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Abstract
A Machine and Deep Learning (MLDL) methodology is developed and applied to give a high fidelity, fast surrogate for 2D
resistive MagnetoHydroDynamic (MHD) simulations of Magnetic Liner Inertial Fusion (MagLIF) implosions. The resistive
MHD code GORGON is used to generate an ensemble of implosions with different liner aspect ratios, initial gas preheat
temperatures (that is, different adiabats), and different liner perturbations. The liner density and magnetic field as functions
of x, y, and z were generated. The Mallat Scattering Transformation (MST) is taken of the logarithm of both fields and a
Principal Components Analysis (PCA) is done on the logarithm of the MST of both fields. The fields are projected onto the
PCA vectors and a small number of these PCA vector components are kept. Singular Value Decompositions of the cross
correlation of the input parameters to the output logarithm of the MST of the fields, and of the cross correlation of the SVD
vector components to the PCA vector components are done. This allows the identification of the PCA vectors vis-a-vis the
input parameters. Finally, a Multi Layer Perceptron (MLP) neural network with ReLU activation and a simple three layer
encoder/decoder architecture is trained on this dataset to predict the PCA vector components of the fields as a function of
time. Details of the implosion, stagnation, and the disassembly are well captured. Examination of the PCA vectors and a
permutation importance analysis of the MLP show definitive evidence of an inverse turbulent cascade into a dipole emergent
behavior. The orientation of the dipole is set by the initial liner perturbation. The analysis is repeated with a version of the
MST which includes phase, called Wavelet Phase Harmonics (WPH). While WPH do not give the physical insight of the
MST, they can and are inverted to give field configurations as a function of time, including field-to-field correlations.
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1 Introduction

Themajor challenge for physics-basedmachine learning is to
replace expensive finite element and finite volume computer
simulations with fast Machine and Deep Learning (MLDL)
based surrogates that reproduce all the structure and emer-
gent behaviors of the system. These surrogates can then be
used for experimental design and analysis. Fundamentally,
they can be used for hypothesis testing, theoretical model
verification, and model extrapolation and scaling. The chal-
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lenge has been to capture the rich texture of physical systems,
then to reproduce them, not only to predict the texture of one
field, but to predict the rich correlations between the fields.
Attempts using both Gaussian process simulation [1] and
convolutional network techniques combined with reduced
order models [2,3] have had modest success. Inspired by the
success of theMallat Scattering Transformation (MST) [4,5]
and the Wavelet Phase Harmonics (WPH) enhancement of
the MST [6], which includes phase, in classifying and repro-
ducing textures of physical systems [7], this paper presents
a simple MLDL methodology based on the MST and WPH
to give a high fidelity, fast surrogate of 2D resistive Magne-
toHydroDynamics (MHD).

A major goal of this development is not only to reproduce
the system evolution, but to do it in a way that can lead to
physical insight. Much of the work to date in physics-based
MLDLhas approached the challengeusingMLDLas ablack-
box of ingredients to be combined, with success judged by

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-023-02302-1&domain=pdf


Computational Mechanics

final performance metrics. Attributes produced in the anal-
ysis are abstract vectors with little or no physical meaning.
Displays of those vectors are rarely given. The methodology
presented in this paper is inspired by fundamental under-
standing of the physics; has physical interpretations of the
attributes, vectors, and MLDL structures; and has displays
of the attributes, vectors, and MLDL performance that leads
to important physical insights of the nonlinear and quantum
dynamics of the system.

The system and geometry that is chosen to prototype this
MLDL methodology is Magnetized Liner Inertial Fusion
(MagLIF). MagLIF is a magneto-inertial fusion concept cur-
rently being explored at Sandia’s Z Pulsed Power Facility
[8–11]. MagLIF produces thermonuclear fusion conditions
by drivingmega-amps of current through a low-Z conducting
liner. The subsequent implosion of the liner containing a pre-
heated and pre-magnetized fuel of deuterium or deuterium-
tritium compresses and heats the system, creating a plasma
with fusion relevant conditions. Axial symmetry is assumed
and the dynamics is simulated in theCartesian, perpendicular
plane.

It is well-known that the large accelerations of the liner,
as it drives the implosion of the gas, cause the liner to go
linearly unstable to the Magnetic Rayleigh Taylor (MRT)
instability [12]. During the implosion, it has sufficient time
to evolve well into the nonlinear regime. Increasing the AR
will increase the linear growth rate by increasing the acceler-
ation of the liner. Reducing the preheat temperature T0 will
put the implosion on a higher adiabat, allowing the implo-
sion to reach higher compression ratios and a smaller radius
at stagnation. This gives the instability more time to evolve,
and puts a larger demand on the uniformity of the implod-
ing surface. For laser-driven indirect ICF capsules, without
a large applied magnetic field, the Rayleigh-Taylor insta-
bility exhibits a normal turbulent cascade that destroys the
implosion well before it reaches the required compression,
if allowed to grow. For this reason, the implosions need to
have a larger AR, a larger T0 (be put on a lower adiabat),
and to have very small perturbations to the capsule surface.
Unfortunately, this means that it has been very difficult to
reach the needed conditions at stagnation for thermonuclear
burn. There is indication that this is not the case for MagLIF.
A double helical structure is observed by [9] with helical
threads 30 μm in diameter, separated by 100 μm reaching
very high compression ratios. Also, evidence of an inverse
turbulent cascade in the liner structure has been seen by [13]
on ultra-thin foils driven at less than 1MA. This is the reason
that AR and T0, along with how the MRT is seeded, are the
parameters that are varied. The scientific goal of this study
is to characterize and understand the nonlinear evolution of
the MRT.

