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Abstract
We classify all exactly stress-free solutions to the cubic-to-trigonal phase transformation
within the geometrically linearized theory of elasticity, showing that only simple laminates
and crossing-twin structures can occur. In particular, we prove that although this transfor-
mation is closely related to the cubic-to-orthorhombic phase transformation, all its solutions
are rigid. The argument relies on a combination of the Saint-Venant compatibility conditions
together with the underlying nonlinear relations and non-convexity conditions satisfied by
the strain components.

Keywords Shape-memory alloy · Rigidity · Structure result · Cubic-to-trigonal phase
transformation · Geometrically linearized theory

Mathematics Subject Classification 74B99 · 74N05 · 74N15 · 74A50

1 Introduction

Shape-memory alloys are materials with a thermodynamically very interesting behaviour:
They undergo a diffusionless, solid-solid phase transformation in which symmetry is re-
duced. More precisely, a highly symmetric high temperature phase, the austenite, transforms
into a much less symmetric low temperature phase, the martensite, upon cooling below a
certain critical temperature [1]. Mathematically, these materials have very successfully been
described by an energy minimization [2] of the form

ˆ

�

W(∇u, θ)dx → min . (1)
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Fig. 1 Schematic illustration of a crossing twin structure (left) and a simple laminate (right). Only very
specific twins can be used to form crossing twin structures. These are obtained as a consequence of the
compatibility conditions satisfied by the strain equations

Here � ⊂ R
3 denotes the reference configuration, which often is chosen to be the austenite

state at the critical temperature θc > 0, the deformation of the material is u : � → R
3, the

temperature is denoted by θ : � → [0,∞) and W : R3×3
+ × [0,∞) → [0,∞) corresponds

to the stored energy function. Here and in what follows we use the notation R
3×3
+ := {M ∈

R
3×3 : det(M) > 0}. The function W encodes the physical properties of the material and is

assumed to be

(i) frame indifferent, i.e., W(F, θ) = W(QF,θ) for all F ∈ R
3×3
+ and Q ∈ SO(3),

(ii) invariant with respect to the material symmetry, i.e., W(F, θ) = W(FH,θ) for H ∈ Pa

where Pa denotes the symmetry group of the austenite phase, which we assume to
strictly include the symmetry group of the martensite phase.

Here (i) can be viewed as a geometric nonlinearity, while (ii) encodes the main material
nonlinearity which, for instance, reflects the transition from the highly symmetric austenite
to the less symmetric martensite phase. Both structure conditions imply that the energies in
(1) are highly non-quasiconvex and thus give rise to a rich energy landscape. As a result,
minimizing sequences can be rather intricate, which physically leads to various different
microstructures.

In this note, it is our objective to study a specific phase transformation for which ex-
perimentally interesting microstructures are observed. Seeking to capture “crossing-twin
structures” in a fully three-dimensional model (see Fig. 1, left), we focus on the cubic-to-
trigonal phase transformation in three dimensions. This deformation, for instance, arises in
materials such as Zirconia or in Cu-Cd-alloys but also in the cubic-to-monoclinic transfor-
mation in CuZnAl. We refer to [3, 4] for experimental studies, to [5] for an investigation of
special microstructures in a geometrically nonlinear context and to [6, 7] for mathematical
relaxation results for the associated geometrically nonlinear problems. Since the study of
the minimization problem (1) can be rather complex, in this note we make the following
three simplifying assumptions which are common in the mathematical analysis of marten-
sitic phase transformations:

• We fix temperature below the transition temperature,
• we consider only the material nonlinearity while linearizing the geometric nonlinearity,
• and we study only exactly stress-free structures.

Instead of investigating the full minimization problem (1), we thus study the differential
inclusion

e(u) ∈ {e(1), e(2), e(3), e(4)} in T
3, (2)
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Table 1 The possible normals
arising in simple laminate
constructions. For these the strain
alternates between the two strain
values given in the left column of
the table

Strains Possible normals (aij , nij )

e(1), e(2) [1,0,0], [0,4,4]
e(1), e(3) [0,0,1], [4,4,0]
e(1), e(4) [0,1,0], [4,0,4]
e(2), e(3) [0,1,0], [−4,0,4]
e(2), e(4) [0,0,1], [−4,4,0]
e(3), e(4) [1,0,0], [0,4,−4]

where

e(1) =
⎛
⎝

d1 1 1
1 d2 1
1 1 d3

⎞
⎠ , e(2) =

⎛
⎝

d1 −1 −1
−1 d2 1
−1 1 d3

⎞
⎠ ,

e(3) =
⎛
⎝

d1 1 −1
1 d2 −1

−1 −1 d3

⎞
⎠ , e(4) =

⎛
⎝

d1 −1 1
−1 d2 −1
1 −1 d3

⎞
⎠ ,

(3)

and d1, d2, d3 are material-specific constants. In order to avoid additional mathematical dif-
ficulties arising from potential boundaries or non-compactness of the reference configu-
ration, we assume that it is given by the torus T

3 := T1 × T2 × T3, where Ti := [0, λi)

for some λi > 0 and i ∈ {1,2,3}. We observe that all the matrices in (3) are symmetrized
rank-one connected, i.e., for each i, j ∈ {1,2,3,4} there exist (up to their sign unique)
aij ∈R

3 \ {0}, nij ∈ S2 such that

e(i) − e(j) = 1

2
(aij ⊗ nij + nij ⊗ aij ).

It is well-known that, as a consequence, the differential inclusion (2) thus allows for so-
called twin or simple laminate solutions, i.e., solutions u(x) = u(nij · x) with nij ∈ S2 de-
noting the vectors from above. These are rather rigid, one-dimensional structures, which
are frequently observed in experiments [1], see also Fig. 1, right. The possible pairs
(aij , nij ) ∈ R

3 × S2 for the cubic-to-trigonal phase transformation are collected in Table 1.
Contrary to other materials such as alloys undergoing a cubic-to-tetragonal phase trans-

formation, simple laminates are not the only possible solutions to (2). As in the (more
complex) cubic-to-orthorhombic phase transformation, also in the cubic-to-trigonal phase
transformation “crossing-twin structures” can emerge. These are two-dimensional struc-
tures involving “laminates within laminates” (see Fig. 1, left). In particular, these patterns
locally consist of zero-homogeneous deformations which involve specific “corners” which
are formed by four different variants of martensite.

