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Abstract 

Air pollution is an important issue affecting sustainable development in China, and accurate air quality prediction has 
become an important means of air pollution control. At present, traditional methods, such as deterministic and statis-
tical approaches, have large prediction errors and cannot provide effective information to prevent the negative effects 
of air pollution. Therefore, few existing methods could obtain accurate air pollutant time series predictions. To this 
end, a deep learning-based air pollutant prediction method, namely, the autocorrelation error-Informer (AE-Informer) 
model, is proposed in this study. The model implements the AE based on the Informer model. The AE-Informer model 
is used to predict the hourly concentrations of multiple air pollutants, including PM10, PM2.5, NO2, and O3. The experi-
mental results show that the mean absolute error (MAE) and root mean square error (RMSE) values of AE-Informer in 
multivariate prediction are 3% less than those of the Informer model; thus, the prediction error is effectively reduced. 
In addition, a stacking ensemble model is proposed to supplement the missing air pollutant time series data. This 
study uses Henan Province in China as an example to test the validity of the proposed methodology.
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1  Introduction
Air pollutants (PM10, PM2.5, O3, NO2, etc.) are impor-
tant problems in ecological environments [1–3] that 
cause several issues, such as reduced air quality and 
human health risks [4]. The maximum 8-h 90th quantile 
concentration of ozone in cities such as Beijing, Tai’an, 
Zibo, Dezhou, Handan, and Kaifeng increased from 2015 
to 2018, the annual concentration went up from 168 
to 212  μg  m−3 [5]. In recent years, public safety studies 
found that the levels of PM2.5 and O3 were closely related 
to cardiovascular, cerebrovascular, nervous system, 
and respiratory diseases [6], while long-term exposure 
to O3 and NO2 increased the risk of death [7]. In addi-
tion, air pollutants affect people’s happiness, population 
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migration, and other livelihood issues [8]. Short-term air 
quality prediction can be used not only to reduce future 
high air pollution events but also to decrease resident 
exposure. Therefore, the real-time acquisition of air pol-
lutant concentration information and the accurate pre-
diction of future concentration information are of great 
significance for air pollution management and public 
health protection.

The most commonly used air pollutant concentration 
prediction methods are deterministic methods, statis-
tical methods, and machine learning methods [9–11]. 
Deterministic methods predict the concentration of air 
pollutants by simulating atmospheric chemical diffusion 
and transport processes. Commonly used deterministic 
methods include chemical transport models [12], and 
operational street pollution models [13]. Although these 
methods can be used to generate pollutant predictions, 
they have considerable computational costs, and the pre-
diction results may be inaccurate due to a lack of actual 
observation data [14, 15]. Statistical methods address 
the problem of limited data in deterministic methods. 
The most commonly used statistical methods include 
the autoregressive integrated moving average (ARIMA) 
method, geographically weighted regression method and 
generalized additive model [16–18]. These methods have 
been widely used for time series prediction of air pollut-
ant levels. For example, Slini et al. [19] used the ARIMA 
model to predict ozone concentrations in Greece. How-
ever, most statistical methods assume linear relation-
ships between variables and labels, which is inconsistent 
with real-world nonlinearities. To solve this problem, 
researchers applied nonlinear models in machine learn-
ing. For example, Ma et  al. [20] used support vector 
machines to predict the concentrations of air pollutants 
such as PM10 and PM2.5. Rubal et  al. [21] used the ran-
dom forest (RF) model to predict the future 1-h concen-
trations of seven pollutants, including NO2. Although 
these models obtain improved prediction accuracy, they 
ignore time series trends in air pollutant concentrations.

With the rapid development of deep learning tech-
niques, traditional machine learning and shallow neu-
ral network models no longer obtain state-of-the-art 
performance. Different kinds of deep learning models 
have been proposed to improve the air quality predic-
tion performance. For example, Ma et  al. [22] used a 
bidirectional long short-term memory neural net-
work model (Bi-LSTM) based on the recurrent neu-
ral network (RNN) structure and transfer learning to 
predict future 1-h, 1-d and 1-wk concentrations of 
PM10. Chauhan et al. [23] used the convolutional neu-
ral network (CNN) structure to predict the future 1-d 
concentrations of five pollutants, including PM10 and 
PM2.5, in India. RNNs are limited in solving gradient 