The finite volume, parallel, resistive MHD code GORGON
[14] is used to simulate the 2D MagLIF geometry. A single

temperature, no radiation transport, and no thermonuclear
burn is assumed. The focus of the MLDL is on reproducing
and analyzing the emergent behavior of the liner dynam-
ics. An ensemble of 539 simulations is done, with samples at
different LinerAspect Ratios (AR) and different preheat tem-
peratures (T0), so that the compression is done on different
adiabats. Also, the ensemble has random liner perturbations
in both amplitude and phase. The evolution was sampled
every 2.5 ns over 200 ns, generating 87,318 images of liner
density and magnetic field.

Based on this ensemble a MLDL workflow is developed
to form a surrogate and to gain insight into the nonlinear
physics. A Principle Components Analysis (PCA) is done
on the logarithm of the MST of the logarithm of the liner
density and the magnetic field. That is, the logarithm of the
liner density is taken, and the MST is calculated. The loga-
rithm of the MST is then calculated, and the resulting values
are subjected to a PCA. It is found that most of the variation
is in the first seven components. Singular Value Decomposi-
tions (SVDs) are done of the cross-correlations of the input
parameters (AR, T0, and liner perturbations) to the loga-
rithm of the MST, and of the SVD vector components to
the PCA vector components. This allows the PCA vectors to
be identified with the input parameters. A Multi Layer Per-
ceptron Neural Network (MLP/NN) [15] with a three-layer
encoder/decoder structure is trained to predict the seven PCA
vector components as a function of time, given the initial con-
ditions. Excellent performance is found, as shown in Sect. 5.
A permutation importance analysis is done on the inputs. It is
determined that the quadrupole moment quickly decays and
the energy inverse cascades into the dipole moment, where
it remains through stagnation and the subsequent expansion.
The evolution shows little to no dependence on the initial
tripole or quadrupole moments but very strong dependence
on time, AR, and the initial phase of the dipole moment, and
modest dependence on the initial temperature and the size of
the initial perturbation.

The analysis is repeated using the WPH in place of the
MST.While theWPHcannot be interpreted physically, as it is
currently implemented, it canbe inverteddue to the additional
phase information.When this is done, the temporal evolution
of the two fields is well-predicted, including the field-to-field
correlations.

TheMST and theWPHwill be described in Sect. 2, along
with the display and interpretation of theMST.How the train-
ing and testing datasetwas constructed and generated appears
in Sect. 3, and a description of the evolution is given. The
details of the MLDL architecture is given in Sect. 4, fol-
lowed by the results from applying the MLDL architecture
in Sect. 5. A discussion of the results, conclusions that can
be drawn, upcoming work, and possible improvements to the
MLDL architecture is found in Sect. 6.
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2 Mallat Scattering Transformation (MST)
andWavelet Phase Harmonics (WPH)

The Mallat Scattering Transformation (MST) can be viewed
as a Convolutional Neural Network (CNN) [3,16,17] with
predetermined weights. The filters are cleverly designed so
that by a convolve-binate cycle, the CNN can span an expo-
nentially large range in scale with a kernel of constant size.
In other words, a very fast algorithm, analogous to a Fast
Fourier Transform (FFT), can be constructed. For instance,
onmodernGPUs, theMST takes about 10ms on a 512× 512
image. A very useful way of defining the m-th order MST of
a field f (x) is

Sm[ f (x)](p) ≡ φpmin�

(
m∏

k=1

modψpk�

)
f (x), (1)

where φ(x) is the Father Wavelet, ψ(x) is the Mother
Wavelet, mod is the complex modulus,

φp = p2 φ(px), (2)

ψp = p2 ψ(px), (3)

ψp� f ≡
∫

ψp(x
′) f (x ′ − x) dx ′, (4)

pk ∈ {2− j }, (5)

j ∈ {1, 2, . . . , J }, (6)

pk+1 < pk, (7)

and

p =
∞∑
k=1

pk . (8)

Note that this is a path integral in pk and a prescription needs
to be chosen of how to go around the poles, see [18] for addi-
tional details. Equation (7) is the common choice of normal
ordering. Also note that Eq. (4) is a Wigner-Weyl-like map-
ping from a cotangent bundle T ∗M with coordinates (π, f )
and symplectic metric dπ ∧ d f (where f is the field and
π is the canonically conjugate momentum) to the space of
analytic functions on C with coordinate z.

