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Abstract Articulating crane (AC), a widely used
crane, plays an essential role in various industrial activi-
ties.Owing to its strongnonlinearity anduncertainty, its
tracking control remains challenging, particularly for
precise dynamic tracking control. This paper proposes
an adaptive diffeomorphism-constraint-based control
(ADCBC) for a nonlinearAC to robustly achieve trajec-
tory tracking while guaranteeing desired dynamic con-
trol performance (DDCP), considering (possibly rapid
and irregular) time-variant uncertainty with unknown
bounds. A user-definable hard-limiting function was
used to guarantee the DDCP, including the require-
ment for steady-state tracking error and dynamic con-
vergence speed. The desired trajectories and DDCP
were formulated as equality and inequality servo con-
straints, respectively. A diffeomorphism approach was
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adopted to incorporate inequality servo constraints into
equality servo constraints, yielding new equality servo
constraints. Thus, the control task was converted to
enable the transformed AC to follow the new equality
servo constraints and was completed by a constraint-
based control (CBC) scheme, where an adaptive law
was established for the estimation of online uncertainty
bounds to compensate for uncertainty. No approxima-
tions or linearizations were invoked. The effectiveness
and robustness of the proposed ADCBC were con-
firmed through rigorous proofs and simulation results.
To the best of our knowledge, this is the first endeavor
in tracking control while guaranteeing the DDCP for
uncertain AC-like systems.

Keywords Articulating crane · Adaptive robust
control · Prescribed performance control · Constraint-
following · Tracking control

1 Introduction

Articulated cranes (ACs) are widely used in industrial
operations, allowing for temporary access to the air
and making aerial work safe and easy [1]. The tip of
the AC can be moved up or down to a desired height
by the cooperative luffing of its arms. AC can be used
for a variety of tasks, equipped at the tip with differ-
ent tools or containers. Occasionally, the task may be
challenging, such as sending a container with liquid
to a specific position in the air without spilling water,
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which is when AC precise dynamic performance is
desired. Trajectory planning forACs can output desired
smooth trajectories. If the arms move according to the
desired trajectories during the entire process, the AC
will reach the target without spilling water [2,3]. The
key to achieving this goal is to design a tracking control
with desired dynamic control performance (DDCP).
Since AC is necessary for aerial working and its DDCP
is closely related to the safety and stability of working
at height, it is essential to ensure the DDCP by AC
control. Therefore, this study was aimed at controlling
ACs to track desired trajectories while guaranteeing the
desired dynamic control performance (DDCP).

Owing to the complex structure of an AC, its
dynamic model exhibits strong nonlinearity [4–6].
Considering the nonlinear dynamics, its control is a
tough but attractive topic [7–10]. Generally, there are
two types of control for cranes, open- and closed-loop
controls [11]. Open-loop control schemes have been
extensively studied, mainly to reduce the sway or oscil-
lation of payload [12]. For example, Osiński and Woj-
ciech [13] designed an input-shaping algorithm for an
offshore crane. Vaughan et al. [14] used a command
shaper for the nonlinear slewing motion of a tower
crane. Open-loop schemes are easy to implement and
do not require feedback information, but their perfor-
mance may be disturbed by uncertainty [15].

In practical AC system [16], uncertainty, such as a
change in payload mass, is inevitable. The uncertainty
of ACs is characterized by (possibly rapid and irregu-
lar) time-varying and unknownbounds [17]. The uncer-
tainty could considerably degrade the performance of
the control system if not properly handled [18]. To
help the system resist uncertainty, closed-loop schemes
using feedback information are necessary for control
[19–21]. Among these closed-loop control schemes,
recently, the slidingmode control (SMC) has been gen-
erally used. For example, Tian et al. [22] proposed an
online robust adaptive SMC, estimating an unknown
payload mass and eliminating its disturbances. Previ-
ously [23], an adaptive integral SMC was proposed for
a tower cranewith uncertainty.AlthoughSMChas been
confirmed to be effective in enabling the controlled sys-
tem to converge in a steady state, it may cause control
input chattering, resulting in unexpected vibration, and
consequently, water spilling.

The constraint-based control (CBC), originating
form a study by Chen et al. [25], is more effective for
controlling nonlinear mechanical systems, and its con-

trol input satisfies the Gauss minimum principle and
theLagrange’s formofD’Alembert’s principle, thereby
exhibiting amodest control magnitude. By formulating
tracking tasks as equality servo constraints, the adap-
tive CBC [24,26] demonstrates its ability to achieve
trajectory tracking for nonlinear mechanical systems
subject to uncertainty [27]. Sun et al. [28] designed
a leakage-type adaptive CBC for uncertain underactu-
ated systems. Sun et al. [29] proposed a similar con-
trol for systems with high nonlinearity and optimized
the control parameters to improve performance. These
CBC studies demonstrated modest control input, rigor-
ous control design processes, and the steady-state con-
vergence of controlled systems. Nevertheless, there is
still a gap between the existingmethods and the control
objectives of the present study, i.e., they cannot regu-
late the dynamic performance during the convergence
history [30]. Therefore, the DDCP cannot be guaran-
teed.

It is difficult to control ACs to robustly achieve tra-
jectory tracking while guaranteeing the DDCP in the
presence of (possibly rapid and irregular) time-variant
uncertainty with unknown bounds. No solution has
been reported regarding this, to the best of our knowl-
edge [26–30].