1.1 The Main Result

As our main result, we classify all solutions to the differential inclusion (2) and prove that
in addition to the simple laminate solutions only crossing twin structures arise.

Theorem 1 Let e(u) := 1
2 (∇u + (∇u)t ) with e(u) : T3 → R

3×3
sym be a periodic symmetrized

gradient. Assume that

e(u) ∈ {e(1), e(2), e(3), e(4)}.
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Then the following structure result holds:

(i) There exists j ∈ {1,2,3} such that ∂j e(u) = 0.
(ii) Assuming that j = 2, there exist functions f1 : T1 → R and f3 : T3 → R such that

f1, f3 ∈ {−1,1} and either e13(u)(x) = f1(x1) for a.e. x ∈ � or e13(u)(x) = f3(x3) for
a.e. x ∈ �.

(iii) Assuming that e13(u)(x) = f3(x3), consider �(s, t) := (t − F3(s), s), where F3(s)

is such that F ′
3(s) = f3(s) a.e. and F3(0) = 0. Then, there exists g : �−1(T3) → R,

(s, t) 	→ g(t) such that

(e12 ◦ �)(s, t) = g(t), (e23 ◦ �)(s, t) = f3(s)g(t).

Remark 1 All cases not listed result from the symmetries of the model under permutation of
the space directions, as these only permute the side lengths of the torus T3 and the constants
d1, d2, and d3, the precise values of these constants do not enter the argument. The permu-
tations play the following roles: If an index i ∈ {1,2,3} has been fixed, the other two can be
exchanged via transposition. A fixed index can be transformed into a different fixed index
by a full cyclic permutation.

Remark 2 We highlight that, in general, the index j ∈ {1,2,3} in Theorem 1(i) may not
be unique (e.g., in the case of e being constant or for specific simple laminates). However,
for genuine crossing-twin microstructures, since these are genuinely two-dimensional, the
choice of j is indeed unique. We view the statement of Theorem 1(i) as one of our main
results: It is at this point that – in spite of the full three-dimensionality of the problem – the
symmetry of the problem is broken for the first time. A similar remark on the (non-)unique-
ness of j is valid for the auxiliary results leading up to Theorem 1(i), in particular, for
Proposition 2 below.

Let us comment on this result: From a materials science point of view, it gives a complete
classification of exactly stress-free solutions for the cubic-to-trigonal phase transformation
in the geometrically linear framework. Mathematically, Theorem 1 provides a rigidity result
for a phase transformation which leads to more complex structures than simple laminates.
While a similar classification and rigidity result had been obtained in [8] for the cubic-to-
orthorhombic phase transformation in three dimensions, this required strong geometric as-
sumptions on the smallest possible scales. These assumptions were also necessary as a result
of the presence of convex integration solutions for the corresponding differential inclusion
in the case of the cubic-to-orthorhombic phase transformation. In contrast, in our model,
such conditions are not needed. Due to the smaller degrees of freedom that are present (four
instead of six possible strains), in fact any exactly stress-free solution must satisfy the struc-
tural conditions and “wild” convex integration solutions are ruled out.

1.2 Relation to the Cubic-to-Orthorhombic Phase Transformation

Due to the outlined rather different behaviour (in terms of rigidity and flexibility) of stress-
free solutions of the cubic-to-orthorhombic and the cubic-to-trigonal phase transformation,
we explain the algebraic relation between these two transformations: To this end, we recall
that for the cubic-to-orthorhombic phase transformation, the exactly stress-free setting in
the geometrically linearized situation corresponds to the differential inclusion

e(u) ∈ {e(1), . . . , e(6)},
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with

e(1) :=
⎛
⎝

1 δ 0
δ 1 0
0 0 −2

⎞
⎠ , e(2) :=

⎛
⎝

1 −δ 0
−δ 1 0
0 0 −2

⎞
⎠ , e(3) :=

⎛
⎝

1 0 δ

0 −2 0
δ 0 1

⎞
⎠ ,

e(4) :=
⎛
⎝

1 0 −δ

0 −2 0
−δ 0 1

⎞
⎠ , e(5) :=

⎛
⎝

−2 0 0
0 1 δ

0 δ 1

⎞
⎠ , e(6) :=

⎛
⎝

−2 0 0
0 1 −δ

0 −δ 1

⎞
⎠ .

Here δ > 0 is a material dependent parameter. If now one assumes that a microstructure
only involves the infinitesimal strains {e(1), . . . , e(4)} and if one carries out the change of
coordinates x 	→ x̂ := C−t x, u 	→ û := Cu with

C :=
⎛
⎜⎝

1√
3

0 0

0
√

3√
2δ

0

0 0 1√
3

⎞
⎟⎠ ·

⎛
⎝

0 1 1√
2 0 0

0 1 −1

⎞
⎠ ,

using that the (infinitesimal) strain transforms according to e(û) = Ce(u)Ct , one exactly
arrives at the differential inclusion (2) for the cubic-to-trigonal phase transformation with
the parameters d1 = − 1

3 , d2 = 3
δ2 , d3 = − 1

3 . This shows that the differential inclusion for
the cubic-to-trigonal phase transformation indeed corresponds to a subset of the differen-
tial inclusion for the cubic-to-orthorhombic phase transformation. Due to the fewer degrees
of freedom, in contrast to the full cubic-to-orthorhombic phase transformation, it however
displays strong rigidity properties.