This transform has been shown by [4] to be Lipschitz
continuous to diffeomorphic deformation (unlike the Fourier
Transformation), and by construction (through the final con-
volution with φpmin ) to be translationally invariant. That is,
it is stationary. The latter we view as an unfortunate step,
because most physical processes are not stationary. This is
not necessary and will be discussed at length in Sec. 6. The
MST is rarely normalized in implementations despite the
normalization being presented in [4] section on Dirac nor-
malization of the MST.

The form of the MST in Eq. (1) can be identified as a
CNN with a specified (fitting to data not necessary) and ele-
gant structure. There is a multi layer (in m, the order of the
MST) application of a bank of convolutional kernels (that is,
ψp), a nonlinear activation (that is, mod), and a final pool-
ing operation (that is, φpmin). We will then do a dimensional
reduction using a PCA.

Reference [5] devised a way of visualizing the 2D MST
that is shown inFig. 1. The coefficients of theMSTare plotted
on radial plots, one for each orderm, with the radial position
being one of | p̄m |, ln | p̄m |, | 1/ p̄m |, or ln(1/ | p̄m |),
where

p̄m ≡
m∑

k=1

pk . (9)

The “posting” ormanifestation of the radial plot for the angu-
lar position ismuchmore convoluted. Form = 1, it is simple:
the angle is arg( p̄1). Because the basis used for the 2D trans-
form is not orthogonal, the angle for m = 2 is calculated
as arg( p̄1) + arg(p2)/L , where L is the number of angular
sectors calculated. This has the undesirable property that as
the angular resolution is increased, the display is not simply
a higher resolution version.

One deficiency of the MST is that it discards the phase
when it takes the modulus. This does not matter when it is
used for image classification or regression, but it is a seri-
ous problem when the MST, predicted by the regression,
needs to be inverted to get the predicted image. It is analo-
gous to inverting a Fourier transform with only the modulus.
To address this situation, Wavelet Phase Harmonics (WPH)
were developed by [6] and [7]. This theory has conceptually
replaced the modulus with a phase harmonic expansion

mod(z) −→
∞∑
k=0

mod(z) ei k arg (z). (10)

Unfortunately, there is no obvious way to plot the trans-
formation, as it is not orthogonal and is significantly
over-determined. Because of this, a fast inverse cannot be
constructed and a conventional gradient descent optimiza-
tion must be done, where the objective is the L2 norm of
the difference in the WPHs. It is extremely slow. Where
the forward WPH transform takes less than a second, the
inverse transform may take more than an hour. Even with
these deficiencies, this transformation has been used with
great success, most notably to analyze cosmological simula-
tions [19,20].
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Fig. 1 Coefficients produced by
applying MST to 2D images in
this work will be displayed on
radial plots as shown. Bins are
created according to scale
(radial positioning, | p̄m | as
defined in Eq. (9), and rotations
(arg( p̄1), arg( p̄1) + arg(p2)/L)

for first and second order, with
magnitude (color scale, not
shown) representing the size of
the coefficient at that scale and
rotation

3 Generation of the dataset

An ensemble of 2D resistive MHD simulations were done
using the finite volume GORGON code. Axial symmetry was
assumed and the simulation was done in the 2D (x, y)-plane
as shown in Fig. 2. A geometry relevant to MagLIF was used
with a cylindrical beryllium liner with inner and outer radii

Router ≡
(
1 + w

2 R0

)
R0,

Rinner ≡
(
1 − w

2 R0

)
R0,

(11)

where R0 is the mean radius and w is the liner thickness. We
define the liner aspect ratio as AR = R0/w. Note that the
larger the AR, the larger the liner acceleration, and, there-
fore, the larger the linear growth rate of the MRT. The liner
inner and outer surface is perturbed with dipole (m = 2) to
quadrupole (m = 4) azimuthal perturbations to seed theMRT
of form

δo =
4∑

m=2

δo0m cos(2π m ϕ + ϕom),

δi =
4∑

m=2

δi0m cos(2π m ϕ + ϕim).

(12)

Inside the liner is a Deuterium (D2) gas with initial density
n0, preheated to a temperature T0. Note that a larger value
of T0 will put the implosion on a lower adiabat, causing the
implosion to reach lesser compression ratios and a larger
radius at stagnation. This gives the MRT less time to grow.
A uniform axial magnetic field Bz0 is initially established,
then a large axial current with a sinusoidal profile is driven

through the liner, with a peak current of Iz0 at 100 ns and a
total duration of 200 ns.