Here, an adaptive diffeomorphism-constraint-based
control (ADCBC) was designed for an AC to robustly
achieve trajectory tracking while guaranteeing the
DDCP in the presence of (possibly rapid and irreg-
ular) time-variant uncertainty with unknown bounds.
To guarantee the DDCP, we required the steady-state
tracking error to converge to a predefined area near
zero, and the dynamic convergence speed was no less
than a predefined certain value. A user-definable hard-
limiting function prescribed the steady-state tracking
error and dynamic convergence speed, and the DDCP
was guaranteed by an equality servo constraint, which
limited the tracking error to less than the value of the
hard-limiting function during the entire process. Tra-
jectory tracking is translated as a series of equality
servo constraints, whereas the DDCP is formulated as
a series of inequality servo constraints. We incorpo-
rated inequality servo constraints into equality servo
constraints by “diffeomorphism”, denoting a contin-
uously differentiable map with a continuously differ-
entiable inverse [31]. New servo constraints are free
from inequality servo constraints inmathematical form.
Therefore, an ADCBC for the transformed AC with
the new equality servo constraints was subsequently
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designed, including an adaptive law for the estimation
of online uncertainty bounds to compensate for uncer-
tainty.

The contributions of this study are as follows:

(1) For the first time, as far as we know, the DDCP
problem in the trajectory tracking of uncertain AC-
like systems was studied and resolved with a user-
definable hard-limiting function to prescribe the
steady-state tracking error and dynamic conver-
gence speed.

(2) We innovatively formulated the desired trajecto-
ries and DDCP as equality and inequality servo
constraints, respectively, and a diffeomorphism
approach was adopted to incorporate inequality
servo constraints into equality servo constraints,
yielding an ADCBC method for controlling uncer-
tain ACs while guaranteeing the DDCP.

(3) Through the Lyapunov analysis, it was rigorously
confirmed that the controlled systemwas uniformly
bounded and uniformly ultimately bounded. Com-
pared with other recent control methods, the simu-
lation results further demonstrated the superiority
of the proposedmethod in ensuring trajectory track-
ing while guaranteeing the DDCP, considering the
strong nonlinearity, and uncertainty of the dynamic
system.

2 Problem formulation

2.1 Dynamic model of an AC

An AC model is illustrated in Fig. 1, comprising two
degrees of freedom (DOFs): q1 and q2 for the luff-
ing angles of the main and auxiliary booms, respec-
tively. The lengths of the main and auxiliary booms
were L and l, respectively. There was a fixed angle, ρ,
between the auxiliary boom and the container. m1,m2,
andm represent themasses of themain boom, auxiliary
boom, and container, respectively. m changes when an
unknown payload mass is placed in the container. The
values of m1, m2, L , l, and ρ may be measured with
errors. These form the uncertainty of the AC system.

The dynamic model of an AC with uncertainty can
be described as

M(q(t), δ(t))q̈(t) + C(q̇(t), q(t), δ(t))q̇(t)

+ G(q(t), δ(t)) = u(t),
(1)

Fig. 1 Dynamic model of the AC

where q ∈ R2, q̇ ∈ R2 and q̈ ∈ R2 are the state,
velocity, and acceleration vectors, respectively; t ∈ R
is the time, an independent variable; δ ∈ Rm is the
uncertainty vector, which is (possibly rapid and irreg-
ular) time-variant, bounded with unknown bounds �δ ,
and may include system parameters and external dis-
turbances. In addition, u ∈ R2 represents the con-
trol input; the matrices, M ∈ R2×2, C ∈ R2×2, and
G ∈ R2, are related to q̇(t), q(t), and uncertainty δ(t),
respectively. The relationship between G and q is non-
linear, and cannot be written as Gq. Therefore, the AC
system was nonlinear. The vectors and matrices are
as follows, and their detailed expressions are given in
Appendix A.

q = [q1, q2]T ,G = [G1,G2]
T , u = [u1, u2]

T ,

M =
[
M11 M12

M21 M22

]
,C =

[
C11 C12

C21 C22

]
.

2.2 Desired trajectories

The luffing angle of the main boom must reach the
destination position, qd1 , while the luffing angle of the
auxiliary boom, q2, must change with q1 to keep the
container upright during the entire process (illustrated
in Fig. 1), demanding

lim
t→∞ q1 (t) = qd1 , q2 (t) = ρ − q1 (t) . (2)

Considering the stability of theAC, the luffingveloc-
ities of the two booms should be zero after arrival, i.e.,

lim
t→td

[
q̇1(t) q̇2(t)

]T = [
0 0

]T
, (3)

where td is the reaching time.
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An available trajectory for the states of the AC
is the cycloid curve to meet all the aforementioned
requirements [9]. Thus, the following cycloid curve
was employed to describe the desired trajectories.

P1(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
qd1 − q01

) (
t
td

− sin(2π t/td )
2π

)
+ q01

i f t < td ,

qd1
i f t ≥ td .

P2(t) = ρ − P1(t).

(4)

where q01 is the start position of the main boom,
and P (t) = [P1 (t) , P2 (t)]. Consequently, Ṗ (t) =[
Ṗ1 (t) , Ṗ2 (t)

]
, P̈ (t) = [

P̈1(t), P̈2(t)
]
, and there are

Ṗ1(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
qd1 −q01

)
td

(1 − cos (2π t/td))

i f t < td ,

0

i f t ≥ td .
Ṗ2(t) = −Ṗ1(t).

(5)

P̈1(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2π
(
qd1 −q01

)
t2d

sin (2π t/td) ,

i f t < td
0,
i f t ≥ td .

P̈2(t) = −P̈1(t).

(6)

Remark 1 At t = td , (1 − cos (2π t/td)) = 0 and
sin (2π t/td) = 0. Therefore, the designed trajectories
were second-order continuously differentiable in the
entire time range, which was critical to the diffeomor-
phism approach subsequently proposed.