1.3 Main Ideas

The arguments for the proof of Theorem 1 rely on a combination of the linear compatibility
conditions for strains in the form of the Saint-Venant equations and the nonlinear constraints
in our model. More precisely, the Saint-Venant conditions imply structural conditions on the
possible space dependences of the strains. Furthermore, the full classification result requires
a breaking of symmetries that can only be deduced in combination with the non-convexity of
the problem, i.e., the fact that for all i, j ∈ {1,2,3} we have that eij (u) attains at most three
possible values and the nonlinear relation e23 − e12e13 = 0. For a simplified model with only
two-dimensional dependences similar arguments had earlier been considered in [8]. How-
ever, in contrast to [8], in the present setting we do not need to make use of the additional
structural condition of two-dimensionality. Using restrictions to carefully chosen planes, as
the key part of our argument, we in fact infer the two-dimensionality of the strains and then
combine this with the ideas from [8].

1.4 Relation to the Literature

In the study of minimization problems of the type (1) a common first step consists of the
analysis of exactly stress-free structures. This is investigated for particular low energy nu-
cleation problems in [9, 10], for the two-well problem in [11, 12], for the cubic-to-tetragonal
phase transformation in [13, 14] and for the cubic-to-orthorhombic transformation in [8, 15].
Moreover, rigidity properties of related differential inclusions without gauge symmetries are
studied in [13, 16–21]. For sufficiently complex structures of the energy minima, a striking
dichotomy between rigidity of the underlying exactly stress-free structures under relatively
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high regularity conditions (e.g., BV conditions for ∇u) and flexibility of low regularity so-
lutions arises [13, 22–30]. We expect that if one passes from our geometrically linearized
setting of the cubic-to-trigonal phase transformation to the setting of geometrically non-
linear elasticity in which full frame indifference is present, by using ideas as in [14], our
model would also display such a dichotomy. In this context, one would expect that above
a certain regularity threshold still only rigid structures in the form of crossing twins exist,
while at low regularities such a full classification is no longer valid and a plethora of highly
irregular, “wild” solutions exist. The latter are expected to no longer satisfy the kinematic
compatibility conditions given for crossing twin structures.

Moreover, building on the first (more qualitative) step of investigating exactly stress-free
structures, further quantitative properties of the resulting material patterns and the associated
energies are studied in the literature. For instance, this includes the scaling and relaxation
behaviour of the associated energies [8, 31–42] as well as the stability and fine-scale proper-
ties of these patterns [43–46]. We refer to [47] and [1] for a survey of these results. Also for
our model a quantification of our crossing twin structures would be of substantial interest.
While we believe that the first part of our argument (based on the Saint-Venant conditions) is
robust and can be made quantitative with ideas from the literature, the second ingredient (the
nonlinear relation between the strains), in which the symmetry of the problem is “broken”,
is substantially more fragile and needs new ideas. This, in particular, requires quantifica-
tions of the restrictions of the strain components to carefully chosen planes mimicking our
stress-free argument which poses substantial technical difficulties. We thus postpone this to
possible future studies.

1.5 Outline of the Article

The remainder of the article is structured as follows: In Sect. 2 we first exploit the linear
structure conditions which are given by the Saint-Venant compatibility conditions and by
the assumption of periodicity. Next, in Sect. 3 we combine these with the nonlinear and
non-convex constraints which arise from our differential inclusion and prove the crucial
symmetry breaking in the form that the strains must have only two- instead of fully three-
dimensional dependences. Last but not least, in Sect. 4 we provide the proof of Theorem 1.

2 First Structure Results: Exploiting the Saint-Venant Conditions

In this section we employ the Saint-Venant compatibility conditions to deduce first structure
results for e(u). Relying on these structural results, in the next section we will carry out a
refined analysis of the restrictions of the strains to certain planes in order to prove that e(u)

only depends on two of the three variables.
We begin by recalling the Saint-Venant compatibility conditions (see for instance [8,

Lemma 1]):

Lemma 1 (Saint-Venant compatibility conditions) Let � ⊂ R
3 be a simply connected,

bounded domain and let e : � →R
3×3
sym be bounded. Then the following conditions are equiv-

alent:

(i) there exists a deformation u ∈ W 1,p(�) with p ∈ (1,∞) such that e = 1
2 (∇u + (∇u)t ),

i.e., e is a strain corresponding to a deformation u,
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(ii) distributionally it holds that ∇ × (∇ × e) = 0, i.e., the following system of PDEs hold
distributionally in �

2∂12e12 = ∂22e11 + ∂11e22,

2∂13e13 = ∂33e11 + ∂11e33,

2∂23e23 = ∂22e33 + ∂33e22,

(4)

∂23e11 = ∂1(−∂1e23 + ∂2e13 + ∂3e12),

∂13e22 = ∂2(∂1e23 − ∂2e13 + ∂3e12),

∂12e33 = ∂3(∂1e23 + ∂2e13 − ∂3e12).

(5)

In the following sections we will apply these compatibility equations to solutions to our
differential inclusion (2). To this end, we note that by virtue of the constant diagonal entries
of the wells from (3) the first three strain equations (4) can be simplified to read

∂12e12 = 0,

∂13e13 = 0,

∂23e23 = 0.

Integrating this, we directly obtain the following decomposition into two-dimensional
waves:

e12(x1, x2, x3) = f31(x1, x3) + f32(x2, x3), (6)

e23(x1, x2, x3) = f12(x1, x2) + f13(x1, x3), (7)

e31(x1, x2, x3) = f21(x1, x2) + f23(x2, x3), (8)

for functions fij : Ti ×Tj → R (cf. the argument for Lemma 2(4) below).
The two-valuedness of the components of the strain allows to extract further information

about these functions.

Lemma 2 Let e(u) : T3 → R
3×3
sym be a T

3-periodic symmetrized gradient solving the differ-
ential inclusion (2). Then one can decompose the strain components as stated in (6)–(8) and
choose the functions fij for i, j ∈ {1,2,3} with i �= j to satisfy the following three statements
for {i, j, k} = {1,2,3}:
1. The functions fij satisfy the inclusion fij ∈ {−1,0,1} a.e. for i �= j .
2. For almost all xi ∈ Ti we have either fij (xi,•) = 0 for almost all xj ∈ Tj or

fik(xi,•) = 0 for almost all xk ∈ Tk .
3. If there exists C ∈R such that eij = C, then fki and fkj can be chosen to be constant.
4. The functions fij are periodic in both variables, i.e., for almost every (xi, xj ) ∈ Ti × Tj

it holds that fij (xi + λi, xj ) − fij (xi, xj ) = 0 and fij (xi, xj + λj ) − fij (xi, xj ) = 0.