An ensemble of 539 simulations were done with the liner
density nl(x, y; t) and magnetic field strength B(x, y; t)
sampled every 2.5 ns with a 10 μm grid spacing in x and y.
This took over 200 k core×hrs on a high performance cluster
at LLNL, and generated 87, 318 256×256 images. To reduce
the number of parameters and simplify the analysis, the liner
perturbations were limited to w � = δi0m = −δo0m and
ϕim = ϕom for m = 2, 3, 4. The parameters R0 = 2.4mm,
Bz0 = 10 T, n0 = 1mg/cc, and Iz0 = 20MA were held
constant. That left 6 parameters to be sampled, including the
initial conditions and the stochastic parameters. The two ini-
tial conditions included AR = [3, 9] and log10 T0 = [1, 2.8]
(that is, T0 = [10 eV, 630 eV]). The four stochastic parame-
ters included log10 � = [−2,−1] (that is, � = [1%, 10%])
and ϕim = [0, 2π ] for each of m = 2, 3, 4. The smallest �

corresponds to 1% of the thinnest liner, which is about 5μm,
about half a grid cell. Latin Hypercube Sampling (LHS)
was used to generate 27 samples of (AR, T0,�), with the
ϕim being chosen from uniform distributions. Another 512
parameter vectors were randomly sampled from their uni-
form distributions.

An example of one of the evolutions of the liner density nl
and the gas density ng is shown in Fig. 3. This simulationwas
done with an AR = 3, T0 = 631 eV, and� = 1%. Note how
gas stagnates into a dipole pattern in a sausage-like mode,
then that pattern is imprinted on the liner as it expands post
stagnation.

4 MLDL architecture

The following MLDL workflow was constructed and used to
analyze the data. The logic behind the construction will be
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Fig. 2 Geometry of the
simulations. (Left) Beryllium
cylinder in which fuel is held.
(Right, top) Illustration of
aspect ratio quantities. (Right,
bottom) Demonstration of
azimuthal perturbations

Fig. 3 Evolution of the liner density nl (x, y; t) and the gas density ng(x, y; t) as simulated by GORGON. The picture on the right is a zoom in on
the stagnation of the gas. The animation of this figure can be found at this link to a https://youtu.be/GmIr3O5GLR0

discussed in Sect. 6. The pipeline is shown in Fig. 4. First, the
logarithm of each pixel in the images was calculated, and the
MST andWPH were subsequently found for the logarithmic
image. It took 16GPU×hrs (onNvidiaGTX3090) to take the
MSTs of the images and 27GPU×hrs to take theWPH of the
images. Values of J = 8 and L = 16 were used to take the
MST, and values of J = L = 8, � j = 5, �k = 0, �l = 8,
and �n = 2 to take the WPH. Though these key specifica-
tions are not discussed in this paper, they are included here for
completeness and reproducibility; details can be found in [4]
and [6] forMST andWPH, respectively. The logarithm (base
10) was then taken of the MST and the mean was subtracted
on a coefficient by coefficient basis. Note that subtracting the
mean from the log10 is equivalent to applying amultiplicative

scaling to the original transform. It is known that this imple-
mentation of theMST is not properly Dirac-normalized. This
leads to an imprinted pattern that distracts from the natural
variation in the image. Subtracting the mean removes this
imprinted pattern. It should be noted that this does not affect
the subsequent PCA. The analysis of theMST is followed by
a PCA. The data is projected onto the top seven PCA vectors
for subsequent analysis. On the other side of the pipeline, the
input vector of the three control variables (AR, T0, t) and the
four stochastic variables (�, ϕi2, ϕi3.ϕi4) are Z-normalized.

In order to identify the PCA vectors, an SVD is done on
the cross-correlation of the inputs to the output, before the
projection onto the PCA vectors. This allows for a labeling
of the SVD vectors according to the inputs. A second SVD
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Fig. 4 The MLDL workflow

is taken of the cross-correlation between the projection onto
the PCA vectors and the projection onto the SVD vectors.
This allows the labeled SVD vectors to be associated with
the correct PCA vector, thereby labeling the PCA vectors
with the input.

The last step is to train a MLP neural network with ReLU
activation to predict the seven PCA vector components given
the inputs. The structure of the MLP/NN was optimized,
as well as the regularization parameter, via a grid search.
There was a bias in this choice toward more regularization
(without significantly compromising performance) to pre-
vent over-training. The optimal structure was one with three
hidden layers (with 25-15-25nodes)with an encoder/decoder
structure. A permutation importance analysis was also done
to determine the importance of the input parameters in the
estimation. A five-fold cross validation was used in all anal-
yses. As will be shown in the next section, the MLP/NN
had very good performance, and a very interpretable result.
A shallow Support Vector Regression (SVR) with a radial
basis was attempted. The results were very low frequency
and were unable to capture the details of the stagnation. A
higher frequency result could be obtained by decreasing the
regularization, but the result did not cross-validate.

For this application, the primary downside to the MST
is that it throws out the phase of the transformation. While
this does not matter for classification or some of the phys-
ical interpretation, it prevents the transform from having a
useful inversion. It is akin to throwing out the phase of a
Fourier Transform, then inverting with a random phase. For
this reasonwe repeated our analysis using theWPH (theMST
with phase). While this transformation does have reasonable
inversions, it has no physically interpretable display. It is a
black-box vector. Care also needed to be taken with the treat-
ment of the complex-valued transform. The complex analytic
ln(z) function was used, yielding ln | z | + i arg(z), and a
circular correlation [21] was used in the PCA with respect to
the cyclic Im(ln(z)). Finally, due to the unreasonable trans-
lational invariance built into the WPH, there is an arbitrary
x and y translation that must be removed. A fiducial at the

vertical and horizontal edges of the images was added to aid
in this task.