2.3 Trajectory tracking while guaranteeing the DDCP

For tracking control to drive the states (q ∈ R2) track-
ing the desired trajectories (P ∈ R2), the system, Eq.
(1), was required to follow a class of equality servo
constraints as

|qi (t) − Pi (t) |= 0 i = 1, 2. (7)

This study was aimed at controlling an AC to track
the desired trajectories while guaranteeing the DDCP.
Furthermore, initial state deviation, and uncertainty are
unavoidable for anAC, leading to a complicated control
problem.

Fig. 2 Illustration of an inequality servo constraint while guar-
anteeing the DDCP

Problem formulation. The problem is formulated
as follows: designing a control (u ∈ R2), in the pres-
enceof the initial state deviation and (possibly rapid and
irregular) time-variant uncertainty (δ ∈ Rm) bounded
with unknown bounds (�δ), to drive the states of AC
(q ∈ R2) tracking the desired trajectories (P ∈ R2)
while guaranteeing the DDCP.

3 Tracking control design

Next, the control for the AC to track the desired tra-
jectories while guaranteeing the DDCP was designed
based on a diffeomorphism approach, a CBC scheme,
and an adaptive law.

3.1 Formulation and management of the DDCP

The DDCP can be translated as that the steady-state
tracking error converges to a predefined area near zero,
and the dynamic convergence speed is no less than
a predefined certain value. If a user-definable hard-
limiting function prescribes the steady-state tracking
error and dynamic convergence speed, the DDCP can
be formulated by an equality servo constraint, which
limits the amplitude of tracking error to less than the
value of the hard-limiting function during the entire
process. The user-definable hard-limiting functions
(i = 1, 2) were adopted as

ϑi (t) = (ϑi0 − ϑi∞) e−hi t + ϑi∞, (8)

where hi are positive constants, determining the dyn-
amic convergence speed.ϑi0 were determined such that
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Fig. 3 The diffeomorphism approach

the initial states satisfied Eq. (9). lim
t→∞ ϑi (t) = ϑi∞;

thus, ϑi∞ determined the ultimate convergence region.
Consequently, the DDCP can be formulated by an

inequality servo constraint (Fig. 2):

Pi (t) − ϑi (t) < qi (t) < Pi (t) + ϑi (t),

or − ϑi (t) < qi (t) − Pi (t) < ϑi (t).
(9)

Remark 2 Here, the trajectory tracking task was trans-
lated as a series of equality servo constraints for the
states of the AC, whereas the DDCP was translated
as a series of inequality servo constraints (Eq.9) with
user-definable hard-limiting functions (Eq. 8).

The DDCP can be managed based on a diffeomor-
phism approach (Fig. 3) by incorporating the inequality
servo constraints into equality servo constraints. Given
two manifolds, f1, and f2, there was an invertible map,
F : f1 → f2, with its inverse as F−1 : f2 → f1. If F
and F−1 were continuously differentiable, map F was
called a diffeomorphism. A diffeomorphism approach
can transform the states from one coordinate space to
another. Using the approach of this characteristic of dif-
feomorphism, multiple constraints can be combined,
and the inequalities can be relaxed if an appropriate
map is chosen to transform the states (maybe under
equality and inequality constraints) into unrestricted
descriptions. A diffeomorphism approach is proposed
as

xi (q, t) := artanh qi (t)−Pi (t)
ϑi (t)

, (10)

where i = 1, 2, x = [x1, x2]T . It was discovered that
when �i → ϑi , xi → ∞; when (qi − Pi ) → −ϑi ,
(qi − Pi ) → −∞; when qi − Pi = 0, xi = 0. The

transformed states xi were in an unrestricted range. Fur-
thermore, this transformation was smooth and bijective
(one-to-one). Based on this diffeomorphism approach,
if the control can ensure that xi (t) is bounded for the
transformed AC, it can also ensure that the original AC
converges to the servo constraint (Eq. 7) and guarantees
the DDCP (Eq. 9) all the time.

According to Eq. (10), there was

qi = ϑi tanh xi + Pi , (11)

Equation (11)was differentiated once and twicewith
respect to time, yielding the following set of equations:

q̇i = ϑ̇i tanh xi + ϑi ẋi + Ṗi , (12)

q̈i = ϑ̈i tanh xi + P̈i

+
(
2ϑ̇i ẋi + ϑi ẍi − 2ϑi ẋ

2
i tanh xi

)
h, (13)

where hi = 1 − tanh2 xi , i = 1, 2.
Substituting Eqs. (11–13) into Eq. (1), the trans-

formed AC was obtained as
�(x(t), δ(t), t)ẍ(t) + X(ẋ(t), x(t), δ(t), t)ẋ(t)

+ 	(x(t), δ(t), t) = u(t)
, (14)

where

� =
[

ϑ1h1M11 ϑ2h2M12

ϑ1h1M21 ϑ2h2M22

]
. (15)

Remark 3 The necessary and sufficient condition for
the invertibility of amatrix is that its determinant should
not be zero. |�|= (M11M22 − M12M21) ϑ1ϑ2h1h2.
ϑi > 0 and hi > 0. Thus, the necessary and suffi-
cient condition for the invertibility of matrix � was
M11M22 �= M12M21. |M |= M11M22 −M12M21; thus,
the necessary and sufficient conditions for the invert-
ibility of M were also M11M22 �= M12M21. The
detailed proof of M11M22 − M12M21 > 0 is shown
in Appendix B. Consequently, M , and � were invert-
ible.