problems. CNNs are limited in obtaining long-term 
historical information, and they cannot obtain accu-
rate predictions of air pollutant concentrations. In the 
past two years, the transformer model [24] was intro-
duced in the field of time series prediction, and its self-
attention mechanism provides an effective method for 
obtaining long-term macroscopic information in time 
series. Many improved transformer based models have 
been proposed. For example, the LogTrans model [25] 
showed high accuracy in predicting future hourly elec-
tricity consumption and reduced the running cost of 
the model. The Star-Transformer model [26] improved 
the prediction performance of future hourly meteoro-
logical index. Additional models, such as the Meta-
Former [27], AutoFormer [28], Transformer-XL [29], 
and Set Transformer [30] models, all exhibited con-
siderable gains in time series prediction. The Informer 
model [31] is an improved transformer time series 
prediction model based on the Kullback–Leibler (KL) 
divergence that was proposed in 2021. The Informer 
model improves the time series prediction accuracy 
while reducing the running cost of the model, saving 
considerable time. This model showed improved per-
formance for power consumption time series predic-
tion and traffic flow time series prediction but has not 
been applied in air quality prediction. In this study, 
we apply the Informer model to air quality time series 
prediction and modify the method to further improve 
its prediction accuracy.

Due to factors such as human and machine fail-
ures, a large amount of data is lost in the acquired state 
control site data sets, resulting in discontinuous time 
states, which seriously affect subsequent data analyses. 
The issue of missing data in the time series needs to be 
addressed. In this paper, we use the stacking ensemble 
model to supplement the missing data in the air pollutant 
concentration time series and compare the effectiveness 
of the stacking ensemble model with existing approaches. 
Then, the Informer model is used to obtain air pollutant 
concentration time series predictions, and the perfor-
mance of the proposed model is compared with that of 
other deep learning models. The AE-Informer model is 
proposed, which combines the AE strategy [32] with the 
Informer model to improve the prediction accuracy. To 
verify the framework of the proposed method, we model 
the levels of four major air pollutants, namely, PM10, 
PM2.5, NO2, and O3, in the study area in Henan Province.

2 � Materials and methods
Figure  1 presents the methodological framework of 
the model proposed this paper. The framework has 
three parts: (1) air pollutant data collection and missing 
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value supplementation, (2) structural design of the AE-
Informer model and the prediction of air pollutants, and 
(3) analysis of the prediction result and generalization 
tests.

2.1 � Research area and data
As shown in Fig. 2, Henan Province is located at the junc-
tion of the coastal open areas and the central and western 
regions. It is the core area of China’s economic and social 

Fig. 1  Methodological framework (data, model application and result analysis)
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development, as well as one of the most densely popu-
lated and polluted areas in China [1, 33]. In this study, 
ground measurements of the PM10, PM2.5, NO2 and O3 
mass concentrations were collected hourly from January 
1, 2019, to December 31, 2020, at 60 stations in Henan 
Province by the China Environmental Monitoring Centre 
(CEMC). The green dots denote ground-based CEMC 
sites, and the red five-pointed star denotes the site used 
in the case study and experiments in this paper. We first 
removed invalid values and outliers due to instrument 
calibration issues. The collected data have missing values 
due to instrument damage, human error, and other fac-
tors. Therefore, we use the stacking ensemble learning 
model to fill in the missing values; more details are pro-
vided in Sect. 3.1.

2.2 � Methods
2.2.1 � Informer model
In air pollutant time series, the value at the current 
moment is correlated with the value at each moment 
in the previous period, and the air pollutant concentra-
tion at the current moment can be predicted based on 
the historical time series information. Informer [31] 
is an improved time series prediction model based on 
the Transformer. The Informer model has an encoder-
decoder structure, and the core of this model is the 
self-attention mechanism. In contrast to models with 
RNN and CNN structures, models with self-attention 
mechanisms do not need to consider the position in 
the sequence when obtaining the historical time series 
information, and the cost of calculating the association 

between two positions in the time series does not 
increase with increasing distance. Therefore, historical 
information can be obtained more effectively to accu-
rately predict the air pollutant concentration at the cur-
rent moment. The calculation equation is shown in 
Eq. (1):

The calculation process is shown in Fig. 3. In this figure, 
q and k are sequences that are obtained by multiplying X 
by the weights Wq and Wk , respectively; these sequences 
are essentially the same as X . The inner product of q and 
k is equivalent to XXT , which represents the inner prod-
uct of the current moment and the value at each moment 
in the previous period. The result of the inner product is 
normalized by the softmax function to generate a new 
sequence α . The larger the value at a certain position in 
the sequence is, the higher the correlation between the 
value at the moment to be predicted and the value at 
that position. When predicting the value at the current 
moment, more information about this moment is con-
sidered. Finally, the inner product of α̂ and v is used to 
obtain the attention score, which is an internal represen-
tation of X in the model that represents various features 
of X.