Proof The claims follow immediately as by the two-valuedness of the strain components, it
is possible to rewrite (6)–(8) as

e12(x1, x2, x3) = χ3(x3)(1 − 2χ31(x1, x3)) + (1 − χ3(x3))(1 − 2χ32(x2, x3)),

e23(x1, x2, x3) = χ1(x1)(1 − 2χ12(x1, x2)) + (1 − χ1(x1))(1 − 2χ13(x1, x3)),

e31(x1, x2, x3) = χ2(x2)(1 − 2χ21(x1, x2)) + (1 − χ2(x2))(1 − 2χ23(x2, x3)),

(9)
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where χj ,χik are characteristic functions, which can be chosen to be constant (with both
values 0 and 1 being possible) if the corresponding entry of the strain eij is constant.

Finally, we turn to the periodicity claim. By symmetry it suffices to consider f12. We note
that by the decomposition of the strain into two planar waves, we immediately obtain that
for almost every (x1, x2) ∈ T1 ×T2

0 = e23(x1, x2 + λ2, x3) − e23(x1, x2, x3) = f12(x1, x2 + λ2) − f12(x1, x2).

In order to also infer the periodicity in the x1 variable, we use that for almost every (x1, x2) ∈
T1 ×T2

0 = e23(x1 + λ1, x2, x3) − e23(x1, x2, x3)

= f12(x1 + λ1, x2) − f12(x1, x2) + f13(x1 + λ1, x3) − f13(x1, x3).
(10)

Varying the x2, x3 variables separately, we deduce that for almost every (x1, x2) ∈ T1 × T2

it holds that f12(x1 + λ1, x2) − f12(x1, x2) = const . Due to the structural result from (9)
this is only possible if χ1(x1 + λ1) = χ1(x1) for almost every x1 ∈ T1. For all x1 ∈ T1 with
χ1(x1 + λ1) = 0, the claim of the lemma follows immediately. For x1 ∈ T1 with χ1(x1 +
λ1) = 1, the periodicity condition (10) of the strain and the fact that for these choices of
x1 ∈ T1 it necessarily holds that f13(x1 + λ1, x3) = f13(x1, x3) = 0, then also yields the
desired periodicity condition for f12. �

Next we consider the second set of strain equations (5) which simplify to become

0 = ∂1(−∂1e23 + ∂2e13 + ∂3e12), (11)

0 = ∂2(∂1e23 − ∂2e13 + ∂3e12), (12)

0 = ∂3(∂1e23 + ∂2e13 − ∂3e12). (13)

By integrating these, we infer a further structure result:

Lemma 3 Let e(u) : T3 → R
3×3
sym be a T

3-periodic symmetrized gradient solving the differ-
ential inclusion (2). Then, for all i, j, k = {1,2,3} we have that

−
ˆ

Ti×Tj

eij (xi, xj , xk)d(xi, xj ) = −
ˆ

T3

eij (x)dx for almost every xk ∈ Tk. (14)

Proof By symmetry, we only have to consider the case i = 1, j = 2, and k = 3. From equa-
tion (13), we obtain

∂1e23 + ∂2e13 − ∂3e12 = h(x1, x2).

Integrating in x1, x2 and using the periodicity assumption then yields that for almost every
x3 ∈ T3

∂3 −
ˆ

T1×T2

e12(x1, x2, x3)dx1 dx2 = −
ˆ

T1×T2

h(x1, x2)dx1 dx2

− −
ˆ

T1×T2

∂1e23 dx1 dx2 − −
ˆ

T1×T2

∂2e12 dx1 dx2

= −
ˆ

T1×T2

h(x1, x2)dx1 dx2.
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Now, integrating this in x3 and using the periodicity of the strain component e12, implies
that

0 = −
ˆ

T3

h(x1, x2)dx1 dx2 dx3 = −
ˆ

T1×T2

h(x1, x2)dx1 dx2.

Hence, by the above computation, ∂3 −́
T1×T2

e12(x1, x2, x3)dx1 dx2 = 0, which concludes the
argument. �

By combining the information from both sets of strain equations, we can prove the ex-
istence of a periodic primitive which in turn is closely related to the planar waves from
Lemma 2.

Lemma 4 Let e(u) : T3 → R
3×3
sym be a T

3-periodic symmetrized gradient solving the differen-
tial inclusion (2) and let fij with i, j ∈ {1,2,3}, i �= j , denote the functions from Lemma 2.
Then there exist periodic Lipschitz vector fields 	i,i+1 : Ti × Ti+1 → R for the cyclical in-
dices i ∈ {1,2,3} such that with 	i+1,i := 	i,i+1 the following properties hold:

1. We have the decomposition

e12 = ∂2	23 + ∂1	31 + −
ˆ

e12 dx,

e23 = ∂3	31 + ∂2	12 + −
ˆ

e23 dx,

e31 = ∂3	23 + ∂1	12 + −
ˆ

e31 dx.

2. The primitives satisfy the discrete differential inclusion

∂j	ij ∈
⎧⎨
⎩−1 − −

ˆ

T3

ejk dx,1 − −
ˆ

T3

ejk dx,0

⎫⎬
⎭

for {i, j, k} = {1,2,3}.
3. They allow to efficiently detect whether fij ≡ const in some direction for i, j ∈ {1,2,3}

with i �= j : Let xi ∈ Ti be fixed such that fij (xi,•) and ∂j	ij (xi,•) are measurable
functions. Then the following properties are equivalent:

(i) fij (xi,•) ≡ const .
(ii) ∂j	ij (xi,•) ≡ 0.

(iii) |{xj ∈ Tj : ∂j	ij (xi, xj ) = 0}| > 0.

Proof We argue in three steps, first constructing the primitive which yields the identity stated
in (1), then derive the properties in (2) and finally deduce the equivalences in (3).