The problem formulated in Sect. 2.3 was equivalent
to enabling the transformed AC system (Eq. 14) to fol-
low the following servo constraints:

ẋi (t) + ξi xi (t) = 0, i = 1, 2, (16)

or, in matrix form, as

ẋ = c (x) , (17)

with c = [−ξ1x1,−ξ2x2]T . The second-order form of
Eq. (17) was obtained as

ẍ = b (ẋ) , (18)

with b = [−ξ1 ẋ1,−ξ2 ẋ2]T . ξ1,2 ∈ (0,∞) are con-
stants.
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Remark 4 The CBC views the nonlinear control prob-
lem from the perspective of servo constraints. Dissimi-
lar to the passive constraint, which indicates what kind
of impact the environment will have on the system, the
servo constraint indicates what the control should do
to the system. Thus, the constraint force was the con-
trol force, and the servo constraint was translated as
the control goal. The CBC approach enabled the con-
trol force to satisfy Gauss’s minimum principle and
Lagrange’s form of D’Alembert’s principle [25]; thus,
it was a modest control input.

3.2 Guaranteeing the DDCP for a nominal AC

A nominal system is a system that is accurately
described by its model, with no uncertainty, and its
initial state conditions match its desired trajectories.

The�, X and	 in systemEq. (14)were decomposed
as follows:⎧⎪⎪⎨
⎪⎪⎩

�(x, δ, t) = �N (x, t) + ��(x, δ, t)

X(ẋ, x, δ, t) = XN (ẋ, x, t) + X�(ẋ, x, δ, t)

	(x, δ, t) = 	N (x, t) + 	�(x, δ, t)

(19)

where superscripts N and� represent nominal portions
(without uncertainty) and uncertain portions, respec-
tively. �N > 0, which is always feasible since the
nominal portion is the designer’s discretion.

The nominal transformed AC can be expressed as

�N (x, t)ẍ(t) + XN (ẋ, x, t)ẋ(t)

+ 	N (x, t) = u(t).
(20)

Theorem 1 (Proof is available in Appendix C) The
nominal transformed AC (Eq. 20) was servo constraint
controllable [30] with respect to constraint Eq. (18)
for all (ẋ, x, t) ∈ R2 × R2 × R, and the corresponding
control was

τ1 = �N
[
b + D

(
XN ẋ + 	N

)]
, (21)

where D(x, t) := (
�N (x, t)

)−1
.

3.3 Managing initial state deviation and uncertainty

The proposed tracking control guaranteeing the DDCP
for theAC, accounting for the initial state deviation and

uncertainty, is as follows. If the system performance of
transformed AC is

ε := ẋ − c, (22)

and the following control is proposed to deal with pos-
sible initial state deviation:

τ2 = −κ�N Q−1ε, (23)

where κ ∈ (0,∞) is constant; Q ∈ R2×2 is a given
matrix, and Q > 0. We defined

E(x, δ, t) := �N (x, t) × (�(x, δ, t))−1 − I, (24)

D̂(x, δ, t) := (�(x, δ, t))−1 −
(
�N (x, t)

)−1

= D(x, t)E(x, δ, t).
(25)

Ŵ := QD̂�N Q−1,

W := 1

2
min
δ∈�δ

λmin

(
Ŵ + Ŵ T

)
.

(26)

Assumption 1 There is (possibly unknown) constant
σ > −1 such that for all (ẋ, x, t) ∈ R2 × R2 × R,

W ≥ σ, (27)

where λmin denotes the minimum eigenvalue of the
matrix, whereas λmax denotes the maximum eigen-
value.

Remark 5 Constant σ was unknown since the uncer-
tainty bound was unknown. If � = �N (i.e., no uncer-
tainty), D̂ = 0,W = 0; thus, σ could be zero. Equation
(27) indicates the effect of uncertainty on the possible
deviation of � from �N to be within a certain thresh-
old, which is unidirectional.

Notably, the terms in�, XPx+	were either constant,
states and velocities, or quadratic. Similar to a previous
study [26], there was an unknown constant vector (α ∈
(0,∞)3) and a known function

Z(α, ẋ, x, t)

= α1(‖ẋ‖ + 1)2 + α2(‖x‖ + 1)2 + α3

= [
α1 α2 α3

] [
(‖ẋ‖ + 1)2(‖x‖ + 1)2 1

]T
= αT Z̃(ẋ, x, t),

(28)

such that for all (ẋ, x, t) ∈ R2 × R2 × R,

(1 + σ)−1 max
δ∈�δ

∥∥∥QD̂ (−Xẋ − 	 + τ1 + τ2)

+QD
(−X� ẋ − 	�

)∥∥ ≤ Z (α, ẋ, x, t) .

(29)
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Remark 6 Function Z (α, ẋ, x, t) may be interpreted
as the uncertainty bound. α was unknown since the
uncertainty bound was unknown.

We propose the control as

u = τ1 + τ2 + τ3. (30)

with a component to deal with uncertainty as

τ3 = −�N Q−1ηγ Z , (31)

where

γ = εZ , (32)

η (α̃, ẋ, x, t) =

⎧⎪⎨
⎪⎩

1

‖γ ‖ if ‖γ ‖ > φ

1

φ
if ‖γ ‖ ≤ φ

, (33)

constant φ > 0. α̃ was the estimated value of α, and
α̃1,2,3 (t0) > 0. k1,2 ∈ R, and k1,2 > 0. The adaptive
law governing α̃ was given as

˙̃α = k1 Z̃ ‖ε‖ − k2α̃. (34)

Remark 7 The control includes three portions, τ1, τ2
and τ3. Among them, τ1 is the nominal system control,
τ2 deals with initial state deviations, and τ3 deals with
uncertainty with the help of α̃. α̃ tends to emulate α

online, which corresponds to the unknown uncertainty
bounds.

