
ohmic losses, which can be seen in Eq. (24). According to 
the system power balance, a possible solution to minimize 
the reflection and the cross-coupling is to increase ohmic 
losses. As a result, in a wave propagation problem with 
losses, an explicit term is required to maximize transmis-
sion. Maximizing transmission makes the optimization 
problem self-penalized and the final designs are essen-
tially black and white without using an explicit penalty. 
More precisely, the maximum measure of non-discreteness 
( Mnd ) for all optimized designs in this paper is 0.0223% . 
In a lossless case, however, we can implicitly maximize 
transmission by minimizing cross-coupling and reflec-
tion (Wadbro 2014; Bokhari et al 2021).

We experimented with numerous initial designs in this 
study, including square-shaped initial designs, various sizes 
of circles, and triangular forms. We also experimented with 
different values of gray material initial designs. The results 
show that many good designs are possible with various ini-
tial designs and there are multiple good local minima. Here, 
we present three initial designs to optimize our three-port 
setup, all of them provide different designs and produce a 
good multiplexing effect. However, we only achieve a flat 
response with nearly 100% transmission in frequency band-1 
for the circle-shaped initial design. This demonstrates that 
the initial design has an impact on the final optimized 
design, and we typically end up at a local minimum.

7 � Conclusions

FDM plays a crucial role in data transmission for commu-
nication systems. Because of the complexity of the design 
task, the design of FDM devices is typically carried out 
manually by highly experienced engineers. To automate 
the design procedure, we present a topology optimization 
method relying on an accurate numerical solutions of the 
wave propagation. Using metals as design materials in 
topology optimization of electromgentic problems results 
in ohmic losses associated with intermediate designs. The 
ohmic losses and the multiport features of the FDM’s setup 
make the optimization problem sensitive to the formulation 
of the objective function and the solution strategy. The sole 
use of the maximization of power transmission, as an objec-
tive function, reveals a self-penalization of such formulation: 
the maximization of the transmitted power could be eas-
ily achieved by minimizing the ohmic losses in the design 
domain. The filtering method relaxes the self-penalization 
issue during the design process by controlling the ohmic 
losses which enables the optimization procedure to converge 
to satisfying solutions. The power balance of the setup, 
however, reveals that other factors can provide additional 
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useful information which, when included in the objective 
function formulation, can result in better solutions. In other 
words, the system power (or energy) balance is essential to 
guide the formulation of objective function. Also, in design-
ing metallic multiport electromagnetic devices, the design 
problem is likely to be formulated as a multiobjective opti-
mization problem that combines various power (or energy) 
measures.
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