In addition, the Informer model combines the self-
attention mechanism with the KL divergence strategy 
to create ProbSparse self-attention. Since most of the 
historical information is provided by the values at a 
few positions in the time series, to reduce the com-
putational costs, the positions that provide a large 

(1)Attention(X ,X ,X) = softmax
(
XXT

)
X

Fig. 2  Overview of Henan Province overlaid with ground-based stations
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amount of information are found according to the 
sparse scores at various positions, and dot product cal-
culations are performed to obtain the available histori-
cal information. These dot product operations are not 
required at other locations. The calculation equation is 
shown in Eq. (2):

where qi is the value at the i-th position in the air pollut-
ant time series X , K is the entire X sequence, and Lk is the 
length of X . Dividing by 

√
d ensures that the input to the 

softmax function is not too large, which would cause the 
partial derivative to approach 0. The larger the M value 
at the i-th position is, the more information this position 
carries, and the more important this position is in the 
self-attention operation.

(2)M(qi,K ) = ln

Lk∑
j=1

e

qik
T
j√
d − 1

LK

Lk∑
j=1

qik
T
j√
d

2.2.2 � AE‑Informer model
Autocorrelated errors are introduced when insufficient 
covariates are added, data collection errors occur, and 
when the time series prediction model does not fully 
fit. To reduce the influence of these errors on the pre-
diction results, AE [31] can be incorporated into the 
Informer model. Since the errors are autocorrelated, 
the current moment error can be represented by the 
errors at each moment in the previous period. The cal-
culation equation is shown in Eq. (3):

where ρ is the error parameter at each moment, e is the 
error at each moment, and εt is the error of the entire 
period. For the convenience of calculation, the equation 
is reduced to the first-order form, yielding et = ρ1et−1 . 
Assuming that ε̂ = X̂t − ρ̂Xt−1 , the new input and output 
of the model can be constructed by combining the two 
equations. The input changes from the observed value 
of the air pollutant concentration at each moment in 
the previous period to the error value at each moment, 
and the output changes from the predicted value at the 
current moment to the predicted value of the error at 
the current moment, where ρ is used as a parameter to 
train the model. Finally, by applying X̂t = ε̂+ ρ̂Xt−1 , the 
predicted value of the error at the current moment is 
added to the observed value at the previous moment to 
obtain the predicted value at the current moment. This 
approach improves deep learning models such as LSTM; 
thus, this method was used in the Informer model to 
improve the accuracy of the air pollutant concentration 
predictions.

To improve the hourly prediction accuracy of 
the Informer model [31], in this study, we fuse the 
Informer model with AEs [32] (Fig.  4) and propose 
the AE-Informer model. Figure  4a shows the tradi-
tional Informer model, and 4b presents the modi-
fied AE-Informer model. When the air pollutant 
concentration X̂t  is predicted at time t, the input to 
the Informer model is adjusted from the hourly pol-
lutant concentration observations {Xt−w, . . . , Xt−1} to 
the hourly observations and the error values between 
these observations and those in the previous hour 
{Xt−w − Xt−w − Xt−w−1, . . . , Xt−1 − Xt−2} . The output 
changes from the predicted air pollutant concentration 
at the current time X̂t  to the predicted value of the error 
between the current and previous time X̂t − ρXt−1 . 
Then, ρXt−1 is added to the prediction result to obtain 
the final prediction value X̂t  at time t. ρ is a parameter 
of the error between each moment and the previous 
moment that is added to the Informer model. Finally, 
the model is trained and iterated.