Remark 8 The adaptive law Eq. (34) was designed to
estimate the unknown uncertainty bounds in an online
fashion, hence the adaptive robust control. The adap-
tive law was of the leakage type, where the first term
on the right-hand side (RHS) was for the uncertainty
compensation, and the second term was the leak. The
tunable parameters k1 and k2 were the rates of com-
pensation and leakage, respectively. The initial states
(α̃ (t0)) were strictly positive, and α̃i (t) > 0 for all
t ≥ t0 since the first term on the RHS was always non-
negative and the second term caused decay.With a large
tracking error, the first term dominated, and increased
the α̃ to reduce the tracking error. When the tracking
error was small enough, the second term dominated,
and decreased the adaptive parameter to prevent the
control effort from being excessively large.

Theorem 2 (Proof is available in Appendix D) Let

ψ :=
[
εT , (α̃ − α)T

]T ∈ R2+3. The control in Eq.

(30) rendered the system Eq. (14) the stability perfor-
mance as

Uniform boundedness (UB): For any r > 0, there is
a d (r) < ∞ such that if ‖ψ (t0)‖ ≤ r , then ‖ψ (t)‖ ≤
d (r) for all t ≥ t0;

Uniform ultimate boundedness (UUB): For any r >

0 with ‖ψ (t0)‖ ≤ r , there is a d > 0 such that
‖ψ (t)‖ ≤ d̄ for any d̄ > d as t ≥ t0 + T

(
d̄, r

)
,

where 0 ≤ T
(
d̄, r

)
< ∞.

Remark 9 Theorem2 ensures that the proposed control
guaranteed ε to be bounded. This indicated that the pro-
posed control caused the transformed systemmotion to
converge to the transformed servo constraint Eq. (16).
Based on the diffeomorphism approach (Fig. 3), when
the control ensured that xi (t)was bounded for the trans-
formed AC, it also ensured that the original AC con-
verged to the servo constraint Eq. (7), and guaranteed
the DDCP Eq. (9), all the time.

Remark 10 Notably, neither linearizations, nonlinear
cancelation, nor anyother approximationswereobserved
in the control design; thus, the control design was
approximation-free. The design approach presented in
Sects. 3.2 and 3.3 is also applicable for controlling the
motion of system Eq. (1) to converge to the servo con-
straint Eq. (7). Nevertheless, without the diffeomor-
phism approach presented in Sect. 3.1, theDDCP could
not be guaranteed as Eq. (9). This was a significant dif-
ference between the ADCBC and conventional CBC as
illustrated in the subsequent performance validation.

Remark 11 Parameters κ , k1 and k2 were tunable in the
control. The proof of Theorem 2 shows that the size
of the UB and UUB regions was dependent on them
and could be tuned arbitrarily small using appropriate
parameter selections.

4 Design procedure

The proposed control design procedure for the AC is
summarized in Fig. 4. Summarily, the desired trajecto-
ries, andDDCPwere translated as equality and inequal-
ity servo constraints, respectively. The diffeomorphism
approach was adopted to incorporate the inequality
servo constraints into equality servo constraints, yield-
ing new equality servo constraints. Thus, the control
task was transformed into designing a control, causing
the transformed AC to follow the new equality servo
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Fig. 4 Control design flowchart

constraints. Based on the uncertainty decomposition,
a CBC was designed: τ1 was the nominal system con-
trol, and τ2 and τ3 dealt with initial state deviations and
uncertainty, respectively.

5 Performance validation

Next, the control performance of the proposed control
method was compared with those of other commonly
usedmethods and the conventional CBC in recent stud-
ies [23,28–30]. Matlab is used to perform the simula-
tion. A control task was to move the container from
q10 = 5◦ to qd1= 75◦ in td = 60 s while keeping the
container upright, i.e., q20 = 115◦ and q2d = 45◦. The
DDCP for the tracking errorswas determined byEq. (8)
with ϑ10 = 10◦, ϑ1∞ = 2◦,ϑ20 = 8◦ and ϑ2∞ = 1◦.
Other parameters are listed in Table 1.

5.1 Benefits of constraint-based control

First, for the nominal AC, three different controls were
compared:

Table 1 Parameters for nominal AC

Parameters Description Nominal values Units

m Mass of container 200 kg

m1 Mass of main boom 1000 kg

m2 Mass of auxiliary boom 400 kg

L Main boom length 15 m

l Auxiliary boom length 4 m

ρ Container fixed angle 120 Degree

Fig. 5 a States and b tracking errors of nominal AC system by
different control methods

(1) CBC,
(2) linear quadratic regulator (LQR), and
(3) SMC [23].

Tracking errors, �i (q, t) := qi (t) − Pi (t), can be
viewed as the system performance of the AC. Figure5a
and b illustrate the states, q1 and q2, for different con-
trols and the desired trajectories, P1 and P2, obtained
by Eq. (4), respectively. The tracking errors, �1 and
�2, are drawn in Fig. 5c and d, which also show the
hard-limiting functions, ϑ1 and ϑ2. The CBC and SMC
caused the states to adequately track the desired trajec-
tories throughout the luffing process. Contrarily, the
LQR failed because it could not deal with the strong
nonlinearity of AC.

The control inputs are illustrated in Fig. 6. The CBC
inputs were modest, whereas the SMC inputs were
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Fig. 6 Control force comparison (chattering input of SMC and
modest input of CBC)

chattering. The chattering of the SMC inputs may have
led to the vibration of the container, leading to the
spilling of water. The control input of CBC satisfied
the Gauss minimum principle and the Lagrange’s form
of D’Alembert’s principle, thereby exhibiting a modest
control magnitude. In summary, the CBC can cause the
strong nonlinear AC system to track the desired (possi-
bly nonlinear) trajectories with modest control inputs.