Step 1: Construction of the primitive.
In order to deduce the desired structure result, we combine the strain equations (11)–(13)

with the representation formulae from Lemma 2.
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We take the ∂2 derivative of the first strain equation (11) and subtract the ∂1 derivative of
the second equation (12) to infer the first equation in

0 = −∂2
1 ∂2e23 + ∂1∂

2
2 e13,

0 = −∂2
2 ∂3e13 + ∂2∂

2
3 e12,

0 = +∂2
1 ∂3e23 − ∂1∂

2
3 e12,

(15)

while the others follow by symmetry.
Using the representation from Lemma 2 and evaluating the first equation from (15) yields

∂2
1 ∂2f12(x1, x2) = h12(x1, x2) = ∂1∂

2
2 f21(x1, x2).

Here h12(x1, x2) denotes a generic function in the x1, x2 variables which may change from
each block of equations to the next, as do the functions g12, g21, k12, and k21 from what
follows for the respective arguments. Integrating in the x1 direction hence results in

∂1∂2f12(x1, x2) = h12(x1, x2) + g12(x2),

∂2
2 f21(x1, x2) = h12(x1, x2) + g21(x2).

Integrating in the x2 direction then gives

∂1f12(x1, x2) = h12(x1, x2) + g12(x2) + k12(x1),

∂2f21(x1, x2) = h12(x1, x2) + g21(x2) + k21(x1).

In particular, for functions g12 : T2 → R and k12 : T1 → R this yields

∂1f12(x1, x2) = ∂2f21(x1, x2) − g12(x2) + k12(x1).

Defining h12(x1, x2) := ∂2f21(x1, x2) − g12(x2), we then infer

∂1f12(x1, x2) = h12(x1, x2) + k12(x1),

∂2f21(x1, x2) = h12(x1, x2) + g12(x2).

For convenience of notation, we drop the bars in the sequel and simply write

∂1f12(x1, x2) = h12(x1, x2) + k12(x1), (16)

∂2f21(x1, x2) = h12(x1, x2) + g12(x2). (17)

We next seek to prove that the vector field

(
f21

f12

)
from equations (16) and (17) essentially

comes from a gradient field in the two variables x1, x2.
Averaging over T1 × T2 in the equations (16), (17) and recalling the periodicity of the

functions fij implies that

−
ˆ

k12 dx1 = −
ˆ

g12 dx2.
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Thus, possibly after modifying h12 by a constant, we can choose

−
ˆ

k12 dx1 = −
ˆ

g12 dx2 = 0.

Returning to (16), (17) and invoking the periodicity of f12, f21, we have for each x1 ∈ T1,
x2 ∈ T2 that

−
ˆ

h12(x1, x2)dx1 = −
ˆ

h12(x1, x2)dx2 = 0.

This in turn implies

k12(x1) = −
ˆ

∂1f12(x1, x2)dx2,

g12(x2) = −
ˆ

∂2f21(x1, x2)dx1.

For i, j ∈ {1,2,3} with i �= j setting

Gij (xi) := −
ˆ

fij (xi, xj )dxj ,

we see that equations (16) and (17) turn into

∂1(f12(x1, x2) − G12(x1)) = h12(x1, x2),

∂2(f21(x1, x2) − G21(x2)) = h12(x1, x2).

Thus, we deduce the existence of a periodic primitive 	12 : T1 ×T2 →R with

∂1	12 = f21 − G21, (18)

∂2	12 = f12 − G12. (19)

We note that the periodicity of 	12 follows from the fundamental theorem of calculus and
the mean zero conditions for ∂1	12 and for ∂2	12. By cyclical symmetry, we also deduce
the existence of 	23 and 	31 such that

∂2	23 = f32 − G32,

∂3	23 = f23 − G23,

∂3	31 = f13 − G13,

∂1	31 = f31 − G31.

(20)

With this in hand, using the representation (6)–(8), we first obtain

e12(x1, x2, x3) = f31(x1, x2) + f32(x2, x3)

= ∂1	31(x1, x3) + G31(x3) + ∂2	23(x2, x3) + G32(x3).
(21)

Then, recalling the periodicity of 	ij and applying Lemma 3 implies that

G31(x3) + G32(x3) = −
ˆ

e12 dx.
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Combining this with (21) then concludes the proof of the first statement of the Proposition
up to cyclical symmetry.

Step 2: Proof of (2). In order to observe (2), for simplicity, we consider the case i = 1,
j = 2 and k = 3, i.e., we seek to prove that

∂2	12 ∈
⎧⎨
⎩−1 − −

ˆ

T3

e23 dx,1 − −
ˆ

T3

e23 dx,0

⎫⎬
⎭ . (22)

We deduce the differential inclusion (22) as a consequence of the definition of 	12 in terms
of the functions f12 and f21. Indeed,

(
∂1	12(x1, x2)

∂2	12(x1, x2)

)
=

(
f21(x1, x2) − −́

T1
f21(x1, x2)dx1

f12(x1, x2) − −́
T2

f12(x1, x2)dx2

)
. (23)

Now, using Lemma 2, we have that f12 ∈ {0,1,−1} and that e23 = f12 +f13. In the following
we choose x̄1 ∈ T1 such that all functions are still measurable as restrictions to {x̄1} × T2,
{x̄1} ×T3 or {x̄1} ×T2 ×T3, which is the case for almost all x̄1 ∈ T1.

If we have f12(x̄1, x2) = 0 for a set of positive measure in x2, then by Lemma 2 we obtain
that f12(x̄1, x2) = 0 for almost all x2 ∈ T2. Thus, by construction (23), also ∂2	12(x̄1, x2) = 0
for almost all x2 ∈ T2.

If however we have |f12(x1, x2)| = 1 for some set of positive measure in x2, then by
Lemma 2 we have |f12(x1, x2)| = 1 for almost all x2 ∈ T2 and f13(x1, x3) = 0 for almost all
x3 ∈ T3. As a consequence,

−
ˆ

T2

f12(x̄1, x2)dx2 = −
ˆ

T2×T3

e23(x̄1, x2, x3)dx2 dx3 = −
ˆ

T3

e23 dx.