(3)et = ρ1et−1 + · · · + ρpet−p + εt , |ρi| < 1, ∀i

Fig. 3  Self-attention calculation process (X represents the input 
pollutant time series; q, k and v are sequences obtained by 
multiplying X by the weights Wq , Wk and Wv ; α is the inner product of 
q and k; and α̂ is α normalized by the softmax function)
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2.2.3 � Stacking ensemble learning
Before the air pollutant concentration can be predicted, 
the time series must be supplemented to address the 
missing values. In recent years, with the rapid develop-
ment of machine learning, many studies have applied 
machine learning models to the field of missing data sup-
plementation [34, 35], and ensemble methods can inte-
grate these basic machine learning models to improve 
performance.

Stacking ensembles are ensemble learning techniques 
that fuse multiple regression models through a meta-
regressor. Each base regression model uses the complete 
training set during training, and the output of each base 
regression model during the ensemble learning process 
is used as a meta-feature that becomes the input of the 
meta-regressor. The meta-regressor fits these meta-fea-
tures to obtain multiple fused models. In this approach, 
a variety of meta-regressors can be used to effectively 
reduce the bias and variance of the prediction results. 
Therefore, in this study, we use the stacking ensemble 

method (Fig. 5) to fuse five basic models: extreme gradi-
ent boosting (XGBoost), light gradient boosting (LGBM), 
gradient boosting decision tree (GBDT), random for-
est (RF) and extra tree (ET). This approach improves the 
accuracy of the supplemented missing data in the air pol-
lutant time series.

2.2.4 � Model evaluation
To evaluate the collected time series data, the missing 
data supplementation experiments were first performed. 
Then, the data were input into the model to conduct 
several experiments to (1) determine the optimal input 
sequence length, (2) determine the optimal sampling fac-
tor size, and (3) generate the multivariate air pollutant 
concentration time series predictions. To evaluate the 
results of each experiment, three performance metrics 
were used in this study: the correlation coefficient (R2), 
the root mean square error (RMSE), and the mean abso-
lute error (MAE). These metrics are calculated as shown 
in Eqs. (4), (5) and (6):

Fig. 4  Improvement of the Informer model based on the AE strategy: Informer (a) and AE-Informer (b)

Fig. 5  Stacking ensemble model structure and workflow
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where n is the predicted sequence length, yi is the 
observed value at the i-th position in the air pollut-
ant time series, and ŷi is the predicted value at the i-th 
position in the sequence. uŷ and uy are the average fore-
casted and average observed air pollutant concentrations, 
respectively.

3 � Results and discussion
3.1 � Missing data supplementation
The stacking ensemble model and five machine learning 
models were used to conduct missing data supplementa-
tion experiments to verify the effectiveness of the stack-
ing ensemble model in improving the accuracy of the 
supplemented data. First, the five models, namely, ET, RF, 
GBDT, XGBoost, and LGBM, were adjusted by Bayes-
ian optimization to achieve the best model effect. These 
five models were then used as the first layer in the stack-
ing ensemble model. The prediction data of each model’s 
cross operation were fused to form a new training set, 
and the prediction results of each model’s test set were 
fused to form a new test set. The new training and test 
sets were passed to the second-layer ridge regression 
model to train the model, achieving more accurate sup-
plemented data.

As shown in Table  1, compared with other machine 
learning models, the R2 value of the four pollutants was 
the highest in the stacking ensemble model. Among 
them, the missing value of PM2.5 had the highest R2 value 
(0.979), and the R2 values of the other three air pollutants 
were all greater than 0.87. Compared with the XGBoost 
machine learning model, the MAE and RMSE of the pro-
posed model were generally reduced by 1–6%. Except for 
the MAE of NO2 in the of XGBoost model, the stacking 
ensemble method yielded better results in terms of all 
other metrics. The stacking ensemble model improved 
the accuracy of the supplemented data based on its com-
position model and exhibited a wide range of applicabil-
ity to four kinds of pollution (PM10, PM2.5, NO2, and O3).