5.2 An AC with initial state deviation and uncertainty

In reality, initial state deviation and uncertainty are
unavoidable in AC systems, and the performance of the
proposed ADCBC was demonstrated by further com-
parison with a conventional adaptive CBC (ACBC)
[28–30]. The main difference between the proposed
ADCBC and the conventional ACBC is the formu-
lation and management of the DDCP and the spe-
cial uncertainty of the AC characterized by (possi-
bly rapid and irregular) time-varying and unknown
bounds. With deviation to the desired trajectories, the
initial states were set as q10 = 10◦, q20 = 118◦,
q̇10 = 0.01◦/s and q̇20 = 0.01◦/s. The uncertain
portions of parameters include m� = 0.02mN · sin t ,
m�

1 = 0.02mN
1 and m�

2 = 0.01mN
2 for masses; L� =

0.02LN sin (t + π/4) and l� = 0.01l N sin (t + π/3)
for boom lengths; and ρ� = 0.01ρN for the fixed
angel. The control parameters chosen were κ = 0.1,
k1 = 0.1 and k2 = 1.

Figure7a illustrates the tracking errors, �1 and �2,
as well as ϑ1 and ϑ2. It was observed that the proposed
ADCBC enabled the AC to track the desired trajec-
tories while guaranteeing the DDCP, and the interfer-
ence of the initial state deviation and uncertainty was
suppressed. Contrarily, the conventional ACBC could

Fig. 7 a Tracking errors and b control force with initial state
deviation and uncertainty

Fig. 8 a W and b α̃ with initial state deviation and uncertainty

approximately track the trajectories under the distur-
bance of initial state deviation anduncertainty but could
not guarantee the DDCP. Figure7b shows the control
forces using these two methods. Both the two methods
generated modest forces. For these methods, the inputs
were similar, although only ADCBC could guarantee
the DDCP.

The time history ofW is shown in Fig. 8a, and there
is always W > −0.5. Therefore, σ can be −0.5, and
assumption 1 was verified. Figure8b shows the his-
tory of adaptive parameter α̃, which rapidly increased
within the range of 35 − 40 s. Figure7b shows that
at this time, there was a change in tracking error �2.
With a large tracking error, the first term in Eq. (34)
was dominant, andmade the α̃ rapidly increase to com-
pensate for the system uncertainty. Consequently, the
tracking error decreased. When the tracking error was
sufficiently small, the second term took up the dom-
inant position and prevented a changing in adaptive
parameter. In summary, the proposedADCBC success-
fully tracked the desired trajectorieswhile guaranteeing
the DDCP in the presence of initial state deviation and
uncertainty.
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Fig. 9 Time history of tracking errors for different parameter
values

As discussed in Remark 11, κ , k1, and k2 are tun-
able parameters for ADCBC. To understand the effec-
tiveness of the parameters on the control performance,
more simulations with different values of κ were per-
formed, and the results are shown in Fig. 9 for �2. Dif-
ferent values of κ led to changes in tracking errors
�2 in the time history. In addition, there was always
−ϑ2 < �2 < ϑ2, indicating that DDCP was guar-
anteed for different values of κ . Similar results were
obtained for different k1 and k2 values, whose figures
are omitted for brevity. The effectiveness of the pro-
posed ADCBC in guaranteeing the DDCP was further
assured.

6 Conclusions

The tracking control for an uncertain AC with the
DDCP requirement was investigated. An ADCBC is
proposed to robustly achieve trajectory tracking while
guaranteeing the DDCP, even in the presence of (pos-
sibly rapid and irregular) time-variant uncertainty with
unknown bounds. The desired trajectories and DDCP
were formulated as equality and inequality servo con-
straints, respectively. By deliberately introducing a
diffeomorphism approach, the inequality servo con-
straints “disappeared” in the control design, which was
only based on the new equality servo constraints. It is
emphasized that as far aswe know, this could be the first

study on an AC tracking control while guaranteeing the
DDCP, associated with the time-variant uncertainty of
mass, length, and angles, whose bounds are unknown.
The Lyapunov-based analysis confirmed that the pro-
posed ADCBC could achieve trajectory tracking while
guaranteeing the DDCP for an AC with uncertainty.
The comparisons of different control methods showed
the effectiveness of the proposed ADCBC for the AC.

Considering that the tunable parameters for the
ADCBC can affect the control performance, future
studies on the optimization of tunable parameters are
worth-pursuing. In additional, controlwith unmodelled
dynamics, such as frictional force, can also be further
studied.
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Appendix A: Original AWPV elements

M11 = m
(
(l − L)2 + 2L

(
L − lCq2

))

+L2m1/3 + m2

(
2l2 + 6L

(
L − lCq2

))
/6

M12 = l
(
2l (3m + m2) − 3LCq2 (2m + m2)

)
/6

M21 = l
(
2l (3m + m2) − 3LCq2 (2m + m2)

)
/6
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M22 = l2 (3m + m2) /3

where Cq2 = cos q2, Cq1 = cos q1, Sq2 = sin q2,
Sq1 = sin q1.

C11 = l L (2m + m2) Sq2q2
′

C12 = 1

2
l L (2m + m2) Sq2q2

′

C21 = −1

2
l L (2m + m2) Sq2q1

′

C22 = 0;
G1 = gLmCq1 + 1

2
gLCq1m1 + gLCq1m2

+1

2
gl (2m + m2)

(
Sq1 Sq2 − Cq1Cq2

)

G2 = 1

2
lg (2m + m2)

(
Sq1Sq2 − Cq1Cq2

)

Appendix B: Determinant of M

M11M22 − M12M21

= 4L2m2l2m + L2m2
2l

2

12

+
(
12L2l2m2 + 12L2m2l2m + 3L2m2

2l
2
)
S2q2

12

+
(
24l2m2 + 8m2l2m

)
L(L − l)

12
> 0

Appendix C: Proof of Theorem 1

Proof : By Eq. (21), there is

ẍ = D
(
τ1 − XN ẋ − 	N

)

= Dτ1 − D
(
XN ẋ + 	N

)

=
(
b + D

(
XN ẋ + 	N

))
− D

(
XN ẋ + 	N

)

= b

��

Appendix D: Proof of Theorem 2

Proof : The Lyapunov function candidate is selected
as:

V (ε, α̃ − α) = εT Qε + (1 + σ) (α̃ − α)T k−1
1 (α̃ − α) .