The PCA only took 1 core×sec, and the MLP/NN took
20 core×sec to train. The resulting forward model surro-
gate takes 0.1 core×sec to evaluate, compared to the 360
core×hrs required for the GORGON simulation – a factor of
107 acceleration.

The implementation of the MST used was the Kymatio
package [22], available onhttps://github.com/kymatio/kymatio.
The version of the WPH used is based on the work of [7],
also available on https://github.com/bregaldo/pywph as the
pyWPH package.

5 Results

An overview of the results are shown in Fig. 5. Images cor-
responding to the MLDL pipeline are shown beneath the
schematic of Fig. 4. On the right-hand side is the log10 image
of the liner density. To the left of it are the first and second
orderMST of that image. Continuing to the left of that are the
seven principal vectors of the MST, which explain 94% of
the variance. The identification of the PCA vectors with the
inputs along with the five-fold cross validated score for each
PCA vector, as predicted by the MLP/NN, are included. The
total score was 81%. A typical example of the PCA vector
evolution writh respect to time is shown, as predicted by the
MLP/NN. Finally, the permutation feature importance result
is shown on the left of the image.More details of these results
follow, and they will be discussed in detail in the following
section.

The analysis starts by taking the MST of all the images.
Shown in Fig. 6 is the MST of a simulation at three different
times: at time zero, at 12.5 ns before bang time (maximum
compression), and at 25 ns after bang time. There is also a
https://youtu.be/b-p09GZigNA to an animation showing all
of the realizations. It is followed by Fig. 7, which shows
the MST at time zero of three simulations with the highest
adiabat of T0 = 631 eV and the smallest liner perturbation of
� = 1%, for three different values of AR = 3, 6, 9. There is
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Fig. 5 The complete MLDL workflow with key results. Underneath a
diagram of the MLDL pipeline, going right to left, are: (1) grey scale
image of nl , (2) first and second order MST of the grey scale image, (3)

the MST PCA vectors, (4) some predictions of the first PC vector com-
ponent with respect to time, and (5) the permutation feature importance
analysis

a https://youtu.be/b-p09GZigNA in the figure caption to an
animation of the full time evolution of each case.

The mean value for the MST (shown in Fig. 8) is then
subtracted from the values, and a PCA is done, as well as
an SVD analysis of the cross correlation of the inputs to
the outputs. The PCA vectors are shown in Fig. 9, and the
SVD vectors are shown in Fig. 10. The eigenvalues for both
decompositions are shown in Fig. 11. Note that the PCA is
capturingmoreof thevariation in fewer components. Thefirst
seven PCA vectors have captured 94% of the total variation.
The SVD has a strong correlation of each component with
one input parameter. When the PCA projection of the output
is cross-correlated with the SVD projection of the output, an
interpretation key is generated for the PCA vectors by the
display of the singular vectors, as shown in Fig. 12.

AMLP/NN is then trained to predict the PCA vector com-
ponents of the fields nl(x, y; t) and B(x, y; t), given the six
initial condition parameters. The performance is shown in
Fig. 13. The results of a grid search for network structure and
the regularization parameter α are shown in the upper left-
hand corner. Note that the value of α is increased from the

best parameter to one with almost the same performance but
more regularization in order to prevent overfitting. The over-
all performance is 81% and the performance on individual
PCAvector components range from a high of 97% to a low of
57%. The performance is quantified by the linear correlation
of the predicted to the actual values. All of the correlations
look very linear with no pathologies. The performance of the
MLP/NN on predicting the PCA vector components is quite
remarkable and is shown in Fig. 14. Shown are the predicted
versus actual for six simulations that span AR = 3, 6, 9 and
T0 = 10 eV, 631 eV. Note that the MLP/NN decided to use
few points where the function was linear and captured the
stagnation behavior well where the function is singular. The
MLP/NN found the stagnation points and put an interpola-
tion point at the cusp. The permutation feature importance
shows interesting results that will be discussed in the next
section. Do note that AR, t , and ϕi2 are the most important,
and ϕi3 and ϕi4 are of little importance.

A Support Vector Regression (SVR) with a radial basis
was attempted. The results were disappointing. The overall
performance was 46%, with a high of 90% and a low of 10%.
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Fig. 6 Ensemble of realizations at three select times. Shown are the
log10 nl (x, y; t), then the first and second order MST of the liner den-
sity. From top to bottom: (1) t = 0, (2) t = tbang−12.5 ns, and (3)

t = tbang+25 ns. The radial axis is linear in scale. The animation of
this figure can be found at this link to a https://youtu.be/b-p09GZigNA

The predictions of the PCA vector components are shown in
Fig. 15. Note how (overly) smooth the regressions are, and
how the stagnation (singularity) is missed completely. When
the regularization was reduced to reduce the smoothing, the
performancewent down significantly, evidenced by the result
not cross validating.