In the last equality we used Lemma 3. Due to |f12(x̄1, x2)| = 1 for almost all x2 and due to
the representation (23), we finally obtain the differential inclusion (22).

This concludes the argument for (2).
Step 3: Proof of (3). The implications (i) ⇒ (ii) and (ii) ⇒ (iii) follow directly from

the definitions of the functions ∂j	ij . In order to infer the equivalences, it thus suffices to
prove that (iii) implies (i). For simplicity of notation, we assume that i = 1, j = 2, k = 3.

Recall that for the fixed x1 all restrictions are measurable. Assuming that (iii) holds, we
obtain that there exists a set E ⊂ T2 with positive one-dimensional Lebesgue measure such
that for x2 ∈ E we have ∂2	12(x1, x2) = 0. As a consequence, by construction of ∂2	12 for
x2 ∈ E we obtain

f12(x1, x2) = −
ˆ

T2

f12(x1, x2)dx2 ∈ [−1,1]. (24)

Since by Lemma 2 we also have f12 ∈ {0,±1}, the identity (24) yields that also

−
ˆ

T2

f12(x1, x2)dx2 ∈ {±1,0}.

If −́
T2

f12(x1, x2)dx2 ∈ {±1}, this immediately implies that by discreteness and extremality
of the values ±1 it holds f12(x1,•) ≡ ±1 which proves the claim.
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It hence suffices to consider the case that −́
T2

f12(x1, x2)dx2 = 0. Again by (24) this
however implies that f12(x1,•) = 0 on a set of positive measure. By Lemma 2(2) this in
turn results in f12(x1,•) = 0 for almost all x2 ∈ T2 which also proves the claim (3) in the
last remaining case. �

3 A Refined Analysis of the Functions �jk

In this section, we use the structure results which were deduced from the Saint-Venant condi-
tions and in particular the conditions from Lemma 5(3) in order to obtain finer information
on the potentials 	jk . Here we exploit a final, nonlinear property of the strains from (3),
namely

e12e23 − e13 = 0.

We will use this property (and permutations thereof) on carefully chosen planes in order to
obtain further conditions on the potentials 	ij . Note that the following result is not symmet-
ric in the indices anymore. Indeed, it is in the following lemma that the symmetry is broken
for the first time which then subsequently entails the desired one-dimensional dependence
of the strain components.

Lemma 5 Let e(u) : T3 → R
3×3
sym be a T

3-periodic symmetrized gradient solving the differen-
tial inclusion (2) and let fij with i, j ∈ {1,2,3}, i �= j , denote the functions from Lemma 2.
Let |{xi ∈ Ti : fij (xi,•) ≡ const a.e.

} | > 0 for some {i, j, k} ∈ {1,2,3}. Then at least one
of the following results holds: Almost everywhere we have

	ij ≡ const or 	jk ≡ 	jk(xj ) or 	ik ≡ 	ik(xk).

Proof For simplicity, we choose i = 3 and j = 2. Thus, we seek to prove that at least one of
the following structure results holds 	32 ≡ const or 	21 ≡ 	21(x2) or 	31 ≡ 	31(x1). The
other cases follow by symmetry.

Let A ⊂ T3 be the set such that for x3 ∈ A we have f32(x3,•) ≡ const and such that all
involved functions are defined L2-a.e. on T1 ×T2 × {x3}. Note that by assumption we have

|A| > 0. (25)

In the following, we will fix x3 ∈ A and consider all functions to be restricted to this hyper-
plane by abuse of notation. In particular, on any such plane we have e12 = e12(x1).

Step 1: Reduction by means of a transport equation. The identity e31 −e12e23 = 0 together
with the decomposition in Lemma 4 implies

∂1	12 − e12∂2	12 = −∂3	23 + e12∂3	31 − −
ˆ

T3

e31 dx + e12 −
ˆ

T3

e23 dx.

Defining E12(x1) to satisfy

E′
12(x1) = e12(x1) and E12(0) = 0,

we infer that almost everywhere

∂1 (	12 (x1, x2 − E12(x1))) = −(∂3	23)(x2 − E12(x1)) + h(x1),
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where h is a generic measurable and bounded function of x1 that may change from line to
line. Here the use of the chain rule for the Lipschitz-function 	12 is justified as the transfor-
mation (x1, x2) 	→ (x1, x2 − E12(x1)) is volume-preserving.

Upon integrating in x1 we get

	12 (x1, x2 − E12(x1)) = −
x1ˆ

0

∂3	23(x2 − E12(s))ds + h(x1) + k(x2)

almost everywhere, where k is a measurable function of x2. By taking the difference of the
above equation for x1, x̃1 ∈ T1 we obtain

	12 (x1, x2 − E12(x1)) − 	12 (x̃1, x2 − E12(x̃1)) − h(x1) + h(x̃1)

= −
x1ˆ

x̃1

∂3	23(x2 − E12(s))ds.
(26)

Step 2: Consequences of the transport equation. Let B := {x1 ∈ T1 : f12(x1,•) ≡
const} = {x1 ∈ T1 : ∂2	12(x1,•) ≡ 0}, where the equality of the two sets follows from
Lemma 4(3). We now distinguish two cases:

Step 2.1: Firstly, we assume that |B| = 0. Then, f12(x1,•) �≡ const for almost all x1 ∈ T1,
which by Lemma 2 implies f13 ≡ 0. In turn, we get 	31 ≡ 	31(x1) by Lemma 4.

Step 2.2: Let us consider the case |B| > 0. As for x1, x̃1 ∈ B , the left hand side of identity
(26) is independent of x2, there exists a Lipschitz continuous function K : B → R such that
for almost all (x1, x̃1) ∈ B2 we have

K(x1) − K(x̃1) =
x1ˆ

x̃1

∂3	23(x2 − E12(s))ds. (27)

By Kirszbraun’s theorem, we may consider K to be defined on T1 and thus it is differentiable
almost everywhere by Rademacher’s theorem.