Taking the derivative of V yields

V̇ = 2εT Qε̇ + 2 (1 + σ) (α̃ − α)T k−1
1

˙̃α, (D.1)

For the sake of simplicity, functions’ arguments are
largely omitted in the proof, except for some critical
ones. For the first term on the RHS of Eq. (D.1)

2εT Qε̇ = 2εT Q (ẍ − b)

= 2εT Q
(
�−1 (u − Xẋ − 	) − b

)
= 2εT Q

(
�−1 (τ1 + τ2 + τ3 − Xẋ − 	) − b

)

Decompose �−1 = D + D̂ and −Xẋ − 	 =(−XN ẋ − 	N
) + (−X� ẋ − 	�

)
, and there is

�−1 (τ1 + τ2 + τ3 − X ẋ − 	) − b

= (D + D̂)(−X ẋ − 	) + (D + D̂) (τ1 + τ2 + τ3) − b

= D
(
−XN ẋ − 	N

)
+ D (τ1 + τ2)

+D
(
−XN ẋ − 	N

)

+D̂ (−X ẋ − 	 + τ1 + τ2) + (D + D̂)τ3 − b

By theorem 1, we have

D
(
−XN ẋ − 	N

)
+ Dτ1 − b = 0,

Next, by Eq. (29),

2εT Q
(
D̂ (−X ẋ − 	 + τ1 + τ2)

+D
(−X� ẋ − 	�

))
≤ 2‖ε‖Q

∥∥∥D̂ (−X ẋ − 	 + τ1 + τ2)

+D
(−X� ẋ − 	�

)∥∥
≤ 2‖ε‖ (1 + σ) Z(α, ẋ, x, t)

By Eq. (23) and performing matrix cancellation
yield

2εT QDτ2 = 2εT QD
(
−κ�N Q−1ε

)

= −2κ‖ε‖2
By Eq. (31)

2εT Q(D + D̂)τ3 = 2εT QD
(
−�N Q−1ηγ Z(α̃, ẋ, x, t)

)

+ 2εT QDE
(
−�N Q−1ηγ Z(α̃, ẋ, x, t)

)

= −2εT ηγ Z(α̃, ẋ, x, t)

− 2εT QDE�N Q−1ηγ Z(α̃, ẋ, x, t)

By Eq. (32),

− 2εT ηγ Z(α̃, ẋ, x, t)

= −2εT ηεZ(α̃, ẋ, x, t)Z(α̃, ẋ, x, t)

= −2Z2(α̃, ẋ, x, t)‖ε‖2η.

(D.2)
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Adopting the Rayleigh’s principle, by Eq. (26) and
Eq. (32), we have

−2εT QDE�N Q−1ηγ Z(α̃, ẋ, x, t)

= −2εT
1

2

(
QDE�N Q−1 + QDE�N Q−1

)

ηεZ(α̃, ẋ, x, t)Z(α̃, ẋ, x, t)

= −2Z2(α̃, ẋ, x, t)εT
1

2

(
Ŵ + Ŵ T

)
ηε

≤ −2σ Z2(α̃, ẋ, x, t)‖ε‖2η.

(D.3)

By combining Eq. (D.2) and Eq. (D.3), we have

2εT Q
(
D + D̂

)
τ3

≤ −2 (1 + σ) Z2(α̃, ẋ, x, t)‖ε‖2η.

If ‖γ ‖ > φ, by Eq. (33),

−2 (1 + σ) Z2(α̃, ẋ, x, t)‖ε‖2η
= −2 (1 + σ) Z2(α̃, ẋ, x, t)‖ε‖2

1

‖εZ(α̃, ẋ, x, t)‖
= −2 (1 + σ) ‖εZ(α̃, ẋ, x, t)‖

. (D.4)

If ‖γ ‖ ≤ φ, by Eq. (33),

− 2 (1 + σ) Z2(α̃, ẋ, x, t)‖ε‖2η
= − 2

φ
(1 + σ) Z2(α̃, ẋ, x, t)‖ε‖2, (D.5)

With Eq. (D.4) and Eq. (D.5), for ‖γ ‖ > φ,

2εT Qε̇

≤ 2‖ε‖ (1 + σ) Z(α, ẋ, x, t)

− 2κ‖ε‖2 − 2 (1 + σ) ‖εZ(α̃, ẋ, x, t)‖
= −2κ‖ε‖2

+ 2‖ε‖ (1 + σ) (Z(α, ẋ, x, t) − Z(α̃, ẋ, x, t))

For 0 ≤ ‖γ ‖ = ‖εZ(α̃, ẋ, x, t)‖ < φ,

2εT Qε̇

≤ 2‖ε‖ (1 + σ) Z(α, ẋ, x, t) − 2κ‖ε‖2

− 2 (1 + σ)

φ
Z(α̃, ẋ, x, t)2‖ε‖2

= −2κ‖ε‖2
+ 2 (1 + σ) ‖ε‖Z(α̃, ẋ, x, t)

− 2

φ
(1 + σ) (‖ε‖Z(α̃, ẋ, x, t))2

+ 2‖ε‖ (1 + σ) Z(α, ẋ, x, t)

− 2‖ε‖ (1 + σ) Z(α̃, ẋ, x, t)

≤ −2κ‖ε‖2 + φ

2
(1 + σ)

+ 2‖ε‖ (1 + σ)