Finally, the mapping back to the fields was done using the
WPH. The analysis previously described was repeated using

the WPH in place of the MST. The evolution was predicted
by the MLP/NN, and the results were inverted to give the
evolution at four key times for both the liner density and the
magnetic field demonstrating the correlation. The results are
shown in Fig. 16.
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Fig. 7 Three time evolutions of the MST of liner density. Shown for T0 = 0 and � = 1%. From top to bottom: (1) AR = 3, (2) AR = 6, and (3)
AR = 9. The radial axis is linear in scale. The animation of this figure can be found at this link to a https://youtu.be/b-p09GZigNA

6 Conclusions and discussion

The results of the previous section give insight into the emer-
gent behavior of this nonlinear system. This behavior is
exposed in the structure of two critical PCA vectors (ϕi4, the
quadrupole moment withm = 4, and ϕi2, the dipole moment
with m = 2). These PCA vectors are featured in Fig. 17,
where the scale (radial) axis is plotted on a logarithmic scale,
and exposed in the permutation feature importance, as illus-

trated in Fig. 18. Note that the ϕi4 PCA vector starts at the
largest radii with a very clear quadrupole pattern in both the
first order and the second order MST. Due to the way that
the second order MST is displayed, there will be two beats
in every one of the 32 sectors. This pattern disappears at the
smaller radii as the plasma nears stagnation. The opposite is
true of the ϕi2 PCA vector. The dipole pattern persists to the
smallest radii. Note that there is only one beat per sector for
a dipole pattern. There is even a strong overall dipole pat-
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Fig. 8 The mean MST of liner
density. Shown is the first order
MST on the left and the second
order MST on the right. The
radial axis is linear in scale

Fig. 9 PCA vectors. Shown are the PCA vectors of liner density in MST space. The radial axis is linear in scale. The color bar for all MST displays
is in the lower right hand corner. The identification of each PCA vector with an input is displayed to the left of the PCA vector. See Fig. 12 for this
interpretation key
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Fig. 10 SVD vectors. Shown are the SVD vectors in both input space and liner density MST space. Note the clear identification of each SVD
component with one input. The radial axis is linear in scale

Fig. 11 The eigenvalues of the PCA vectors compared to those of the
SVD. Note that the PCA is more efficient at capturing the variance in
fewer components than the SVD

tern on the second order MST. The pattern seems to appear
stronger as the radius gets smaller. You can see this by focus-
ing your attention on the outer three rings of the first order
MST. Note that as the ϕi4 PCA vector loses its structure, the
structure of the ϕi2 PCA vector increases. This is happening
because there is an inverse cascade from the ϕi4 PCA vector
to the ϕi2 PCA vector, forming a self-organized dipole state.
This state persists as the plasma expands, post stagnation, to
a larger radius. This is further highlighted by the permuta-
tion feature importance, shown in Fig. 18. It should be no

surprise that time is the most important feature, followed by
AR. The liner aspect ratio changes the acceleration, which
effects all facets of the evolution. An interesting result is that
the phase of the m = 2 mode is the next most important
feature. On reflection, this is not surprising. The initial phase
of the m = 2 mode, although a stochastic variable, is very
quickly reinforced by the inverse cascade into this mode, and
sets the phase of the resulting dipole mode. The size of the
perturbation does not matter as much, as demonstrated by �

being less important than ϕi2, and ϕi3 and ϕi4 having little
to no importance. The preheat temperature T0 only effects
the evolution near stagnation, so its modest importance is
expected.

Let us now focus our attention on the detail of the evolu-
tion being predicted by the MLP/NN by looking closely at
the prediction of the first PCA vector component in Fig. 19.
Remember that a MLP/NN with ReLU activation layers is a
piecewise linear universal function approximator. There are
few tie points where the function is linear, but the number
increases near the singularities in the mapping, where the
slope is changing rapidly. A couple of tie points are always
put near stagnation. The liner with the largest AR has the
largest acceleration and should converge first. Indeed, the
two simulations with AR = 9, shown in red and yellow, do
converge first. This time should be roughly independent of
the preheat temperature T0 (which it is), and the stagnation
with the smaller T0 = 10 eV should have more compression
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Fig. 12 The singular vectors of the PCA-to-SVD cross variance analysis. This analysis allows the identification of the PCA vectors with a unique
input

than the one with T0 = 631 eV (which it does). This fea-
ture is also present with the AR = 6 stagnations (green and
magenta), and the AR = 3 stagnations (blue and cyan). The
MLP/NN captures this feature well.