In addition, to more intuitively display the effects after 
supplementing the missing data, Fig.  6 shows the veri-
fication results of the four predicted pollutants PM10 
(a), PM2.5 (b), NO2 (c), and O3 (d) versus the ground 

(4)R2 =
∑n

i=1

(
ŷi−uŷ

)
(yi−uy)√

∑n
i=1

(
ŷi−uŷ

)2√∑n
i=1(yi−uy)

2

(5)MAE = 1
n

n∑
i=1

∣∣yi − ŷi
∣∣

(6)RMSE =
√

1
n

n∑
i=1

(
yi − ŷi

)2

measurements. In the scatter plots of the four pollut-
ants, the scatter points are distributed near the diagonal, 
which indicates that the prediction values are close to the 
observed values with low error. Therefore, the stacking 
ensemble model reliably supplements the missing CEMC 
data. Among the four pollutants, NO2 has more scattered 
points than PM2.5, PM10 and O3. This result occurred 
because NO2 has more missing values, leading to fewer 
training samples, which affects the prediction perfor-
mance of the model. Compared with NO2 and PM10, the 
concentration values of O3 and PM2.5 are more evenly 
distributed, which leads to a higher prediction accuracy.

3.2 � Determining the input sequence length
In the Informer model, the input sequence length rep-
resents how many hours or days of pollutant con-
centration data the model needs to use to predict the 
pollutant concentration in the next hour or day, shorter 
input sequences cannot ensure that the model has suf-
ficient historical air pollutant data, while long input 
sequences increase irrelevant inputs and the computa-
tional complexity. Therefore, it is necessary to determine 
the optimal input sequence length to achieve the best 
model prediction performance. To determine the most 
appropriate input sequence length, 10 prediction experi-
ments were conducted with different input sequence 
lengths for 60 state-controlled stations in the study area, 
and the results of each experiment were averaged to 
obtain the final RMSE and MAE performance indicators.

Table 1  Comparison of the supplemented missing data with 
the stacking ensemble models

Model Metric PM2.5 PM10 NO2 O3

Stacking R2 0.979 0.944 0.871 0.948

MAE 4.54 7.97 4.23 7.90

RMSE 6.96 13.9 6.53 10.8

XGBoost R2 0.966 0.916 0.870 0.942

MAE 5.66 9.79 4.22 8.33

RMSE 8.98 16.9 6.53 11.4

LGBM R2 0.951 0.888 0.836 0.938

MAE 7.13 12.4 5.01 8.85

RMSE 10.8 19.6 7.34 11.8

GBDT R2 0.972 0.932 0.865 0.945

MAE 5.16 8.85 4.30 8.20

RMSE 8.08 15.2 6.66 11.1

RF R2 0.946 0.917 0.806 0.906

MAE 7.38 9.80 5.34 10.5

RMSE 11.2 16.9 7.98 14.6

ET R2 0.978 0.937 0.803 0.862

MAE 4.64 8.52 5.35 12.9

RMSE 7.15 14.6 8.04 17.6
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Table  2 shows the MAE and RMSE values obtained 
with different encoder lengths at the Luohe University 
site. When the input sequence length was 6–48, the MAE 

and RMSE ranged from 5.5–5.8 and 9.4–9.8, respectively. 
When the encoder length was 8, the MAE and RMSE 
reached their lowest values, which indicates that the AE-
Informer model has the lowest prediction error and high-
est model accuracy. Other national control stations also 
obtain better prediction effects when the encoder length 
is 8. Therefore, the length of the input sequence is set to 
8 in this study.

3.3 � Optimal sampling factor size
By evaluating the KL divergence, we found that there 
was a large difference between the attention distribu-
tion and the uniform distribution, demonstrating that the 
self-attention mechanism was sparse, and only a small 
amount of data in the air pollutant sequence contrib-
uted important historical information. Selecting data at 
fewer positions in the input sequence yields less histori-
cal information, resulting in insufficient information to 
make accurate predictions. However, selecting data at too 
many locations leads to considerably complex historical 
information, which increases the noise in the prediction 

Fig. 6  Scatter plots of the predicted and observation results of PM10, PM2.5, NO2 and O3 based on the stacking ensemble model

Table 2  Prediction performance using different input sequence 
lengths

Encoder 
Length

MAE RMSE Encoder 
Length

MAE RMSE

6 5.66 9.63 28 5.75 9.69

8 5.57 9.47 30 5.73 9.70

10 5.67 9.63 32 5.76 9.73

12 5.65 9.67 34 5.76 9.74

14 5.67 9.62 36 5.73 9.65

16 5.66 9.59 38 5.75 9.67

18 5.63 9.58 40 5.74 9.63

20 5.61 9.54 42 5.70 9.63

22 5.68 9.66 44 5.71 9.63

24 5.71 9.70 46 5.70 9.66

26 5.70 9.64 48 5.75 9.69
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results and the computational costs. Therefore, it is 
very important to select data at an appropriate number 
of positions in the sequence. According to the size of 
the sampling factor (Factor), the first few positions with 
the highest sparsity scores are selected by the model to 
obtain historical information. To determine the optimal 
sampling factor size, we conducted 10 prediction experi-
ments using different sampling factors, and the default 
input sequence length was the optimal input sequence 
length determined in Sect. 3.2. The results of each experi-
ment were averaged to obtain the final RMSE and MAE 
to determine the optimal sampling factor.