(Z(α, ẋ, x, t) − Z(α̃, ẋ, x, t))

For all ‖γ ‖, we have
2εT Qε̇

≤ −2κ‖ε‖2 + 2‖ε‖ (1 + σ)

(Z(α, ẋ, x, t) − Z(α̃, ẋ, x, t)) + φ

2
(1 + σ)

= −2κ‖ε‖2 − 2‖ε‖ (1 + σ) (α̃ − α)T Z̃ + φ

2
(1 + σ)

(D.6)

By using the adaptive law by Eq. (34), we have

2k−1
1 (α̃ − α)T ˙̃α
= 2k−1

1 (α̃ − α)T
(
k1 Z̃‖ε‖ − k2α̃

)

= 2(α̃ − α)T Z̃‖ε‖ − 2k−1
1 (α̃ − α)T k2α̃

= 2(α̃ − α)T Z̃‖ε‖ − 2k−1
1 k2(α̃ − α)T (α̃

=0︷ ︸︸ ︷−α + α)

= 2(α̃ − α)T Z̃‖ε‖ − 2k−1
1 k2(α̃ − α)T (α̃ − α)

− 2k−1
1 k2(α̃ − α)T α

≤ 2(α̃ − α)T Z̃‖ε‖ − 2k−1
1 k2‖α̃ − α‖2

+ 2k−1
1 k2‖α̃ − α‖‖α‖

(D.7)

Note that ‖ψ‖2 = ‖ε‖2+‖α̃ − α‖2,‖ψ‖ ≥ ‖ε‖and
‖ψ‖ ≥ ‖α̃ − α‖. By combining Eqs. (D.1), (D.6) and
(D.7), we can obtain

V̇ ≤ −2κ‖ε‖2 + φ

2
(1 + σ)

− 2 (1 + σ) k−1
1 k2‖α̃ − α‖2

+ 2 (1 + σ) k−1
1 k2‖α̃ − α‖‖α‖

≤ −K1‖ψ‖2 + K2‖ψ‖ + K3
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where K1 = min
{
2κ, 2 (1 + σ) k−1

1 k2
}
, K2 = 2

(1 + σ) k−1
1 k2 ‖α‖, K3 =φ

2 (1 + σ).
By invoking the standard arguments on uniform

boundedness and uniformultimate boundedness in [33]
and [34], it can be concluded that ‖ψ‖ is uniformly
bounded by

d(r) =
{
R
√

ι2/
√

ι1 ifr ≤ R
r
√

ι2/
√

ι1 ifr > R

R =
(
K2 +

√
K2
2 + 4K1K3

)
/2K1,

where ι1 = min
{
λmin (Q) , k−1

1 (1 + σ)
}
, ι2 =

max
{
λmax (Q) , k−1

1 (1 + σ)
}
. Furthermore, uniform

ultimate boundedness for ‖ψ‖ is

d = R
√

ι2/
√

ι1,

and

T (d̄, r)

=
⎧⎨
⎩
0, ifr ≤ d̄

√
ι1/

√
ι2

ι2r2−
(
ι21/ι2

)
d̄2

K1d̄2(ι1/ι2)−K2d̄(ι1/ι2)
1/2−K3

. otherwise

��
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strategy of the hybrid drive for vehicle mounted aerial work
platform. Autom. Construct. 18, 130–138 (2009)

2. Yang, T., Sun, N., Chen, H., Fang, Y.: Motion trajectory-
based transportation control for 3-D boom cranes: analy-
sis, design, and experiments. IEEE Trans. Ind. Electron. 66,
3636–3646 (2018)

3. Li, G., Ma, X., Li, Z., Li, Y.: Optimal trajectory planning
strategy for underactuated overhead crane with pendulum-
sloshing dynamics and full-state constraints.NonlinearDyn.
109, 815–835 (2022)

4. Huang, J., Ji, J.C.: Vibration control of coupled Duffing
oscillators in flexible single-link manipulators. J. Vib. Con-
trol 27, 2058–2068 (2021)

5. Chen, B., Huang, J., Ji, J.C.: Control of flexible single-
linkmanipulators having duffing oscillator dynamics.Mech.
Syst. Signal Process. 121, 44–57 (2019)

6. Zhang, M., Ma, X., Chai, H., Rong, X., Tian, X., Li, Y.: A
novel online motion planning method for double-pendulum
overhead cranes. Nonlinear Dyn. 85, 1079–1090 (2016)

7. Azizi, A.: Applications of artificial intelligence techniques
to enhance sustainability of industry 4.0: design of an arti-
ficial neural network model as dynamic behavior optimizer
of robotic arms, Complexity, 2020 (2020) 1-10

8. Latifinavid,M.,Azizi,A.:Kinematicmodelling and position
control of A 3-DOF parallel stabilizing robot manipulator.
J. Intell. Robot. Syst. 107, 17 (2023)

9. Ouyang, H., Tian, Z., Yu, L., Zhang, G.: Motion planning
approach for payload swing reduction in tower cranes with
double-pendulum effect. J. Franklin Instit. 357, 8299–8320
(2020)

10. Ma, L., Lou, X., Wu, W., Huang, X.: Neural network-based
boundary control of a gantry crane system subject to input
deadzone and external disturbance. Nonlinear Dyn. 108,
3449–3466 (2022)

11. Ramli, L., Mohamed, Z., Abdullahi, A.M., Jaafar, H.I.,
Lazim, I.M.: Control strategies for crane systems: a compre-
hensive review.Mech. Syst. Signal Process. 95, 1–23 (2017)

12. Daqaq, M.F., Masoud, Z.N.: Nonlinear input-shaping con-
troller for quay-side container cranes. Nonlinear Dyn. 45,
149 (2006)
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