There are several astonishing things that have happened
in this MLDLworkflow, that lead to the following questions.
Why did the dynamics reduce down to the evolution of a few
PCA vector components? Another way of asking this is: why
are the dynamics constrained to a very low dimensional lin-
ear subspace of this complex (in the case of theWPH)Hilbert
space? What is the physical interpretation of the basis vec-
tors that span this low-dimensional linear subspace? Why
are both the SVDs (inputs to outputs, and PCA projection
to SVD projection) nearly diagonal? Why were the log10
operations needed before and after the functional convolu-
tional transformation (the MST and WPH)? Why was the
best MLP/NN architecture an encoder/decoder architecture,
and what is the physical interpretation of the coordinates of
the middle layer? Why was it so easy for the MLP/NN to
approximate the function with so few neurons? The answer
to these questions will be the subject of an upcoming paper,
now in draft form. Because the design of this workflow was

not accidental or the product of a large amount of experi-
mentation (in fact, all the best design choices were the first
thing that we tried, including the structure of the MLP/NN),
we will present the answers to these questions, which you
should view as hypotheses at this time. The efficacy of this
MLDL is tantalizing evidence supporting these hypotheses.

Could the MST, if properly formulated, be a transforma-
tion to a complex “renormalization” space where the basis
vectors are the solution to the Renormalization Group Equa-
tions (RGE)? (Remember that Renormalization is the study
of how the physics changes as a function of scale, in our case
p. The solution to the RGEs, a coupled set of ODEs, gives the
scaling exponents as a function of scale, where the fields and
coupling constants scale as ∼ f βi (p)

i , where the βi (p) are
the solutions to the RGEs for field fi .) Is a natural logarithm
needed to flatten this space? Is there then a simplemapping to
decoupled action-angle coordinates on the low-dimensional
linear subspace, where the action and the angle are uniform
circular functions of time? After all, the RGEs are coupled
ODEs of the logarithmic derivative. The complex ln(z) func-
tion, as a conformal mapping, takes polar coordinates about
the origin to the cylinder where
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Fig. 13 Cross plots of predicted versus actual values for each PCA
vector component, by theMLP/NN.The score for eachPCAvector com-
ponent is shown on the respective plot. The grid search for theMLP/NN

structure and regularization parameter α is shown in the upper left cor-
ner. A structure of hidden layers of 25-15-25, and a value of α = 0 is
used
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Fig. 14 The evolution of the PCA vector components as predicted by
theMLP/NNcompared to the actual values. The predicted values are the
bold lines and the actual values are the light lines of the same color. The
permutation feature importance is shown in the lower right hand corner.

The identification of each PCA vector component with the unique input
parameter is indicated on each plot. Shown are six simulations that span
AR = 3, 6, 9 and T0 = 10 eV, 631 eV

ln(z) = ln | z | + i arg(z), (13)

which flattens the space. A PCA then would identify this lin-
ear subspace. An SVD analysis of the fields and coupling
constants would diagonally correlate to the basis vectors of
this subspace. The PCA vectors would be the solutions to the
RGEs. The number of important PCA vectors would there-
fore be equal to the number of fields and coupling constants.
The number of actions plus angles would be twice the num-
ber of PCA vectors. Given that there are 6 fields (density,
charge density, and 4 E&M fields) and 4 coupling constants
(charge of the electron and ion, and mass of the electron and
ion, which were held constant) in MHD, the use of 7 PCA
vectors and 15 nodes in the middle hidden layer is not sur-
prising. There are six fields and another adjoint basis vector
for the resistivity, giving a total of seven. The encoding in
the middle layer needs to have a node for the action and
the angle for each field and another for time, giving a total
of 15. The motion on this low dimensional linear subspace

would be geodesic motion determined by an analytic func-
tion that the MLP/NN is approximating. It is interesting to
note that knowing the topology of this low-dimensional com-
plex space is equivalent to knowing the analytic function (it
is the solution to Laplace’s equation). For a simple topology,
this would be knowing the location and order of the poles
and zeros. It would be very easy for a MLP/NN to approxi-
mate this function since it is a solution to Laplace’s equation.
It would need few tie points away from the poles and zeros
because the space would be flat.

These hypotheses, if true, lead to some interesting applica-
tions of this MLDL workflow. For example, the predictions
will extrapolate well, as long as the extrapolation is made
going away from the poles and zeros of the topology. This
can be experimentally tested. First, make a prediction using
the MLDL predictor of scaling into into a new regime, then
do the experiment. If the prediction is better than expected,
then the extrapolation is away from the poles and zeros. If
the prediction is worse than expected, then the extrapolation
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Fig. 15 The evolution of the PCA vectors as predicted by the SVM
compared to the actual values. The predicted values are the bold lines
and the actual values are the light lines of the same color. The identifi-

cation of each PCA vector with the unique input parameter is indicated
on each plot. Shown are six simulations that span AR = 3, 6, 9 and
T0 = 10 eV, 631 eV

is towards new poles and zeros. The theoretical model needs
to have additional physics added to it. In fact, the MLDL
workflow, if augmented with the experimental points and
the deletion of the theoretical (computer simulation) in this
extrapolation regime, will determine what topology needs to
be added. This process is one of topological discovery or
causal analysis.