The experimental results from the Luohe University 
site are shown in Table 3. When the sampling factor was 
5, the MAE and RMSE of the air pollutant prediction 
results reached 5.57 and 9.4, respectively, which proves 
that the model achieves the best prediction effect with 
this sampling factor. In the experiments at other national 
control stations, high prediction accuracy was also 
achieved when the factor was 5. Therefore, the sampling 
factor is set to 5 in this work.

3.4 � Comparison of experimental results
To demonstrate the effectiveness of the AE-Informer 
model, multivariate prediction experiments were con-
ducted on the AE-Informer model and other commonly 
used models, and the experimental results were com-
pared. The comparison models included ARIMA [17], 
Informer [31], Transformer [24], Bi-LSTM [22], the 
gated recurrent unit (GRU) [36], long short-term mem-
ory (LSTM) model [37] and long short-term network 
(LST-Net) [38]. The ARIMA model was divided into 
three components: the autoregressive (AR) term, the 

differential term, and the moving average (MA) term. 
The AR term refers to the past value used to predict 
the next value, the MA term defines the number of past 
prediction errors when predicting future values, and 
the difference term specifies the number of times that 
the difference operation is performed on the sequence. 
The difference operation ensures that the data remain 
balanced. The traditional Transformer and Informer 
models are typical models that use attention mecha-
nisms for time series prediction. The Bi-LSTM, GRU, 
and LSTM models are typical models that use RNN 
structures to solve time series prediction problems. 
LST-Net applies the CNN structure to the field of time 
series prediction.

The results show that the AE-Informer model pro-
posed in this paper outperforms the traditional 
Informer model and the other comparative models 
in terms of air pollutant prediction (Table  4). The R2, 
MAE, and RMSE of the AE-Informer model reached 
0.976, 5.42, and 9.41, respectively, and the error was 
reduced by 3–7% compared with the other models. The 
MAE and RMSE of the Informer 13% less than those 
of the ARIMA model, and the prediction accuracy was 
significantly improved. The experiment proved that the 
Transformer and Informer models based on the self-
attention mechanism outperform the RNN-based Bi-
LSTM, GRU, and LSTM models and the CNN-based 
LST-Net model. The traditional ARIMA prediction 
model appears to have inadequate time series predic-
tion performance.

Table 5 shows the evaluation indicators for the indi-
vidual prediction results of the four pollutants. The 
simultaneous prediction of multiple pollutants does not 

Table 3  Prediction performance using different sampling factors 
on site data of Luohe University

Factor MAE RMSE Factor MAE RMSE

1 5.63 9.52 6 5.60 9.05

2 5.66 9.56 7 5.56 9.46

3 5.60 9.52 8 5.56 9.47

4 5.57 9.49 9 5.59 9.49

Table 4  Performance comparison of the AE-Informer model and other models for multivariate time series prediction

Evaluation
indicators

AE-
Informer

Informer Transformer LST-Net Bi-LSTM GRU​ LSTM ARIMA

R2 0.976 0.975 0.974 0.967 0.957 0.956 0.960 0.894

MAE 5.42 5.58 5.66 5.96 6.58 6.84 6.58 7.84

RMSE 9.41 9.53 9.73 11.1 10.6 10.7 10.4 10.5

Table 5  Evaluation indicators for the prediction results of PM2.5, 
PM10, O3, and NO2

Air R MAE RMSE

PM2.5 0.883 3.09 5.16

PM10 0.931 8.24 14.4

NO2 0.923 3.29 4.85

O3 0.972 7.08 9.78
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affect the prediction effects of single pollutants, and the 
correlation between the predicted and true values of 
each pollutant is approximately 0.85.