Let x2 ∈ T2. Then the map s 	→ ∂3	23(x2 − E12(s)) is measurable. Therefore, by the
Lebesgue point theorem, we have for almost all x1 ∈ T1 that

lim
ε→0

−
x1+εˆ

x1−ε

∂3	23(x2 − E12(s))ds = ∂3	23(x2 − E12(x1)). (28)

By a reflection argument, for all x1 ∈ B of density one there exists εn > 0 for n ∈ N, depend-
ing on x1, such that εn → 0 and x1 ± εn ∈ B . The identity (27) implies that for x1 satisfying
the above requirements, we have

−
x1+εnˆ

x1−εn

∂3	23(x2 − E12(s))ds = 1

2εn

(K(x1 + εn) − K(x1 − εn)).

Therefore, the convergence (28) gives

∂3	23(x2 − E12(x1)) = K ′(x1) (29)

for all x2 ∈ T2 and almost all x1 ∈ B .
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Consequently, varying x2 in (29), we observe that ∂3	23(•, x3) ≡ const for x3 ∈ A, which
implies ∂3	23(x2, x3) = q(x3) for almost all (x2, x3) ∈ T2 × A. We next claim that the fact
that ∂3	23(x2, x3) = q(x3) for almost all x2 ∈ T2 and x3 ∈ A together with Lemma 4(3)
implies the dichotomy

f23(x2,•) ≡ const for a.e. x2 ∈ T2 or f23(x2,•) �≡ const for a.e. x2 ∈ T2. (30)

Indeed, we distinguish two cases:

(i) If for some set of positive measure in x2 ∈ T2 and for

C(x2) := {x3 ∈ T3 : ∂3	23(x2, x3) = 0}
we have |C(x2)| > 0, then by Lemma 4(3) we obtain that for such a value of x2 ∈ T2 and
almost all x3 ∈ T3 it holds ∂3	23(x2, x3) ≡ 0. By virtue of the fact that ∂3	23(x2, x3) =
q(x3) for (x2, x3) ∈ T2 × A, we then obtain that for all (x2, x3) ∈ T2 × A it holds that
q(x3) = 0 and that ∂3	23(x2, x3) = 0. Hence, the condition |C(x2)| > 0 holds for almost
all x2 ∈ T2. But then Lemma 4(3) implies that f23(x2,•) ≡ const holds for almost all
x2 ∈ T2.

(ii) If for almost all x2 ∈ T2 it holds that

|C(x2)| = |{x3 ∈ T3 : ∂3	23(x2, x3) = 0}| = 0, (31)

by Lemma 4(3) we have for all x2 ∈ T2 that f23(x2,•) �≡ const .

Therefore, from (i), (ii) we conclude (30). If combined with Lemma 2, this in turn yields

f23(x2,•) ≡ const for a.e. x2 ∈ T2 or f21 ≡ 0 a.e. on T1 ×T2. (32)

In the first case of (32) by Lemma 4(3) we have 	23 ≡ 	23(x2). Moreover, by Lemma
4(3), the assumption (25) that there exists x3 ∈ T3 such that f32(x3,•) ≡ const , gives that
there exist x3 ∈ T3 such that ∂2	32(x3,•) ≡ 0. Hence, since 	23 = 	32, we obtain that
	32 ≡ const in this case.

In the second case of (32), Lemma 4(3) implies that 	12 ≡ 	12(x2). �

As a consequence of the previous structure result, we show that we can dispose of one of
the functions 	ij in the decomposition of the strain:

Corollary 1 Let e(u) : T3 →R
3×3
sym be a T

3-periodic symmetrized gradient solving the differ-
ential inclusion (2) and let 	i,i+1 with i ∈ {1,2,3} denote the functions from Lemma 4. Then
there exists an index i ∈ {1,2,3} such that 	i,i+1 ≡ const .

Proof By Lemma 2(2) we have |{x1 : f12(x1,•) ≡ const}| > 0 or |{x1 : f13(x1,•) ≡
const}| > 0. We split the argument into two cases.

Case 1: We assume that either

|{x1 ∈ T1 : f12(x1,•) ≡ const}| = |T1|
or

|{x1 ∈ T1 : f13(x1,•) ≡ const}| = |T1|.
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Exchanging the indices 2 and 3 if necessary, it is sufficient to consider

|{x1 ∈ T1 : f12(x1,•) ≡ const}| = |T1|,
which implies ∂2	12 ≡ 0. Lemma 5 implies that at least one of the following statements
holds: 	12 ≡ const or 	23 ≡ 	23(x2) or 	31 ≡ 	31(x3).

In the first case there is nothing left to prove. In the second case, using our assumption,
the decomposition of Lemma 4 reads

e12 = ∂2	23(x2) + ∂1	31(x3, x1) + −
ˆ

e12 dx,

e23 = ∂3	31(x3, x1) + −
ˆ

e23 dx,

e31 = ∂1	12(x1) + −
ˆ

e31 dx.

(33)

Since the only function in the decomposition (33) which depends on x2 is given by ∂2	23(x2)

(which in turn only appears in the expression for e12), the identity e12 − e23e31 ≡ 0 trivially
implies ∂2	23(•) ≡ const . By periodicity and the fundamental theorem of calculus, we get
that the constant has to be zero and thus we obtain 	23 ≡ const .

In the third case, we have

e12 = ∂2	23(x2, x3) + −
ˆ

e12 dx,

e23 = ∂3	31(x3) + −
ˆ

e23 dx,

e31 = ∂3	23(x2, x3) + ∂1	12(x1) + −
ˆ

e31 dx.

Similarly as in the previous case we have ∂1	12 ≡ const and thus 	12 = const .
Case 2: We assume that

|{x1 ∈ T1 : f12(x1,•) ≡ const}| > 0

and

|{x1 ∈ T1 : f13(x1,•) ≡ const}| > 0.

Again, we only have to deal with the cases in which Lemma 5 does not immediately give
the desired statement. In that case we have

	23 ≡ 	23(x2) or 	31 ≡ 	31(x3)

and

	23 ≡ 	23(x3) or 	12 ≡ 	12(x2).