Another way of looking at the MLDL workflow pre-
sented and implemented in this paper is a redefinition of the
MST/WPH to

Sm[ f (x)](p, x) ≡ φpx�

(
m∏

k=1

i ln R0 ψpk�

)
i ln R0 f (x),

(14)

where

R0(z) ≡ z + ei arg(z). (15)

It should be noted that this transformation is no longer sta-
tionary since the Father Wavelet only averages over as large

of a patch as it has to do. Nothing prevents this partition of
unity from being summed over a larger domain in x , if the
process is stationary over that domain. This transformation
is complex from the beginning to the end. The real part is
the ln(mod) and the imaginary part is the arg. Not only does
ln(R0(z)) conformally flatten the space onto the cylinder, it
now (with the addition of R0) exponentially (for large devia-
tion), then logarithmically (for small deviations) converges to
the origin z = 0. The connection to the MST/WPHwork can
be seen by examining the limiting behavior of the ln(R0(z))
mapping

ln(R0(z)) −−−→|z|→0
z

−−−−→|z|→∞ ln | z | (this work)

−−−−→|z|→∞ ln | z | ei arg(z)/ ln|z|

∼
n∑

k=0

| z | ei k arg (z) (that is, WPH)

−−→
n=0

| z | (that is, MST).

(16)
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Fig. 16 The evolution of the liner density (left) and the magnetic field
(right), and the reconstruction from the inverse WPH (iWPH) and hor-
izontal lineouts through both profiles. The fields are displayed at four

key times (top to bottom): t = 0, t = 75 ns, t = 150 ns, and t = 200 ns.
The initial conditions are AR = 3, T0 = 631 eV, and � = 1%

Fig. 17 A closeup of two
critical PCA vectors that
illuminate the inverse cascade.
The radial axes are logarithmic
in scale. Shown are the first and
second order MST for the ϕi4
(top) and ϕi2 (bottom)
components
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Fig. 18 MLP/NN permutation feature importance

Fig. 19 The time evolution of the first PCA vector component with
respect to time. The MLP/NN estimated values are the bold lines, the
GORGON simulated values are the light lines in corresponding colors.
Shown are six cases for T0 = 10 eV, 631 eV and AR = 3, 6, 9

The characteristic of the fixed point at the origin is the state-
ment of the first limit. The second limit is effectively what
has been used in this paper. In the third limit (which keeps the
small arg imaginary term), the ln chirps the pulse, generating
the harmonics that are explicitly generated in the fourth line
by the WPH. The conventional MST is just using the first
term in that series.

This MLDL architecture can be modified to make it
a sequential, modular approach as shown in Fig. 20. In
general, one starts with initial conditions Ã and coupling
constants C , does a computer simulation of the process,
followed by a computer simulation of the diagnostics, to
predict the diagnostic response D̃. Here the tilde signifies
the PCA(ln(MST/WPH(ln))) of the field quantity. The com-
posite approach can be taken, where there is one MLP/NN,
D̃( Ã,C). There is a more flexible decomposed approach
where the approximation is separated into three approxima-
tors. The first is a mapping of the initial conditions to the
initial fields z̃i ( Ã). This is followed by a general dynamic

Fig. 20 Three different variations of the MLDL workflows: (top) a
composite workfow, (middle) a decomposed approach, and (bottom)
the hybrid case presented in this paper

mapper of the initial fields, coupling constants and time to the
fields z̃(z̃i ,C; t). Finally, there is amapping from the fields to
the diagnostics, D̃(z̃). The current work is a restricted hybrid
of initial conditions and time to the fields z̃( Ã; t).

Thiswork needs to be extended into 3D to see if the inverse
cascade persists and what the characteristics of the 3D self-
organized state are. It is well-known that the inverse cascade
in 2D fluid flow is caused by the topological invariant of
vorticity. For the case of themagnetized plasmas encountered
in MagLIF, there is still a topological invariant: helicity [23–
25]. There is experimental evidence of helical stagnations
showing the dipole structure in the plane perpendicular to
the axis [9]. In addition, there is also an axial sausage mode.
The result is a double helical structure that looks like a DNA
atom.

There are obvious improvements that also need to bemade
to the MST/WPH. It needs to be made non-stationary, such
that it is not translationally invariant. The complex natural
logarithm function needs to be made an integral part of it.
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The orthogonal local wavelet basis needs to be a carefully
constructed partition of unity, so that a fast inverse trans-
formation can be constructed. Given this basis, a resolution
independent, physical display needs to be constructed.

We end with a summary of what this research has shown
or given indications may be true. It has demonstrated a fast,
high fidelity surrogate for resistive MHD. This surrogate is
107 times faster than conventional computational predic-
tion. It is based on a simple, fast to train, physics-based
machine learning. It gives field to field correlation, physically
interpretable results, and meaningful graphical displays. It
has the potential to give fundamental insights into nonlin-
ear dynamics, physical kinetics, quantization and second
quantization, renormalization, and the topology of dynam-
ics. This surrogatewill either extrapolatewell or give insights
into additional causality. Finally, from the practical MagLIF
physics perspective, it has shown an emergent behavior of
2D MagLIF implosions into a self organized dipole state.
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