3.5 � Prediction performance of the AE‑Informer model
After improving the Informer model by introducing 
AEs, AE-Informer was used to predict the hourly con-
centrations of four common pollutants. To compare the 
prediction performance before and after the model was 
improved, the change curve of the predicted and actual 
value was generated. The change curve demonstrates the 
effectiveness of the AE-Informer model by showing the 
consistency between the predicted and actual results. 
Figure 7 depicts a comparison of the observed and pre-
dicted change curves of the AE-Informer model ((a) is 
PM10, (b) is PM2.5, (c) is NO2, and (d) is O3). The blue line 
represents the actual air pollutant value, and the red line 
represents the predicted value. In the change curve of 

the four pollutants, for some extreme value predictions, 
the error between the AE-Informer prediction value 
and the observation value is small. In addition, at some 
time series steps, the predicted value of the AE-Informer 
model is consistent with the observed value.

The above experiments were based on the data of one 
site as an example. To evaluate the broad applicability of 
the proposed AE-Informer model, the model was applied 
to all other state control sites within the study area. 
The Informer model and the AE-Informer model were 
applied to predict the hourly pollutant concentrations at 
each monitoring station in Henan Province. Then, krig-
ing interpolation was used to interpolate the RMSE and 
MAE values in the study area to more intuitively demon-
strate the improvement in the prediction performance.

The AE-Informer and Informer prediction evalua-
tion indicators after kriging interpolation are shown in 
Fig.  8, with (a) showing the AE-Informer multivariate 

Fig. 7  Comparison between the change curves of the predicted and observed values based on the AE-Informer model
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prediction MAE and (b) showing the AE-Informer mul-
tivariate prediction RMSE. The bottom color in the color 
bar indicates a higher prediction level and a smaller pre-
diction error, while the top color indicates a lower pre-
diction level and a larger prediction error. The MAE 
value of the AE-Informer model ranges from 4.56–7.48, 
and the RMSE value ranges from 7.53–12.8. The predic-
tion performance in the whole study area is significantly 
improved in terms of both the MAE and RMSE. Thus, 
adding the AE effectively reduces the prediction error of 
the Informer model and improves the hourly prediction 
accuracy. Moreover, the model is generally applicable in 
the whole research area, proving the effectiveness of the 
method proposed in this paper.

4 � Conclusions
In conclusion, in this paper, we proposed a methodo-
logical framework for studying the effectiveness of the 
Informer model and AE in improving the prediction 
accuracy of air pollutant concentrations and compared 
the prediction performance of various models. Introduc-
ing the AE improved the air pollutant concentration time 
series prediction accuracy. The hourly air pollutant con-
centration data from all available monitoring stations in 
Henan Province from 2019 to 2020 were obtained to test 
the validity of our method. The main contributions of this 
study can be summarized as follows:

(1)	 The stacking ensemble method was introduced 
to supplement missing time series data. Five basic 
meta-regressors, XGBoost, LGBM, GBDT, RF, and 
ET, were integrated, and their performance was 
compared. The experimental results showed that 
stacking improved the accuracy of missing time 
series data supplementation; compared with the 
XGBoost model, the MAE and RMSE of PM2.5 were 

reduced by up to 6% when the proposed model was 
applied.

(2)	 For the first time, the Informer model was applied 
in the field of air pollutant time series prediction. 
The self-attention mechanism in the Informer 
model efficiently obtained historical time series 
information. The experimental results showed that 
the MAE and RMSE of the proposed model were 
13% less than those of the ARIMA model, and the 
prediction accuracy was significantly improved.

(3)	 This paper is one of the few pioneering studies that 
fuses deep learning with the AE strategy to predict 
air pollutant concentration. This model can help 
governments and researchers assess trends more 
accurately in long-term air quality analyses, espe-
cially for multivariate time series forecasting.

(4)	 The results showed that the AE-Informer model 
proposed in this paper effectively improved the pre-
diction of air pollutant concentrations in multivari-
ate time series. Compared with the Informer model, 
the MAE and RMSE values of the proposed model 
were reduced by 3%, and the errors of the predicted 
values were also reduced.

This research can be extended to explore higher resolu-
tion data. Moreover, transfer learning can be introduced 
to achieve daily time series prediction, and data from 
more state controlled sites can be applied to assess areas 
with fewer state controlled sites.
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