However, the statement 	31 ≡ 	31(x3) implies

|{x3 ∈ T3 : f31(x3,•) ≡ const}| = |T3|
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and thus (up to symmetry) this case has already been dealt with in case 1 from above.
The case 	12 ≡ 	12(x2) can be handled similarly. Therefore we have 	23 ≡ 	23(x2) and
	23 ≡ 	23(x3), which implies that 	23 ≡ const . �

Finally, using the nonlinear relation satisfied by the strain components in combination
with the previously derived reductions of the potentials, we obtain that the strain only de-
pends on two out of three possible variables:

Proposition 2 Let e(u) : T3 → R
3×3
sym be a T

3-periodic symmetrized gradient solving the dif-
ferential inclusion (2) and let 	i,i+1 with i ∈ {1,2,3} denote the functions from Lemma 4.
Then there exists an index i ∈ {1,2,3} such that ∂ie ≡ 0. Moreover, assuming without loss
of generality that i = 2, we obtain one of the decompositions

e12 = ∂1	31(x3, x1) + −
ˆ

e12 dx,

e23 = ∂3	31(x3, x1) + −
ˆ

e23 dx,

e31 = ∂3	23(x3) + −
ˆ

e31 dx

(34)

or

e12 = ∂1	31(x3, x1) + −
ˆ

e12 dx,

e23 = ∂3	31(x3, x1) + −
ˆ

e23 dx,

e31 = ∂1	12(x1) + −
ˆ

e31 dx.

(35)

Proof By symmetry and Corollary 1, we may assume 	12 ≡ const . Then the decomposition
reads

e12 = ∂2	23 + ∂1	31 + −
ˆ

e12 dx,

e23 = ∂3	31 + −
ˆ

e23 dx,

e31 = ∂3	23 + −
ˆ

e31 dx.

Due to e12 ∈ {−1,1} being a sum of two one-dimensional functions and by periodicity, for
x3 ∈ T3 fixed we can by Lemma 4 additionally assume

|{x3 ∈ T3 : ∂2	23(•, x3) ≡ 0}| > 0 (36)

after exchanging the indices 1 and 2 if necessary.
The algebraic relation e31 − e23e12 = 0 implies

∂3	23 − e23∂2	23 = e23

(
∂1	31 + −

ˆ
e12 dx

)
− −
ˆ

e31 dx.
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Using that the right hand side of the above expression is independent of x2, defining the
discrete differential ∂h

2 f (x2) := f (x2 + h) − f (x2) for h > 0 and applying it to the above
equation, we get

∂3∂
h
2 	23 − e23∂2∂

h
2 	23 = 0.

Defining

∂3E23(x1, x3) = e23(x1, x3),

E23(x1,0) = 0,

we may invoke the chain rule for the Lipschitz function ∂h
2 	23 to obtain

∂3

(
∂h

2 	23 (x2 − E23(x1, x3), x3)
) = 0

for almost all (x1, x2, x3) ∈ T
3.

Recalling (36), choosing x̄3 ∈ T3 such that

∂2	23(•, x̄3) ≡ 0 and x2 	→ 	23(x2, x̄3) is differentiable a.e., (37)

and integrating in x3 gives

∂h
2 	23 (x2 − E23(x1, x3), x3) = ∂h

2 	23 (x2 − E23(x1, x̄3), x̄3)

almost everywhere. Dividing by h �= 0, taking the limit h → 0 and invoking the choice (37)
we see that

∂2	23 (x2 − E23(x1, x3), x3) = ∂2	23 (x2 − E23(x1, x̄3), x̄3) = 0

for almost all (x1, x2, x3) ∈ T
3.

Consequently, we have ∂2	23 ≡ 0 and the decomposition reduces to

e12 = ∂1	31(x3, x1) + −
ˆ

e12 dx,

e23 = ∂3	31(x3, x1) + −
ˆ

e23 dx,

e31 = ∂3	23(x3) + −
ˆ

e31 dx,

which is the first case (34) of the desired statement.
If we had taken the other choice at the inequality (36), by symmetry, we would have

deduced

e12 = ∂2	23(x2, x3) + −
ˆ

e12 dx,

e23 = ∂3	13(x3) + −
ˆ

e23 dx,

e31 = ∂3	23(x3, x2) + −
ˆ

e31 dx,

so that ∂1e ≡ 0. A cyclical permutation shifting the index 1 to 2 allows us to deduce the
second representation (35). �
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4 Proof of Theorem 1

With the result of Proposition 2 the argument for Theorem 1 follows as in [8, Sect. 4.2.1].
We repeat the argument for self-containedness.

Proof of Theorem 1 Since the claims of Theorem 1(i), (ii) already follow from Proposition 2,
it suffices to prove the claim of Theorem 1(iii). Without loss of generality we may as-
sume that as in Proposition 2 we have ∂ie = 0 for i = 2 as well as the decomposition (34).
Moreover, invoking Theorem 1(ii), without loss of generality, we may further assume that
e31 = e31(x3). Using the notation from [8], we define

v(x1, x3) := 	31(x3, x1) +
(

−
ˆ

e12 dx

)
x1 +

(
−
ˆ

e23 dx

)
x3.

Further we set �(s, t) := (t − E31(s), s), where E′
31(s) = e31(s) and E31(0) = 0. We note

that the map �(s, t) is a bilipschitz mapping on R
2. Together with the definition of v we

thus infer

d

ds
v(�(s, t)) = ∂3v|�(s,t) − e31(s)∂1v|�(s,t) = e23|�(s,t) − e31|�(s,t)e12|�(s,t) = 0.

As a consequence, v(�(s, t)) = g̃(t) for some function g̃ of only one variable. Hence,
(

e12 ◦ �(s, t)

e23 ◦ �(s, t)

)
=

(
∂1v ◦ �(s, t)

∂3v ◦ �(s, t)

)
=

(
1 0

e31(s) 1

)(
∂t (v ◦ �)(s, t)

∂s(v ◦ �)(s, t)

)

=
(

1 0
e31(s) 1

)(
∂t (v ◦ �)(s, t)

0

)
=

(
g̃′(t)

e31(s)g̃
′(t)

)
.

Defining f3(x3) = e31(x3) and g(t) = g̃′(t), then concludes the proof of the final structure
result. �
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